WO2011107701A1 - Cellule photovoltaïque incorporant une nouvelle couche tco - Google Patents
Cellule photovoltaïque incorporant une nouvelle couche tco Download PDFInfo
- Publication number
- WO2011107701A1 WO2011107701A1 PCT/FR2011/050406 FR2011050406W WO2011107701A1 WO 2011107701 A1 WO2011107701 A1 WO 2011107701A1 FR 2011050406 W FR2011050406 W FR 2011050406W WO 2011107701 A1 WO2011107701 A1 WO 2011107701A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- substrate
- photovoltaic
- zno
- layers
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 100
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 84
- 239000011521 glass Substances 0.000 claims abstract description 34
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 32
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 31
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims abstract description 15
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 10
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 claims abstract description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 8
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 161
- 239000000463 material Substances 0.000 claims description 28
- 238000000137 annealing Methods 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 16
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 claims description 13
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 13
- 230000004888 barrier function Effects 0.000 claims description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000010791 quenching Methods 0.000 claims description 9
- 230000000171 quenching effect Effects 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 4
- 239000011247 coating layer Substances 0.000 claims description 4
- 229910021425 protocrystalline silicon Inorganic materials 0.000 claims description 4
- 239000006096 absorbing agent Substances 0.000 claims description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 48
- 235000014692 zinc oxide Nutrition 0.000 description 40
- 239000011787 zinc oxide Substances 0.000 description 39
- 238000000034 method Methods 0.000 description 17
- 238000000151 deposition Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 11
- 230000008021 deposition Effects 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 238000005507 spraying Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 238000001755 magnetron sputter deposition Methods 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005670 electromagnetic radiation Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910005091 Si3N Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- OANVFVBYPNXRLD-UHFFFAOYSA-M propyromazine bromide Chemical compound [Br-].C12=CC=CC=C2SC2=CC=CC=C2N1C(=O)C(C)[N+]1(C)CCCC1 OANVFVBYPNXRLD-UHFFFAOYSA-M 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- ZQRRBZZVXPVWRB-UHFFFAOYSA-N [S].[Se] Chemical class [S].[Se] ZQRRBZZVXPVWRB-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021431 alpha silicon carbide Inorganic materials 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- HVMJUDPAXRRVQO-UHFFFAOYSA-N copper indium Chemical compound [Cu].[In] HVMJUDPAXRRVQO-UHFFFAOYSA-N 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
- C01G15/006—Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
- H01L31/022483—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to a novel photovoltaic cell, comprising in particular a glass substrate coated with a transparent layer of electrically conductive oxide, often called TCO in the field.
- glass substrate refers to a substrate made of mineral glass.
- a photovoltaic module consists of a set of photovoltaic cells often coupled in series with each other. These cells generate a direct current when exposed to light. To provide a suitable power which corresponds to sufficient and expected energy, sufficiently large areas of a multitude of photovoltaic modules are produced. These modules can be integrated on the roofs of houses or commercial premises or placed in fields for centralized energy production.
- a photovoltaic module thus comprises a support substrate and a so-called photovoltaic material which is most often constituted by a stack of N and P doped semiconductors, forming in their electrical contact zone a pn junction.
- Another substrate on the opposite side, protects the photovoltaic material.
- This front face substrate is preferably a transparent mineral glass having a very high light transmittance in the 300 to 1250 nm radiation range.
- the photovoltaic material On each side of the photovoltaic material are electrodes constituted by electrically conductive materials which constitute the positive and negative terminals of the photovoltaic cell.
- the two electrodes (anode and cathode) of the photovoltaic module make it possible to collect the current produced under the effect of light in the photovoltaic material, the transport and the segregation of the charges being due to the difference of potential created between the respectively p-doped and n-doped portions of the semiconductors.
- An example of such a module is for example described in the application WO2006 / 005889, to which reference will be made for the details of the embodiment.
- crystalSin silicon offers as a semiconductor a good energy efficiency, and is the first generation of photovoltaic cells in the form of "Wafers", there is increasing interest in the industry for so-called “thin film” technologies. .
- the material is the seat of the photovoltaic activity, comprising or consisting of amorphous (a-Si) or microcrystalline ( ⁇ - ⁇ ) silicon, or cadmium telluride (CdTe) or chalcopyrite (CIS, CIGS, CiGSe2), is this time directly deposited on the substrate in the form of more or less thick layers.
- a-Si amorphous
- ⁇ - ⁇ microcrystalline
- CdTe cadmium telluride
- CIS, CIGS, CiGSe2 chalcopyrite
- the manufacture of modules on glass substrates, cut at the final size of the modules thus comprises the deposition of a succession of thin layers deposited and formed directly in succession on the substrate, of which at least:
- a thin layer serving as a reflecting rear electrode.
- the photovoltaic cells are performed by intermediate laser etching steps between each layer deposition step. These substrates glassmakers, often tempered and integrating photovoltaic cells thus constitute the substrates of the front of the modules.
- a back-face support substrate is generally subsequently laminated against the face provided with the stack of layers of the front-face substrate.
- the electrode arranged against the front glass substrate of the module is of course transparent to let the light energy to the absorber.
- This electrode comprises most often a transparent electrically conductive oxide (often called in the TCO domain for "Transparent Conductive Oxide”).
- TCO thin layers of aluminum doped zinc oxide (AZO), indium doped tin oxide (ITO) , fluorinated doped tin oxide (SnO2: F) or gallium doped zinc oxide (GZO) or boron doped zinc oxide (BZO).
- AZO aluminum doped zinc oxide
- ITO indium doped tin oxide
- SnO2 fluorinated doped tin oxide
- GZO gallium doped zinc oxide
- BZO boron doped zinc oxide
- these layers constituting the electrodes are essential functional components of the thin-film solar cells because they serve to evacuate towards the cathode the electrons or holes formed by the incident electromagnetic radiation in the photovoltaic semiconductor layer.
- their resistivity is as low as possible.
- the TCO-based electrode coating must be deposited at a relatively large physical thickness, of the order of a few hundred nanometers, which is expensive in view of the the price of these materials when they are deposited in thin layers, in particular by the magnetron sputtering technique.
- TCO-based electrode coatings thus lies particularly in the fact that the physical thickness of the material is necessarily a compromise between its final electrical conduction and its final transparency after deposition. In other words, the greater the physical thickness of the material, the higher its conductivity will be, but the lower the transparency and vice versa. In the end, it is not possible with TCO coatings current to independently and satisfactorily optimize the conductivity of the electrode coating and its transparency.
- TCOs Another problem with these TCOs comes from their use in the specific application as an electrode in a photovoltaic module: to give the glass substrate its mechanical strength, the substrates coated with the TCO layer must often undergo a final heat treatment, in particular a quench. Similarly, it is often necessary to heat the TCO layer to increase the crystallinity and hence the conductivity and transparency.
- the deposition of certain photovoltaic layers such as CdTe layers requires an operating temperature of at least 400 ° C and even up to 700 ° C. During successive quenching and / or heating, the stack is thus carried, under ambient or other conditions, at temperatures greater than 500 degrees, or even higher than 600.degree. C., for a few minutes.
- the terms “lower” and “upper” denote the respective positions of the layers relative to one another and with reference to the glass substrate of the front face.
- a layer disposed above the electrode layer (TCO) with reference to the front face glass substrate and as a sub-layer a layer disposed beneath the electrode layer (TCO) is designated as an on-layer. compared to the front face glass substrate.
- the present invention aims at overcoming the drawbacks of the preceding techniques by proposing a solution comprising a stack such that both the optical and electrical conduction properties of the TCO layer are little affected by the heat treatment phases, and are even improved by the latter. .
- the photovoltaic panel incorporating the modules is necessarily subjected, outside, to humid weather conditions. Even though the TCO layers are in principle protected by the front and back substrates, they are necessarily subjected to moisture however over time and their prolonged use outdoors.
- the object of the present invention is also to provide a new transparent substrate, in particular a glass substrate, coated with a transparent TCO electrically conductive oxide layer, making it possible to respond to all the problems previously described, in particular with a view to their use for the manufacture of elements of a photovoltaic module or panel.
- the present invention relates to a photovoltaic cell comprising at least one transparent substrate front face including glass, protecting a stack of layers comprising a layer with photovoltaic properties and two lower and upper electrodes, arranged on either side of said photovoltaic layer, said module being characterized in that at least the lower electrode, that is to say the one closest to the front face substrate, comprises or consists of a transparent coating consisting of a mixed metal oxide of at least the elements Zn, Al and Ga, corresponding to the following composition, in weight percentage on the basis of the corresponding oxides ZnO, Al2O3 and Ga2O3:
- the equivalent weight of AI 2 O 3, as a percentage in the mixed metal oxide, is preferably between 0.5% and 1.8%, especially between 0.6 and 1.5%.
- the weight equivalent of Ga 2 O 3, as a percentage in the mixed metal oxide, is preferably between 4% and 7%, especially between 4.5 and 6.5%.
- the weight equivalent of ZnO, as a percentage in the mixed metal oxide, is for example between 90% and 95%.
- the transparent coating has a thickness of between 50 and 1500 nm.
- the cell as described above may further comprise a layer or a set of layers of at least one alkaline barrier material originating from the front face substrate of the glass type, in particular when quenching or annealing, between said substrate and the transparent coating layer consisting of a mixed metal oxide of at least the elements Zn, Al and Ga.
- the cell may also comprise a metal blocking layer above and possibly below, with reference to the glass substrate, the transparent coating layer consisting of a mixed metal oxide of at least the elements Zn, Al and Ga.
- the photovoltaic absorber layer generally comprises a thin layer of at least one semiconductor material of the amorphous silicon ( ⁇ -Si), or silicon-carbon ( ⁇ -SiC), preferably hydrogenated, or silicon-germanium ( aSiGe), or microcrystalline silicon (pc-Si), or based on an assembly of thin layers of amorphous silicon on microcrystalline silicon so as to form a tandem cell, or cadmium telluride (CdTe) or CIGS or Tandem CdTe / CIGS.
- ⁇ -Si amorphous silicon
- ⁇ -SiC silicon-carbon
- aSiGe silicon-germanium
- pc-Si microcrystalline silicon
- the invention also relates to a transparent substrate capable of forming the front face of a photovoltaic cell as described above, comprising on one of its faces a transparent coating consisting of a mixed metal oxide of at least the elements Zn, Al and Ga, corresponding to the following composition, in weight percent on the basis of the corresponding oxides ZnO, Al2O3 and Ga2O3:
- Ga 2 O 3 4 to 10%.
- the metal oxide of the Zn oxide type is of course doped with the elements Al and Ga in the proportions described above.
- FIG. 1 a photovoltaic cell 100 according to the present invention.
- This cell comprises on the front face, that is to say on the side exposed to solar radiation, a first transparent glass substrate 10 said front face.
- This substrate may for example be entirely in a glass containing alkalis such as a silico-soda-lime glass.
- the glass-function substrate is preferably made of material (x) having the best possible transparency in the part of the spectrum solar useful for the application as a solar module, that is to say generally the portion of the spectrum ranging from about 300 to about 1300 nm.
- the transparent substrate 10 chosen according to the invention has a high transmission for electromagnetic radiation with a wavelength of 300 to 1250 nm and in particular for sunlight.
- the glass substrate is generally chosen so that its transmission in this range is greater than 75% and in particular greater than 85% or even greater than 95%.
- This substrate is advantageously an extra-clear glass, such as Diamant® glass sold by Saint-Gobain, or a glass having surface roughness, such as Albarino® glass, also sold by Saint-Gobain.
- the substrate 10 may have a total thickness ranging from 0.5 to 10 mm and is used in particular as a protective plate for a photovoltaic cell. It may for this purpose be advantageous to subject it to prior heat treatment such as quenching.
- the front face of the substrate 10 directed towards the light rays (this is the external face) is defined by A, and with B the rear face of the substrate directed towards the rest of the layers of the solar module (it is is the inner face).
- the face B of the substrate 10 is coated with a stack 30 of thin layers according to the methods of the invention. At least one surface portion of the substrate is coated on its side B with at least one layer 1 of a material known for its alkali diffusion barrier properties through the different layers of the stack 30, especially when the The assembly is heated to a high temperature, for example during the various quenching or annealing phases which are indispensable during the manufacturing cycle of the cell.
- This barrier layer 1 in face B of the substrate makes it possible in particular to avoid, or even to block, the diffusion of Na from the glass to the upper layers.
- this alkali barrier layer may be based on a dielectric material chosen from nitrides, oxides or oxynitrides of silicon, or nitrides, oxides or oxynitrides of zirconium. It may especially be Si3N 4 , Sn x Zn y O z , SiO 2, SiO x N y , ⁇ 2, optionally doped. Among all these, the Si3N silicon nitride makes it possible in particular to obtain an excellent barrier effect to alkalis.
- This alkali barrier layer, especially when based on silicon nitride may not be stoichiometric. It can be sub-stoichiometric in nature, or even super-stoichiometric.
- the layer 1 is not necessarily unique and it is envisaged in the context of the present invention to replace it with a set of layers having this same function to constitute an effective barrier to alkalis.
- the thickness of the barrier layer 1 (or of all the barrier layers) is between 5 and 200 nm, preferably between 10 and 100 nm and for example substantially close to 20 to 25 nm.
- an electroconductive layer 3 according to the invention of the type "Transparent Conductive Oxide” TCO.
- This layer constitutes the lower electrode of the photovoltaic cell.
- this layer consists of a material chosen from zinc oxides doped jointly by Al, Ga, in the proportions described above.
- another additional doping element chosen in particular from In, B, Ti, V, Y, Zr.
- This conductive layer is as transparent as possible, and has a high transmission of light in all wavelengths corresponding to the absorption spectrum of the material constituting the functional layer, so as not to reduce the efficiency of the solar module unnecessarily. .
- the thickness of this electroconductive layer is between 50 and 1500 nm, preferably between 200 and 800 nm, and substantially close to 600-700 nm.
- the TCO layer of the substrates according to the invention has a high electrical conductivity, a high transparency to electromagnetic radiation and in particular to sunlight as will be described in the examples which follow.
- the electro-conductive layer 3 of mixed zinc oxide doped with gallium and aluminum according to the invention must have a resistance per square of at most 30 ohms / square, in particular at most 20 ohms / square, or even not more than 10 ohms / square in the PV module.
- the transparent electrically conductive oxide layer according to the invention has a transmission of at least 65% and preferably of at least 70% and particularly preferably of more than 75% or even more than 80% for the waves. electromagnetic waves with a wavelength of 300 nm to 1250 nm in the photovoltaic module.
- At least the transparent layer of electrically conductive oxide TCO, and preferably also all its protective layers are successively deposited in the same device by the known techniques for deposition of thin layers under vacuum, in particular by the techniques conventional sputtering in the field of deposition of thin films, especially magnetron sputtering techniques, as will be described in more detail below.
- the surface of the transparent layer of electrically conductive oxide may be provided with a texturing whose roughness (RMS) is between 1 nm to 250 nm, more particularly when the photovoltaic layer is of the silicon type.
- the roughness is preferably from 20 nm to 180 nm and particularly preferably from 40 nm to 140 nm.
- the Texture size can be determined for example by scanning electron microscopy (SEM) or atomic force microscopy (AFM).
- the roughness (root-mean-squared roughness or RMS) is for example determined according to the ISO 25178 standard using an atomic force microscope.
- the electroconductive layer serving as the lower electrode may then be covered with a layer 4 of protection against oxidation.
- the invention may also be provided to incorporate in the stack forming the electrode at least one metal blocking layer 2, alone or in combination with the protective layer 4 against oxidation.
- This metal layer 2 by oxidizing, creates an oxide layer of the metal in question during the heat treatment of the lower electrode, more precisely for example a quenching or annealing substrate coated with said electrode.
- the metal blocking layer may be based on titanium, nickel, chromium or niobium, used alone or as a mixture.
- the primary stack 40 of thin layers thus formed is covered with a functional layer 5 comprising the materials enabling the energy conversion between the light rays and the electrical energy, as previously described.
- Examples of semiconductor materials with photovoltaic properties which are suitable for use in the thin layer 5 in the solar cells according to the invention are, for example, amorphous silicon (a-Si), microcrystalline silicon (pc-Si), polycrystalline silicon (pc-Si), gallium arsenide (in monolayer), gallium arsenide (in two layers), gallium arsenide (in three layers), gallium and indium nitride, cadmium telluride and copper-indium (gallium) sulfur-selenium compounds.
- a-Si amorphous silicon
- pc-Si microcrystalline silicon
- pc-Si polycrystalline silicon
- gallium arsenide in monolayer
- gallium arsenide in two layers
- gallium arsenide in three layers
- gallium and indium nitride gallium and indium nitride
- cadmium telluride copper-indium (gallium) sulfur-selenium compounds.
- the photovoltaic semiconductor layer of the thin-film solar cells according to the invention can use a single semiconductor transition (single junction) or several semiconductor transitions (multi-phase). junction).
- Semiconductor layers that have the same interband transition can only use part of the sunlight; on the other hand, different semiconductor layers having different interband transitions are sensitive to an extended range of wavelengths of sunlight.
- the functional layer 5 is covered with a conductive layer 6, possibly transparent, TCO type as previously described or non-transparent type, such as molybdenum or other metallic material.
- this electrode layer may be based on ITO (indium and tin oxide) or on metal (silver, copper, aluminum, molybdenum), on fluorine-doped tin oxide or on doped zinc oxide. al.
- thermoplastic interlayer 7 of a known type, for example PU, PVB or EVA, to form the final solar cell 100.
- the photovoltaic cell according to the invention as just described can be obtained using a method comprising the following steps:
- Step a) comprising vacuum deposition by spraying, is a usual and known method for producing thin layers of materials that vaporize with difficulty.
- the surface of a solid body of suitable composition, called a target is sprayed by firing energy-rich ions from low-pressure plasmas, for example oxygen ions (O + ) and / or ions of Argon (Ar + ) or neutral particles, after which the pulverized materials are deposited in thin layers on the substrates (see Rômpp Online, 2008, "Sputtering").
- Magnetic field supported spraying often referred to as magnetron sputtering, is preferably used.
- the partial pressure of oxygen or argon can vary widely and thus be easily adapted to the needs of each particular case.
- the partial pressure levels of the gases in the plasma and the electric power required for the spraying can be defined according to the dimensions of the transparent substrates and the thickness of the layers (in particular TCO) to be deposited.
- the drawback of such techniques is however that the layers obtained have a low degree of crystallinity of the constituent materials, in particular TCOs, and therefore requires an annealing step to recrystallize said materials.
- the layers are sputtered successively in continuous installations and already dimensioned accordingly by means of suitable sputtering targets.
- the unheated transparent substrate is coated on its surface with a transparent layer of electrically conductive oxide comprising zinc, aluminum and gallium.
- a target is preferably used which has a composition corresponding substantially or exactly to that of the TCO layer finally obtained on the substrate.
- the spraying technique supported by the action of a magnetic field often called magnetron sputtering.
- two targets in the same magnetron chamber and to spray simultaneously on top of the substrate.
- One of these targets consists of aluminum doped ZnO and the other of gallium doped ZnO, in order to obtain the TCO layer of the desired formulation.
- the invention it is also possible according to the invention to use three different targets respectively ZnO, Ga2O3 and Al2O3 which are simultaneously sprayed in a single chamber using three radio frequency generators, according to the rules of the art.
- the partial pressure levels in the plasma at low pressure and the electric power necessary for the adequate spraying of the different targets and the attainment of the desired content of Zn, Al and Ga are defined according to the rules of the art, as well as the thickness of the TCO layer to be deposited.
- the skilled person can easily adjust the setting of different treatment parameters using his professional knowledge, possibly with some guidance tests.
- the TCO layer according to the invention by a reactive deposit, especially by spraying, in an atmosphere containing oxygen, at least one target.
- a metal used in the composition of said layer Al, Zn, Ga
- the elements Zn and Al can be sprayed in an atmosphere containing oxygen or oxygen, from a first target made of an alloy of these two metals, in the required proportions, and Element Ga can be simultaneously introduced by the sputtering of another target constituted by Ga 2 O 3 oxide.
- the heat treatment according to step b) is therefore a crucial step for the final performance of the photovoltaic cell and determines in particular its final yield.
- the substrate coated with the stack 40 is typically heated between 300 ° C and 750 ° C, preferably between 500 ° C and 700 ° C and in particular between 600 ° C and 700 ° C, under different atmospheres, for example in an atmosphere containing oxygen.
- the treatment step can be carried out by means of usual and known devices, for example ovens traditionally used in the glass industry (quenching furnace), continuously traversed by the glass ribbon and suitably dimensioned. These continuously traversed furnaces usually use air or an inert gas as a heat transfer fluid. Thanks to this heat treatment b) of the coated and heated substrate, the oxide layer is thus made crystalline and its resistivity then decreases sharply. This gives the TCO layer according to the invention described above.
- the transparent substrates covered with the TCO layer are cooled, preferably before carrying out the following treatment step c), for example by cold air or cold inert gas flows, but they can also be allowed to cool. passively.
- the coated substrate preferably has a temperature of 20 ° C to 30 ° C. In this way, the risk of damaging the substrates by thermal stresses and / or the risk of uncontrolled evaporation or decomposition of liquids which are brought into contact with the coated substrates during or possibly before the processing step c) which follows.
- the transparent layer of electrically conductive oxide may be etched by means of an etching agent and the etching agent is then rinsed.
- Etching agents may be gaseous or liquid; they are preferably liquid.
- the liquid etching agents may contain liquid organic compounds, liquid inorganic compounds, solutions of organic or inorganic solid, liquid or gaseous compounds in organic solvents, as well as aqueous solutions of organic or inorganic, solid and liquid compounds. or gaseous.
- Aqueous solutions of acids or bases of organic or inorganic origin are preferably used.
- Volatile organic or inorganic acids, and in particular inorganic acids are preferably used.
- the substrate carrying the transparent electrode TCO may also be manufactured and possibly etched independently of the other constituent elements of the module in order to be delivered to an assembler having the semiconductor deposition technology, responsible for the photocatalytic activity itself.
- the lower electrode 6, that is to say facing the interior of the cell relative to the incident radiation, is preferably reflective of said radiation. Its deposition (step e)) is carried out in a known manner by a vacuum deposition technique.
- the rear-face substrate 20 is laminated to the assembly by means of a plastic film 7 of the polyvinyl butyral (PBV) or ethylene-vinyl-acetate (EVA) type. according to well known techniques for obtaining a laminated glazing.
- PBV polyvinyl butyral
- EVA ethylene-vinyl-acetate
- a TCO layer a few hundred nanometers thick
- the deposition of a TCO layer is carried out according to two methods: by sputtering a ZnO ceramic target previously co-doped in gallium and aluminum on a diamond® glass in an Argon carrier gas (Example 1 to 3) or by co-spraying on a diamond® glass using three targets of ZnO, Ga2O3 and Al2O3 in an Argon carrier gas (Examples 4 to 10) .
- the Al and Ga levels are given by reference to the weight percentages of the corresponding oxides Al.sub.2O.sub.3 or Ga.sub.2O.sub.3 in the mixed oxide of zinc, aluminum and gallium constituting the TCO.
- Target-substrate distance 5 cm
- a first stack obtained from target 1, according to the invention (example 1) comprising a TCO layer consisting of a mixed oxide of ZnO doped with 1.5% by weight of Al 2 O 3 and 5.5% Ga2O3 weight,
- a second stack obtained from target 2, according to the prior art (example 2), comprising a TCO layer consisting of a ZnO oxide doped with 1.5% by weight of Al 2 O 3
- a third stack obtained from the target 3, according to the prior art (example 3), comprising a TCO layer consisting of a ZnO oxide doped with 3% by weight of Ga 2 O 3.
- TCO layers of Examples 2 and 3 are those currently used commercially for this type of TCO.
- Table 1 The evolution of the resistivity and the resistance per square was measured on the substrates according to Examples 1 to 3 during annealing at 550 ° C. in air. The annealing has been extended for each of the substrates until, on the one hand, the minimum value of the electrical conductivity of the TCO layer is determined as well as the duration of the heat treatment leading to the said minimum value of the electrical conductivity of the TCO layer, before the sudden increase of the latter due to the degradation of said layer. The results obtained are visible in FIG. 2. The values obtained from the resistivities and resistances per square measured on the TCO layers of Examples 1 to 3, after various annealing times at 550 ° C., are reported in Table 2 below. . Annealing Annealing Annealing Annealing after depot
- Such a difference is particularly decisive for the use of such layers in the photovoltaic application because it allows greater flexibility in the overall manufacturing process of photovoltaic cells, especially if certain components must be deposited hot, such as CdTe active layers or if various successive annealing and tempering steps must be performed successively during the manufacture of the cell, as is most often necessary.
- the optical properties of the substrates provided with the various TCO layers according to Examples 1 to 3 were also measured for the same target value of the resistance per square of 10 ohms / square representative of an acceptable conductivity of the layers.
- TCO for photovoltaic application.
- annealing was performed at 550 ° C in air for each of the substrates.
- the heat treatment has been prolonged, according to the data shown in FIG. 2, until a resistance / square equal to or as close as possible to 10 ohms / square is obtained.
- the light transmission T L of these 3 samples at 10 ohms / D was measured.
- the ASQE parameter was also determined by carrying out the product of integrating the absorption spectrum of the substrate comprising the TCO layer, over the entire considered domain (300-2500 microns), with the quantum efficiency spectrum QE of the material considered (that is to say a-Si, ⁇ - ⁇ , CdTE or tandem between a-Si / ⁇ - ⁇ ⁇ ) for this same domain.
- the quantum efficiency QE is in a known manner the expression of the probability (between 0 and 1) that an incident photon with a wavelength according to the abscissa is transformed into an electron-hole pair for the photovoltaic material considered.
- the quantum efficiency curve QE of said materials is presented in FIG.
- the performance of photovoltaic cells obtained from the substrates according to Examples 1 to 3 were also measured in the case of a CdTe type photovoltaic layer. More precisely, in accordance with the cell described according to FIG. 1, on the substrates according to examples 1 to 3, whose resistance of the TCO layer in the cell is adjusted to 10 ohms / square, a layer was deposited according to conventional techniques. photovoltaic type CdTe, and a rear electrode type Gold. The characteristics of the cell (according to the model of an equivalent electrical circuit for a solar cell or "solar cell equivalent" circuit according to the English term) are measured classically according to usual settings:
- this is the solar efficiency of the cell, defined as the percentage of power converted (and collected) from the light absorbed for a solar cell connected to the electrical circuit. This term is calculated by making the ratio of the maximum power point Pm by the product of the irradiance of the incident light (E in W / m 2 ) under standard conditions and the surface of the solar cell (in m 2 ). Standard conditions mean a temperature of 25 ° C and an irradiance of 1000 W / m 2 according to the AM1.5 spectrum.
- the target ZnO is disposed in the spraying chamber in the central position and the other two targets are inclined towards the target ZnO so as to create a composition gradient.
- the conditions in the spray chamber are as follows:
- Ga 2 O 3 16 to 120W
- Target-substrate distance 150 mm
- the powers applied to the targets are modified so as to vary the respective proportions of the constituents ZnO, Al 2 O 3 and Ga 2 O 3 in the TCO films.
- the substrate according to Example 4 is in accordance with the invention.
- the substrates according to Examples 5 to 10 are given for comparison. More specifically, the front-face substrates according to Comparative Examples 5 and 6 comprise a TCO layer of ZnO type co-doped Al and Ga, starting from FIG. co-sputtering of the three previous targets, but under conditions resulting in doping Al and Ga not in accordance with the invention.
- the front face substrates according to Comparative Examples 7 to 9 comprise a TCO layer of the AZO type with different Al doping levels.
- the front face substrate according to Comparative Example 10 comprises a TCO layer of the GZO type.
- Table 5 shows in more detail the composition of the different stacks prepared and their physical thicknesses (real).
- the resistivities of the different TCO layers on the substrates of Examples 4 to 10 were measured according to standard techniques before and after annealing in an oven under ambient atmosphere at 550 ° C. for 1 to 3 minutes, the duration of the treatment being adjusted to finally obtain the minimum resistivity for each TCO layer. The results are reported in Table 6. In the table, for ease of comparison, the resistivities are relative to the resistivity initially measured on the TCO layer of Example 4 according to the invention, prior to annealing. Type Percent Relative Resistivity
- Example 4 ZnO: Al, GaAl: 0.5; Ga: 10 1 0.37
- Example 6 ZnO: Al, Ga Al: 1.6; Ga: 3.5 1, 6 3.9
- Example 7 ZnO: Al Al: 0.5 45 150
- Example 10 ZnO: Ga Ga: 8.5 5.5 1, 7
- the substrate provided with the TCO layer according to the invention exhibits, before and especially after annealing, the lowest resistivity values, which justifies its use as an electrode layer in photovoltaic cells of the following type. of those previously described. It has also been sought to measure the moisture resistance properties of the various substrates according to the preceding examples.
- the test consisted of subjecting substrates with TCO layers to severe humidity and temperature conditions, that is to say to an atmosphere with 85% moisture content. relative, at a temperature of 85 ° C and for 14 days.
- Table 7 The results reported in Table 7 show a much higher behavior and moisture resistance of the layer of Example 4 according to the invention compared to that of the AZO-type layer (Example 8). Similarly, the layer of Example 4 has a much better resistance over time compared to the GZO layer (Example 10), the resistivity of the TCO layer according to Example 4 even seeming almost stabilized at very low levels at the end of the moisture resistance test.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Cellule photovoltaïque (100) comprenant au moins un substrat transparent de face avant (10) notamment verrier, protégeant un empilement de couches (30) comprenant une couche à propriétés photovoltaïques (5) et deux électrodes inférieure (3) et supérieure (6), disposées de part et d'autre de ladite couche photovoltaïque (5), ladite cellule se caractérisant en qu'au moins l'électrode inférieure (3), c'est-à-dire la plus proche du substrat de face avant (10), comprend ou est constituée par un revêtement transparent constitué par un oxyde métallique mixte d'au moins les éléments Zn, Al et Ga, répondant à la composition suivante, en pourcentage poids sur la base des oxydes correspondants ZnO, AI2O3 et Ga2O3 : ZnO : 88 à 95,8 %, AI2O3 : 0,2 à 2 %, Ga2O3 : 4 à 10 %.
Description
CELLULE PHOTOVOLTAÏQUE INCORPORANT
UNE NOUVELLE COUCHE TCO L'invention concerne une nouvelle cellule photovoltaïque, comprenant notamment un substrat verrier revêtu d'une couche transparente d'oxyde électriquement conducteur, souvent appelé TCO dans le domaine.
On entend dans la suite de la description par substrat verrier un substrat en verre minéral.
De façon connue, un module photovoltaïque est constitué d'un ensemble de cellules photovoltaïques souvent couplées en série les unes aux autres. Ces cellules génèrent un courant continu lorsqu'elles sont exposées à la lumière. Pour fournir une puissance adaptée qui correspond à une énergie suffisante et attendue, on réalise des surfaces suffisamment étendues d'une multitude de modules photovoltaïques. Ces modules peuvent être intégrés sur les toits des habitations ou des locaux commerciaux ou disposés dans des champs pour la production d'énergie centralisée. Diverses technologies existent dans la réalisation des cellules photovoltaïques. Les cellules les plus répandues sont à base de semi-conducteurs, en particulier de semi-conducteurs en silicium cristallin ou de semi-conducteurs en couches minces.
Classiquement, un module photovoltaïque comprend ainsi un substrat servant de support et un matériau dit photovoltaïque qui est le plus souvent constitué d'un empilement de semi-conducteurs dopés N et P, formant dans leur zone de contact électrique une jonction p-n. Un autre substrat, sur la face opposée, assure la protection du matériau photovoltaïque. Parmi ces deux substrats, on dénomme substrat avant ou substrat de face avant celui qui est destiné à être en regard de l'énergie lumineuse reçue. Ce substrat de face avant est de préférence un verre minéral transparent présentant une transmission lumineuse très élevée dans la gamme de rayonnement 300 à 1250 nm. Il est avantageusement traité thermiquement (c'est-à-dire recuit, trempé ou durci) pour pouvoir résister aux intempéries, en particulier la grêle, et
cela de manière durable dans le temps (25 à 30 ans). De chaque coté du matériau photovoltaïque sont disposées des électrodes constituées par des matériaux électriquement conducteurs qui constituent les bornes positives et négatives de la cellule photovoltaïque. De façon connue, les deux électrodes (anode et cathode) du module photovoltaïque permettent de collecter le courant produit sous l'effet de la lumière dans le matériau photovoltaïque, le transport et la ségrégation des charges étant dus à la différence de potentiel créée entre les parties respectivement dopée p et n des semi-conducteurs. Un exemple d'un tel module est par exemple décrit dans la demande WO2006/005889, à laquelle on se référera pour les détails de la réalisation.
Si le silicium cristalSin offre en tant que semi-conducteur un bon rendement énergétique, et constitue la première génération des cellules photovoitaïques sous forme de « Wafers », on s'intéresse de plus en plus dans l'industrie aux technologies dites « couches minces ».
Selon cette technologie, le matériau siège de l'activité photovoltaïque, comprenant ou constitué de silicium amorphe (a-Si) ou microcristallin (μο-βί), ou encore de tellure de cadmium (CdTe) ou encore de chalcopyrites (CIS, CIGS, CiGSe2), est cette fois directement déposé sur le substrat sous la forme de couches plus ou moins épaisses. L'épaisseur cependant réduite de ces matériaux déposés en couche mince offre théoriquement la possibilité de réduire les coûts de production des cellules. La fabrication de modules sur des substrats verriers, découpés à la taille finale des modules, comporte ainsi le dépôt d'une succession de couches minces déposées et formées directement en succession sur le substrat, dont au moins :
- une couche servant d'électrode avant transparente au rayonnement incident,
- les différentes couches minces constituant le matériau photovoltaïque lui-même et
- une couche mince servant d'électrode arrière réfléchissante.
Les cellules photovoitaïques, quant à leur taille et aux connexions électriques à établir entre elles, sont réalisées par des étapes intermédiaires de gravure par laser entre chaque étape de dépôt de couche. Ces substrats
verriers, souvent trempés et intégrant les cellules photovoltaïques constituent ainsi les substrats de face avant des modules. Un substrat support de face arrière est en général ensuite rapporté par feuilletage contre la face pourvue de l'empilement de couches du substrat de face avant.
L'électrode agencée contre le substrat en verre de face avant du module est bien entendu transparente pour laisser passer l'énergie lumineuse jusqu'à l'absorbeur. Cette électrode comporte le plus souvent un oxyde transparent électro-conducteur (appelée souvent dans le domaine TCO pour « Transparent Conductive Oxide »).
De façon connue, on utilise le plus souvent comme matériau, pour la fabrication de ces couches TCO, des couches fines en oxyde de zinc dopé à l'aluminium, (AZO), en oxyde d'étain dopé à l'Indium (ITO), en oxyde d'étain dopé au fluor (SnO2 :F) ou encore en oxyde de zinc dopé au gallium (GZO) ou en oxyde de zinc dopé au bore (BZO).
II faut bien noter que ces couches constituant les électrodes, notamment celles disposées en face avant, c'est-à-dire à proximité du substrat avant, sont des composants fonctionnels essentiels des cellules solaires en couche mince, car elles servent à évacuer vers la cathode les électrons ou trous formés par le rayonnement électromagnétique incident dans la couche semi-conductrice photovoltaïque. A ce titre, il est nécessaire pour l'application que leur résistivité soit la plus faible possible. Notamment, pour obtenir la conduction électrique souhaitée, ou plutôt la faible résistance souhaitée, le revêtement électrode à base de TCO doit être déposé à une épaisseur physique relativement importante, de l'ordre de quelques centaines de nanomètres, ce qui coûte cher eu égard au prix de ces matériaux lorsqu'ils sont déposés en couches minces, notamment par la technique de pulvérisation magnétron. L'inconvénient majeur des revêtements électrodes à base de TCO réside ainsi tout particulièrement dans le fait que l'épaisseur physique du matériau est nécessairement un compromis entre sa conduction électrique finale et sa transparence finale après le dépôt. Autrement dit, plus l'épaisseur physique du matériau est importante, plus sa conductivité sera forte mais plus la transparence sera faible et inversement. Au final, il n'est donc pas possible avec les revêtements TCO
actuels d'optimiser indépendamment et de façon satisfaisante la conductivité du revêtement électrode et sa transparence.
Un autre problème de ces TCO provient de leur utilisation dans l'application spécifique en tant qu'électrode dans un module photovoltaïque : pour conférer au substrat verrier sa résistance mécanique, les substrats revêtus de la couche TCO doivent souvent subir un traitement thermique final, notamment une trempe. De même, il est souvent nécessaire de chauffer la couche TCO pour en augmenter la cristallinité et par suite la conductivité et la transparence. De plus, le dépôt de certaines couches photovoltaïque tels que les couches CdTe nécessite une température de mise en œuvre d'au moins 400°C et même jusqu'à 700°C. Pendant les trempes et/ou les chauffages successifs, l'empilement est ainsi porté, sous atmosphère ambiante ou autre, à des températures supérieures à 500 degrés, voire supérieures à 600°C, pendant quelques minutes. Malheureusement, lors de ces traitements thermiques, après une première phase de diminution de leur résistivité électrique (ou encore de leur R/carré), la plupart des TCO voient au contraire leurs propriétés électriques se dégrader drastiquement si le traitement thermique est prolongé au delà de quelques minutes. Sans que cela puisse être considéré comme une affirmation définitive, un tel phénomène s'expliquerait d'une part en raison de la migration des alcalins du verre par la surface de la couche TCO au regard du substrat et d'autre part par l'oxydation du TCO par l'oxygène contenu dans le four selon l'autre surface. Des solutions existantes (décrites par exemple dans WO2007018951 ou US20070029186) proposent d'encapsuler le TCO dans des couches barrières inférieures et supérieures, le protégeant ainsi de la migration des alcalins (par la sous-couche) et de l'oxydation (par la sur-couche). Cependant, ces couches barrières permettent de modérer la dégradation du TCO pendant la trempe mais pas de l'améliorer.
Dans la suite de la description et dans les revendications, on désigne par les termes « inférieur » et « supérieur » les positions respectives des couches les unes par rapport aux autres et par référence au substrat verrier de face avant.
De même, on désigne comme sur-couche une couche disposée au dessus de la couche d'électrode (TCO) par référence au substrat verrier de face avant et comme sous-couche une couche disposée au dessous de la couche d'électrode (TCO) par rapport au substrat verrier de face avant.
Dans la publication : « Optical and electric properties of aluminum-gallium doped zinc oxide for transparent conducting film », Li, M.-C, Kuo, C.-C, Chen, S.-H., Lee, C.-C. 2009 Proceedings of SPIE - The International Society for Optical Engineering, 7409, il a été décrit des électrodes du type TCO à base d'oxyde de zinc et contenant à la fois de l'aluminium Al et du gallium Ga. Plus particulièrement, il est décrit dans cette publication l'obtention d'une couche mince obtenue par la technique du dépôt magnétron, comprenant une co- pulvérisation d'une cible de ZnO contenant 2% poids d'AI2O3 et d'une cible de ZnO contenant 4% poids de Ga2O3. Les conclusions reportées dans cette publication indiquent que le film ainsi obtenu n'améliore cependant pas les caractéristiques électriques des films AZO et GZO correspondants, c'est-à-dire ne contenant comme dopant respectivement que de l'Aluminium ou que du Gallium. La transmission lumineuse TL des couches dopées Ga et Al est décrite comme intermédiaire entre celle du GZO et celle de ΑΖΟ.
La présente invention vise à pallier les inconvénients des techniques précédentes en proposant une solution comprenant un empilement tel que les propriétés tant optiques que de conduction électrique de la couche de TCO sont peu affectées par les phases de traitement thermique, et sont même améliorées par ces dernières.
En outre, lors de sa mise en œuvre, le panneau photovoltaïque incorporant les modules est nécessairement soumis, à l'extérieur, à des conditions climatiques humides. Même si les couches TCO sont en principe protégées par les substrats avant et arrière, elles sont nécessairement soumises à l'humidité cependant au cours du temps et de leur utilisation prolongée en extérieur.
Un élément déterminant et limitant de la longévité de tels panneaux photovoltaïques est ainsi la résistance à l'humidité des couches TCO.
Le but de la présente invention est également de fournir un nouveau substrat transparent, notamment verrier, revêtu d'une couche transparente d'oxyde électriquement conducteur TCO, permettant de répondre à l'ensemble des problèmes précédemment exposés, notamment en vue de leur utilisation pour la fabrication d'éléments d'un module ou d'un panneau photovoltaïque.
Plus précisément, la présente invention se rapporte à une cellule photovoltaïque comprenant au moins un substrat transparent de face avant notamment verrier, protégeant un empilement de couches comprenant une couche à propriétés photovoltaïques et deux électrodes inférieure et supérieure, disposées de part et d'autre de ladite couche photovoltaïque, ledit module se caractérisant en qu'au moins l'électrode inférieure, c'est-à-dire la plus proche du substrat de face avant, comprend ou est constituée par un revêtement transparent constitué par un oxyde métallique mixte d'au moins les éléments Zn, Al et Ga, répondant à la composition suivante, en pourcentage poids sur la base des oxydes correspondants ZnO, AI2O3 et Ga2O3 :
ZnO : 88 à 95,8 %,
Ga2O3 : 4 à 10 %. L'équivalent poids d'AI2O3, en pourcentage dans l'oxyde métallique mixte, est de préférence compris entre 0,5 % et 1 ,8%, notamment entre 0,6 et 1 ,5%.
L'équivalent poids de Ga2O3, en pourcentage dans l'oxyde métallique mixte, est de préférence compris entre 4% et 7%, notamment entre 4,5 et 6,5 %.
L'équivalent poids de ZnO, en pourcentage dans l'oxyde métallique mixte, est par exemple compris entre 90 % et 95 %.
Typiquement, le revêtement transparent présente une épaisseur comprise entre 50 et 1500 nm.
La cellule telle que décrite précédemment peut en outre comprendre une couche ou un ensemble de couches d'au moins un matériau formant barrière aux alcalins issus du substrat de face avant du type verrier, notamment lors
d'une trempe ou d'un recuit, entre ledit substrat et la couche de revêtement transparent constituée par un oxyde métallique mixte d'au moins les éléments Zn, Al et Ga.
La Cellule peut également comprendre une couche de blocage métallique au dessus et éventuellement en dessous, par référence au substrat verrier, de la couche de revêtement transparent constituée par un oxyde métallique mixte d'au moins les éléments Zn, Al et Ga.
La couche absorbante photovoltaïque comprend le plus souvent une couche mince d'au moins un matériau semi-conducteur du type silicium amorphe (a-Si), ou silicium-carbone (a-SiC), de préférence hydrogéné, ou du silicium-germanium (aSiGe), ou du silicium microcristallin (pc-Si), ou à base d'un assemblage de couches minces de silicium amorphe sur du silicium microcristallin de manière à conformer une cellule tandem, ou du tellure de cadmium (CdTe) ou de CIGS ou de tandem CdTe/CIGS.
L'invention se rapporte également à un substrat transparent susceptible de constituer la face avant d'une cellule photovoltaïque telle que décrite précédemment, comprenant sur une de ses faces un revêtement transparent constitué par un oxyde métallique mixte d'au moins les éléments Zn, Al et Ga, répondant à la composition suivante, en pourcentage poids sur la base des oxydes correspondants ZnO, AI2O3 et Ga2O3 :
ZnO : 88 à 95,8 %,
Ga2O3 : 4 à 10 %.
Dans un tel substrat transparent, l'oxyde métallique du type oxyde de Zn est bien entendu dopé par les éléments Al et Ga dans les proportions décrites précédemment.
Un mode de réalisation de la présente invention est décrit par la suite, sans qu'il puisse être considéré qu'il soit limitatif de la présente invention, sous aucun des aspects décrits, en relation avec l'unique figure annexée.
Il est représenté schématiquement sur la figure 1 une cellule photovoltaïque 100 selon la présente invention.
Cette cellule comprend en face avant, c'est-à-dire du coté exposé au rayonnement solaire, un premier substrat 10 transparent verrier dit de face avant. Ce substrat peut par exemple être entièrement dans un verre contenant des alcalins comme un verre silico-sodo-calcique.
L'essentiel de la masse (c'est-à-dire pour au moins 98 % en masse), voire la totalité du substrat à fonction verrière est de préférence constituée de matériau(x) présentant la meilleure transparence possible dans la partie du spectre solaire utile à l'application comme module solaire, c'est-à-dire généralement la partie du spectre allant d'environ 300 à environ 1300 nm. Par exemple, le substrat transparent 10 choisi selon l'invention présente une transmission élevée pour le rayonnement électromagnétique d'une longueur d'onde de 300 à 1 250 nm et en particulier pour la lumière solaire. Le substrat verrier est en général choisi pour que sa transmission, dans cette gamme, soit supérieure à 75 % et en particulier supérieure à 85 % ou même supérieur à 95%. Ce substrat est avantageusement un verre extra clair, comme le verre Diamant® commercialisé par la société SAINT-GOBAIN, ou un verre présentant des rugosités en surface, comme le verre Albarino® également commercialisé la société SAINT-GOBAIN.
Le substrat 10 peut avoir une épaisseur totale allant de 0,5 à 10 mm et est notamment utilisé comme plaque protectrice d'une cellule photovoltaïque. Il peut dans ce but être avantageux de lui faire subir au préalable un traitement thermique tel qu'une trempe.
De manière conventionnelle, on définit par A la face avant du substrat 10 dirigée vers les rayons lumineux (il s'agit de la face externe), et par B la face arrière du substrat dirigée vers le reste des couches du module solaire (il s'agit de la face interne).
La face B du substrat 10 est revêtue d'un empilement 30 de couches minces selon les modalités de l'invention.
Au moins une portion de surface du substrat est revêtue sur sa face B d'au moins une couche 1 d'un matériau connu pour ses propriétés de barrière à la diffusion des alcalins à travers les différentes couches de l'empilement 30, notamment lorsque l'ensemble est porté à haute température, par exemple lors des différentes phases de trempe ou de recuit indispensables au cours du cycle de fabrication de la cellule. La présence de cette couche barrière 1 en face B du substrat permet en particulier d'éviter, voire de bloquer, la diffusion du Na, du verre vers les couches supérieures.
Selon l'invention, la nature de cette couche n'est pas particulièrement limitée et toute couche connue à cet effet peut être utilisée selon l'invention. Notamment, cette couche barrière aux alcalins peut être à base d'un matériau diélectrique, choisi parmi les nitrures, oxydes ou oxynitrures de silicium, ou encore les nitrures, oxydes ou oxynitrures de zirconium. Il peut notamment s'agir de Si3N4, SnxZnyOz, S1O2, SiOxNy, ΤΊΟ2, éventuellement dopé. Parmi tout ceux-ci, le nitrure de silicium Si3N permet notamment d'obtenir un excellent effet barrière aux alcalins. Cette couche barrière aux alcalins, notamment lorsqu'elle est à base de nitrure de silicium, peut ne pas être stœchiométrique. Elle peut être de nature sous-stœchiométrique, voire sur-stœchiométrique.
La couche 1 n'est cependant pas forcément unique et il est envisagé dans le cadre de la présente invention de la remplacer par un ensemble de couches ayant cette même fonction de constituer une barrière efficace aux alcalins.
L'épaisseur de la couche barrière 1 (ou de l'ensemble des couches barrières) est comprise entre 5 et 200 nm préférentiellement comprise entre 10 et 100 nm et par exemple sensiblement voisine de 20 à 25 nm.
Sur cette couche barrière 1 , on dépose une couche électroconductrice 3 selon l'invention du type « Transparent Conductive Oxide » TCO. Cette couche constitue l'électrode inférieure de la cellule photovoltaïque. Selon l'invention, cette couche est constituée par un matériau choisi parmi les oxydes de zinc dopés conjointement par Al, Ga, dans les proportions décrites précédemment. Sans sortir du cadre de l'invention, il est également possible d'ajouter encore un élément dopant supplémentaire notamment choisi parmi In, B, Ti, V, Y, Zr.
Cette couche conductrice est aussi transparente que possible, et présente une transmission élevée de la lumière dans l'ensemble des longueurs d'onde correspondant au spectre d'absorption du matériau constituant la couche fonctionnelle, afin de ne pas réduire inutilement le rendement du module solaire. L'épaisseur de cette couche électro-conductrice est comprise entre 50 et 1500 nm, préférentiellement comprise entre 200 et 800 nm, et sensiblement voisine de 600-700 nm. La couche de TCO des substrats selon l'invention présente une haute conductivité électrique, une haute transparence au rayonnement électromagnétique et en particulier à la lumière solaire comme il sera décrit dans les exemples qui suivent.
La couche électro-conductrice 3 d'oxyde mixte de zinc dopé au gallium et à l'aluminium selon l'invention doit présenter une résistance par carré d'au plus 30 ohms/carré, notamment d'au plus 20 ohms/carré, voire d'au plus 10 ohms/carré dans le module photovoltaïque. La couche transparente d'oxyde électriquement conducteur selon l'invention présente une transmission d'au moins 65 % et de préférence d'au moins 70 % et de façon particulièrement préférable de plus de 75 % ou même de plus de 80 % pour les ondes électromagnétiques d'une longueur d'onde de 300 nm à 1 250 nm dans le module photovoltaïque.
Selon l'invention, au moins la couche transparente d'oxyde électriquement conducteur TCO, et de préférence également toutes ses couches protectrices, sont déposées successivement dans le même dispositif par les techniques connues de dépôt de couches minces sous vide, en particulier par les techniques de pulvérisation habituelles dans le domaine du dépôt des couches minces, en particulier les techniques dites pulvérisation magnétron, comme il sera plus en détail décrit par la suite.
Selon un mode possible, la surface de la couche transparente d'oxyde électriquement conducteur peut être dotée d'une texturation dont la rugosité (RMS) est comprise entre 1 nm à 250 nm, plus particulièrement lorsque la couche photovoltaïque est du type silicium. La rugosité est de préférence de 20 nm à 180 nm et de façon particulièrement préférable de 40 nm à 140 nm. La
taille de la texturation peut être déterminée par exemple par microscopie électronique à balayage (MEB) ou par microscopie à force atomique (AFM). La rugosité (rugosité par moindres carrés "root-mean-squared roughness" ou RMS) est par exemple déterminée selon la norme ISO 25178 à l'aide d'un microscope à force atomique.
Selon un mode possible de réalisation de l'invention, qui n'est cependant pas obligatoire, la couche électro-conductrice servant d'électrode inférieure peut être ensuite recouverte d'une couche 4 de protection contre l'oxydation.
Selon un mode possible de réalisation de l'invention, tel que cela est décrit dans la demande WO2009/056732 il peut être également prévu d'incorporer dans l'empilement formant l'électrode au moins une couche de blocage métallique 2, seule ou en combinaison avec la couche de protection 4 contre l'oxydation. Cette couche métallique 2, en s'oxydant, crée une couche d'oxyde du métal en question lors du traitement thermique de l'électrode inférieure, plus exactement lors par exemple d'une trempe ou d'un recuit substrat revêtu de ladite électrode. La couche de blocage métallique peut être à base de titane, de nickel, de chrome, de niobium, utilisé seul ou en mélange.
L'empilement primaire 40 de couches minces ainsi formé est recouvert d'une couche fonctionnelle 5 comprenant les matériaux permettant la conversion énergétique entre les rayons lumineux et l'énergie électrique, tels que précédemment décrits.
Des exemples de matériaux semi-conducteurs à propriétés photovoltaïques qui conviennent pour être utilisés pour la couche mince 5 dans les cellules solaires selon l'invention sont par exemple le silicium amorphe (a- Si), le silicium microcristallin (pc-Si), le silicium polycristallin (pc-Si), l'arséniure de gallium (en monocouche), l'arséniure de gallium (en deux couches), l'arséniure de gallium (en trois couches), le nitrure de gallium et d'indium, le tellurure de cadmium et les composés de cuivre-indium-(gallium)-soufre- sélénium.
La couche semi-conductrice photovoltaïque des cellules solaires en couche mince selon l'invention peut utiliser une seule transition semi- conductrice (jonction simple) ou plusieurs transitions semi-conductrices (multi-
jonction). Des couches semi-conductrices qui présentent la même transition interbandes, ne peuvent utiliser qu'une partie de la lumière solaire ; en revanche, des couches semi-conductrices différentes présentant différentes transitions interbandes sont sensibles un domaine étendu de longueurs d'onde de la lumière solaire.
Afin de former la seconde électrode supérieure, la couche fonctionnelle 5 est recouverte d'une couche conductrice 6, éventuellement transparente, de type TCO tel que précédemment décrit ou de type non transparente, comme par exemple en molybdène ou en un autre matériau métallique. En variante, cette couche électrode peut être à base d'ITO (oxyde d'indium et d'étain) ou en métal (argent, cuivre, aluminium, molybdène), en oxyde d'étain dopé au fluor ou en oxyde de zinc dopé Al.
L'ensemble de l'empilement 30 des couches minces 1 -6 est finalement emprisonné entre le substrat de face avant 10 et un substrat de face arrière 20 sous la forme d'une structure feuilletée, par l'intermédiaire d'un intercalaire thermoplastique 7 d'un type connu, par exemple en PU, PVB ou EVA, pour former la cellule solaire finale 100.
La cellule photovoltaïque selon l'invention telle qu'elle vient d'être décrite peut être obtenue à l'aide d'un procédé comprenant les étapes suivantes :
a) revêtir successivement et dans un même dispositif, la surface du substrat de face avant 10 par l'empilement de couches 40, comprenant la couche transparente d'oxyde électriquement conducteur et ses revêtements protecteur par la technique du dépôt sous vide par pulvérisation cathodique, éventuellement assistée par champ magnétique (« pulvérisation Magnétron »), b) chauffer le substrat revêtu entre 300°C et 750°C dans une atmosphère contenant par exemple de l'oxygène de manière à cristalliser la couche de TCO constituée de ZnO dopé avec l'aluminium et le gallium,
c) optionnellement, graver la couche transparente d'oxyde électriquement conducteur,
d) déposer, éventuellement toujours par la technique sous vide et dans le même dispositif la couche photovoltaïque 5,
e) déposer la couche électrode inférieure 6,
f) encapsuler l'empilement final de couches 30 entre le substrat de face avant et le substrat de face arrière par l'application du polymère thermoplastique 7, de manière à obtenir une structure feuilletée.
L'étape a), comprenant un dépôt sous vide par pulvérisation, est un procédé habituel et connu de réalisation de minces couches en matériaux qui se vaporisent avec difficulté. La surface d'un corps solide de composition appropriée, appelée cible, est pulvérisée par un tir d'ions riches en énergie provenant de plasmas à basse pression, par exemple des ions d'oxygène (O+) et/ou des ions d'argon (Ar+) ou des particules neutres, suite à quoi les matériaux pulvérisés se déposent en minces couches sur les substrats (voir Rômpp Online, 2008, "Sputtering"). On utilise de préférence la pulvérisation soutenue par champ magnétique, souvent appelée pulvérisation magnétron. Selon l'invention, la pression partielle d'oxygène ou d'argon peut varier largement et être ainsi aisément adaptée aux besoins de chaque cas particulier. Par exemple, les niveaux de pression partielle des gaz dans le plasma et la puissance électrique nécessaire pour la pulvérisation peuvent être définis en fonction des dimensions des substrats transparents et de l'épaisseur des couches (en particulier de TCO) à déposer. L'inconvénient de telles techniques est cependant que les couches obtenues présentent un faible taux de cristallinité des matériaux constitutifs, notamment des TCO et nécessite donc une étape de recuit pour recristalliser lesdits matériaux.
Dans le procédé selon l'invention, on réalise la pulvérisation des couches successivement dans des installations continues et déjà dimensionnée en conséquence au moyen de cibles de pulvérisation appropriées. Au cours de la première étape (a) du procédé, le substrat transparent non chauffé est recouvert sur sa surface d'une couche transparente d'oxyde électriquement conducteur comprenant du Zinc, de l'aluminium et du Gallium. Selon l'invention, de préférence, on utilise de préférence une cible qui présente une composition correspondant sensiblement voire exactement à celle de la couche de TCO finalement obtenue sur le substrat. Dans ce cas il est possible d'utiliser, de
manière avantageuse, la technique de pulvérisation soutenue par l'action d'un champ magnétique, souvent appelée pulvérisation magnétron.
Alternativement, il est également possible d'utiliser deux cibles dans une même chambre magnétron et d'en effectuer la pulvérisation simultanée au dessus du substrat. L'une de ces cibles est constituée de ZnO dopé aluminium et l'autre de ZnO dopé par du gallium, afin d'obtenir la couche TCO de la formulation recherchée.
Selon une troisième voie, il est également possible selon l'invention d'utiliser trois cibles différentes respectivement de ZnO, Ga2O3 et AI2O3 qui sont simultanément pulvérisées dans une unique chambre en utilisant trois générateurs radiofréquence, selon les règles de l'art. En particulier, les niveaux de pression partielle dans le plasma à basse pression et la puissance électrique nécessaire pour la pulvérisation adéquate des différentes cibles et l'obtention de la teneur souhaitée en Zn, Al et Ga sont définis selon les règles de l'art, ainsi que l'épaisseur de la couche de TCO à déposer. En particulier, l'homme du métier pourra sans difficultés ajuster le réglage des différents paramètres du traitement en utilisant ses connaissances professionnelles, éventuellement en s'aidant de quelques essais d'orientation.
Alternativement, sans sortir du cadre de l'invention, il est également possible selon l'invention de déposer la couche TCO selon l'invention par un dépôt réactif, en pulvérisant notamment, dans une atmosphère contenant de l'oxygène, au moins une cible d'un métal entrant dans la composition de ladite couche (Al, Zn, Ga) ou d'un mélange de ces métaux. Selon une autre voie possible encore, il est possible d'utiliser en association des cibles métalliques pour le dépôt d'au moins un élément Zn, Al ou Ga et des cibles d'oxydes pour le dépôt des autres éléments entrant dans la composition de la couche TCO. A titre d'exemple, les éléments Zn et Al peuvent être pulvérisés dans une atmosphère contenant de l'oxygène ou d'oxygène, à partir d'une première cible faite d'un alliage de ces deux métaux, dans les proportions requises et l'élément Ga peut être simultanément introduit par la pulvérisation d'une autre cible constituée par l'oxyde Ga2O3.
Le traitement thermique selon l'étape b) est donc une étape primordiale pour la performance finale de la cellule photovoltaïque et conditionne en particulier son rendement final.
Dans cette étape, le substrat revêtu de l'empilement 40 est typiquement chauffé entre 300°C et 750°C, de préférence entre 500°C et 700°C et en particulier entre 600°C et 700°C, sous différentes atmosphères, par exemple dans une atmosphère contenant de l'oxygène. L'étape de traitement peut être réalisée au moyen de dispositifs habituels et connus, par exemple des fours traditionnellement utilisés dans l'industrie du verre (four à trempe), traversés en continu par le ruban de verre et dimensionnés de façon appropriée. Ces fours traversés en continu utilisent habituellement de l'air ou un gaz inerte comme fluide de transfert de chaleur. Grâce à ce traitement thermique b) du substrat revêtu et chauffé, la couche d'oxyde est ainsi rendue cristalline et sa résistivité décroit alors fortement. On obtient ainsi la couche de TCO selon l'invention décrite plus haut.
Les substrats transparents recouverts de la couche de TCO sont refroidis, de préférence avant l'exécution de l'étape de traitement suivante c), par exemple par des écoulements d'air froid ou de gaz inertes froids, mais on peut aussi les laisser refroidir passivement. Après le refroidissement, le substrat revêtu présente de préférence une température de 20°C à 30°C. De cette manière, on diminue ou on évite complètement le risque d'endommager les substrats par des contraintes thermiques et/ou le risque d'une évaporation incontrôlée ou de la décomposition des liquides qui sont mis en contact avec les substrats revêtus pendant ou éventuellement avant l'étape de traitement c) qui suit.
La couche transparente d'oxyde électriquement conducteur peut être gravée au moyen d'un agent de gravure et l'agent de gravure est ensuite rincé. Les agents de gravure peuvent être gazeux ou liquides; ils sont de préférence liquides. Les agents de gravure liquides peuvent contenir des composés organiques liquides, des composés minéraux liquides, des solutions de composés organiques ou minéraux solides, liquides ou gazeux dans des solvants organiques, ainsi que des solutions aqueuses de composés organiques ou minéraux, solides, liquides
ou gazeux. On utilise de préférence des solutions aqueuses d'acides ou de bases d'origine organique ou minérale. On utilise de préférence des acides volatils organiques ou minéraux et en particulier minéraux.
Le substrat portant l'électrode transparente TCO peut être également fabriqué et éventuellement gravé indépendamment des autres éléments constitutifs du module afin d'être livré à un assembleur possédant la technologie de dépôt des matériaux semi-conducteurs, responsables de l'activité photocatalytique proprement dite.
L'électrode inférieure 6, c'est-à-dire tournée vers l'intérieure de la cellule par rapport au rayonnement incident, est de préférence réfléchissante dudit rayonnement. Son dépôt (étape e)) est réalisé de manière connue par une technique de dépôt sous vide.
Enfin, au cours de l'étape f) le substrat 20 de face arrière est assemblé à l'ensemble par feuilletage au moyen d'un film en matière plastique 7 du type polyvinyl butyral (PBV) ou éthylène-vinyl-acétate (EVA) selon des techniques bien connues d'obtention d'un vitrage feuilleté.
Exemples :
Les exemples qui suivent sont fournis pour illustrer les avantages et les propriétés améliorées des réalisations selon l'invention. Ces exemples ne doivent cependant être considérés sous aucun des aspects décrits comme limitatif de la portée de la présente invention.
Dans les exemples qui suivent, on dépose sur un verre Diamant®, commercialisé par la société SAINT-GOBAIN, des couches successives selon la technique bien connue du dépôt sous vide par magnétron, dans les conditions habituelles d'obtention d'un substrat muni d'une première couche TCO (électrode inférieure de la cellule). En premier lieu, une sous couche barrière aux alcalins en Si3N4, d'épaisseur 50 ou 100 nm, est déposée sur le substrat verrier. Puis le dépôt d'une couche TCO, de quelques centaines de nanomètres d'épaisseur, est effectué selon deux méthodes : par pulvérisation d'une cible céramique de ZnO préalablement co-dopée en gallium et aluminium
sur un verre diamant® dans un gaz vecteur Argon (exemple 1 à 3) ou par co- pulvérisation sur un verre diamant® à l'aide de trois cibles de ZnO, Ga2O3 et AI2O3 dans un gaz vecteur Argon (exemple 4 à 10). Dans les exemples, comme dans le reste de la description, les taux de Al et Ga sont donnés par référence aux pourcentages poids des oxydes correspondant AI2O3 ou Ga2O3 dans l'oxyde mixte de Zinc, Aluminium et Gallium constituant le TCO.
A- Exemples 1 à 3
Selon une première série d'expériences, on a synthétisé trois échantillons dans le but de montrer les performances supérieures des substrats et cellules selon l'invention par rapport à ceux précédemment connus selon le protocole suivant :
- pulvérisation magnétron dans un dispositif de taille industriel de 3 cibles céramiques différentes de taille 560x125^6 mm :
cible 1 : ZnO co-dopé par AI2O3 (1 ,5wt%) et Ga2O3 (5,5wt%) pour obtenir un film de type AGZO dans les proportions selon l'invention,
cible 2 : ZnO dopé AI2O3 (1 ,5wt%)
cible 3 : ZnO dopé Ga2O3 (3wt%)
- conditions dans la chambre de pulvérisation :
Pression initiale: 3.10"6 mbar
Pression de dépôt : 6-10 microbars
Puissance : 2000W
Distance cibles-substrat : 5 cm
Gaz de pulvérisation : Ar Trois types d'échantillons sont ainsi préparés :
- un premier empilement, obtenu à partir de la cible 1 , conforme à l'invention (exemple 1 ) comprenant une couche TCO constituée par un oxyde mixte de ZnO dopé par 1 ,5% poids d'AI2O3 et 5,5% poids de Ga2O3,
- un second empilement, obtenu à partir de la cible 2, selon l'art antérieur (exemple 2), comprenant une couche TCO constituée par un oxyde de ZnO dopé par 1 ,5% poids d'AI2O3,
- un troisième empilement, obtenu à partir de la cible 3, selon l'art antérieur (exemple 3), comprenant une couche TCO constituée par un oxyde de ZnO dopé par 3% poids de Ga2O3.
Les dopages des couches TCO des exemples 2 et 3 selon l'art antérieur sont ceux actuellement utilisés commercialement pour ce type de TCO.
Les caractéristiques de l'empilement sont décrites dans le tableau 1 ci- dessous :
Tableau 1 On a mesuré sur les substrats selon les exemples 1 à 3 l'évolution de la résistivité et de la résistance par carré lors d'un recuit à 550°C sous air. Le recuit a été prolongé pour chacun des substrats jusqu'à déterminer d'une part la valeur minimale de la conductivité électrique de la couche TCO ainsi que la durée du traitement thermique conduisant à ladite valeur minimale de la conductivité électrique de la couche TCO, avant l'augmentation brutale de celle- ci en raison de la dégradation de ladite couche. Les résultats obtenus sont visibles sur la figure 2. Les valeurs obtenues des résistivités et des résistances par carré mesurées sur les couches TCO des exemples 1 à 3, après différents temps de recuit à 550°C, sont reportés dans le tableau 2 ci-dessous.
Recuit Recuit Recuit Recuit après dépôt
5min 7min 9min 15min
R/carré R/carré R/carré R/carré R/carré (Ohms/carré) (Ohms/carré) (Ohms/carré) (Ohms/carré) (Ohms/carré)
Exemple 1 13,4 8, 1 8,6 1 1 25
Exemple 2 17,6 9, 1 20 80 600
Exemple 3 13 1 1 13 17 50
Tableau 2
Les résultats reportés dans le tableau 2 et sur la figure 2 indiquent clairement que l'utilisation de couches TCO selon la présente invention (exemple 1 ) permet non seulement d'obtenir des résistivités et de résistances/carré sensiblement inférieures mais se traduit également par la possibilité de recuire plus longtemps lesdites couches sans que leurs propriétés de conduction électriques ne se dégradent fortement. Les temps de recuit avant la dégradation des couches TCO selon l'invention sont ainsi sensiblement augmentés pour les couches TCO selon l'invention, comme il est visible sur la figure 2. Une telle différence s'avère notamment décisive pour l'utilisation de telles couches dans l'application photovoltaïque car elle permet une flexibilité accrue dans le procédé global de fabrication des cellules photovoltaïques, notamment si certains composants doivent être déposés à chaud, comme les couches actives du type CdTe ou encore si diverses étapes de recuits et trempes successives doivent être réalisées successivement lors de la fabrication de la cellule, comme c'est le plus souvent nécessaire.
Dans un deuxième temps, on a également mesuré, les propriétés optiques des substrats munis des différentes couches TCO selon les exemples 1 à 3, pour une même valeur cible de la résistance par carré de 10 Ohms/carré représentative d'une conductivité acceptable des couches TCO pour l'application photovoltaïque. Pour ce faire, on a pratiqué un recuit à 550°C sous air pour chacun des substrats. Le traitement thermique a été prolongé,
conformément aux données reportées sur la figure 2, jusqu'à l'obtention d'une résistance/carré égale ou la plus proche possible de 10 Ohms/carré. La transmission lumineuse TL de ces 3 échantillons à 10 ohms/D a été mesurée.
Le paramètre ASQE a également été déterminé en effectuant le produit de l'intégration du spectre d'absorption du substrat comprenant la couche de TCO, sur tout le domaine considéré (300-2500 microns), avec le spectre d'efficacité quantique QE du matériau considéré (c'est-à-dire a-Si, μΰ-βίΰ, CdTE ou tandem entre a-Si / μΰ-β^) pour ce même domaine.
On rappelle que l'efficacité quantique QE est d'une manière connue l'expression de la probabilité (entre 0 et 1 ) qu'un photon incident avec une longueur d'onde selon l'abscisse soit transformé en paire électron-trou pour le matériau photovoltaïque considéré. La courbe d'efficacité quantique QE desdits matériaux est présentée en figure 3.
On a reporté dans le tableau 3 ci-dessous les valeurs obtenues pour la TL et le paramètre ASQE ainsi obtenu pour différentes cellules comprenant différents types de couches photovoltaïques recouvertes en face avant par les substrats de 10 ohms/D selon les exemples 1 à 3.
Tableau 3
On observe à partir des données reportées dans le tableau 3 ci-dessus que les performances des cellules photovoltaïques munis d'un substrat de face avant selon l'invention sont attendues équivalentes à celles des cellules photovoltaïques selon l'art antérieur.
Les performances de cellules photovoltaïques obtenues à partir des substrats selon les exemples 1 à 3 ont également été mesurées dans le cas d'une couche photovoltaïque de type CdTe.
Plus précisément, conformément à la cellule décrite selon la figure 1 , sur les substrats selon les exemples 1 à 3, dont la résistance de la couche TCO dans la cellule est ajustée à 10 ohms/carré, on a déposé selon les techniques classiques une couche photovoltaïque de type CdTe, et une électrode arrière de type Or. Les caractéristiques propres de la cellule (selon le modèle d'un circuit électrique équivalent pour une cellule solaire ou « solar cell équivalent » circuit selon le terme anglais) sont mesurées classiquement selon les paramètres habituels:
- Jsc : c'est la valeur en mA/cm2 de densité de courant générée par le module solaire, à zéro volt (c'est-à-dire la densité de courant correspondant à un court circuit),
- Voc : c'est l'abréviation anglaise pour « open circuit voltage », c'est-à-dire la tension (en volts) en circuit ouvert,
- FF (%) : c'est l'abréviation anglaise pour le paramètre « Fill Factor », qui est défini comme la puissance maximale de la cellule divisée par la valeur de Jsc et de Voc.
- eff (%) : c'est l'efficacité solaire de la cellule, définie comme le pourcentage de puissance convertie (et collectée) à partir de la lumière absorbée pour une cellule solaire raccordée au circuit électrique. Ce terme est calculé en faisant le ratio du point de puissance maximum Pm par le produit de l'irradiance de la lumière incidente (E en W/m2) sous des conditions standard et la surface de la cellule solaire (en m2). Les conditions standards signifient une température de 25°C et une irradiance de 1000 W/m2 selon le spectre AM1 .5.
Les résultats obtenus sont regroupés dans le tableau 4 qui suit :
Tableau
Les résultats indiqués dans le tableau 4 indiquent clairement que les cellules munies des couches de TCO selon l'invention présentent des performances supérieures, notamment un rendement sensiblement supérieur, aux cellules connues de l'art antérieur.
B- Exemples 4 à 10
D'autres échantillons sont préparés selon le protocole expérimental suivant :
- co-pulvérisation à partir de 3 cibles céramiques de ZnO (4" (10cm) de diamètre), AI2O3 (2" (5cm) de diamètre) and Ga2O3 (2" (5cm) de diamètre), pour obtenir soit un film de type AZO, soit un film de type GZO, soit un film co- dopé Al, Ga dans les proportions données ci-après.
- la cible ZnO est disposée dans la chambre de pulvérisation en position centrale et les deux autres cibles sont inclinées vers la cible ZnO de façon à créer un gradient de composition.
Les conditions dans la chambre de pulvérisation sont les suivantes:
Pression initiale: 1 ,3*10~8 mbar
Pressure de dépôt : 8 μbars
Puissance appliquée sur les cibles :
ZnO : 400W
Ga2O3 : 16 à 120W
Distance cibles-substrat : 150 mm
Gaz de pulvérisation : Ar (50 sccm).
Les puissances appliquées sur les cibles sont modifiées de manière à faire varier les proportions respectives des constituants ZnO, AI2O3 et Ga2O3 dans les films TCO. Le substrat selon l'exemple 4 est conforme à l'invention. Les substrats selon les exemples 5 à 10 sont donnés à titre de comparaison. Plus précisément, les substrats de face avant selon les exemples comparatifs 5 et 6 comprennent une couche TCO du type ZnO co-dopé Al et Ga, à partir de la
co-pulvérisation conjointe des trois précédentes cibles, mais dans des conditions aboutissant à des dopages en Al et Ga non conformes à l'invention.
Les substrats de face avant selon les exemples comparatifs 7 à 9 comprennent une couche TCO du type AZO avec différents taux de dopage Al. Le substrat de face avant selon l'exemple comparatif 10 comprend une couche TCO du type GZO.
Le tableau 5 indique plus en détails la composition des différents empilements préparés et leurs épaisseurs physiques (réelles).
Tableau 5
Les résistivités des différentes couches TCO sur les substrats des exemples 4 à 10 ont été mesurées selon des techniques classiques avant et après un recuit dans un four sous atmosphère ambiante à 550°C pendant 1 à 3 minutes, la durée du traitement étant ajustée de manière à obtenir au final la résistivité minimale pour chaque couche TCO. Les résultats sont reportés dans le tableau 6. Dans le tableau, pour faciliter la comparaison, les résistivités sont relatives, par rapport à la résistivité mesurée initialement sur la couche TCO de l'exemple 4 selon l'invention, avant son recuit.
Type Pourcentage de Résistivité relative
Echantillon Couche dopant
TCO (en % oxyde) Avant recuit Après recuit
Exemple 4 ZnO : Al, Ga Al : 0,5 ; Ga : 10 1 0,37
Exemple 5 ZnO : Al, Ga Al : 2,2 ; Ga : 10,0 1 ,5 24
Exemple 6 ZnO : Al, Ga Al : 1 ,6 ; Ga : 3,5 1 ,6 3,9
Exemple 7 ZnO : Al Al : 0,5 45 150
Exemple 8 ZnO : Al Al : 1 ,0 2 1 ,2
Exemple 9 ZnO : Al Al : 2,2 1 ,5 1
Exemple 10 ZnO : Ga Ga : 8 5,5 1 ,7
Tableau 6
On voit sur le tableau 6 que le substrat muni de la couche TCO selon l'invention (exemple 4) présente avant et surtout après recuit les valeurs de résistivités les plus faibles, ce qui justifie son utilisation comme couche électrode dans les cellules photovoltaïques du type de celles décrites précédemment. On a également cherché à mesurer les propriétés de résistance à l'humidité des différents substrats selon les exemples précédents. Le test pratiqué a consisté, conformément à la norme EN 61646 : 1997, à soumettre les substrats munis des couches TCO à des conditions sévères d'humidité et de température, c'est-à-dire à une atmosphère comprenant 85% d'humidité relative, à une température de 85°C et pendant 14 jours.
Les variations de résistivité des différentes couches TCO, en cours de test et après le traitement, sont reportées dans le tableau 7, en pourcentage de la valeur de la résistivité initiale.
Tableau 7
Les résultats reportés dans le tableau 7 montrent un comportement et une résistance à l'humidité très supérieure de la couche de l'exemple 4 selon l'invention par rapport à celle de la couche de type AZO (exemple 8). De même, la couche de l'exemple 4 présente une résistance bien meilleure sur la durée par rapport à la couche GZO (exemple 10), la résistivité de la couche TCO selon l'exemple 4 semblant même quasiment stabilisée à de très bas niveaux à la fin du test de résistance à l'humidité.
Claims
1 . Cellule photovoltaïque (100) comprenant au moins un substrat transparent de face avant (10) notamment verrier, protégeant un empilement de couches (30) comprenant une couche à propriétés photovoltaïques (5) et deux électrodes inférieure (3) et supérieure (6), disposées de part et d'autre de ladite couche photovoltaïque (5), ladite cellule se caractérisant en qu'au moins l'électrode inférieure (3), c'est-à-dire la plus proche du substrat de face avant (10), comprend ou est constituée par un revêtement transparent constitué par un oxyde métallique mixte d'au moins les éléments Zn, Al et Ga, répondant à la composition suivante, en pourcentage poids sur la base des oxydes correspondants ZnO, AI2O3 et Ga2O3 :
ZnO : 88 à 95,8 %,
Ga2O3 : 4 à 10 %.
2. Cellule selon l'une des revendications précédentes, dans laquelle l'équivalent poids d'AI2O3, en pourcentage dans l'oxyde métallique mixte, est compris entre 0,5 % et 1 ,8%, notamment entre 0,6 et 1 ,5%.
3. Cellule selon l'une des revendications précédentes, dans laquelle l'équivalent poids de Ga2O3, en pourcentage dans l'oxyde métallique mixte, est compris entre 4% et 7%, notamment entre 4,5 et 6,5 %.
4. Cellule selon l'une des revendications précédentes, dans laquelle l'équivalent poids de ZnO, en pourcentage dans l'oxyde métallique mixte, est compris entre 90 % et 95 %.
5. Cellule selon l'une des revendications précédentes, dans laquelle le revêtement transparent présente une épaisseur comprise entre 50 et 1500 nm.
6. Cellule selon l'une des revendications précédentes, comprenant en outre une couche ou un ensemble de couches (1 ) d'au moins un matériau formant barrière aux alcalins issus du substrat de face avant du type verrier, notamment lors d'une trempe ou d'un recuit, entre ledit substrat et la couche de revêtement transparent constituée par un oxyde métallique mixte d'au moins les éléments Zn, Al et Ga.
7. Cellule selon l'une des revendications précédentes, comprenant en outre une couche de blocage métallique (2) au dessus et éventuellement en dessous, par référence au substrat verrier, de la couche de revêtement transparent constituée par un oxyde métallique mixte d'au moins les éléments Zn, Al et Ga.
8. Cellule selon l'une quelconque des revendications précédentes, dans laquelle la couche absorbante photovoltaïque (5) comprend une couche mince d'au moins un matériau semi-conducteur du type silicium amorphe (a-Si), ou silicium-carbone (a-SiC), de préférence hydrogéné, ou du silicium-germanium (aSiGe), ou du silicium microcristallin (pc-Si), ou à base d'un assemblage de couches minces de silicium amorphe sur du silicium microcristallin de manière à conformer une cellule tandem, ou du tellure de cadmium (CdTe) ou de CIGS ou de tandem CdTe/CIGS.
9. Substrat transparent verrier susceptible de constituer la face avant d'une cellule photovoltaïque selon l'une des revendications précédentes, comprenant sur une de ses faces un revêtement transparent constitué par un oxyde métallique mixte d'au moins les éléments Zn, Al et Ga, répondant à la composition suivante, en pourcentage poids sur la base des oxydes correspondants ZnO, AI2O3 et Ga2O3 :
ZnO : 88 à 95,8 %,
Ga2O3 : 4 à 10 %.
10. Substrat transparent selon la revendication précédente, dans lequel l'oxyde métallique du type oxyde de Zn est dopé par les éléments Al et Ga dans les proportions décrites dans l'une des revendications 2 à 4.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800119157A CN102782860A (zh) | 2010-03-01 | 2011-02-28 | 具有新型tco层的光伏电池 |
EP11712934A EP2543077A1 (fr) | 2010-03-01 | 2011-02-28 | Cellule photovoltaïque incorporant une nouvelle couche tco |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1051454 | 2010-03-01 | ||
FR1051454A FR2956924B1 (fr) | 2010-03-01 | 2010-03-01 | Cellule photovoltaique incorporant une nouvelle couche tco |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011107701A1 true WO2011107701A1 (fr) | 2011-09-09 |
Family
ID=42752273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2011/050406 WO2011107701A1 (fr) | 2010-03-01 | 2011-02-28 | Cellule photovoltaïque incorporant une nouvelle couche tco |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2543077A1 (fr) |
CN (1) | CN102782860A (fr) |
FR (1) | FR2956924B1 (fr) |
WO (1) | WO2011107701A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103022236A (zh) * | 2011-09-26 | 2013-04-03 | 吉富新能源科技(上海)有限公司 | 微晶硅薄膜太阳能电池的真空热退火处理背电极技术 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140140187A (ko) * | 2013-05-28 | 2014-12-09 | 삼성코닝어드밴스드글라스 유한회사 | 산화아연계 스퍼터링 타겟 및 이를 통해 증착된 보호층을 갖는 광전지 |
US10850476B2 (en) | 2015-04-10 | 2020-12-01 | Sekisui Chemical Co., Ltd. | Interlayer for laminated glass, laminated glass, and production method for interlayer for laminated glass |
CN105274486A (zh) * | 2015-11-18 | 2016-01-27 | 南京迪纳科光电材料有限公司 | 一种非结晶AlGaZnO透明电极材料的制备方法 |
CN110165001B (zh) * | 2019-06-03 | 2020-11-24 | 南阳理工学院 | 一种稀土掺杂的光伏薄膜材料及其制备方法 |
CN114093969B (zh) * | 2020-07-31 | 2024-04-12 | 苏州阿特斯阳光电力科技有限公司 | 电池片和具有其的光伏组件及光伏组件的制作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005081055A1 (fr) * | 2004-02-23 | 2005-09-01 | Shin An Snp Taiwan Co. Ltd | Schema conducteur transparent double couche a proprietes de gravure ameliorees pour electrodes transparentes dans des affichages electro-optiques |
US20070029186A1 (en) * | 2005-08-02 | 2007-02-08 | Alexey Krasnov | Method of thermally tempering coated article with transparent conductive oxide (TCO) coating using inorganic protective layer during tempering and product made using same |
DE102007047146A1 (de) * | 2006-10-06 | 2008-04-10 | Sumitomo Metal Mining Co. Ltd. | Gesintertes Oxid, Verfahren zu dessen Herstellung, transparente elektrisch leitfähige Membran sowie Solarzelle, die unter deren Verwendung erhalten wird |
FR2922886A1 (fr) * | 2007-10-25 | 2009-05-01 | Saint Gobain | Substrat verrier revetu de couches a resistivite amelioree. |
US20090242887A1 (en) * | 2008-03-31 | 2009-10-01 | Casio Computer Co., Ltd. | Display Substrate Having a Transparent Conductive Layer Made of Zinc Oxide and Manufacturing Method Thereof |
WO2009154019A1 (fr) * | 2008-06-19 | 2009-12-23 | 独立行政法人科学技術振興機構 | MATÉRIAU DE CONVERSION THERMOÉLECTRIQUE DE TYPE n À BASE D’OXYDE DE ZINC CONTENANT DE L’ALUMINIUM |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080178932A1 (en) * | 2006-11-02 | 2008-07-31 | Guardian Industries Corp. | Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same |
-
2010
- 2010-03-01 FR FR1051454A patent/FR2956924B1/fr not_active Expired - Fee Related
-
2011
- 2011-02-28 WO PCT/FR2011/050406 patent/WO2011107701A1/fr active Application Filing
- 2011-02-28 CN CN2011800119157A patent/CN102782860A/zh active Pending
- 2011-02-28 EP EP11712934A patent/EP2543077A1/fr not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005081055A1 (fr) * | 2004-02-23 | 2005-09-01 | Shin An Snp Taiwan Co. Ltd | Schema conducteur transparent double couche a proprietes de gravure ameliorees pour electrodes transparentes dans des affichages electro-optiques |
US20070029186A1 (en) * | 2005-08-02 | 2007-02-08 | Alexey Krasnov | Method of thermally tempering coated article with transparent conductive oxide (TCO) coating using inorganic protective layer during tempering and product made using same |
DE102007047146A1 (de) * | 2006-10-06 | 2008-04-10 | Sumitomo Metal Mining Co. Ltd. | Gesintertes Oxid, Verfahren zu dessen Herstellung, transparente elektrisch leitfähige Membran sowie Solarzelle, die unter deren Verwendung erhalten wird |
FR2922886A1 (fr) * | 2007-10-25 | 2009-05-01 | Saint Gobain | Substrat verrier revetu de couches a resistivite amelioree. |
US20090242887A1 (en) * | 2008-03-31 | 2009-10-01 | Casio Computer Co., Ltd. | Display Substrate Having a Transparent Conductive Layer Made of Zinc Oxide and Manufacturing Method Thereof |
WO2009154019A1 (fr) * | 2008-06-19 | 2009-12-23 | 独立行政法人科学技術振興機構 | MATÉRIAU DE CONVERSION THERMOÉLECTRIQUE DE TYPE n À BASE D’OXYDE DE ZINC CONTENANT DE L’ALUMINIUM |
Non-Patent Citations (2)
Title |
---|
LI, M.-C., KUO C.-C., CHEN, S.-H., LEE, C.-C.: "Optical and electric properties of aluminum-gallium doped zinc oxide for transparent conducting film", PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 7409, 2 August 2009 (2009-08-02) - 4 August 2009 (2009-08-04), pages 74090W-1 - 74090W-8, XP040500358, DOI: 10.1117/12.825206 * |
SHIN J.-H., SHIN D.-K., LEE H.Y., LEE J.-Y.: "Characteristics of Gallium and Aluminum co-doped ZnO (GAZO) transparent thin films deposited by using the PLD process", JOURNAL OF THE KOREAN PHYSICAL SOCIETY, vol. 55, no. 3, 11353231, 1 September 2009 (2009-09-01), pages 947 - 951, XP002602995, DOI: 10.3938/jkps.55.947 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103022236A (zh) * | 2011-09-26 | 2013-04-03 | 吉富新能源科技(上海)有限公司 | 微晶硅薄膜太阳能电池的真空热退火处理背电极技术 |
Also Published As
Publication number | Publication date |
---|---|
FR2956924B1 (fr) | 2012-03-23 |
EP2543077A1 (fr) | 2013-01-09 |
FR2956924A1 (fr) | 2011-09-02 |
CN102782860A (zh) | 2012-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8415194B2 (en) | Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same | |
EP2542510A1 (fr) | Cellule photovoltaïque | |
US20080308147A1 (en) | Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same | |
FR2932009A1 (fr) | Cellule photovoltaique et substrat de cellule photovoltaique | |
FR2919429A1 (fr) | Substrat de face avant de cellule photovoltaique et utilisation d'un substrat pour une face avant de cellule photovoltaique | |
WO2009144086A1 (fr) | Substrat en verre portant une electrode | |
FR2939563A1 (fr) | Substrat de face avant de panneau photovoltaique, panneau photovoltaique et utilisation d'un substrat pour une face avant de panneau photovoltaique | |
WO2011107701A1 (fr) | Cellule photovoltaïque incorporant une nouvelle couche tco | |
EP2255372A2 (fr) | Cellule photovoltaique et substrat de cellule photovoltaique | |
EP2400555A1 (fr) | Cellule comprenant un materiau photovoltaïque à base de cadmium | |
FR2932610A1 (fr) | Cellule photovoltaique et substrat de cellule photovoltaique | |
BE1019826A3 (fr) | Substrat verrier transparent conducteur pour cellule photovoltaique. | |
EP2521183A2 (fr) | Cellule photovoltaïque incorporant une couche tampon d'oxyde(s) de zinc et d'etain | |
FR2961954A1 (fr) | Cellule comprenant un materiau photovoltaique a base de cadmium | |
FR2939788A1 (fr) | Substrat a fonction verriere pour module photovoltaique | |
FR2932611A1 (fr) | Cellule photovoltaique et substrat de cellule photovoltaique | |
FR2919114A1 (fr) | Cellule photovoltaique et substrat de cellule photovoltaique | |
FR2531813A1 (fr) | Cellules solaires minces | |
WO2015015367A1 (fr) | Procédé de réalisation d'une jonction pn dans une cellule photovoltaïque à base de czts et cellule photovoltaïque en configuration superstrat et à base de czts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180011915.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11712934 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011712934 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011712934 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |