WO2011111029A1 - Procede de traitement d'un contact metallique realise sur un substrat - Google Patents

Procede de traitement d'un contact metallique realise sur un substrat Download PDF

Info

Publication number
WO2011111029A1
WO2011111029A1 PCT/IB2011/051042 IB2011051042W WO2011111029A1 WO 2011111029 A1 WO2011111029 A1 WO 2011111029A1 IB 2011051042 W IB2011051042 W IB 2011051042W WO 2011111029 A1 WO2011111029 A1 WO 2011111029A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
metal
contact
metal contact
substrate
Prior art date
Application number
PCT/IB2011/051042
Other languages
English (en)
Inventor
Raphaël CABAL
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to CN2011800206969A priority Critical patent/CN102870509A/zh
Priority to US13/634,498 priority patent/US20130095603A1/en
Priority to JP2012556640A priority patent/JP5759490B2/ja
Priority to EP11722521A priority patent/EP2545753A1/fr
Priority to KR1020127026053A priority patent/KR20130051924A/ko
Publication of WO2011111029A1 publication Critical patent/WO2011111029A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • H05K3/1291Firing or sintering at relative high temperatures for patterns on inorganic boards, e.g. co-firing of circuits on green ceramic sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method of treating a metallic contact made on a substrate, a dielectric layer possibly being provided between the substrate and the metal.
  • the method according to the invention can in particular find application during the manufacture of a photovoltaic cell.
  • metal contacts are deposited on the front and rear face of the substrate in order to recover the electrons from the photoelectric effect generated in the substrate.
  • a production method widely used in the photovoltaic industry comprises the following steps.
  • a substrate for example p-doped silicon, is first cut to the desired dimensions.
  • a chemical etching for example with alkaline, is then carried out.
  • a texturizing step of the front face is performed to form an optical structure capable of trapping the photons of the incident light in the substrate to increase the efficiency of the cell. It may for example be pyramidal optical structures made by chemical etching with sodium hydroxide.
  • a preliminary step may consist in carrying out an acid etching to neutralize the alkali residues and eliminate any impurities, the surfaces of the substrate to be clean before doping.
  • n-type doping of the vertical edges is removed in order to isolate these edges. This is for example performed by plasma etching.
  • a dielectric layer is then deposited full plate on the front face of the substrate to play the role of anti-reflection. This dielectric layer can be made with a vapor deposition of silicon nitride (NiS).
  • a metal contact is then made on the front and rear faces of the substrate.
  • a paste is deposited comprising an aluminum powder mixed with a solvent.
  • This deposit is generally done by screen printing ("screen printing" according to the English terminology).
  • the paste is deposited in a chosen pattern, in the form of a grid or a uniform layer.
  • the dough is heated to remove the solvent and leave only the aluminum. Heating is generally carried out by baking at 100 ° C to 200 ° C to remove solvents and organic compounds.
  • This metal pattern deposition technique is very advantageous in terms of costs and positioning of said pattern relative to the substrate.
  • a final step of high temperature annealing of the substrate thus provided with the dielectric layer and the front and rear metal patterns is performed.
  • Annealing is conventionally defined in metallurgy as a heat treatment whose temperature profile has at least one period at a temperature above the melting point of the material in question.
  • This step makes it possible to form a metallic contact between said patterns and the substrate that can hold in time while eliminating the last non-metallic residues.
  • This step is a delicate step because it requires controlling the thermal profile of the heating performed, depending on the nature and composition of the metal paste. In particular, a long annealing and / or at too high a temperature could degrade the photovoltaic cell, the contacts being able to cross the active zone of the cell.
  • the metal pattern when the paste is dried, the metal pattern has a structure consisting of an agglomerate of particles, which does not promote the achievement of a low electrical resistance in the metal contact.
  • An aluminum metal pattern 10 deposited on a silicon substrate 11 is for example shown in FIG. 1, in a sectional view with a scanning electron microscope.
  • this agglomerate of particles is particularly sensitive to oxidation because this structure consisting of an agglomerate of particles has a large developed surface.
  • An object of the invention is thus to increase the electrical conductance of a metallic contact made on a substrate, a dielectric layer possibly being provided between the substrate and the metallic pattern.
  • Another object of the invention is to improve the stability of a metal contact against the oxidation phenomena, the contact of which the metallic part has been obtained with a paste formed from a mixture of a metal powder with a solvent.
  • the invention provides a method for obtaining a metal contact on a substrate, comprising the following steps:
  • step (b) heating the assembly thus formed in step (a) to evaporate the solvent
  • the method according to the invention may provide other technical features of the invention, taken alone or in combination:
  • step (a) is a screen printing step
  • the thickness of the metallic pattern is at least 1 ⁇ ;
  • the metallic contact is in the form of a grid
  • the metallic contact is in the form of a layer
  • the metallic contact comprises silver, aluminum or an alloy of silver and aluminum
  • the method comprises a step of depositing a dielectric layer on the substrate, prior to step (a);
  • the laser emits in the infrared range, for example at a wavelength of 1064 nm;
  • the laser being a laser diode pumped laser
  • the peak current emitted by the laser diode is between 20A and 30A, preferably between 25A and 28A;
  • the laser emits pulses at a frequency of between 30 kHz and 60 kHz, preferably between 40 kHz and 60 kHz;
  • the coverage rate of the surface of the metal contact between two taps is at least 95%, preferably at least 97%;
  • the scanning speed of the laser is less than 10 m / s, for example between 1 m / s and 10 m / s;
  • the laser emits pulses whose duration is between 1 ns and 1 ⁇ , for example between 100ns and 1 ps;
  • the laser being a laser diode pumped, pulsed and emitting laser in the infrared range, this is implemented under the following conditions:
  • the frequency of the taps is between 40 kHz and 60 kHz, where the coverage rate of the surface of the metal contact between two taps is greater than or equal to 97%, where the scanning speed of the laser at the surface of the metal contact is between 1m / s and 10m / s, preferably between 1m / s and 5m / s;
  • the laser diode emits a peak current of between 25 A and 28 A.
  • FIG. 1 shows, in a sectional view, a metal pattern obtained, in known manner, by depositing a metal paste formed from a mixture of a metal powder with a solvent;
  • FIG. 2 represents a device for implementing the method according to the invention
  • FIG. 3 represents, for a scanning speed of 1 m / s of the surface of the metal contact by the laser, the evolution of the square resistance of the metallic contact as a function of the repetition frequency of the pulses of light coming from the laser, for different rates of recovery of the surface of the metal contact impacted by two pulses;
  • FIG. 4 represents, for a scanning speed of 3 m / s of the surface of the metal contact by the laser, the evolution of the square resistance of the metallic contact as a function of the frequency of repetition of the pulses of light coming from the laser, for different rates of recovery of the surface of the metal contact impacted by two pulses;
  • FIG. 5 represents, for a scanning speed of 5 m / s of the surface of the metal contact by the laser, the evolution of the square resistance of the metallic contact as a function of the frequency of the pulses of light coming from the laser, for different rates of recovery of the surface of the metal contact impacted by two pulses;
  • FIG. 6 comprises FIGS. 6 (a) and 6 (b), FIG. 6 (a) being a metallic aluminum pattern, according to a sectional view, obtained, in a known manner, by deposition of an aluminum paste. formed from a mixture of an aluminum powder with a solvent and FIG. 6 (b) being the metallic pattern of FIG. 6 (a) after treatment by the process according to the invention;
  • FIG. 7 comprises FIGS. 7 (a) to 7 (c), which all represent an aluminum metallic pattern, according to a sectional view, obtained at the end of the process according to the invention, for different diode currents.
  • the invention relates to a method for treating a metallic contact made on a substrate, wherein the contact has been obtained from the following steps (a), (b) and (c):
  • step (b) heating the assembly thus formed in step (a) to evaporate the solvent
  • Step (a) may be a screen printing step.
  • the thickness of the metal pattern deposited during step (a) may be at least 1 ⁇ .
  • the metallic pattern obtained at the end of steps (a) to (c) is an agglomerate of particles, as shown in FIG. 1. This porous metal pattern may also be described since there are gaps between the metal particles.
  • the metallic pattern can be in the form of a grid or in the form of a layer.
  • the metal pattern may include silver, aluminum or a silver and aluminum alloy.
  • the nature of the metal used in the dough is chosen depending on the type of metal contact desired. Thus, for a photovoltaic cell, it is possible to envisage a metal back contact made of silver and aluminum alloy.
  • a dielectric layer may be provided between the metallic pattern and the substrate,
  • the method further comprises a step (d) during which the metal contact is heated by a laser at an energy density of between 0.5 J / cm 2 and 15 J / cm 2 .
  • Figure 2 shows a diagram of a device for implementing step (d) of the method.
  • the laser 1 used in this device for heating the metal contact can emit in the infrared range, for example at a wavelength of 1064 nm.
  • This laser 1 may be a diode-pumped laser, such as an Nd: YAG laser emitting at 1064nm pumped at 808nm by a laser diode.
  • the laser 1 presented above is a laser emitting in the infrared range. Indeed, this wavelength range is the most critical for metal contacts made on silicon substrates, since the silicon absorbs the infrared radiation and may be altered by this radiation (deformation by increasing the volume).
  • the laser used could be a laser emitting in the ultraviolet range or in the visible range, (for example "green” at a wavelength of the order of 438 nm).
  • the peak current emitted by the laser diode can be between 20A and 30A, preferably between 25A and 28A.
  • the contact and the substrate may be damaged.
  • a partial ablation and then detachment of the tear contact of the substrate underlying said contact is generally observed.
  • an energy density of between 0.5 and 15 J / cm 2 can be obtained at the surface of the metal contact.
  • the electrical resistance of the metal contact is thus substantially reduced without altering it.
  • a metal contact permanently fixed to the substrate that is to say without risk of detachment of the contact and the substrate (blistering phenomenon).
  • the laser 1 may moreover be a pulsed laser.
  • the laser 1 can emit pulses at a repetition frequency of between 30 kHz and 60 kHz, preferably between 40 kHz and 60 kHz.
  • This range of values of the repetition frequency promotes the reduction of the electrical resistance of the metal contact, without damaging the metal contact, the substrate or the connection between the two.
  • the recovery rate of the surface of the metal contact between two taps is at least 95%, preferably at least 97%.
  • One of the following recovery rates can be considered: 97%, 98% or 99%.
  • recovery rate is meant the percentage of the surface of the contact which undergoes two successive passes of the laser along the scanning direction. It is therefore clear that these two passages are slightly offset, perpendicular to the scanning direction of the laser.
  • a high recovery rate has the advantage of promoting a minimum energy density and decreases the electrical resistance of the metal contact.
  • the scanning speed of the laser can be less than 10m / s, preferably between 1m / s and 10m / s.
  • This speed range makes it possible to obtain an acceptable productivity on the industrial level while preserving the metallic contact and the substrate.
  • the duration of eachroue can also be between 1ns and 1 ps.
  • the device shown in FIG. 2 also comprises a lens 2 of focal length f.
  • the rear face 12 of the rear contact 10 is disposed at the distance f from the lens, so that the lens 2 makes it possible to focus the laser beam on this rear face 12.
  • Figures 3 to 5 all express on the ordinate the square resistance of the metal contact and, on the abscissa, the frequency of repetition of thearries.
  • FIGS. 3 to 5 come from measurements carried out by the method known to those skilled in the art known as "four points" (or van der Pauw), the metal contact forming a thin layer.
  • the thickness e of the metal contact is the same for all the tests performed, with or without laser treatment.
  • the scanning speed of the laser on the surface of the metal contact was set at 1m / s and the peak current of the diode at 25A.
  • This figure shows three curves showing the evolution of the square resistance obtained from the metal contact after laser treatment, as a function of the frequency of the pulses for different recovery rates of two pulses, namely 97%, 98% and 99%. %.
  • a reference is represented in dashed lines in FIG.
  • This reference is measured after obtaining a metal contact according to the method of the prior art, the metal of said contact being aluminum in connection with a silicon substrate, a dielectric layer being provided between the two.
  • the reference metal contact has therefore undergone no laser treatment.
  • the reference metal contact has in particular been subjected to steps (a) to (c), but not to step (d), unlike other tests performed.
  • the square resistance of reference was measured at 10.5mu / square.
  • the electrical resistance of the contact decreases with respect to the reference throughout the range of frequencies of the tested pulses, namely from 30 kHz to 60 kHz, and moreover, whatever the values of the recovery rate of %, 98% or 99%.
  • the electrical resistance values obtained are between 5.1 and 8.7 m ⁇ / square, a decrease of between -51.4% and -17.1% relative to the reference value.
  • the lowest resistance is obtained for a frequency of 30kHz and a recovery rate of 99%.
  • the reference metal contact having undergone no laser treatment
  • the reference is always shown in dashed lines in FIG. 4, its value being 10.5 m ⁇ / square.
  • the electrical resistance of the contact decreases with respect to the reference throughout the frequency range of the tested pulses, namely from 30 kHz to 60 kHz, and moreover, whatever the values of the recovery rate of %, 98% or 99%.
  • the electrical resistance values obtained are between 8.1 and 10.3 m ⁇ / square, a decrease of between -22.9% and -2% approximately relative to the reference value.
  • the resistance of the metallic contact obtained with the tests shown in FIG. 4 is higher than that obtained with the tests shown in FIG.
  • a coverage ratio of 99% is preferably chosen, which makes it possible to obtain the lowest resistances over the entire frequency range tested.
  • the scanning speed of the laser on the surface of the metal contact was maintained at 5m / s and the peak current increased to 28A.
  • Three curves are shown showing the evolution of the electrical resistance (square resistance) obtained from the metal contact after laser treatment, as a function of the repetition frequency of the pulses, between 40 kHz and 60 kHz, for different recovery rates of two pulses.
  • the reference metal contact having undergone no laser treatment
  • the reference is always shown in dashed lines in FIG. 5, its value being 10.5 mA / square.
  • the laser is a laser diode pumped laser pulsed and emitting in the infrared range
  • the skilled person can implement the following conditions to obtain an energy density between 0.5 J / cm 2 and 15J / cm 2 :
  • the frequency of the pulses is between 40 kHz and 60 kHz
  • the recovery rate of the surface of the metallic contact between two successive taps is greater than or equal to 97%
  • the scanning speed of the laser on the surface of the metal contact is between 1m / s and 10m / s, preferably between 1m / s and 5m / s;
  • the laser diode emits a peak current of between 25A and 28A
  • the device used is set to the "100ns - 1 ⁇ " pulse duration position.
  • the laser treatment has the effect of changing the agglomerate structure of particles into a structure that is more continuous than the particle agglomerate structure.
  • Figure 6 which includes Figures 6 (a) and 6 (b), provides a first illustration of the interest of the invention.
  • Fig. 6 (a) shows an aluminum metal pattern, according to a sectional view, obtained after the implementation of steps (a) to (c) of the method.
  • This metallic pattern is formed of an agglomerate of porous particles. In other words, there are free spaces between the metal particles, these spaces favoring the surface oxidation of the metal particles.
  • FIG. 6 (b) shows the same pattern 10, according to the same sectional view, after implementation of the laser treatment step (d) according to the invention. In the case in point, step (d) was carried out with a recovery rate of 95% and a diode current of 26A.
  • the metal pattern 10 thus obtained has a densified surface layer 101, described as continuous since there is no longer any space allowing a gas to penetrate the heart of the metallic pattern.
  • This surface layer is not formed of an agglomerate of particles.
  • the size of the particles is generally greater than those of FIG. 6 (a).
  • this densified surface layer which can be described as continuous, the metallic pattern.
  • this continuous surface layer forms a barrier to outside air, which makes it possible to limit the oxidation phenomena over time and, consequently, to maintain good electrical conductance in use.
  • Figure 7 which includes Figures 7 (a) to 7 (c), provides another illustration of the interest of the invention.
  • the diode current used is 25A. It is respectively 26A and 27A in Figures 7 (b) and 7 (c).
  • the thickness of the surface layer which can be described as continuous, increases with increasing diode current. It is thus understood that the more the diode current increases, the more the Energy density of the laser beam increases and the depth of the densified area increases.
  • the treatment of the metal contact described above is advantageously used in the manufacture of photovoltaic cells.
  • the laser described above is a pulsed laser emitting in the infrared range.
  • a laser emitting a continuous light irrespective of the infrared, visible or ultraviolet domain, could however be envisaged.

Abstract

L'invention concerne un procédé d'obtention d'un contact métallique sur un substrat, comprenant les étapes suivantes : (a) déposer un motif métallique sous la forme d'une pâte formée à partir d'un mélange d'une poudre métallique avec un solvant; (b) chauffer l'ensemble ainsi formé à l'étape (a) pour évaporer le solvant; (c) effectuer un recuit afin de former un contact métallique entre le motif métallique et le substrat; caractérisé en ce qu'il comprend, en outre, une étape (d) dans laquelle on chauffe le contact métallique par laser à une densité d'énergie comprise entre 0,5J/cm2 et 15J/cm2

Description

PROCEDE DE TRAITEMENT D'UN CONTACT METALLIQUE REALISE SUR UN SUBSTRAT. La présente invention concerne un procédé de traitement d'un contact métallique réalisé sur un substrat, une couche diélectrique étant éventuellement prévue entre le substrat et le métal.
Le procédé selon l'invention peut notamment trouver application lors de la fabrication d'une cellule photovoltaïque.
En effet, dans ce type d'application, des contacts métalliques sont déposés en face avant et arrière du substrat afin de pouvoir récupérer les électrons provenant de l'effet photo-électrique généré dans le substrat.
Un procédé de réalisation largement répandu dans l'industrie photovoltaïque comprend les étapes qui suivent.
Un substrat, par exemple en Silicium dopé p, est tout d'abord découpé aux dimensions souhaitées.
Afin d'améliorer la qualité des surfaces ainsi découpées, une gravure chimique, par exemple avec alcalins, est ensuite effectuée.
Généralement, une étape de texturisation de la face avant est réalisée afin de former une structure optique à même de piéger les photons de la lumière incidente dans le substrat pour augmenter le rendement de la cellule. Il peut par exemple s'agir de structures optiques pyramidales réalisées par gravure chimique à l'hydroxyde de sodium.
Les surfaces du substrat sont ensuite dopées n, par exemple par diffusion de phosphore. Une étape préalable peut consister à effectuer une gravure à l'acide pour neutraliser les restes d'alcalins et éliminer les éventuelles impuretés, les surfaces du substrat devant être propres avant d'effectuer le dopage.
Puis, le dopage de type n des bords verticaux est supprimé afin d'isoler ces bords. Ceci est par exemple effectué par gravure sous plasma. Une couche diélectrique est ensuite déposée pleine plaque sur la face avant du substrat pour jouer le rôle d'anti-reflet. Cette couche diélectrique peut être réalisée avec un dépôt sous phase vapeur de nitrure de silicium (NiS).
Un contact métallique est alors réalisé sur les faces avant et arrière du substrat.
En particulier, en face arrière, on dépose une pâte comprenant une poudre d'aluminium mélangée à un solvant. Ce dépôt s'effectue généralement par sérigraphie (« screen printing » selon la terminologie anglo-saxonne). La pâte est déposée selon un motif choisi, sous la forme d'une grille ou d'une couche uniforme.
Puis, la pâte est chauffée afin d'enlever le solvant et ne laisser que l'aluminium. Le chauffage est généralement effectué par étuvage entre 100°C et 200°C pour supprimer les solvants et les composés organiques.
Cette technique de dépôt du motif métallique est très avantageuse en termes de coûts et de positionnement dudit motif par rapport au substrat.
Une étape finale de recuit à haute température du substrat ainsi muni de la couche de diélectrique et des motifs métalliques avant et arrière est effectuée.
Un « recuit » est classiquement définit en métallurgie comme un traitement thermique dont le profil en température présente au moins une période à une température supérieure à la température de fusion du matériau considéré.
Cette étape permet de former un contact métallique entre lesdits motifs et le substrat susceptible de tenir dans le temps tout en éliminant les derniers résidus non métalliques.
Cette étape est une étape délicate car elle nécessite de contrôler le profil thermique du chauffage effectué, en fonction de la nature et de la composition de la pâte métallique. En particulier, un recuit trop long et/ou à température trop élevée risquerait de dégrader la cellule photovoltaïque, les contacts pouvant traverser la zone active de la cellule.
Si un contact métallique de bonne qualité entre les motifs métalliques et le substrat peut être réalisé avec le procédé décrit précédemment, il s'avère que la conductance électrique des contacts métalliques reste limitée. Ceci est notamment lié au procédé de dépôt du métal, lequel est basé sur le dépôt d'une pâte métallique formée à partir d'une poudre du métal considéré mélangée à un solvant.
En effet, lorsque la pâte est séchée, le motif métallique présente une structure constituée par un agglomérat de particules, lequel ne favorise pas l'obtention d'une résistance électrique faible au sein du contact métallique. Un motif métallique 10 en aluminium déposé sur un substrat 11 en silicium est par exemple représenté sur la figure 1 , selon une vue de coupe avec un microscope électronique à balayage.
De plus, cet agglomérat de particules est particulièrement sensible à l'oxydation car cette structure constituée par un agglomérat de particules présente une grande surface développée.
Ceci est particulièrement gênant dans le cadre d'une application à la fabrication de cellules photovoltaïques. Des problèmes similaires peuvent cependant se retrouver dans d'autres applications, dès lors que l'on cherche à réaliser un contact métallique sur un substrat à partir d'une étape de dépôt d'une pâte formée à partir d'une poudre métallique mélangée à un solvant.
Un objectif de l'invention est ainsi d'augmenter la conductance électrique d'un contact métallique réalisé sur un substrat, une couche diélectrique étant éventuellement prévue entre le substrat et le motif métallique.
Un autre objectif de l'invention est d'améliorer la stabilité d'un contact métallique contre les phénomènes d'oxydation, contact dont la partie métallique a été obtenue avec une pâte formée à partir d'un mélange d'une poudre métallique avec un solvant. Pour atteindre l'un au moins de ces objectifs, l'invention propose un procédé d'obtention d'un contact métallique sur un substrat, comprenant les étapes suivantes :
(a) déposer un motif métallique sous la forme d'une pâte formée à partir d'un mélange d'une poudre métallique avec un solvant ;
(b) chauffer l'ensemble ainsi formé à l'étape (a) pour évaporer le solvant ;
(c) effectuer un recuit afin de former un contact métallique entre le motif métallique et le substrat ;
caractérisé en ce qu'il comprend, en outre, une étape (d) dans laquelle on chauffe le contact métallique par laser à une densité d'énergie comprise entre 0,5J/cm2 et 15J/cm2.
Le procédé selon l'invention pourra prévoir d'autres caractéristiques techniques de l'invention, prises seules ou en combinaison:
- l'étape (a) est une étape de sérigraphie ;
- l'épaisseur du motif métallique est d'au moins 1 μηι ;
- le contact métallique se présente sous la forme d'une grille ;
- le contact métallique se présente sous la forme d'une couche ;
- le contact métallique comprend de l'argent, de l'aluminium ou un alliage d'argent et d'aluminium ;
- le procédé comprend une étape de dépôt d'une couche diélectrique sur le substrat, préalablement à l'étape (a) ;
- le laser émet dans le domaine infrarouge, par exemple à une longueur d'onde de 1064nm ;
- le laser étant un laser pompé par diode laser, le courant de crête émis par la diode laser est compris entre 20A et 30A, de préférence entre 25A et 28A ;
- le laser émet des puises à une fréquence comprise entre 30kHz et 60kHz, de préférence entre 40kHz et 60kHz ;
- le taux de recouvrement de la surface du contact métallique entre deux puises est d'au moins 95%, de préférence d'au moins 97% ; - la vitesse de balayage du laser est inférieure à 10m/s, par exemple entre 1 m/s et 10m/s ;
- le laser émet des puises dont la durée est comprise entre 1 ns et 1 ε, par exemple entre 100ns et 1 ps ;
- le laser étant un laser pompé par diode laser, puisé et émettant dans le domaine infrarouge, celui-ci est mis en œuvre dans les conditions suivantes :
o la fréquence des puises est comprise entre 40kHz et 60kHz, o le taux de recouvrement de la surface du contact métallique entre deux puises est supérieur ou égale à 97%, o la vitesse de balayage du laser à la surface du contact métallique est comprise entre 1m/s et 10m/s, de préférence entre 1 m/s et 5m/s ;
o la diode laser émet un courant de crête compris entre 25A et 28 A.
D'autres caractéristiques, buts et avantages de l'invention seront énoncés dans la description détaillée ci-après faite en référence aux figures suivantes :
- la figure 1 représente, selon une vue de coupe, un motif métallique obtenu, de manière connue, par dépôt d'une pâte métallique formée à partir d'un mélange d'une poudre métallique avec un solvant ;
- la figure 2 représente un dispositif pour mettre en œuvre le procédé conforme à l'invention ;
- la figure 3 représente, pour une vitesse de balayage de 1m/s de la surface du contact métallique par le laser, l'évolution de la résistance carrée du contact métallique en fonction de la fréquence de répétition des puises de lumière issus du laser, pour différents taux de recouvrement de la surface du contact métallique impactée par deux puises ;
- la figure 4 représente, pour une vitesse de balayage de 3m/s de la surface du contact métallique par le laser, l'évolution de la résistance carrée du contact métallique en fonction de la fréquence de répétition des puises de lumière issus du laser, pour différents taux de recouvrement de la surface du contact métallique impactée par deux puises ;
- la figure 5 représente, pour une vitesse de balayage de 5 m/s de la surface du contact métallique par le laser, l'évolution de la résistance carrée du contact métallique en fonction de la fréquence des puises de lumière issus du laser, pour différents taux de recouvrement de la surface du contact métallique impactée par deux puises ;
- la figure 6 comprend les figures 6(a) et 6(b), la figure 6(a) étant un motif métallique en aluminium, selon une vue de coupe, obtenu, de manière connue, par dépôt d'une pâte en aluminium formée à partir d'un mélange d'une poudre d'aluminium avec un solvant et, la figure 6(b) étant le motif métallique de la figure 6(a) après traitement par le procédé selon l'invention ;
- la figure 7 comprend les figures 7(a) à 7(c), lesquelles représentent toutes un motif métallique en aluminium, selon une vue de coupe, obtenue à l'issue du procédé selon l'invention, pour différents courants de diode.
L'invention concerne un procédé de traitement d'un contact métallique réalisé sur un substrat, dans lequel le contact a été obtenu à partir des étapes (a), (b) et (c) suivantes :
(a) déposer un motif métallique sous la forme d'une pâte formée à partir d'un mélange d'une poudre métallique avec un solvant ;
(b) chauffer l'ensemble ainsi formé à l'étape (a) pour évaporer le solvant ;
(c) effectuer un recuit afin de former un contact métallique entre le motif métallique et le substrat.
L'étape (a) peut être une étape de sérigraphie.
L'épaisseur du motif métallique déposé lors de l'étape (a) peut être d'au moins 1 μηη. Le motif métallique obtenu à l'issu des étapes (a) à (c) est un agglomérat de particules, comme représenté sur la figure 1. On peut également qualifier ce motif métallique de poreux puisqu'il existe des espaces entre les particules métalliques. Le motif métallique peut se présenter sous la forme d'une grille ou sous la forme d'une couche. Le motif métallique peut notamment comprendre de l'argent, de l'aluminium ou un alliage d'argent et d'aluminium.
La nature du métal utilisé dans la pâte est choisie en fonction du type de contact métallique souhaité. Ainsi, pour une cellule photovoltaïque, on peut envisager un contact métallique face arrière en alliage d'argent et d'aluminium.
Une couche diélectrique peut être prévue entre le motif métallique et le substrat,
Le procédé comprend en outre une étape (d) au cours de laquelle on chauffe le contact métallique par un laser à une densité d'énergie comprise entre 0,5J/cm2 et 15J/cm2.
La résistance électrique de ce contact est ainsi diminuée, sans altérer le contact métallique ou le substrat et, sans décoller le contact du substrat.
Comme cela est précisé dans la suite de la description, plusieurs paramètres peuvent influer sur la valeur de la densité d'énergie obtenue à la surface du contact métallique.
La figure 2 montre un schéma d'un dispositif pour mettre en œuvre l'étape (d) du procédé.
Le laser 1 utilisé dans ce dispositif afin de chauffer le contact métallique peut émettre dans le domaine infrarouge, par exemple à une longueur d'onde de 1064nm. Ce laser 1 peut être un laser pompé par diode, tel qu'un laser Nd : YAG émettant à 1064nm pompé à 808nm par une diode laser.
Le laser 1 présenté ci-dessus est un laser émettant dans le domaine infrarouge. En effet, ce domaine de longueur d'onde est le plus critique pour des contacts métalliques réalisés sur des substrats silicium, puisque le silicium absorbe le rayonnement infrarouge et risque d'être altéré par ce rayonnement (déformation par augmentation du volume). En variante, le laser employé pourrait être un laser émettant dans le domaine ultraviolet ou dans le domaine visible, (par exemple « vert » à une longueur d'onde de l'ordre de 438nm).
Lorsque le laser 1 est un laser pompé par diode laser, le courant de crête émis par la diode laser peut être compris entre 20A et 30A, de préférence entre 25A et 28A.
Au-delà de 30A, le contact et le substrat risquent d'être détériorés. On observe généralement, dans ce cas, une ablation partielle puis un décollement du contact avec arrachement du substrat sous-jacent audit contact.
Dans cette gamme de valeurs du courant de crête de la diode, on peut obtenir une densité d'énergie comprise entre 0,5 et 15J/cm2 à la surface du contact métallique.
On diminue donc sensiblement la résistance électrique du contact métallique sans l'altérer. De plus, on obtient un contact métallique durablement fixé au substrat, c'est-à-dire sans risque de décollement du contact et du substrat (phénomène de cloquage).
Le laser 1 peut par ailleurs être un laser puisé.
Dans ce cas, le laser 1 peut émettre des puises à une fréquence de répétition comprise entre 30kHz et 60kHz, de préférence entre 40kHz et 60kHz.
Cette gamme de valeurs de la fréquence de répétition favorise la diminution de la résistance électrique du contact métallique, sans endommager le contact métallique, le substrat ou la liaison entre les deux.
Par ailleurs, le taux de recouvrement de la surface du contact métallique entre deux puises est d'au moins 95%, de préférence d'au moins 97%. On peut notamment envisager l'un des taux de recouvrement suivants : 97%, 98% ou 99%.
Par taux de recouvrement, on entend le pourcentage de la surface du contact qui subit deux passages successifs du laser le long de la direction de balayage. On comprend donc que ces deux passages sont légèrement décalés, perpendiculairement à la direction de balayage du laser.
Un taux de recouvrement élevé présente l'avantage de favoriser l'obtention d'une densité d'énergie minimum et diminue la résistance électrique du contact métallique.
La vitesse de balayage du laser peut être inférieure à 10m/s, de préférence entre 1m/s et 10m/s.
Cette gamme de vitesse permet d'obtenir une productivité acceptable sur le plan industriel tout en préservant le contact métallique et le substrat.
La durée de chaque puise peut par ailleurs être comprise entre 1ns et 1 ps.
Le dispositif représenté sur la figure 2 comprend également une lentille 2 de distance focale f. La face arrière 12 du contact arrière 10 est disposée à la distance f de la lentille, si bien que la lentille 2 permet de focaliser le faisceau laser sur cette face arrière 12.
D'autres possibilités de conception peuvent être mises en évidence à l'appui des figures 3 à 5.
Les figures 3 à 5 expriment toutes en ordonnées la résistance carrée du contact métallique et, en abscisse, la fréquence de répétition des puises. De manière connue de l'homme du métier, on rappelle que la résistance carrée Rc de ce contact est reliée à sa résistivité électrique p et à son épaisseur e par la relation : Rc = p/e , exprimée ci-dessous en mQ/carré.
De plus, les données présentées sur les figures 3 à 5 proviennent de mesures effectuées par la méthode connue de l'homme du métier dite des « quatre pointes » (ou de Van der Pauw), le contact métallique formant une couche mince. Bien évidemment, l'épaisseur e du contact métallique est la même pour l'ensemble des tests réalisés, avec ou sans traitement laser.
Sur la figure 3, la vitesse de balayage du laser à la surface du contact métallique a été fixée à 1m/s et le courant de crête de la diode à 25A. Sur cette figure, on a représenté trois courbes montrant l'évolution de la résistance carrée obtenue du contact métallique après traitement laser, en fonction de la fréquence des puises pour différents taux de recouvrement de deux puises, à savoir 97%, 98% et 99%.
Une référence est représentée en lignes pointillées sur la figure 3.
Cette référence est mesurée après obtention d'un contact métallique selon le procédé de l'art antérieur, le métal dudit contact étant de l'aluminium en liaison avec un substrat en silicium, une couche diélectrique étant prévue entre les deux.
Le contact métallique servant de référence n'a donc subi aucun traitement laser.
Autrement dit, le contact métallique de référence a notamment été soumis aux étapes (a) à (c), mais pas à l'étape (d), contrairement aux autres tests réalisés.
Dans le cas d'espèce, la résistance carrée de référence a été mesurée à 10,5mû/carré.
Pour l'ensemble des tests réalisés, la résistance électrique du contact diminue par rapport à la référence dans toute la gamme de fréquences des puises testés, à savoir de 30kHz à 60kHz, et par ailleurs quelles que soient les valeurs du taux de recouvrement de 97%, 98% ou 99%.
Plus précisément, les valeurs de la résistance électrique obtenues sont comprises entre 5,1 et 8,7 mQ/carré, soit une diminution comprise entre -51 ,4% et -17,1% par rapport à la valeur de référence. En particulier, la résistance la plus faible est obtenue pour une fréquence de 30kHz et un taux de recouvrement de 99%.
Sur la figure 4, la vitesse de balayage du laser à la surface du contact métallique a été augmentée à 5m/s et le courant de crête maintenu à 25A. On a représenté trois courbes montrant l'évolution de la résistance électrique (résistance carrée) obtenue du contact métallique après traitement laser, en fonction de la fréquence des puises pour différents taux de recouvrement de deux puises, à savoir 97%, 98% et 99%.
La référence (contact métallique n'ayant subi aucun traitement laser) est toujours représentée en lignes pointillées sur la figure 4, sa valeur étant de 10,5mQ/carré.
Pour l'ensemble des tests effectués, la résistance électrique du contact diminue par rapport à la référence dans toute la gamme de fréquences des puises testés, à savoir de 30kHz à 60kHz, et par ailleurs quelles que soient les valeurs du taux de recouvrement de 97%, 98% ou 99%.
Plus précisément, les valeurs de la résistance électrique obtenues sont comprises entre 8,1 et 10,3mQ/carré, soit une diminution comprise entre -22,9% et -2% environ par rapport à la valeur de référence.
De manière générale, la résistance du contact métallique obtenue avec les tests représentés sur la figure 4 est plus élevée que celle obtenue avec les tests représentés sur la figure 3.
Ceci est lié au fait que l'augmentation de la vitesse de balayage diminue la densité d'énergie impactant le contact métallique.
Pour cette vitesse de balayage de 5m/s, on choisira de préférence un taux de recouvrement de 99%, lequel permet d'obtenir les plus faibles résistances sur toute la gamme de fréquences testée.
Sur la figure 5, la vitesse de balayage du laser à la surface du contact métallique a été maintenue à 5m/s et le courant de crête augmenté à 28A. On a représenté trois courbes montrant l'évolution de la résistance électrique (résistance carrée) obtenue du contact métallique après traitement laser, en fonction de la fréquence de répétition des puises, comprise entre 40kHz et 60kHz, pour différents taux de recouvrement de deux puises.
La référence (contact métallique n'ayant subi aucun traitement laser) est toujours représentée en lignes pointillées sur la figure 5, sa valeur étant de 10,5mû/carré.
Avec une valeur plus élevée du courant de diode, par rapport aux tests représentés sur la figure 4, il est préférable d'augmenter la fréquence de répétition des puises afin de diminuer la résistance de contact vis-à-vis de la référence en lignes pointillées.
En résumé, si le laser est un laser pompé par diode laser, puisé et émettant dans le domaine infrarouge, l'homme du métier pourra mettre en œuvre les conditions suivantes afin d'obtenir une densité d'énergie comprise entre 0,5 J/cm2 et 15J/cm2 :
- la fréquence des puises est comprise entre 40kHz et 60kHz,
- le taux de recouvrement de la surface du contact métallique entre deux puises successifs est supérieur ou égale à 97%,
- la vitesse de balayage du laser à la surface du contact métallique est comprise entre 1m/s et 10m/s, de préférence entre 1m/s et 5m/s ;
- la diode laser émet un courant de crête compris entre 25A et 28A
Pour les données représentées sur les figues 3 à 5, l'appareil utilisé est réglé sur la position de durée de puise « 100ns - 1 με ».
A l'issue des tests représentés sur les figures 3 à 5, le demandeur a pu constater que la structure dite d'agglomérat de particules obtenue avec le procédé classique avait été modifiée par l'étape laser conforme à l'invention.
Ainsi, le traitement laser a pour effet de modifier la structure d'agglomérat de particules en une structure qui s'avère plus continue que la structure d'agglomérat de particules.
Ceci peut être constaté sur les figures 6 et 7 annexées.
La figure 6, qui comprend les figures 6(a) et 6(b), fournit une première illustration de l'intérêt de l'invention.
La figure 6(a) représente un motif métallique 10 en aluminium, selon une vue de coupe, obtenu après la mise en œuvre des étapes (a) à (c) du procédé. Ce motif métallique est formé d'un agglomérat de particules poreux. Autrement dit, il existe des espaces libres entre les particules métalliques, ces espaces favorisant l'oxydation surfacique des particules métalliques. La figure 6(b), représente ce même motif 10, selon la même vue de coupe, après mise en oeuvre de l'étape (d) de traitement laser conforme à l'invention. Dans le cas d'espèce, l'étape (d) a été réalisée avec un taux de recouvrement de 95% et un courant de diode de 26A.
Le motif métallique 10 ainsi obtenu présente une couche superficielle densifiée 101 , qualifiée de continue puisqu'il n'existe plus d'espace permettant à un gaz de pénétrer au cœur du motif métallique. Cette couche superficielle n'est donc pas formée d'un agglomérat de particules. Par ailleurs, on constate, juste sous cette couche superficielle continue, que la taille des particules est généralement plus importante que celles de la figure 6(a).
Ceci est à mettre en relation avec les résultats représentés sur les figures 3 à 5.
On comprend en effet qu'il existe un lien entre l'augmentation de la conductance électrique du contact métallique et l'existence de cette couche superficielle densifiée, pouvant être qualifiée de continue, du motif métallique. De plus, cette couche superficielle continue forme une barrière à l'air extérieur, ce qui permet de limiter les phénomènes d'oxydation dans le temps et, par suite, de conserver une bonne conductance électrique à l'usage.
La figure 7, qui comprend les figures 7(a) à 7(c), fournit une autre illustration de l'intérêt de l'invention.
Ces figures représentent toutes, selon une vue de coupe, un motif métallique 10 obtenu après la mise en œuvre des étapes (a) à (d) du procédé, dans les mêmes conditions, à l'exception du courant de diode. En particulier, le taux de recouvrement a été fixé à 95%.
En effet, pour la figure 7(a), le courant de diode utilisé est de 25A. Il est respectivement de 26A et 27A sur les figures 7(b) et 7(c).
On constate que l'épaisseur de la couche superficielle, pouvant être qualifiée de continue, augmente avec l'augmentation du courant de diode. On comprend ainsi que plus le courant de diode augmente, plus la densité d'énergie du faisceau laser augmente et plus la profondeur de la zone densifiée augmente.
Le traitement du contact métallique décrit ci-dessus trouve avantageusement application dans la fabrication de cellules photovoltaïques.
Le laser décrit ci-dessus est un laser puisé émettant dans le domaine infrarouge. En variante, on pourrait cependant envisager un laser émettant une lumière continue, indifféremment dans le domaine infrarouge, visible ou ultraviolet.

Claims

REVENDICATIONS
1. Procédé d'obtention d'un contact métallique sur un substrat, comprenant les étapes suivantes :
(a) déposer un motif métallique sous la forme d'une pâte formée à partir d'un mélange d'une poudre métallique avec un solvant ;
(b) chauffer l'ensemble ainsi formé à l'étape (a) pour évaporer le solvant ;
(c) effectuer un recuit afin de former un contact métallique entre le motif métallique et le substrat ;
caractérisé en ce qu'il comprend, en outre, une étape (d) dans laquelle on chauffe le contact métallique par laser à une densité d'énergie comprise entre 0,5J/cm2 et 15J/cm2.
2. Procédé selon la revendication 1 , dans lequel l'étape (a) est une étape de sérigraphie.
3. Procédé selon l'une des revendications précédentes, dans lequel l'épaisseur du motif métallique est d'au moins 1 μιη.
4. Procédé selon l'une des revendications précédentes, dans lequel le contact métallique se présente sous la forme d'une grille.
5. Procédé selon l'une des revendications 1 à 3, dans lequel le contact métallique se présente sous la forme d'une couche.
6. Procédé selon l'une des revendications précédentes, dans lequel le contact métallique comprend de l'argent, de l'aluminium ou un alliage d'argent et d'aluminium.
7. Procédé selon l'une des revendications précédentes, dans lequel il est prévu une étape de dépôt d'une couche diélectrique sur le substrat, préalablement à l'étape (a).
8. Procédé selon l'une des revendications précédentes, dans lequel le laser émet dans le domaine infrarouge, par exemple à une longueur d'onde de 1064nm.
9. Procédé selon l'une des revendications précédentes, dans lequel le laser étant un laser pompé par diode laser, le courant de crête émis par la diode laser est compris entre 20A et 30A, de préférence entre 25A et 28A.
10. Procédé selon l'une des revendications précédentes, dans lequel le laser émet des puises à une fréquence comprise entre 30kHz et 60kHz, de préférence entre 40kHz et 60kHz.
11. Procédé selon l'une des revendications précédentes, dans lequel le taux de recouvrement de la surface du contact métallique entre deux puises est d'au moins 95%, de préférence d'au moins 97%.
12. Procédé selon l'une des revendications précédentes, dans lequel la vitesse de balayage du laser est inférieure à 10m/s, par exemple entre 1m/s et 10m/s.
13. Procédé selon l'une des revendications précédentes, dans lequel le laser émet des puises dont la durée est comprise entre 1 ns et Ι β, par exemple entre 100ns et 1 ps.
14. Procédé selon l'une des revendications précédentes, dans lequel le laser étant un laser pompé par diode laser, puisé et émettant dans le domaine infrarouge, celui-ci est mis en œuvre dans les conditions suivantes :
la fréquence des puises est comprise entre 40kHz et 60kHz,
- le taux de recouvrement de la surface du contact métallique entre deux puises est supérieur ou égale à 97%,
- la vitesse de balayage du laser à la surface du contact métallique est comprise entre 1m/s et 10m/s, de préférence entre 1 m/s et 5m/s ;
- la diode laser émet un courant de crête compris entre 25A et 28A.
PCT/IB2011/051042 2010-03-12 2011-03-11 Procede de traitement d'un contact metallique realise sur un substrat WO2011111029A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800206969A CN102870509A (zh) 2010-03-12 2011-03-11 形成在基板上的金属接触部的处理方法
US13/634,498 US20130095603A1 (en) 2010-03-12 2011-03-11 Method for the treatment of a metal contact formed on a substrate
JP2012556640A JP5759490B2 (ja) 2010-03-12 2011-03-11 基板上に形成される金属接点の処理のための方法
EP11722521A EP2545753A1 (fr) 2010-03-12 2011-03-11 Procede de traitement d'un contact metallique realise sur un substrat
KR1020127026053A KR20130051924A (ko) 2010-03-12 2011-03-11 기판 상에 형성되는 금속 접점 처리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001007 2010-03-12
FR1001007A FR2957479B1 (fr) 2010-03-12 2010-03-12 Procede de traitement d'un contact metallique realise sur un substrat

Publications (1)

Publication Number Publication Date
WO2011111029A1 true WO2011111029A1 (fr) 2011-09-15

Family

ID=42668766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/051042 WO2011111029A1 (fr) 2010-03-12 2011-03-11 Procede de traitement d'un contact metallique realise sur un substrat

Country Status (7)

Country Link
US (1) US20130095603A1 (fr)
EP (1) EP2545753A1 (fr)
JP (1) JP5759490B2 (fr)
KR (1) KR20130051924A (fr)
CN (1) CN102870509A (fr)
FR (1) FR2957479B1 (fr)
WO (1) WO2011111029A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153293A1 (fr) * 2012-04-11 2013-10-17 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de réalisation d'une cellule photovoltaïque à hétérojonction
WO2014054350A1 (fr) * 2012-10-04 2014-04-10 信越化学工業株式会社 Procédé de fabrication de cellule photovoltaïque
WO2014065018A1 (fr) * 2012-10-23 2014-05-01 富士電機株式会社 Procédé de fabrication de dispositif à semi-conducteur
JP2016518516A (ja) * 2013-03-05 2016-06-23 ローレンス リバモア ナショナル セキュリティー, エルエルシー 高電力ダイオードに基づく付加製造のためのシステムおよび方法
US10747033B2 (en) 2016-01-29 2020-08-18 Lawrence Livermore National Security, Llc Cooler for optics transmitting high intensity light

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437756B2 (en) 2013-09-27 2016-09-06 Sunpower Corporation Metallization of solar cells using metal foils
CN103779431B (zh) * 2013-12-19 2016-03-09 湖南红太阳光电科技有限公司 一种制备晶硅电池金属电极的方法
US9796045B2 (en) * 2013-12-19 2017-10-24 Sunpower Corporation Wafer alignment with restricted visual access
US9483997B2 (en) 2014-03-10 2016-11-01 Sony Corporation Proximity detection of candidate companion display device in same room as primary display using infrared signaling
US9696414B2 (en) 2014-05-15 2017-07-04 Sony Corporation Proximity detection of candidate companion display device in same room as primary display using sonic signaling
WO2016062691A1 (fr) * 2014-10-22 2016-04-28 Agc Glass Europe Fabrication de substrats revêtus d'une couche conductrice
DE102016009560B4 (de) * 2016-08-02 2022-09-29 Ce Cell Engineering Gmbh Verfahren zur Verbesserung des ohmschen Kontaktverhaltens zwischen einem Kontaktgitter und einer Emitterschicht einer Siliziumsolarzelle
DE102018001057A1 (de) * 2018-02-07 2019-08-08 Aic Hörmann Gmbh & Co. Kg Verfahren zur Verbesserung des ohmschen Kontaktverhaltens zwischen einem Kontaktgitter und einer Ermitterschicht einer Siliziumsolarzelle
KR102317272B1 (ko) * 2018-10-26 2021-10-25 서울대학교산학협력단 레이저-유도 디웨팅된 실버 나노입자를 포함하는 표면 증강 라만 산란 기판 및 그의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931323A (en) * 1987-12-10 1990-06-05 Texas Instruments Incorporated Thick film copper conductor patterning by laser
US5132248A (en) * 1988-05-31 1992-07-21 The United States Of America As Represented By The United States Department Of Energy Direct write with microelectronic circuit fabrication
US5661041A (en) * 1994-11-24 1997-08-26 Murata Manufacturing Co., Ltd. Conductive paste, solar cells with grid electrode made of the conductive paste, and fabrication method for silicon solar cells
US20070019028A1 (en) * 1998-09-30 2007-01-25 Optomec Design Company Laser processing for heat-sensitive mesoscale deposition of oxygen-sensitive materials
DE102006040352B3 (de) * 2006-08-29 2007-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Aufbringen von elektrischen Kontakten auf halbleitende Substrate, halbleitendes Substrat und Verwendung des Verfahrens
US20100003021A1 (en) * 2008-07-01 2010-01-07 Weyerhaeuser Co. Systems and methods for curing deposited material using feedback control

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984209A (en) * 1974-05-24 1976-10-05 General Electric Company Porous aluminum body
US5538564A (en) * 1994-03-18 1996-07-23 Regents Of The University Of California Three dimensional amorphous silicon/microcrystalline silicon solar cells
US5822345A (en) * 1996-07-08 1998-10-13 Presstek, Inc. Diode-pumped laser system and method
DE10046170A1 (de) * 2000-09-19 2002-04-04 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Halbleiter-Metallkontaktes durch eine dielektrische Schicht
WO2007101112A1 (fr) * 2006-02-24 2007-09-07 Uvtech Systems, Inc. Procédé et appareil pour administration de rayonnement laser pulsé
JP2009152222A (ja) * 2006-10-27 2009-07-09 Kyocera Corp 太陽電池素子の製造方法
US20100275982A1 (en) * 2007-09-04 2010-11-04 Malcolm Abbott Group iv nanoparticle junctions and devices therefrom
US8426905B2 (en) * 2007-10-01 2013-04-23 Kovio, Inc. Profile engineered, electrically active thin film devices
KR100974221B1 (ko) * 2008-04-17 2010-08-06 엘지전자 주식회사 레이저 어닐링을 이용한 태양전지의 선택적 에미터형성방법 및 이를 이용한 태양전지의 제조방법
US20100294349A1 (en) * 2009-05-20 2010-11-25 Uma Srinivasan Back contact solar cells with effective and efficient designs and corresponding patterning processes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931323A (en) * 1987-12-10 1990-06-05 Texas Instruments Incorporated Thick film copper conductor patterning by laser
US5132248A (en) * 1988-05-31 1992-07-21 The United States Of America As Represented By The United States Department Of Energy Direct write with microelectronic circuit fabrication
US5661041A (en) * 1994-11-24 1997-08-26 Murata Manufacturing Co., Ltd. Conductive paste, solar cells with grid electrode made of the conductive paste, and fabrication method for silicon solar cells
US20070019028A1 (en) * 1998-09-30 2007-01-25 Optomec Design Company Laser processing for heat-sensitive mesoscale deposition of oxygen-sensitive materials
DE102006040352B3 (de) * 2006-08-29 2007-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Aufbringen von elektrischen Kontakten auf halbleitende Substrate, halbleitendes Substrat und Verwendung des Verfahrens
US20100003021A1 (en) * 2008-07-01 2010-01-07 Weyerhaeuser Co. Systems and methods for curing deposited material using feedback control

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989520A1 (fr) * 2012-04-11 2013-10-18 Commissariat Energie Atomique Procede de realisation d'une cellule photovoltaique a heterojonction
US9293608B2 (en) 2012-04-11 2016-03-22 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for producing a photovoltaic cell having a heterojunction
WO2013153293A1 (fr) * 2012-04-11 2013-10-17 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de réalisation d'une cellule photovoltaïque à hétérojonction
US9614117B2 (en) 2012-10-04 2017-04-04 Shin-Etsu Chemical Co., Ltd. Solar cell manufacturing method
WO2014054350A1 (fr) * 2012-10-04 2014-04-10 信越化学工業株式会社 Procédé de fabrication de cellule photovoltaïque
KR101873563B1 (ko) * 2012-10-04 2018-07-03 신에쓰 가가꾸 고교 가부시끼가이샤 태양 전지 셀의 제조 방법
CN104704639A (zh) * 2012-10-04 2015-06-10 信越化学工业株式会社 太阳能电池单元的制造方法
RU2636405C2 (ru) * 2012-10-04 2017-11-23 Син-Эцу Кемикал Ко., Лтд. Способ изготовления солнечного элемента
JPWO2014054350A1 (ja) * 2012-10-04 2016-08-25 信越化学工業株式会社 太陽電池セルの製造方法
CN104704639B (zh) * 2012-10-04 2017-02-22 信越化学工业株式会社 太阳能电池单元的制造方法
JPWO2014065018A1 (ja) * 2012-10-23 2016-09-08 富士電機株式会社 半導体装置の製造方法
US9892919B2 (en) 2012-10-23 2018-02-13 Fuji Electric Co., Ltd. Semiconductor device manufacturing method
WO2014065018A1 (fr) * 2012-10-23 2014-05-01 富士電機株式会社 Procédé de fabrication de dispositif à semi-conducteur
JP2016518516A (ja) * 2013-03-05 2016-06-23 ローレンス リバモア ナショナル セキュリティー, エルエルシー 高電力ダイオードに基づく付加製造のためのシステムおよび方法
US9855625B2 (en) 2013-03-05 2018-01-02 Lawrence Livermore National Security, Llc System and method for high power diode based additive manufacturing
US10569363B2 (en) 2013-03-05 2020-02-25 Lawrence Livermore National Security, Llc System and method for high power diode based additive manufacturing
US11534865B2 (en) 2013-03-05 2022-12-27 Lawrence Livermore National Security, Llc System and method for high power diode based additive manufacturing
US10747033B2 (en) 2016-01-29 2020-08-18 Lawrence Livermore National Security, Llc Cooler for optics transmitting high intensity light

Also Published As

Publication number Publication date
CN102870509A (zh) 2013-01-09
JP2013526005A (ja) 2013-06-20
JP5759490B2 (ja) 2015-08-05
EP2545753A1 (fr) 2013-01-16
US20130095603A1 (en) 2013-04-18
KR20130051924A (ko) 2013-05-21
FR2957479B1 (fr) 2012-04-27
FR2957479A1 (fr) 2011-09-16

Similar Documents

Publication Publication Date Title
EP2545753A1 (fr) Procede de traitement d'un contact metallique realise sur un substrat
CA2762312C (fr) Procede de depot de couche mince et produit obtenu
EP2834857B1 (fr) Procede de fabrication d'une cellule photovoltaique a contacts interdigites en face arriere
WO2015055943A1 (fr) Procédé de réalisation d'une cellule photovoltaïque
EP2721650B1 (fr) Procédé de réalisation d'une cellule photovoltaïque a émetteur sélectif
WO2011107701A1 (fr) Cellule photovoltaïque incorporant une nouvelle couche tco
BE1019826A3 (fr) Substrat verrier transparent conducteur pour cellule photovoltaique.
FR2932610A1 (fr) Cellule photovoltaique et substrat de cellule photovoltaique
FR2961953A1 (fr) Cellule comprenant un matériau photovoltaïque a base de cadmium
EP2801118B1 (fr) Procédé de fabrication d'une cellule photovoltaïque
EP3347921A1 (fr) Procédé de fabrication d'un dispositif à jonction électronique et dispositif associé
JP2006121011A (ja) 透明電極層の加工方法およびそれを用いた薄膜光電変換装置
FR2932611A1 (fr) Cellule photovoltaique et substrat de cellule photovoltaique
EP3849769B1 (fr) Procédé de fabrication d'un substrat de composant opto-electronique et dispositifs associés
Hassani et al. The effect of laser parameters (frequency and fluency) on the optical and structural characteristics of ZnO films deposited by PLD method
FR2961954A1 (fr) Cellule comprenant un materiau photovoltaique a base de cadmium
FR3061606A1 (fr) Procede d'ablation laser de couches minces pour la realisation de modules photovoltaiques semi-transparents
FR3132593A1 (fr) Creation d’une fenetre de sortie de rayonnement pour un composant photoemetteur
FR3021808A1 (fr) Procede ameliore de realisation d'une cellule solaire dotee de regions d'oxyde transparent de conductivite modifiee
FR2942480A1 (fr) Substrat transparent revetu d'une couche transparente d'oxyde electriquement conducteur, procede pour sa fabrication, et son utilisation
FR3067858A1 (fr) Procede d'ablation laser de couches minces en deux etapes pour la realisation de modules photovoltaiques semi-transparents
FR3077930A1 (fr) Dispositif photovoltaique ou photodetecteur de type emetteur passive contact arriere et procede de fabrication d'un tel dispositif
FR2467486A1 (fr) Procede de formation de jonctions n-p, jonctions de ce type et leurs applications
EP2837037A1 (fr) Procédé de réalisation d'une cellule photovoltaïque à hétérojonction
FR2972659A1 (fr) Procede de traitement par electroerosion d'une surface d'un element en silicium et plaque de silicium obtenue grace a un tel traitement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020696.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11722521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012556640

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127026053

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011722521

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011722521

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13634498

Country of ref document: US