WO2014054350A1 - 太陽電池セルの製造方法 - Google Patents

太陽電池セルの製造方法 Download PDF

Info

Publication number
WO2014054350A1
WO2014054350A1 PCT/JP2013/072490 JP2013072490W WO2014054350A1 WO 2014054350 A1 WO2014054350 A1 WO 2014054350A1 JP 2013072490 W JP2013072490 W JP 2013072490W WO 2014054350 A1 WO2014054350 A1 WO 2014054350A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heat treatment
substrate
heating
solar cell
Prior art date
Application number
PCT/JP2013/072490
Other languages
English (en)
French (fr)
Inventor
村上 貴志
渡部 武紀
大塚 寛之
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to RU2015116526A priority Critical patent/RU2636405C2/ru
Priority to CN201380051963.8A priority patent/CN104704639B/zh
Priority to KR1020157011128A priority patent/KR101873563B1/ko
Priority to US14/433,411 priority patent/US9614117B2/en
Priority to JP2014539637A priority patent/JP6107830B2/ja
Priority to EP13843248.9A priority patent/EP2905812B1/en
Publication of WO2014054350A1 publication Critical patent/WO2014054350A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • H01L31/03125Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a method for manufacturing a solar battery cell.
  • a p-type silicon substrate obtained by slicing a monocrystalline silicon ingot pulled up by the Czochralski (cz) method or a polycrystalline silicon ingot produced by a casting method by a multi-wire method is prepared ( Step (1)).
  • fine irregularities (texture) having a maximum height of about 10 ⁇ m are formed on the surface (step (2)), and an n-type diffusion layer is formed on the substrate surface by a thermal diffusion method.
  • a silicon nitride film or the like is deposited on the light receiving surface with a film thickness of, for example, about 70 nm to form an antireflection film / passivation film.
  • an antireflection film is formed on the light receiving surface side of the substrate (step (5)).
  • an electrode paste mainly composed of aluminum is printed over the entire back surface, which is the non-light-receiving surface of the substrate, using a screen printing method, and dried to form a back electrode (step (6)).
  • an electrode paste (electrode agent) containing metal particles such as silver and other additives such as glass frit is screen-printed in a comb-teeth shape having a width of about 100 to 200 ⁇ m, for example. Dry (step (7)).
  • step (99) the entire substrate is subjected to heat treatment (step (99)) in order to fire the electrode paste application portion to form a surface electrode.
  • heat treatment the metal particles in the electrode paste are baked to suppress wiring resistance, and the silicon nitride film is penetrated by a glass frit (referred to as fire-through), and the light-receiving surface electrode and the diffusion layer are formed. Conduction is performed, and an Al—Si electric field layer is formed at the interface between the non-light-receiving surface electrode and the silicon substrate.
  • the temperature of the heating portion of the electrode firing heat treatment is usually 500 to 950 ° C., particularly 600 to 850 ° C., and the heating time Is preferably 5 to 30 seconds, the temperature of the cooling section is 25 to 500 ° C., and the cooling time is preferably 5 to 30 seconds, and the heating temperature includes a relatively high temperature range.
  • the peak temperature of the electrode firing heat treatment must be 800 ° C. or higher for the purpose of promoting the firing of silver particles. Due to exposure to high temperatures, there is a problem that the bulk lifetime of the substrate is reduced and the surface recombination rate is increased, so that high conversion efficiency cannot be maintained.
  • Patent Document 2 JP-T-2012-514342
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a highly efficient solar cell excellent in long-term reliability.
  • the present invention provides the following solar cell manufacturing method.
  • a step of applying a paste-like electrode agent containing a conductive material on an antireflection film formed on the light-receiving surface side of a semiconductor substrate having at least a pn junction, and irradiating only the electrode agent application portion with laser light A solar cell comprising: a local heat treatment for heating so that at least a part of the conductive material is fired; and an electrode firing step having an overall heat treatment for heating the entire semiconductor substrate to a temperature of less than 800 ° C. Manufacturing method.
  • the firing of the electrode is promoted more than before, the wiring resistance and the contact resistance can be suppressed, the long-term reliability is improved, and the decrease in the bulk lifetime of the substrate and the increase in the surface recombination rate are suppressed. It is possible to obtain a highly efficient crystalline solar cell excellent in long-term reliability.
  • FIG. 2 is a flowchart showing an example of a manufacturing process in the method for manufacturing a solar battery cell according to the present invention. The manufacturing process will be described with reference to the configuration of the solar battery cell shown in FIG.
  • the conductivity type may be either n-type or p-type, but here, a single crystal or polycrystalline ingot doped with a group III element such as B or Ga on a high-purity silicon substrate is cut using a multi-wire saw or the like, A p-type silicon substrate (hereinafter referred to as substrate) 1 is obtained (step (1)).
  • the specific resistance of the substrate is preferably, for example, 0.1 to 20 ⁇ ⁇ cm, and in particular, 0.5 to 2.0 ⁇ ⁇ cm is suitable for producing a high-performance solar cell.
  • damage caused by slicing in the substrate 1 is removed by etching using a high concentration alkaline aqueous solution such as sodium hydroxide or potassium hydroxide having a concentration of 5 to 60% by mass or a mixed acid of hydrofluoric acid and nitric acid.
  • a high concentration alkaline aqueous solution such as sodium hydroxide or potassium hydroxide having a concentration of 5 to 60% by mass or a mixed acid of hydrofluoric acid and nitric acid.
  • a random texture having a minute uneven structure is formed on the front and back surfaces of the substrate 1 subjected to damage etching (step (2)).
  • Texture formation is an effective method for reducing the reflectance of solar cells.
  • the texture is formed by anisotropic etching with an alkaline solution in a single crystal silicon substrate, the crystal plane orientation is preferably (100), but other crystal plane orientations may be used when physical polishing is performed using a grinding machine or the like. .
  • hydrochloric acid After texture formation, wash in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, etc., or a mixture of these. From an economical and characteristic point of view, washing in hydrochloric acid is preferred. In order to improve the cleanliness, the hydrochloric acid solution may be mixed with 0.5 to 5% by mass of hydrogen peroxide and heated to 60 to 90 ° C. for washing.
  • an emitter layer (n-type diffusion layer) 2 is formed on the light receiving surface of the substrate 1 by vapor phase diffusion using, for example, phosphorus oxychloride (POCl 3 ) (step (3)). Thereby, a pn junction is formed.
  • the P concentration and depth of the emitter layer 2 are determined by the balance between the resistance to the current flowing through the emitter layer 2 and the surface passivation effect.
  • the sheet resistance of the emitter layer 2 measured by the four-probe method is preferably about 30 to 100 ⁇ / ⁇ .
  • the glass component formed on the surface of the substrate 1 by the vapor phase diffusion method is removed by etching with hydrofluoric acid or the like, and then a general solution using a hydrochloric acid / hydrogen peroxide mixed solution or an ammonia / hydrogen peroxide mixed solution is used.
  • the substrate is cleaned (step (4)).
  • an antireflection film 3 which is also a passivation film is formed on the emitter layer 2 on the light receiving surface side of the substrate 1 (step (5)).
  • a silicon nitride film having a thickness of about 100 nm is formed as the antireflection film 3 using a chemical vapor deposition apparatus such as a plasma CVD apparatus.
  • a reaction gas for film formation monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used, but nitrogen can also be used instead of ammonia.
  • a desired reflectance is realized as the antireflection film 3 by diluting the film (film formation type) with H 2 gas, adjusting the process pressure, and diluting the reaction gas.
  • the film formation type of the antireflection film 3 is not limited to silicon nitride, but includes chemical vapor deposition, as well as silicon oxide, silicon carbide, aluminum oxide, amorphous silicon, microcrystalline silicon, heat treatment, atomic layer deposition, and the like. Titanium oxide or the like may be used instead.
  • an Al paste electrode agent in which Al powder and an organic binder are mixed is screen-printed, heated at about 150 to 250 ° C. for about 5 to 15 minutes and dried.
  • the back electrode 4 is formed (step (6)).
  • the back surface electric field layer may be formed on the non-light-receiving surface side of the substrate 1 by, for example, vapor phase diffusion of boron bromide. In that case, from the viewpoint of suppressing wiring resistance, an electrode agent of Ag paste is used. It is preferable to form the back electrode 4 by screen printing.
  • an electrode material of Ag paste in which Ag powder and glass frit are mixed with an organic binder is applied in a predetermined pattern on the antireflection film 3 on the light receiving surface side of the substrate 1, and is applied at 150 to 250 ° C. at 5 ° C. It is dried by heating for about 15 minutes to form an electrode agent application portion (step (7)).
  • the Ag paste is screen-printed in a comb electrode pattern shape, that is, a finger electrode and bus bar electrode shape pattern, and dried.
  • the glass frit is a Pb glass frit (for example, PbO—BO 3 —SiO 2 system or the like) or a Pb free glass frit (for example, Bi 2 O 3 —B 2 O 3 —SiO 2 —CeO 2). -LiO 2 -NaO 2 system etc.) can be used, but is not limited thereto.
  • the shape of the glass frit is not particularly limited, and for example, a spherical shape, an indefinite shape, or the like can be used.
  • the particle size of the glass frit is not particularly limited, but from the viewpoint of workability and the like, the average particle size (weight average particle size) is preferably in the range of 0.01 to 10 ⁇ m, and in the range of 0.05 to 1 ⁇ m. More preferred.
  • the organic binder may be a cellulose resin (for example, ethyl cellulose, nitrocellulose, etc.) or a (meth) acrylic resin (for example, polymethyl acrylate, polymethyl methacrylate, etc.), but is not limited thereto. It is not a thing.
  • the addition amount of the organic binder is usually 1 to 10 parts by mass, preferably 1 to 4 parts by mass with respect to 100 parts by mass of the conductive particles (Ag particles).
  • a local heat treatment is performed in which only the portion where the electrode agent is applied is irradiated with laser light and heated so that at least a part of the conductive material is fired (step (9a)).
  • the laser beam to be used is preferably a pulse laser, and the wavelength range may be determined by the components used for the electrode agent, particularly the type of the conductive material, and generally used silver (Ag).
  • the silver absorption coefficient is 300 to 500 nm, which has a high absorption coefficient.
  • the laser beam scanning is controlled so that only the electrode agent application part is irradiated with the laser beam, but the laser output, frequency, pulse width, laser beam diameter (spot diameter), scan speed, etc. are adjusted, It is preferable to adjust the heating conditions (including the heat history pattern) in the electrode agent application portion so that at least a part of the conductive material is fired. Specifically, local heating is performed so that only the electrode agent application portion of the shape pattern (see FIG. 5) corresponding to the bus bar electrode 5a and finger electrode 5b constituting the surface electrode 5 is heated evenly. Is preferred.
  • junction isolation means that the positive electrode and the negative electrode of a solar battery cell are short-circuited by being connected by a high-concentration dopant diffusion layer of the same conductivity type, and this diffusion layer is partially removed in order to prevent deterioration of characteristics.
  • the positive electrode and the negative electrode are structured not to be connected by the dopant diffusion layer of the same conductivity type.
  • the bonding separation method depends on the point in time of the manufacturing process, but a method of etching a substrate surface layer such as dry etching or wet etching, a physical grinding method using a grinding machine, or laser light is used. Any method such as an ablation method may be used.
  • bonding and separation can be performed by processing the outer periphery of the substrate on the light receiving surface side or the back surface side with a laser.
  • the junction separation is not necessarily performed after the local heat treatment, and may be performed after the pn junction is formed, after the antireflection film 3 is formed, or after the electrode firing step.
  • an overall heat treatment for heating the entire substrate 1 to a temperature of less than 800 ° C. is performed (step (9b)).
  • the substrate 1 that has been subjected to the local heat treatment is put into a conventionally used baking furnace, and the peak heating temperature in the overall heat treatment is preferably 600 to 780 ° C., more preferably 650 to 760 ° C.
  • substrate 1 is heated so that it may become.
  • the heating time may be 5 to 30 seconds.
  • the heating temperature here is not the set temperature of the firing furnace but the substantial heating temperature of the substrate 1.
  • the peak heating temperature in the whole heat treatment By setting the peak heating temperature in the whole heat treatment to 600 to 780 ° C., the bulk lifetime of the substrate 1 can be maintained high, and the surface recombination rate can be maintained small.
  • the peak heating temperature is higher than 780 ° C., the bulk lifetime is reduced due to metal contamination, while the hydrogen bonded to the dangling bonds in the silicon nitride film of the antireflection film 3 formed on the surface of the substrate 1 is reduced. Since desorption occurs and the surface recombination rate increases, high conversion efficiency may not be obtained.
  • the peak temperature is lower than 600 ° C.
  • the influence of the metal contamination is reduced and a high bulk lifetime can be maintained, but dangling bonds and hydrogen bonds in the antireflection film 3 become insufficient, resulting in surface restructuring. Since the coupling speed does not decrease sufficiently, high conversion efficiency may not be obtained.
  • the electrode agent-coated portion that has been locally heated is completely baked, and the glass frit component contained in the electrode agent-coated portion reacts with the antireflection film 3 that is a silicon nitride film and decomposes.
  • the Ag particles penetrate the antireflection film 3 and become the surface electrode 5 in contact with the emitter layer 2 with low resistance (fire-through method).
  • the resistivity of the surface electrode 5 to be formed is preferably as low as possible, but is 5 ⁇ ⁇ cm or less, preferably 3 ⁇ ⁇ cm or less at the highest.
  • the electrical contact resistance between the silicon (substrate 1) and the surface electrode 5 is related to the carrier concentration on the silicon surface, that is, the dopant concentration and the electrode material.
  • the dopant concentration on the silicon surface is at least 1. ⁇ 10 19 cm ⁇ 3 or more is required, and preferably 5 ⁇ 10 19 cm ⁇ 3 or more is required. Further, by this overall heat treatment, a BSF (Back Surface Field) layer 6 serving as an Al—Si electric field layer is formed at the interface between the back electrode 4 and the substrate 1.
  • BSF Back Surface Field
  • the local heat treatment (step (9a)) and the whole heat treatment (step (9b)) are collectively referred to as electrode firing (step (9)).
  • electrode firing step (9)
  • the heat treatment is performed in the order of local heat treatment (step (9a)) and then overall heat treatment (step (9b)) is shown, but the whole heat treatment (step (9b)) and then local heat treatment are shown.
  • the above-mentioned local heat treatment is performed so that the electrode agent-coated portion is completely fired.
  • This also provides the same effect as when the heat treatment is performed in the order of the local heat treatment (step (9a)) and then the overall heat treatment (step (9b)).
  • the light-receiving surface-side electrode agent printing / drying (step (7)) of the substrate 1 may be performed first, and then the non-light-receiving surface-side back electrode formation (step (6)) may be performed.
  • the firing of the electrode is promoted more than before, the wiring resistance and the contact resistance can be suppressed, the long-term reliability is improved, and the bulk lifetime of the substrate and the surface recombination rate are increased.
  • a highly efficient crystalline solar cell excellent in long-term reliability can be obtained.
  • the local heat treatment (step (9a)) and the bonding separation treatment (step (8)) are performed separately.
  • the same laser processing machine may be used, and the local heating process and the joining / separating process may be performed as one step (9a ′).
  • the substrate 1 fixed to the stage of the laser processing machine may be first subjected to the local heating process, and then the substrate 1 may be irradiated with a laser beam changed to a processing wavelength to perform the bonding separation process.
  • the light receiving surface is only on one side, that is, the case where the electrode agent is applied on the antireflection film on only the surface and firing and fire-through are shown, but the present invention is not limited to this.
  • the present invention can also be applied to a double-sided light receiving solar cell in which an antireflection film is formed on each of the diffusion layers on the front and back surfaces, and an electrode agent is further applied thereon to perform firing and fire-through.
  • Example 1 A solar cell sample was prepared by the following procedure. First, a boron-doped p-type single crystal whose crystal is manufactured by the CZ method, an as-slicing specific resistance of 0.5 to 3.0 ⁇ ⁇ cm, a plane orientation (100), a thickness of 200 ⁇ m, a square 156 ⁇ 156 mm silicon substrate (hereinafter, 1,000 substrates were prepared. Next, the substrate is immersed in a 40% by mass sodium hydroxide solution, the damaged layer is removed by etching, the substrate is immersed in an aqueous solution containing sodium hydroxide and isopropyl alcohol at a concentration of 3% by mass, and wet etching is performed. Random texture was formed on both sides.
  • a pair of substrates is heat-treated in a state where the non-light-receiving surfaces overlap each other, and the light-receiving surface is highly doped with phosphorus to form an emitter layer having a sheet resistance of 50 ⁇ / ⁇ . Formed.
  • the phosphorous glass on the substrate surface was removed with hydrofluoric acid, washed with an ammonia / peroxide aqueous solution, rinsed and dried.
  • a silicon nitride film as an antireflection film / passivation film was formed on the entire surface of the light-receiving surface with a film thickness of 90 nm on the substrate after the cleaning.
  • Pb-free glass frit containing silver as a main component is used.
  • An electrode paste containing (Bi 2 O 3 —B 2 O 3 —SiO 2 —CeO 2 —LiO 2 —NaO 2 system) as an additive was screen-printed and dried at a heating temperature of 200 ° C. for 15 minutes.
  • the number of patterns for the finger electrode 5b in the pattern of FIG. 5 is 78, the length is 154 mm, the interval is 2.0 mm, the opening width is 100 ⁇ m, the number of the patterns for the bus bar electrode 5a is 3, and the length is 154 mm.
  • the interval was 38.5 mm, and the opening width was 1500 ⁇ m.
  • an electrode paste containing silver was screen-printed on the bus bar portion on the non-light-receiving surface side of the substrate, and an electrode paste containing aluminum was screen-printed on the entire other portion, and dried at 200 ° C. for 15 minutes.
  • the substrate on which the electrode paste was printed and dried was subjected to local heating treatment by irradiating the light receiving surface finger electrode pattern portion and the bus bar electrode pattern portion with laser light.
  • laser light having an output of 12.5 W, a wavelength of 355 nm, a frequency of 150 kHz, a pulse width of 13 nm, and a spot diameter of 50 ⁇ m was used and processed at a scan speed of 1000 mm / sec.
  • a laser beam was made to make one round along the outer periphery of the substrate at a distance of 0.5 mm from the outer periphery of the substrate, and a bonding separation process was performed by a laser ablation method.
  • laser light having an output of 12.5 W, a wavelength of 532 nm, a frequency of 150 kHz, a pulse width of 13 nm, and a spot diameter of 25 ⁇ m was used and processed at a scanning speed of 1000 mm / sec.
  • the light receiving surface and the non-light receiving surface electrode were simultaneously formed by heating the entire substrate with a heating profile having a heating temperature of 760 ° C. and a peak portion of 10 seconds.
  • Example 2 In Example 1, a local heating process using a laser beam and a bonding separation process are successively performed (each laser condition is the same as that in Example 1). Otherwise, a solar cell sample is prepared in the same manner as in Example 1. Produced.
  • Example 1 In Example 1, the local heating process is not performed, and after the bonding separation process, the entire substrate is heated with a heating profile having a heating temperature of 800 ° C. and a peak portion of 10 seconds, so that the light receiving surface and the non-light receiving surface electrode are simultaneously formed. Otherwise, a solar cell sample was produced in the same manner as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 少なくともpn接合を有する半導体基板の受光面側に形成した反射防止膜上に導電材を含むペースト状の電極剤を塗布する工程(7)と、上記電極剤塗布部分のみにレーザー光を照射して上記導電材の少なくとも一部が焼成するように加熱する局所加熱処理(工程(9a))及び上記半導体基板全体を800℃未満の温度に加熱する全体加熱処理(工程9(b))を有する電極焼成工程(9)とを含む、長期信頼性に優れた高効率の太陽電池セルの製造方法に関する。

Description

太陽電池セルの製造方法
 本発明は、太陽電池セルの製造方法に関するものである。
 現在、民生用の結晶系太陽電池セルを製造するのに用いられている方法ではコスト低減が重要課題であり、そのための方法として、熱拡散法とスクリーン印刷法とを組合せた方法が一般的である。その詳細は例えば図1に示す通りである。
 まず、チョクラルスキー(cz)法で引き上げられた単結晶シリコンインゴットや、キャスト法により作製された多結晶シリコンインゴットを、マルチワイヤー法でスライスすることにより得られたp型シリコン基板を用意する(工程(1))。次に、アルカリ溶液で表面のスライスダメージを取り除いた後、最大高さ10μm程度の微細凹凸(テクスチャ)を表面に形成し(工程(2))、基板表面に熱拡散法でn型の拡散層を形成する(工程(3))。更に、受光面には窒化珪素膜等を、例えば70nm程度の膜厚で堆積して反射防止膜兼パッシベーション膜を形成する。次に、基板表面にできたガラスをエッチングで除去し、洗浄処理を施した後(工程(4))、基板の受光面側に反射防止膜を形成する(工程(5))。次いで、スクリーン印刷法を用いてアルミニウムを主成分とする電極ペーストを基板の非受光面である裏面全面にわたって印刷し、乾燥することによって裏面電極を形成する(工程(6))。次に、基板の受光面側に、銀等の金属粒子を含み、その他ガラスフリット等の添加物を含む電極ペースト(電極剤)を、例えば幅100~200μm程度の櫛歯状にスクリーン印刷し、乾燥する(工程(7))。続いて、接合分離処理を行った後(工程(8))、上記電極ペースト塗布部分を焼成して表面電極とするために基板全体を加熱処理する(工程(99))。この加熱処理で、上記電極ペースト中の金属粒子を焼成させて配線抵抗を抑制すると共に、ガラスフリットによって上記窒化珪素膜を貫通させ(ファイヤースルーと呼ばれている)、受光面電極と拡散層を導通させ、非受光面電極とシリコン基板界面にAl-Siの電界層を形成する。
 ここで、上記電極焼成熱処理について、例えば特開2011-258813号公報(特許文献1)では、電極焼成熱処理の加熱部の温度は、通常500~950℃、特に600~850℃であり、加熱時間は5~30秒が好ましく、冷却部の温度は25~500℃で、冷却時間は5~30秒が好ましいとされており、加熱温度として比較的高い温度範囲を含んでいる。
 しかしながら、上記電極焼成熱処理で長期信頼性に優れた電極を得るためには、銀粒子の焼成を促進する目的で電極焼成熱処理のピーク温度を800℃以上にしなければならず、この際、基板も高温にさらされるため、基板のバルクライフタイム低下や表面再結合速度の上昇が起こり、高い変換効率を維持することができないという問題があった。
 なお、本発明に関連した先行技術として、特表2012-514342号公報(特許文献2)がある。
特開2011-258813号公報 特表2012-514342号公報
 本発明は、上記事情に鑑みなされたもので、長期信頼性に優れた高効率の太陽電池セルの製造方法を提供することを目的とする。
 本発明は、上記目的を達成するため、下記の太陽電池セルの製造方法を提供する。
〔1〕 少なくともpn接合を有する半導体基板の受光面側に形成した反射防止膜上に導電材を含むペースト状の電極剤を塗布する工程と、上記電極剤塗布部分のみにレーザー光を照射して上記導電材の少なくとも一部が焼成するように加熱する局所加熱処理及び上記半導体基板全体を800℃未満の温度に加熱する全体加熱処理を有する電極焼成工程とを含むことを特徴とする太陽電池セルの製造方法。
〔2〕 上記電極焼成工程は、上記局所加熱処理、次いで全体加熱処理の順、又は上記全体加熱処理、次いで局所加熱処理の順で加熱処理を行うことを特徴とする〔1〕記載の太陽電池セルの製造方法。
〔3〕 上記全体加熱処理におけるピーク加熱温度が600~780℃であることを特徴とする〔1〕又は〔2〕記載の太陽電池セルの製造方法。
〔4〕 上記局所加熱処理のレーザー光の波長が300~500nmであることを特徴とする〔1〕~〔3〕のいずれかに記載の太陽電池セルの製造方法。
〔5〕 上記局所加熱処理と、レーザー光を用いてpn接合を分離する処理とを連続的に行うことを特徴とする〔1〕~〔4〕のいずれかに記載の太陽電池セルの製造方法。
 本発明によれば、電極の焼成が従来よりも促進され、配線抵抗と接触抵抗を抑制できると共に、長期信頼性が改善され、かつ基板のバルクライフタイム低下及び表面再結合速度の上昇を抑制することができ、長期信頼性に優れた高効率の結晶系太陽電池セルを得ることができる。
従来法による一般的な太陽電池セルの製造工程の一例を示す図である。 本発明に係る太陽電池セルの製造方法における製造工程の一例を示すフロー図である。 太陽電池セルの構成例を示す断面図である。 本発明に係る太陽電池セルの製造方法における製造工程の他の例を示すフロー図である。 太陽電池セルの受光面側の電極パターンの一例を示す概略図である。
 以下に、本発明に係る太陽電池セルの製造方法について説明する。
 図2は、本発明に係る太陽電池セルの製造方法における製造工程の一例を示すフロー図である。図3に示す太陽電池セルの構成を参照しながら、その製造工程を説明する。
 まず、シリコン基板を用意する。その導電型はn型でもp型のいずれでもよいが、ここでは高純度シリコン基板にBあるいはGaのようなIII族元素をドープした単結晶又は多結晶インゴットをマルチワイヤソー等を用いて切断し、p型シリコン基板(以下、基板)1を得る(工程(1))。基板の比抵抗は例えば0.1~20Ω・cmが好ましく、特に0.5~2.0Ω・cmであることが高い性能の太陽電池を作る上で好適である。
 次に、上記基板1におけるスライスによるダメージを、濃度5~60質量%の水酸化ナトリウムや水酸化カリウム等の高濃度のアルカリ水溶液、もしくはフッ酸と硝酸の混酸等を用いてエッチングにより除去する。
 次いで、ダメージエッチングを行った基板1の表裏面に微小な凹凸構造のランダムテクスチャを形成する(工程(2))。テクスチャ形成は太陽電池セルの反射率を低下させるための有効な方法である。単結晶シリコン基板であってテクスチャをアルカリ溶液による異方エッチングにより形成する場合、結晶面方位は(100)が好ましいが、研削機等を用いて物理研磨する場合はその他の結晶面方位でも構わない。
 テクスチャ形成後、塩酸、硫酸、硝酸、フッ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄する。経済的及び特性的観点から、塩酸中での洗浄が好ましい。清浄度を向上するため、塩酸溶液中に、0.5~5質量%の過酸化水素を混合させ、60~90℃に加温して洗浄してもよい。
 続いて、この基板1の受光面上に、例えばオキシ塩化リン(POCl3)を用いた気相拡散法によりエミッタ層(n型拡散層)2を形成する(工程(3))。これによりpn接合が形成される。エミッタ層2のP濃度と深さは、エミッタ層2を流れる電流に対する抵抗と、表面パッシベーション効果の兼ね合い等で決定されるものである。一般的には、四探針法で測定したエミッタ層2のシート抵抗が30~100Ω/□程度になるようにするのがよい。
 次に、気相拡散法により基板1表面に形成されたガラス成分をフッ酸等でエッチング除去し、続いて、塩酸/過酸化水素混合溶液やアンモニア/過酸化水素混合溶液を用いた一般的な基板の洗浄処理を行う(工程(4))。
 続いて、基板1の受光面側のエミッタ層2上にパッシベーション膜でもある反射防止膜3を形成する(工程(5))。例えば、プラズマCVD装置等の化学気相堆積装置を用い、厚さ100nm程度の窒化珪素膜を反射防止膜3として形成する。成膜の反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、アンモニアの代わりに窒素を用いることも可能である。また、H2ガスによる膜(成膜種)の希釈やプロセス圧力の調整、反応ガスの希釈を行い、反射防止膜3として所望の反射率を実現する。反射防止膜3の成膜種としては、窒化珪素に限らず、化学気相堆積法のほか、熱処理や原子層堆積等の方法による酸化珪素、炭化珪素、酸化アルミニウム、アモルファスシリコン、微結晶シリコン、酸化チタン等を代わりに用いてもよい。
 次に、基板1の非受光面(裏面)に、例えばAl粉末と有機バインダーとを混合したAlペーストの電極剤をスクリーン印刷し、150~250℃程度で5~15分程度加熱して乾燥させ、裏面電極4を形成する(工程(6))。なお、基板1の非受光面側において、例えば臭化ホウ素の気相拡散等により裏面電界層を形成してもよいが、その場合には配線抵抗を抑制する観点から、Agペーストの電極剤をスクリーン印刷して裏面電極4を形成することが好ましい。
 続いて、基板1の受光面側の反射防止膜3上に、例えばAg粉末とガラスフリットを有機バインダーで混合したAgペーストの電極剤を使用して所定パターンで塗布し、150~250℃で5~15分程度の加熱により乾燥させて電極剤塗布部分とする(工程(7))。具体的には、Agペーストを櫛形電極パターン状、即ちフィンガー電極及びバスバー電極の形状パターンにスクリーン印刷し、乾燥させる。
 ここで、上記ガラスフリットは、Pb系ガラスフリット(例えば、PbO-BO3-SiO2系等)、あるいはPbフリー系ガラスフリット(例えば、Bi23-B23-SiO2-CeO2-LiO2-NaO2系等)を用いることができるが、これらに限定されるものではない。また、ガラスフリットの形状は特に限定されず、例えば球状、不定形等を用いることができる。また、ガラスフリットの粒子径も特に限定されないが、作業性等の点から、粒子径の平均値(重量平均粒子径)が0.01~10μmの範囲が好ましく、0.05~1μmの範囲がより好ましい。
 また、上記有機バインダーは、セルロース系樹脂(例えば、エチルセルロース、ニトロセルロース等)、(メタ)アクリル系樹脂(例えば、ポリメチルアクリレート、ポリメチルメタクリレート等)を用いることができるが、これらに限定されるものではない。また、有機バインダーの添加量は、導電性粒子(Ag粒子)100質量部に対し、通常1~10質量部であり、好ましくは1~4質量部である。
 次に、上記電極剤塗布部分のみにレーザー光を照射して上記導電材の少なくとも一部が焼成するように加熱する局所加熱処理を行う(工程(9a))。
 ここで、使用するレーザー光は、パルスレーザーによるものが好ましく、その波長範囲は電極剤に使用される成分、特に導電材の種類によって決定すればよく、一般的に使用される銀(Ag)を主成分とする電極剤を用いる場合、特に銀の吸光係数の高い300~500nmが好ましい。
 また、上記電極剤塗布部分のみにレーザー光が照射されるようにレーザー光走査の制御を行うが、レーザー出力、周波数、パルス幅、レーザービーム径(スポット径)、スキャンスピード等を調整して、導電材の少なくとも一部が焼成するよう、該電極剤塗布部分における加熱条件(熱履歴パターン含む)を調整するとよい。具体的には、表面電極5を構成するバスバー電極5a、フィンガー電極5bに相当する形状パターン(図5参照)の電極剤塗布部分のみに、その領域が均等に加熱されるように局所加熱を行うことが好適である。
 この局所加熱処理により、電極剤塗布部分において有機バインダーが除去されると共に、少なくとも一部(場合によっては全部)の導電材同士が結合する焼成が行われる。ただし、反射防止膜3を貫通するファイヤースルーには至っていない。従って、この際の加熱処理は、レーザー光による電極剤塗布部分に限定されたごく表層で短時間の加熱であることから、電極剤塗布部分直下のpn接合界面への熱影響は極めて少なく、バルクタイムライフ低下及び表面再結合速度の上昇が抑制される。
 次に、pn接合の分離(接合分離)を行う(工程(8))。接合分離とは、太陽電池セルの正極電極と負極電極が同一導電型の高濃度ドーパント拡散層により繋がることで短絡し、特性が低下することを防ぐため、この拡散層を部分的に除去するなどして、正極電極と負極電極とが同一導電型のドーパント拡散層で繋がらない構造にすることである。接合分離の方法としては、当該製造工程のどの時点で実施するかにもよるが、ドライエッチングやウェットエッチング等の基板表層をエッチングする方法、研削機を用いた物理研削法、レーザー光を用いたアブレーション法等のいずれの方法によってもよい。例えば、レーザーで受光面側又は裏面側の基板外周を加工することで接合分離を行うことができる。
 なお、接合分離は、必ずしも局所加熱処理の後に実施する必要はなく、pn接合を形成した後や、反射防止膜3形成後、もしくは電極焼成工程後であってもよい。
 次に、基板1全体を800℃未満の温度に加熱する全体加熱処理を行う(工程(9b))。具体的には、従来より用いられている焼成炉に局所加熱処理が済んだ基板1を投入して、全体加熱処理におけるピーク加熱温度が好ましくは600~780℃、より好ましくは650~760℃となるように基板1を加熱する。また、加熱時間は5~30秒でよい。なお、ここでいう加熱温度は、焼成炉の設定温度ではなく、基板1の実質的な加熱温度である。
 上記全体加熱処理におけるピーク加熱温度を600~780℃とすることにより、基板1のバルクライフタイムを高く維持でき、表面再結合速度を小さく維持できる。このピーク加熱温度が780℃より高いと、金属汚染によりバルクライフタイムが低下し、一方で基板1表面に形成された反射防止膜3の窒化珪素膜中のダングリングボンドと結合していた水素が脱離し、表面再結合速度が上昇するため、高い変換効率が得られなくなるおそれがある。また、ピーク温度が600℃より低いと、上記金属汚染による影響は少なくなり、高バルクライフタイムを維持できるが、上記反射防止膜3中のダングリングボンドと水素の結合が不十分となり、表面再結合速度が十分に下がらないため、高い変換効率が得られない場合がある。
 これにより、局所加熱処理された上記電極剤塗布部分は、完全に焼成されると共に、該電極剤塗布部分に含まれるガラスフリット成分が窒化珪素膜である反射防止膜3と反応し、分解することを利用して、Ag粒子が反射防止膜3を貫通し、エミッタ層2と低抵抗で接触する表面電極5となる(ファイヤースルー法)。なお、形成される表面電極5の抵抗率は低いほどよいが、高くとも5μΩ・cm以下、好ましくは3μΩ・cm以下であることが望ましい。また、シリコン(基板1)と表面電極5の電気的接触抵抗は、シリコン表面のキャリア濃度、即ちドーパント濃度と電極材料に関係し、一般的なAg電極の場合、シリコン表面のドーパント濃度は少なくとも1×1019cm-3以上が必要であり、好ましくは5×1019cm-3以上が必要である。
 また、この全体加熱処理により、裏面電極4と基板1との界面にAl-Siの電界層となるBSF(Back Surface Field)層6が形成される。
 上記局所加熱処理(工程(9a))と全体加熱処理(工程(9b))とを合わせて、電極焼成(工程(9))と称する。なお、ここでは、局所加熱処理(工程(9a))、次いで全体加熱処理(工程(9b))の順に加熱処理を行う例を示したが、全体加熱処理(工程(9b))、次いで局所加熱処理(工程(9a))の順に加熱処理を行うようにしてもよい。即ち、上記電極剤塗布後に、基板1全体を800℃未満の温度に加熱する全体加熱処理を行って電極剤塗布部分をある程度焼成しつつエミッタ層2と接触するように反射防止膜3をファイヤースルーさせ、次いで上記局所加熱処理を行って該電極剤塗布部分を完全に焼成するようにする。これによっても局所加熱処理(工程(9a))、次いで全体加熱処理(工程(9b))の順に加熱処理を行う場合と同様の効果が得られる。
 また、基板1の受光面側電極剤印刷・乾燥(工程(7))を先に行い、次いで非受光面側裏面電極形成(工程(6))を行うようにしてもよい。
 以上の製造方法によれば、電極の焼成が従来よりも促進され、配線抵抗と接触抵抗を抑制できると共に、長期信頼性が改善され、かつ基板のバルクライフタイム低下及び表面再結合速度の上昇を抑制することができ、長期信頼性に優れた高効率の結晶系太陽電池セルを得ることができる。
 なお、この例では、局所加熱処理(工程(9a))と、接合分離処理(工程(8))とが別個に実施される例を示したが、図4に示すように、レーザー光を用いた接合分離処理とすることにより、同じレーザー加工機を用いるなどして、局所加熱処理と接合分離処理を連続的に行う一つの工程(9a’)としてもよい。例えば、レーザー加工機のステージに固定した基板1についてまず上記局所加熱処理を行い、続いて加工用の波長に変更したレーザー光を基板1に照射して接合分離処理を行うとよい。
 また、本実施形態では、受光面が片面のみ、即ち表面のみに反射防止膜上に電極剤を塗布して焼成及びファイヤースルーを行う構成の場合を示したがこれに限定されるものではなく、表裏面それぞれの拡散層上に反射防止膜を形成し、更にその上に電極剤を塗布してそれぞれ焼成及びファイヤースルーを行う両面受光タイプの太陽電池セルにも本発明を適用することができる。
 以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 以下の手順で太陽電池セルのサンプルを作製した。
 まず、結晶がCZ法で製造されたボロンドープp型単結晶、アズスライス比抵抗0.5~3.0Ω・cm、面方位(100)、厚さ200μm、正方形156×156mmのシリコン基板(以下、基板)を1000枚用意した。
 次に、この基板を40質量%水酸化ナトリウム溶液に浸し、ダメージ層をエッチングで取り除き、該基板を3質量%濃度で水酸化ナトリウムとイソプロピルアルコールを加えた水溶液に浸し、ウェットエッチングすることにより、両面にランダムテクスチャを形成させた。
 次に、オキシ塩化リン雰囲気下、870℃で基板を2枚一組で非受光面同士を重ねた状態で熱処理し、受光面にリンを高濃度ドーピングしてシート抵抗50Ω/□のエミッタ層を形成した。
 次に、フッ酸にて基板表面のリンガラスを除去し、アンモニア/過酸化水溶混合溶液で洗浄後、リンス洗浄し乾燥させた。
 次に、上記洗浄後の基板に反射防止膜兼パッシベーション膜として窒化珪素膜をプラズマCVD装置を用いて、受光面側全面に膜厚90nmで形成した。
 次に、基板1の受光面側に図5に示したような、バスバー電極5a用、フィンガー電極5b用のパターンを持つスクリーン製版を用いて、銀を主成分として含み、かつPbフリー系ガラスフリット(Bi23-B23-SiO2-CeO2-LiO2-NaO2系)を添加物として含む電極ペーストをスクリーン印刷し、加熱温度200℃で15分間乾燥した。なお、図5のパターンにおけるフィンガー電極5b用のパターンの本数は78本、長さが154mm、間隔は2.0mm、開口幅は100μm、バスバー電極5a用のパターンの本数は3本、長さ154mm、間隔は38.5mm、開口幅は1500μmとした。
 次に、基板の非受光面側に、銀を含む電極ペーストをバスバー部にスクリーン印刷し、それ以外の部分全面にアルミニウムを含む電極ペーストをスクリーン印刷し、200℃で15分間乾燥した。
 次に、上記電極ペーストを印刷・乾燥させた基板に対し、上記受光面フィンガー電極用パターン部分及びバスバー電極用パターン部分に、レーザー光を照射し局所加熱処理を行った。このときの局所加熱処理のレーザー条件として、出力12.5W、波長355nm、周波数150kHz、パルス幅13nm、スポット径50μmのレーザー光を用い、1000mm/secのスキャンスピードで加工した。
 次に、上記基板外周から0.5mmの距離を基板外周に沿ってレーザー光を一周させ、レーザーアブレーション法により接合分離処理を行った。このときの接合分離処理のレーザー条件としては、出力12.5W、波長532nm、周波数150kHz、パルス幅13nm、スポット径25μmのレーザー光を用い、1000mm/secのスキャンスピードで加工した。
 次に、加熱温度760℃、10秒間のピーク部を持つ加熱プロファイルで基板を全体加熱することで、受光面及び非受光面電極を同時に形成した。
[実施例2]
 実施例1において、レーザー光による局所加熱処理と接合分離処理を連続して行い(それぞれのレーザー条件は実施例1と同じ)、それ以外は実施例1と同様にして、太陽電池セルのサンプルを作製した。
[比較例1]
 実施例1において、局所加熱処理を行わず、接合分離処理の後に、加熱温度800℃、10秒間のピーク部を持つ加熱プロファイルで基板を全体加熱することで、受光面及び非受光面電極を同時に形成し、それ以外は実施例1と同様にして、太陽電池セルのサンプルを作製した。
 以上のようにして得られた太陽電池セルについて、スペクトルAM(エアマス)1.5グローバルの擬似太陽光を照射して電流電圧測定機で電気特性(開放電圧、短絡電流、曲線因子、変換効率)を測定した。その結果を表1に示す。
 高温で全体加熱により電極焼成処理を行った比較例1に対し、レーザー光の局所加熱処理と低温の全体加熱処理による電極焼成処理を行った実施例1及び2はどちらも開放電圧及び短絡電流が顕著に上昇し、曲線因子は同等以上の値を示した。
Figure JPOXMLDOC01-appb-T000001
 なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。
1 p型シリコン基板(半導体基板)
2 エミッタ層(n型拡散層)
3 反射防止膜
4 裏面電極
5 表面電極
5a バスバー電極
5b フィンガー電極
6 BSF層

Claims (5)

  1.  少なくともpn接合を有する半導体基板の受光面側に形成した反射防止膜上に導電材を含むペースト状の電極剤を塗布する工程と、上記電極剤塗布部分のみにレーザー光を照射して上記導電材の少なくとも一部が焼成するように加熱する局所加熱処理及び上記半導体基板全体を800℃未満の温度に加熱する全体加熱処理を有する電極焼成工程とを含むことを特徴とする太陽電池セルの製造方法。
  2.  上記電極焼成工程は、上記局所加熱処理、次いで全体加熱処理の順、又は上記全体加熱処理、次いで局所加熱処理の順で加熱処理を行うことを特徴とする請求項1記載の太陽電池セルの製造方法。
  3.  上記全体加熱処理におけるピーク加熱温度が600~780℃であることを特徴とする請求項1又は2記載の太陽電池セルの製造方法。
  4.  上記局所加熱処理のレーザー光の波長が300~500nmであることを特徴とする請求項1~3のいずれか1項記載の太陽電池セルの製造方法。
  5.  上記局所加熱処理と、レーザー光を用いてpn接合を分離する処理とを連続的に行うことを特徴とする請求項1~4のいずれか1項記載の太陽電池セルの製造方法。
PCT/JP2013/072490 2012-10-04 2013-08-23 太陽電池セルの製造方法 WO2014054350A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2015116526A RU2636405C2 (ru) 2012-10-04 2013-08-23 Способ изготовления солнечного элемента
CN201380051963.8A CN104704639B (zh) 2012-10-04 2013-08-23 太阳能电池单元的制造方法
KR1020157011128A KR101873563B1 (ko) 2012-10-04 2013-08-23 태양 전지 셀의 제조 방법
US14/433,411 US9614117B2 (en) 2012-10-04 2013-08-23 Solar cell manufacturing method
JP2014539637A JP6107830B2 (ja) 2012-10-04 2013-08-23 太陽電池セルの製造方法
EP13843248.9A EP2905812B1 (en) 2012-10-04 2013-08-23 Solar cell manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012221850 2012-10-04
JP2012-221850 2012-10-04

Publications (1)

Publication Number Publication Date
WO2014054350A1 true WO2014054350A1 (ja) 2014-04-10

Family

ID=50434683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072490 WO2014054350A1 (ja) 2012-10-04 2013-08-23 太陽電池セルの製造方法

Country Status (9)

Country Link
US (1) US9614117B2 (ja)
EP (1) EP2905812B1 (ja)
JP (1) JP6107830B2 (ja)
KR (1) KR101873563B1 (ja)
CN (1) CN104704639B (ja)
MY (1) MY170332A (ja)
RU (1) RU2636405C2 (ja)
TW (1) TWI585991B (ja)
WO (1) WO2014054350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527942A (ja) * 2019-04-10 2021-10-14 グーグル エルエルシーGoogle LLC 携帯型急速大面積薄膜光焼結装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066016A1 (ja) * 2016-10-05 2018-04-12 信越化学工業株式会社 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池
TWI580058B (zh) * 2016-10-26 2017-04-21 財團法人工業技術研究院 太陽能電池
DE102017000528A1 (de) * 2017-01-20 2018-07-26 Berliner Glas Kgaa Herbert Kubatz Gmbh & Co. Verfahren zur Bearbeitung einer Halteplatte, insbesondere für einen Clamp zur Waferhalterung
CN108039375A (zh) * 2017-10-31 2018-05-15 泰州隆基乐叶光伏科技有限公司 指状交叉背接触太阳电池的制备方法
CN107768484A (zh) * 2017-10-31 2018-03-06 泰州隆基乐叶光伏科技有限公司 太阳能电池的电极局部接触结构的制备方法
CN109004043B (zh) * 2018-07-16 2021-03-16 南通天盛新能源股份有限公司 一种太阳能电池背面电极的制备方法与应用
CN116364788A (zh) * 2021-12-27 2023-06-30 隆基绿能科技股份有限公司 一种太阳能电池及其电极
CN114927599A (zh) * 2022-05-18 2022-08-19 东方日升(常州)新能源有限公司 一种太阳能电池及其制备方法以及激光退火装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931323A (en) * 1987-12-10 1990-06-05 Texas Instruments Incorporated Thick film copper conductor patterning by laser
JPH04214675A (ja) * 1990-12-13 1992-08-05 Sanyo Electric Co Ltd 太陽電池の製造方法
WO2006087786A1 (ja) * 2005-02-17 2006-08-24 Mitsubishi Denki Kabushiki Kaisha 太陽電池の製造方法
JP2010502021A (ja) * 2006-08-29 2010-01-21 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. 半導体基質への電気接点の適用方法、半導体基質、および該方法の利用
JP2011151192A (ja) * 2010-01-21 2011-08-04 Sharp Corp 太陽電池セル、インターコネクタ付き太陽電池セルおよびその製造方法
WO2011111029A1 (fr) * 2010-03-12 2011-09-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de traitement d'un contact metallique realise sur un substrat
JP2011258813A (ja) 2010-06-10 2011-12-22 Shin Etsu Chem Co Ltd 太陽電池素子の電極焼成用焼成炉、太陽電池素子の製造方法及び太陽電池素子
JP2012514342A (ja) 2008-12-30 2012-06-21 エルジー エレクトロニクス インコーポレイティド 太陽電池用レーザ焼成装置及び太陽電池の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004121812A (ru) * 2004-07-19 2006-01-10 Юрий Камбулатович Альтудов (RU) Наноструктурный солнечный элемент и способ его изготовления
CN201323204Y (zh) * 2008-12-31 2009-10-07 江苏艾德太阳能科技有限公司 一种背点接触异质结太阳能电池
CN101447518A (zh) * 2008-12-31 2009-06-03 江苏艾德太阳能科技有限公司 一种背点接触异质结太阳能电池及其制造方法
DE102009010816B4 (de) * 2009-02-27 2011-03-10 Solarworld Innovations Gmbh Verfahren zur Herstellung eines Halbleiter-Bauelements
CN101546790B (zh) * 2009-04-24 2011-02-02 中山大学 一种利用激光诱导铝热反应制备太阳电池背面点接触电极的方法
JP2011015192A (ja) * 2009-07-02 2011-01-20 Panasonic Corp 車両用漏電検知装置
US20120006394A1 (en) * 2010-07-08 2012-01-12 Solarworld Industries America, Inc. Method for manufacturing of electrical contacts on a solar cell, solar cell, and method for manufacturing a rear side contact of a solar cell
JP5011428B2 (ja) * 2010-10-07 2012-08-29 昭栄化学工業株式会社 太陽電池素子並びにその製造方法
CN201887050U (zh) * 2010-12-18 2011-06-29 广东爱康太阳能科技有限公司 一种激光烧结电极的太阳能电池
JP2012142422A (ja) * 2010-12-28 2012-07-26 Noritake Co Ltd 太陽電池用導電性ペースト用ガラス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931323A (en) * 1987-12-10 1990-06-05 Texas Instruments Incorporated Thick film copper conductor patterning by laser
JPH04214675A (ja) * 1990-12-13 1992-08-05 Sanyo Electric Co Ltd 太陽電池の製造方法
WO2006087786A1 (ja) * 2005-02-17 2006-08-24 Mitsubishi Denki Kabushiki Kaisha 太陽電池の製造方法
JP2010502021A (ja) * 2006-08-29 2010-01-21 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. 半導体基質への電気接点の適用方法、半導体基質、および該方法の利用
JP2012514342A (ja) 2008-12-30 2012-06-21 エルジー エレクトロニクス インコーポレイティド 太陽電池用レーザ焼成装置及び太陽電池の製造方法
JP2011151192A (ja) * 2010-01-21 2011-08-04 Sharp Corp 太陽電池セル、インターコネクタ付き太陽電池セルおよびその製造方法
WO2011111029A1 (fr) * 2010-03-12 2011-09-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de traitement d'un contact metallique realise sur un substrat
JP2011258813A (ja) 2010-06-10 2011-12-22 Shin Etsu Chem Co Ltd 太陽電池素子の電極焼成用焼成炉、太陽電池素子の製造方法及び太陽電池素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527942A (ja) * 2019-04-10 2021-10-14 グーグル エルエルシーGoogle LLC 携帯型急速大面積薄膜光焼結装置
JP7089056B2 (ja) 2019-04-10 2022-06-21 グーグル エルエルシー 携帯型急速大面積薄膜光焼結装置
US11935983B2 (en) 2019-04-10 2024-03-19 Google Llc Portable rapid large area thin film photosinterer

Also Published As

Publication number Publication date
TW201421724A (zh) 2014-06-01
US20150228841A1 (en) 2015-08-13
KR20150068415A (ko) 2015-06-19
EP2905812A1 (en) 2015-08-12
JPWO2014054350A1 (ja) 2016-08-25
RU2636405C2 (ru) 2017-11-23
EP2905812B1 (en) 2021-07-21
EP2905812A4 (en) 2016-05-04
US9614117B2 (en) 2017-04-04
CN104704639B (zh) 2017-02-22
KR101873563B1 (ko) 2018-07-03
TWI585991B (zh) 2017-06-01
MY170332A (en) 2019-07-17
JP6107830B2 (ja) 2017-04-05
CN104704639A (zh) 2015-06-10
RU2015116526A (ru) 2016-11-20

Similar Documents

Publication Publication Date Title
JP6107830B2 (ja) 太陽電池セルの製造方法
JP5541370B2 (ja) 太陽電池の製造方法、太陽電池及び太陽電池モジュール
JP5737204B2 (ja) 太陽電池及びその製造方法
JP4373774B2 (ja) 太陽電池素子の製造方法
JP5991945B2 (ja) 太陽電池および太陽電池モジュール
JP5460860B2 (ja) 太陽電池素子およびその製造方法
JPWO2011161813A1 (ja) 太陽電池セルおよびその製造方法
JP2013165160A (ja) 太陽電池の製造方法及び太陽電池
JP6114171B2 (ja) 太陽電池の製造方法
JP5806395B2 (ja) 太陽電池素子およびその製造方法
JP2012256713A (ja) 太陽電池の製造方法
JP2014146553A (ja) 太陽電池の電極用導電性ペーストおよびその製造方法
WO2011048656A1 (ja) 基板の粗面化方法、光起電力装置の製造方法
JP2014154619A (ja) 光電変換素子の製造方法
JP5316491B2 (ja) 太陽電池の製造方法
JP6092574B2 (ja) 太陽電池素子の製造方法
JP5494511B2 (ja) 太陽電池の製造方法
WO2016125803A1 (ja) 太陽電池素子およびその製造方法
JP2011018748A (ja) 太陽電池セルの製造方法
WO2016072048A1 (ja) 太陽電池及びその製造方法
TWI459575B (zh) 太陽能電池製造方法
JP5994895B2 (ja) 太陽電池の製造方法
JP5848417B1 (ja) 太陽電池及び太陽電池の製造方法
JP2015062251A (ja) 太陽電池及びその製造方法
JP2013149815A (ja) 太陽電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539637

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14433411

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013843248

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157011128

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015116526

Country of ref document: RU

Kind code of ref document: A