Substrat en verre portant une électrode.
La présente invention se rapporte à un substrat en verre portant au moins une électrode, pour dispositif électronique telle une cellule photovoltaïque, sous forme de couche mince, ainsi qu'au dispositif électronique comprenant un tel substrat portant au moins une électrode. L'électrode d'un dispositif électronique est destinée à distribuer ou à collecter un courant électrique. Pour que le dit dispositif fonctionne correctement, il est fondamentale que l'électrode présente une résistance électrique aussi faible que possible, en tenant compte des autres impératifs de construction ou de fonctionnement du dispositif, pour réduire au maximum les pertes électriques. Les dispositifs électroniques qui utilisent un substrat en verre portant au moins une électrode sont variés. On peut notamment citer des vitrages intelligents, tels que des vitrages électrochromes, des dispositifs utilisant un éclairage basé sur des LEDs (diodes électroluminescentes) ou des OLEDs (diodes électroluminescentes organiques) dans lesquels l'amenée de courant se fait via des électrodes déposées sur du verre, etc. L'invention sera décrite en se référant plus particulièrement aux cellules photovoltaïques, appelées aussi cellules solaires, destinées à transformer la lumière solaire en électricité. Ces dispositifs électroniques ont pris un essor tout particulier ces dernières années suite à la recherche d'énergies de substitution à l'énergie d'origine fossile. Différentes technologies se sont développées pour remplacer les traditionnelles cellules photovoltaïques à base de silicium cristallin, et notamment les cellules à base de chalcopyrite telles que les cellules solaire dites CIS (à base de séléniure et/ou de sulfure de cuivre et d'indium, tels que CuInSe2, CuInS2) ou CIGS (à base de séléniure et/ou de sulfure de cuivre, d'indium et de gallium), ou de cellules solaires à base de séléniure et/ou de sulfure de cuivre, d'indium et d'aluminium, ou des cellules solaire dites CZTS (à base de séléniure et/ou de sulfure de cuivre, zinc et étain, tels que Cu2ZnSnS4 ou Cu2ZnSnSe4).
Lors de la fabrication de certains dispositifs électroniques tels que des cellules solaires, et notamment des cellules solaires de type CIS, CZTS ou CIGS
(incluant les cellules ou l'aluminium remplace le gallium), le substrat portant l'électrode peut être soumis à un traitement thermique à haute température, par exemple à une température supérieure à 5000C, voir supérieure à 5500C (par exemple 550-6000C), pendant 5 à 30 minutes environ en une ou plusieurs étapes dans une atmosphère généralement à base de sélénium ou de soufre, ou à base de sélénium puis de soufre, pour faire réagir des couches de Cu et d'In, déposées sur l'électrode, avec du Se et/ou du S. Lorsqu'un substrat en verre, notamment en verre silico-sodo-calcique ordinaire, est soumis à ces températures élevées, il se produit une diffusion d'ions alcalins, tels que des ions de sodium, vers la surface du substrat. Ces ions viennent polluer, de manière incontrôlable, l'électrode déposée sur le substrat. Cette pollution, au moins à partir d'un certain niveau, peut réduire de manière indésirable la conductivité de l'électrode. Elle a aussi une action néfaste aux interfaces en réduisant l'adhésion entre les couches, et en particulier l'adhésion entre l'électrode et la couche fonctionnelle, par exemple à base de chalcopyrite. Elle peut aussi avoir une action néfaste sur l'élément fonctionnel de la cellule solaire, par exemple la couche à base de chalcopyrite. En effet, à faible concentration le sodium a un effet positif sur l'élément fonctionnel, mais l'effet devient vite négatif si la concentration augmente au-delà d'un certain niveau.
Pour atténuer ce problème, on a proposé de déposer une couche barrière sur le substrat avant de déposer l'électrode pour réduire la migration des ions sodium.
La demande de brevet internationale WO 02/065554 Al , déposée par Saint-Gobain Glass France, décrit une cellule solaire de type CIS formée sur une feuille de verre portant une électrode en molybdène. Pour faire barrage à la migration d'ions alcalins hors du substrat en verre et éviter la dégradation de l'électrode en molybdène, ce document propose de disposer sur le substrat une couche-barrière formée de nitrure, oxynitrure ou oxyde de silicium, ou de nitrure ou oxynitrure d'aluminium. Etant donné que le molybdène est onéreux, ce document propose aussi de substituer une partie du Mo de l'électrode en ajoutant une autre couche conductrice.
La demande de brevet européen EP 1 833 096 Al, déposée par
Showa Shell Sekiyu Kabushiki Kaisha Minato-ku, décrit une cellule solaire de type
CIS ou CIGS ayant une électrode de Mo déposée sur un substrat en verre. Ce document propose de déposer entre le substrat et l'électrode une couche-barrière en SiO2 ou SiOx pour faire obstacle à la diffusion des ions alcalins provenant du verre.
La demande de brevet internationale WO 2007/106250 A2, déposée par Guardian Industries Corp., propose de disposer une couche-barrière en nitrure de silicium entre le substrat en verre et l'électrode en molybdène d'une cellule solaire de type CIS ou CIGS, afin de réduire la migration du sodium provenant du verre. Ces propositions permettent d'atténuer le problème mais ne sont pas tout à fait satisfaisantes et elles présentent certaines difficultés de mise en oeuvre, notamment en ce qui concerne les rendements et taux de dépôt. D'autre part, certains problèmes de manque d'adhérence peuvent se manifester aux interfaces. Si3N4 ou Si3NxOy, éventuellement dopés avec de l'aluminium, par exemple forment une couche dont les contraintes internes résiduelles sont élevées, ce qui pose des problèmes d'adhérence. On constate parfois également la formation de trous, appelés « pinholes » dans l'empilage.
L'invention se rapporte à un substrat en verre portant au moins une électrode, pour dispositif électronique, sous forme de couche mince, caractérisé en ce qu'un revêtement barrière comprenant au moins une couche à base d'un oxyde mixte de zinc et d'au moins un autre élément, contenant au moins 10% en poids de zinc, est disposé entre le substrat et l'électrode
Par revêtement barrière, on entend un revêtement qui fait obstacle aux espèces migrantes provenant du substrat en verre, tels que l'oxygène et les ions alcalins, en freinant leur migration.
Les expressions similaires à « oxyde mixte de zinc et d'un autre élément contenant au moins 10 % de zinc et au moins 10% d'un autre élément » utilisées dans la présente description signifie qu'il y a au moins 10% en poids de zinc et au moins 10% en poids de l'autre élément dans l'oxyde mixte par rapport au poids total de zinc et de l'autre élément dans l'oxyde mixte. Il en est de même pour
les différents pourcentages de zinc et de l'autre élément dans l'oxyde mixte donnés ci-après, ainsi que pour d'autres valeurs que 10% qui sont pris ici à titre d'illustration.
Le dit revêtement barrière et l'électrode sont de préférence déposés par pulvérisation cathodique sous pression réduite, avantageusement améliorée à l'aide d'un champ magnétique dans un dispositif appelé magnétron. Le dispositif magnétron peut être un dispositif horizontal où le substrat en verre se déplace horizontalement sous les cibles de pulvérisation adéquates. Avantageusement, on peut utiliser un dispositif vertical où le substrat en verre se déplace en position sensiblement verticale devant des cibles de pulvérisation. Un dispositif vertical présente l'avantage de réduire le nombre de défauts de type « pinholes » provenant de résidus tombant sur le verre à l'intérieur du dispositif de dépôt.
On a découvert qu'une telle couche à base d'oxyde mixte de zinc et d'un autre élément forme une barrière efficace pour atténuer fortement la migration des ions alcalins provenant du substrat lorsque ce dernier est chauffé et qu'elle a un effet très favorable sur la conductibilité de l'électrode après traitement thermique. On peut ainsi réduire l'épaisseur de l'électrode pour l'obtention d'une même valeur de la conductance, ce qui est avantageux en termes de coûts de production. Etant donné que dans certains cas d'application la matière de l'électrode est très onéreuse, par exemple le molybdène pour les cellules solaires CIS, CZTS ou CIGS, l'invention apporte un avantage manifeste. Outre l'avantage sur les coûts, la réduction d'épaisseur de l'électrode a aussi l'avantage de réduire le risque de formation de trous, appelés « pinholes », dans la couche qui laissent passer des ions tels que les ions sodium, et aussi de réduire l'intensité des contraintes internes, ce qui est un avantage en ce qui concerne l'adhérence de l'électrode au substrat. De plus, une couche à base d'oxyde mixte de zinc et d'un autre élément est plus simple à déposer sans défauts et procure un meilleur rendement de dépôt en magnétron que les couches barrières connues de nitrure de silicium ou d'oxydes de silicium. Le contrôle du processus de dépôt est plus simple et favorise une économie substantielle lors d'une fabrication industrielle en série.
D'autre part, on a trouvé que cette couche barrière à base d'un oxyde mixte de zinc et d'un autre élément favorise aussi une très bonne adhérence de l'électrode par rapport au substrat en verre.
Il est surprenant que l'invention procure ces résultats avantageux, notamment dans le cas d'application des cellules solaires de type CIS, CZTS ou CIGS. En effet, on introduit ainsi dans la structure des éléments, Zn et l'autre élément, vis-à-vis desquels la couche fonctionnelle est plus sensible que vis-à-vis du silicium du verre. Si ces métaux atteignent la couche fonctionnelle, il risque de la dégrader de manière néfaste. Le problème ne se présente pas avec les barrières Si3N4 ou SiO2 qui sont des éléments proches du verre et à base de silicium comme lui. On a constaté que la couche fonctionnelle n'est nullement polluée par ces métaux. L'oxyde mixte de zinc et de l'autre élément est sans doute suffisamment stable thermiquement pour qu'il n'y ait aucune diffusion de zinc ou de l'autre élément au travers de l'électrode. Le substrat en verre peut être constitué de toute matière vitreuse appropriée contenant des espèces susceptibles de migrer sous l'effet d'un phénomène externe tel que l'augmentation de température. Selon un mode préféré de réalisation de l'invention, le substrat est formé d'un verre à haut point de fusion, tel qu'un verre ayant un point de ramollissement (« strain point ») de l'ordre de 570- 5900C. Ce type de verre permet de réaliser des traitements thermiques à très haute température, favorables à l'obtention de couches fonctionnelles de qualité pour des cellules solaires de type CIS, CZTS ou CIGS. Il peut s'agir de verre du système SiO2- Al2O3-oxydes d'alcalins-oxydes d'alcalino-terreux. On peut par exemple citer le verre vendu sous la dénomination PD200 p ar Asahi Glass Company adapté à la réalisation d'écrans émissifs, ou le verre vendu sous la dénomination PV200 par la même société qui est plus particulièrement adapté pour servir de substrat dans la réalisation de cellules photovoltaïques.
Selon un autre mode préféré de réalisation, le substrat en verre est formé d'un verre silico-sodo-calcique ordinaire dont la composition de base comprend les proportions suivantes : 60 à 75% SiO2, 10 à 20% Na2O, 0 à 16% CaO, 0 à 10% K2O, 0 à 10% MgO, 0 à 5% Al2O3 et 0 à 2% BaO. A cette composition de
base peuvent être ajoutés différents colorants. De préférence, le substrat en verre est transparent.
L'électrode est formée d'un métal qui résiste aux températures élevées de fabrication du dispositif électronique. Dans le cas de cellules solaires de type CIS, CZTS ou CIGS, le métal de l'électrode doit résister à l'attaque par le sélénium et/ou le soufre. De plus, il ne doit pas former aisément d'alliage avec le cuivre et l'indium. Il peut par exemple être constitué de tungstène, de tantale ou de niobium. De préférence, l'électrode est à base de molybdène. C'est le métal couramment utilisé pour former l'électrode de base d'une cellule solaire photovoltaïque à base de chalcopyrite de type CIS, CZTS ou CIGS à cause de ses propriétés appropriées à cet usage. Ce métal réfractaire supporte aisément le traitement thermique à haute température nécessaire à la fabrication de la cellule et il résiste bien au séléniure et/ou au soufre utilisés pour former la couche fonctionnelle de la cellule en contact avec l'électrode portée par le substrat en verre. Il a une faible réactivité à leur égard. L'électrode sous forme de couche peut être une couche uniforme sur la totalité de la surface du substrat en verre ou s'étendre sur une partie seulement de cette surface. Généralement, la couche électrode est découpée selon un dessin spécifique adapté au dispositif électronique dont elle fait partie dans le produit fini. Elle est généralement découpée à l'aide d'un faisceau laser. Son épaisseur est en général comprise entre 50 et 1500 nm. De préférence, la couche constituant l'électrode a une épaisseur totale inférieure à 1000 nm, avantageusement inférieure à 800 nm, et idéalement inférieure à 600 nm. Dans le cas d'une cellule solaire de type CIS, CZTS ou CIGS, son épaisseur est avantageusement comprise entre 250 et 520 nm. La résistance électrique peut être de l'ordre de 10 à 15 Ω/D (Ohms par carré), voire de l'ordre de 5 à 8 Ω/D, mais ce type de dispositif électronique requiert généralement que la résistance électrique de l'électrode soit autant que possible inférieure à 5 Ohms/α (Ohms par carré) ou inférieure à 2 ou 3 Ω/D, et même de préférence inférieure à 1 Ohms/α lorsque le dispositif est en ordre de fonctionnement, c'est-à-dire que l'électrode ait éventuellement dû subir un traitement thermique à haute température consécutif à la fabrication de la cellule. La résistance électrique superficielle d'une très fine couche déposée sur un substrat isolant est
généralement exprimée en « Ohms par carré », la valeur de la résistance ne dépendant pas de la taille du carré. A titre de référence, on considère dans la présente description que cette valeur de la résistance superficielle doit être obtenue après un traitement thermique à 5000C pendant 30 minutes du substrat portant l'électrode, cette dernière étant protégée de l'atmosphère environnante pendant le traitement thermique pour éviter son oxydation superficielle. De préférence, la résistance électrique de l'électrode est inférieure à 2 Ohms/α, avantageusement inférieure à 0,8 Ohms/α et préférentiellement égale ou inférieure à 0,6 Ohms/α, et ceci après le dit traitement thermique. Grâce à l'invention, cette faible résistance peut être obtenue, après traitement thermique à haute température, pour une épaisseur plus faible de l'électrode que dans les structures sans la couche barrière, notamment pour une épaisseur inférieure à 510 nm dans le cas d'une électrode en molybdène. Etant donné que le molybdène est un matériau très onéreux, l'avantage d'une réduction d'épaisseur est manifeste. L'invention permet cette réduction d'épaisseur sans devoir compliquer le processus de fabrication et ajouter des matériaux conducteurs supplémentaires, sources de défauts, comme le propose le document WO 02/065554 Al qui ajoute des couches conductrices supplémentaires en un autre matériau que le molybdène.
L'électrode sous forme de couche peut être subdivisée dans son épaisseur en un dépôt multicouche constitué d'au moins deux couches formé par pulvérisation cathodique en atmosphère neutre à partir d'une même cathode mais dans des conditions de dépôt (puissance et/ou pression) différentes. De préférence, elle est subdivisée en au moins trois couches, par exemple en cinq couches. On peut ainsi obtenir une succession de couches moins denses et plus denses. On a découvert qu'on pouvait ainsi améliorer l'adhésion au substrat en verre, en particulier après traitement thermique, et obtenir un bon contact électrique à l'interface avec la couche fonctionnelle.
L'oxyde mixte du revêtement barrière comprend du zinc et au moins un autre élément. De préférence, le dit autre élément est choisi parmi les éléments suivants : Sn, Ti, Ta, Zr, Nb, Ga, Bi, Al et leur mélange. Les oxydes de ces éléments
mélangés à l'oxyde de zinc ont un effet favorable pour former une barrière efficace aux espèces migrantes du verre.
Le revêtement barrière comprend de préférence un empilement d'au moins deux couches de compositions différentes. La multiplication des interfaces améliorent l'effet barrière.
De préférence, le dit autre élément est présent à raison d'au moins 4% en poids, par exemple 5% en poids. Avantageusement, le dit autre élément est présent à raison d'au moins 10% en poids, de préférence au moins 12% en poids.
L'oxyde mixte du revêtement barrière peut être avantageusement formé d'un oxyde mixte de zinc et d'aluminium, à raison d'au moins 4% en poids d'aluminium, par exemple 5% (soit environ 12% atomique). Il peut aussi de préférence contenir au moins 10%, avantageusement au moins 12% en poids d'aluminium et former ainsi une barrière très efficace aux espèces migrantes du verre. Cet oxyde mixte peut être formé à partir d'une cathode d'un alliage zinc- aluminium pulvérisé dans une atmosphère réactive d'oxygène et d'argon. Il peut aussi être obtenu à partir d'une cathode céramique d'oxyde mixte pulvérisé en atmosphère neutre ou légèrement oxydante.
L'oxyde mixte du revêtement barrière peut aussi être avantageusement formé d'un oxyde mixte de zinc et de titane, ou un oxyde mixte de zinc, de titane et d'aluminium.
De préférence, l'oxyde mixte de zinc et d'un autre élément comprend au moins 20% de zinc, et avantageusement au moins 30%.
De préférence, le dit autre élément est de l'étain et l'oxyde mixte zinc- étain contient au moins 20% d'étain. On a constaté que l'oxyde mixte zinc-étain formait un revêtement barrière particulièrement efficace.
Le revêtement barrière peut être constitué d'une seule couche d'épaisseur adéquate à base d'un oxyde mixte zinc-étain ayant avantageusement une composition proche de Zn2SnO4. De préférence, le revêtement barrière comprend un empilement d'au moins deux couches à base d'oxyde mixte zinc-étain de compositions différentes. Avantageusement, une couche d'oxyde mixte zinc-étain formé par pulvérisation cathodique réactive en présence d'oxygène à partir d'une
cathode d'un alliage zinc-étain d'environ 90% en poids de zinc et 10% en poids d'étain, est prise en sandwich entre deux couches à base d'un oxyde mixte zinc-étain ayant une composition proche de Zn2SnO4. On a trouvé que cette disposition particulière favorise l'augmentation de la conductivité de l'électrode après traitement thermique à haute température par rapport à un revêtement barrière formé d'une seule couche d'oxyde mixte. On ne connaît pas bien la raison de cette amélioration, mais on pense que la création d'interface dans la couche d'oxyde mixte zinc-étain, avec formation de portions de couche plus amorphes aux interfaces qui améliorent l'effet barrière aux ions migrateurs, joue un rôle particulier. La couche à base d'un oxyde mixte zinc-étain peut contenir au moins
30% d'étain. De préférence, au moins une couche à base d'oxyde mixte zinc-étain comprend au moins 40% d'étain et au moins 40% de zinc. Avantageusement, l'oxyde mixte zinc-étain est formé par pulvérisation cathodique réactive en présence d'oxygène à partir d'une cathode d'un alliage zinc-étain à 52% en poids de zinc et 48% en poids d'étain, en vue d'obtenir un oxyde ayant la composition la plus proche du stannate de zinc Zn2SnO4 dans la couche. Nous avons découvert que c'est en s' approchant de cette composition particulière qu'on obtient le meilleur effet de blocage de la migration des ions alcalins.
L'épaisseur totale du revêtement barrière doit être suffisante pour réaliser une barrière efficace et s'opposer à la migration des ions alcalins à partir du substrat en verre vers l'électrode et même vers la couche fonctionnelle déposée sur l'électrode. Une épaisseur de la barrière d'au moins 50 nm s'avère nécessaire lorsque le traitement thermique se fait à plus de 4000C pour une durée supérieure à 5 minutes. L'épaisseur ne doit pas être inutilement trop élevée afin de ne pas grever les coûts de fabrication. Une épaisseur supérieure à 500 nm ne se justifie pas et une épaisseur inférieure à 200 nm s' avère suffisante pour la plupart des cas d'applications. De préférence, le revêtement barrière a une épaisseur totale comprise entre 80 et 500 nm, avantageusement entre 80 et 200 et préférentiellement entre 100 et 150 nm. Une épaisseur entre 120 et 140 nm, par exemple, se trouve être un bon compromis pour la réalisation de cellule solaire photovoltaïque de type CIS, CZTS ou CIGS.
Une bonne adhésion de l'électrode au substrat est élément important car si l'électrode se détache du substrat, le dispositif électronique devient défectueux. Afin de qualifier l'adhésion de l'électrode au substrat, nous avons défini un test d'adhésion qui se présente comme suit : Une tête circulaire plate en téflon couverte d'un tissu de coton est traînée sur la couche avec une charge constante et intégrée. La surface de la couche couverte par le frottement du tissu est de 2,81 cm2 et la charge appliquée est de 3.850 g. L'abrasion du coton sur la surface revêtue endommagera (ou enlèvera) la couche après un certain nombre de cycles. Le coton doit être maintenu humide avec de l'eau dé-ionisée pendant toute la durée du test. La vitesse doit être ajustée entre 60 et 90 oscillations complètes (de va-et-vient) par minute. Le test est employé pour définir le seuil où la couche se décolore et/ou le seuil où des éraflures apparaissent dans la couche. On observe l'échantillon sous un ciel artificiel pour déterminer si une décoloration ou des éraflures peuvent être vues sur l'échantillon. Aucun décollement ne doit être identifié pour réussir l'essai.
De préférence, après avoir subi un traitement thermique à 5000C pendant 30 minutes, l'électrode n'est pas arrachée du substrat lorsqu'on lui fait subir le test d'adhésion décrit ci-dessus.
L'adhésion est également un élément important à l'interface entre la couche fonctionnelle et l'électrode. Si le sodium migrait jusqu'à cet interface, il y aurait un risque de décollement de la couche fonctionnelle par rapport à l'électrode.
L'invention s'étend aussi à un dispositif électronique comprenant un substrat en verre portant une électrode comme décrit ci-dessus.
Ce dispositif électronique est de préférence une cellule solaire photovoltaïque à base de chalcopyrite, comprenant une couche de séléniure et/ou de sulfure de cuivre et d'indium ou d'étain, avec éventuellement du gallium ou de l'aluminium ou du zinc, déposée sur l'électrode, de préférence en molybdène.
L'invention sera maintenant décrite plus en détail en se référant aux exemples ci-après et aux dessins annexés, dans lesquels: La figure 1 représente une coupe transversale d'une feuille de verre portant une électrode selon l'invention ;
La figure 2 représente le graphique d'une analyse XPS réalisée sur la feuille de verre portant l'électrode de la figure 1 avant traitement thermique ; et
La figure 3 représente le graphique d'une analyse XPS réalisée sur la feuille de verre portant l'électrode de la figure 1 après traitement thermique. Dans la figure 1 , la référence 1 représente le substrat en verre, la référence 2 représente le revêtement barrière dans son ensemble et la référence 3 représente l'électrode.
Exemples : Exemple comparatif. Une feuille de verre sodocalcique ordinaire de 2,1 mm d'épaisseur a été introduite dans un dispositif de dépôt de couche de type magnétron. Dans ce dispositif, on a déposé une électrode sous forme d'une couche de 500 nm d'épaisseur de Mo à une pression de 0,4 Pa et sous une puissance de 1,14 W/cm2. La résistance de l'électrode est de 0,6 Ω/D. Afin de tester cette structure aux fins de comparaison, on lui a fait subir un traitement thermique semblable à celui réalisé lors de la fabrication d'une cellule solaire de type CIS. Il est à noter que l'électrode de Mo n'était pas protégée de l'atmosphère externe pendant le traitement thermique. La couche de Molybdène s'est donc oxydée en surface externe, ce qui n'est pas le cas lors de la fabrication réelle de la cellule solaire. Le traitement thermique a été effectué à 5000C pendant 30 minutes en atmosphère non-contrôlée, donc dans l'air.
On a mesuré de nouveau la résistance électrique de l'électrode en molybdène après traitement thermique et on a trouvé une valeur allant de 3,2 à 12 Ω/D selon l'endroit sur la surface de l'électrode. Cette valeur est variable selon l'emplacement à cause de l'oxydation du molybdène pendant le traitement thermique. Exemple 1.
On a reproduit le même essai que dans l'exemple de comparaison ci- dessus, sauf qu'avant de déposer l'électrode on a tout d'abord déposé sur le verre un revêtement barrière formé d'une couche d'oxyde mixte zinc-étain de 130 nm d'épaisseur, selon l'invention. Cette couche a été déposée à partir d'une cathode
d'un alliage zinc-étain à 52% en poids de zinc et 48% en poids d'étain pour former une couche de Zn2SnO4 sur le verre.
Après traitement thermique comme dans l'exemple comparatif, on a mesuré une résistance électrique allant de 2,5 à 3,2 Ω/D selon l'endroit sur la surface de l'électrode. Cette valeur est variable suivant l'endroit parce que l'électrode s'est oxydée pendant le traitement thermique car elle n'était pas protégée de l'atmosphère oxydante. On constate toutefois que la valeur maximum est très nettement plus faible que pour l'exemple comparatif ci-dessus. La présence du revêtement barrière selon l'invention a donc nettement protégé l'électrode des espèces migrantes du verre pendant le traitement thermique, car la résistance électrique a nettement moins augmenté que pour l'exemple comparatif. Exemple 2.
Une feuille de verre 1 sodo-calcique ordinaire de 2,1 mm d'épaisseur a été introduite dans un dispositif de dépôt de couche de type magnétron. Sous une pression totale de 0,4 Pa et dans une atmosphère d'un mélange oxygène-argon, à raison de 80% d'O2, on a déposé sur le verre une couche d'oxyde mixte zinc-étain 2 de 130 nm à partir d'une cathode d'un alliage zinc-étain à 52% en poids de zinc et 48% en poids d'étain. On a déposé ensuite une couche électrode 3 en molybdène de 500 nm d'épaisseur totale à partir d'une cible de molybdène dans une atmosphère neutre d'argon. Cette électrode de molybdène a été subdivisée en 5 couches dont les épaisseurs sont respectivement 40/190/40/190/40 nm sous des conditions de pression totale et de puissance respectivement repérées par A/C/A/C/A, ces lettres correspondant aux conditions données dans le tableau 1 ci-après.
Tableau 1.
Puissance
Condition Pression [Pa] [W/cm2]
A 0,63 0,66 B 1,56 0,4 C 2,08 0,4 D 1,15 0,4
Afin de tester cette structure, on lui a fait subir un traitement thermique semblable à celui réalisé lors de la fabrication d'une cellule solaire de type CIS. Pour protéger cette structure de l'atmosphère externe pendant le traitement thermique, on l'a recouvert, aux fins d'examen, par une couche de 130 nm de stannate de zinc Zn2SnO4. Le traitement thermique a été effectué à 5000C pendant 30 minutes en atmosphère non-contrôlée, donc dans l'air.
On a mesuré la résistance électrique de l'électrode en molybdène avant et après traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,29 Ohm/α. Après traitement thermique, on a trouvé la valeur de 0,36 Ohm/α. On constate donc que la résistance électrique n'a pratiquement pas augmenté suite au traitement thermique et que sa valeur finale, pour une électrode de 500 nm, est tout à fait adéquate pour constituer une cellule solaire de type CIS, CZTS ou CIGS.
D'autre part, on a réalisé des analyses XPS et SIMS dynamiques, avant et après traitement thermique, qui confirment très clairement que la couche d'oxyde mixte selon l'invention a constitué une barrière très efficace à la migration du sodium à partir du verre.
Dans une analyse XPS, l'échantillon est irradié par des rayons X monochromatiques qui provoquent l'ionisation de ses atomes par effet photoélectrique. L'énergie cinétique de ces photoélectrons est mesurée ce qui permet de déduire l'énergie de liaison et donc la nature de l'atome.
Dans une analyse SIMS dynamique, la surface de l'échantillon à analyser est bombardée avec un faisceau d'ions. L'échantillon est alors pulvérisé, et une partie de la matière pulvérisée est ionisée. Ces ions secondaires sont alors accélérés vers un spectromètre de masse qui permettra de mesurer la composition élémentaire ou isotopique de la surface de l'échantillon.
Ces analyses montrent de plus que le zinc et l'étain de l'oxyde mixte n'ont nullement migres au travers de l'électrode en molybdène, ce qui veut dire que ces métaux ne pollueront pas la couche fonctionnelle de la cellule solaire. La figure 2 représente le graphique obtenu suite à l'analyse XPS de l'échantillon selon l'exemple 2 avant le traitement thermique. La figure 3 représente
le graphique obtenu suite à l'analyse XPS de l'échantillon selon l'exemple 2 après le traitement thermique. Le temps d'irradiation en seconde est représenté en abscisse et pourcentage atomique des éléments est représenté en ordonnées. En examinant la figure 3, en comparaison de la figure 2, on constate que le sodium n'a pas migré dans l'électrode 3 au cours du traitement thermique et est resté bloqué par la couche barrière 2 d'oxyde mixte zinc-étain. On constate également que le zinc et l'étain, n'ont pas migres au travers de la couche électrode 3. En effet, on constate que le % de sodium (NaIS) tombe à zéro dans la zone où le zinc (Zn2p3) et l'étain (Sn3d5) ont des valeurs élevées. On constate aussi que dans la plage où le molybdène (Mo3d) est au maximum, le sodium, le zinc et l'étain sont à zéro.
D'autre part, on a fait subir au substrat revêtu un test d'adhésion comme décrit ci-dessus. Aucun arrachement ni aucune décoloration de la couche n'ont pas être observés. Exemples 3 à 10. L'exemple 1 a été répété en modifiant certains paramètres. Les structures et les conditions de dépôts de l'électrode sont donnés au tableau 2 ci- dessous.
Dans les exemples 4, 6 et 7, l'électrode en molybdène a été subdivisée en 5 couches dont les épaisseurs et les conditions de dépôt sont données dans le tableau 2, les lettres A, B, C et D correspondant aux conditions de dépôts données dans le tableau 1 ci-dessus. Dans l'exemple 7, le revêtement barrière a été subdivisé en trois couches d'oxyde mixte zinc-étain : une couche de teneur moins élevée en étain a été enfermée entre deux couches de stannate de zinc Zn2SnO4. Dans la colonne « structure » de ce tableau 2, le sigle ZSO5 représente un oxyde mixte zinc- étain obtenu par pulvérisation cathodique dans une atmosphère oxydante à partir d'une cible métallique d'un alliage de ZnSn à 52% en poids de Zn et 48% en poids de Sn, et le sigle ZSO9 représente un oxyde mixte zinc-étain obtenu par pulvérisation cathodique dans une atmosphère oxydante à partir d'une cible métallique d'un alliage de ZnSn à 90% en poids de Zn et 10% en poids de Sn.
On a fait subir aux échantillons de ces exemples un traitement thermique à 5000C pendant 30 minutes en atmosphère non-contrôlée, donc dans l'air, comme pour les exemples précédent. Il est à noter toutefois que les électrodes en molybdène n'ont pas été recouvertes et qu'elles n'étaient donc pas protégées de l'oxydation lors du traitement thermique.
Les résistances électriques des électrodes ont été mesurées avant et après traitement thermique. Les valeurs mesurées sont données dans le tableau 2. Il faut noter que ces valeurs sont variables selon l'emplacement à cause de l'oxydation du molybdène pendant le traitement thermique, c'est pourquoi le tableau donne le minimum et le maximum mesurés.
Tableau II.
L'exemple 7 montre qu'il est avantageux de subdiviser le revêtement barrière. Les exemples 8 à 10 montrent que, pour la structure donnée et pour tout autre paramètre restant constant, l'épaisseur de 130 nm du revêtement barrière est suffisante et qu'une épaisseur de 180 nm est superflue. Exemples 11 et 12.
Une feuille de verre 1 sodo-calcique ordinaire de 2,1 mm d'épaisseur a été introduite dans un dispositif de dépôt de couche de type magnétron. Sous une pression totale de 0,4 Pa et dans une atmosphère d'un mélange oxygène-argon, à raison de 80% d'O2, on a déposé sur le verre une couche d'oxyde mixte zinc-titane 2
de 130 nm à partir d'une cathode plane de 432 x 127 mm d'un alliage zinc-titane à 70% en poids de zinc et 30% en poids de titane. On a déposé ensuite une couche électrode 3 en molybdène à partir d'une cible de molybdène, de même dimension que la cathode d'alliage zinc-titane, dans une atmosphère neutre d'argon sous une pression de 0,6 Pa et à une puissance de 3 kW. L'épaisseur de la couche électrode en molybdène était de 300 nm dans l'exemple 11 et de 500 nm dans l'exemple 12.
Afin de tester cette structure, on lui a fait subir un traitement thermique semblable à celui réalisé lors de la fabrication d'une cellule solaire de type CIS. Pour protéger cette structure de l'atmosphère externe pendant le traitement thermique, on l'a recouvert, aux fins d'examen, par une couche de 130 nm de stannate de zinc Zn2SnO4. Le traitement thermique a été effectué à 5000C pendant 30 minutes en atmosphère non-contrôlée, donc dans l'air.
On a mesuré la résistance électrique de l'électrode en molybdène avant et après traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,61 Ohm/α pour l'exemple 11 et de 0,35 Ohm/α pour l'exemple 12. Après traitement thermique, on a trouvé la valeur de 0,94 Ohm/α pour l'exemple 11 et de
0,51 Ohm/α pour l'exemple 12.
On constate donc que la résistance électrique a peu évolué suite au traitement thermique et que sa valeur finale est inférieur à 1 Ohm/α, et même inférieure à 0,6 Ohm/α pour l'exemple 12, tout à fait adéquate pour constituer une cellule solaire de type CIS, CZTS ou CIGS.
A titre de variante de l'exemple 11, le remplacement du titane par 12% en poids d'aluminium dans la cathode d'alliage zinc-titane formant la couche d'oxyde mixte 2 a également fourni un substrat adéquat pour constituer une cellule solaire de type CIS, CZTS ou CIGS. Exemple 13.
L'exemple 11 a été reproduit sauf en ce qui concerne la couche d'oxyde mixte 2. Dans l'exemple 13, la couche 2 était subdivisée en trois films selon la séquence suivante : un premier film de 50 nm de ZSO5 (oxyde mixte zinc-étain
comme dans l'exemple 3), suivi d'un second film de 30 nm d'un oxyde mixte zinc- titane ZnTiOx ayant la même composition que dans l'exemple 11 et d'un troisième film de 50 nm de ZSO5 (identique au premier film). Cet exemple 13 a été soumis au même traitement thermique que l'exemple 11, et on a mesuré la résistance électrique de l'électrode en molybdène avant et après traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,58 Ohm/α. Après traitement thermique, on a trouvé la valeur de 0,89 Ohm/α.
On constate de nouveau que la résistance électrique a peu évolué suite au traitement thermique et que sa valeur finale est inférieur à 1 Ohm/α, tout à fait adéquate pour constituer une cellule solaire de type CIS, CZTS ou CIGS. Exemple 14.
Dans l'exemple 14, l'électrode en molybdène 3 avait une épaisseur totale de 330 nm et était subdivisée en deux films : un premier film de 30 nm d'épaisseur déposé sous 0,4 Pa en activant la cathode de Mo sous une puissance spécifique de 2,41 kW/cm2, suivi d'un deuxième film de 300 nm d'épaisseur déposé sous 0,6 Pa en activant la cathode de Mo sous une puissance spécifique de 9,64 kW/cm2.
La couche d'oxyde mixte 2 selon l'exemple 14 était subdivisée en trois films de manière identique à l'exemple 7. On a fait subir à l'ensemble le même traitement thermique que dans l'exemple 1, la couche électrode 3 en Mo n'étant pas protégée de l'atmosphère lors du traitement, et on a mesuré la résistance électrique de l'électrode en molybdène avant et après traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,58 Ohm/α. Après traitement thermique, on a trouvé une valeur allant de 0,99 à 1,06 Ω/D selon l'endroit sur la surface de l'électrode.
A titre de comparaison, une couche électrode identique en Mo a été déposée directement sur une feuille de verre, sans couche d'oxyde mixte 2, dans les mêmes conditions que l'exemple 14 et la feuille revêtue a été soumise au même traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,60 Ohm/α. Après traitement thermique, on a trouvé une valeur allant de 5,89 à 11,02 Ohm /D selon l'endroit sur la surface de l'électrode.