WO2009144086A1 - Substrat en verre portant une electrode - Google Patents

Substrat en verre portant une electrode Download PDF

Info

Publication number
WO2009144086A1
WO2009144086A1 PCT/EP2009/054509 EP2009054509W WO2009144086A1 WO 2009144086 A1 WO2009144086 A1 WO 2009144086A1 EP 2009054509 W EP2009054509 W EP 2009054509W WO 2009144086 A1 WO2009144086 A1 WO 2009144086A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
glass substrate
zinc
tin
substrate according
Prior art date
Application number
PCT/EP2009/054509
Other languages
English (en)
Inventor
Gaëtan DI STEFANO
Original Assignee
Agc Flat Glass Europe Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc Flat Glass Europe Sa filed Critical Agc Flat Glass Europe Sa
Priority to EP09753741A priority Critical patent/EP2266140A1/fr
Priority to JP2011504460A priority patent/JP2011517132A/ja
Priority to CN2009801135056A priority patent/CN102047433B/zh
Publication of WO2009144086A1 publication Critical patent/WO2009144086A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a glass substrate carrying at least one electrode, for an electronic device such as a photovoltaic cell, in the form of a thin layer, and to the electronic device comprising such a substrate carrying at least one electrode.
  • the electrode of an electronic device is for distributing or collecting an electric current. For this device to work properly, it is fundamental that the electrode has as low a resistance as possible, taking into account other requirements of construction or operation of the device, to minimize electrical losses. Electronic devices that use a glass substrate carrying at least one electrode are varied.
  • Intelligent glazing such as electrochromic glazings, devices using lighting based on LEDs (light-emitting diodes) or OLEDs (organic light-emitting diodes) in which the current is supplied via electrodes deposited on the electroluminescent glasses, can notably be mentioned. glass, etc.
  • the invention will be described with particular reference to photovoltaic cells, also called solar cells, for transforming sunlight into electricity. These electronic devices have taken a particular step in recent years following the search for alternative energy to fossil energy.
  • chalcopyrite-based cells such as solar cells called CIS (based on selenide and / or copper and indium sulphide, such as CuInSe 2 , CuInS 2 ) or CIGS (based on selenide and / or copper, indium and gallium sulphide), or on solar cells based on selenide and / or copper sulphide, indium and aluminum, or solar cells called CZTS (based on selenide and / or copper sulphide, zinc and tin, such as Cu 2 ZnSnS 4 or Cu 2 ZnSnSe 4 ).
  • CIS based on selenide and / or copper and indium sulphide, such as CuInSe 2 , CuInS 2
  • CIGS based on selenide and / or copper, indium and gallium sulphide
  • CZTS based on selenide and / or copper sulphide, zinc and tin, such as Cu 2 ZnSnS 4 or Cu 2 Zn
  • the substrate carrying the electrode may be subjected to a heat treatment at a high temperature, for example at a temperature greater than 500 ° C., or more than 550 ° C. (for example 550-600 ° C.) for approximately 5 to 30 minutes in one or more stages in an atmosphere generally based on selenium or sulfur, or on the basis of selenium and then sulfur, to react Cu and In layers. , deposited on the electrode, with Se and / or S.
  • an alkaline ion diffusion occurs, such as sodium ions, towards the surface of the substrate.
  • These ions pollute, uncontrollably, the electrode deposited on the substrate.
  • This pollution at least from a certain level, can undesirably reduce the conductivity of the electrode. It also has an adverse effect on the interfaces by reducing the adhesion between the layers, and in particular the adhesion between the electrode and the functional layer, for example based on chalcopyrite. It can also have a detrimental effect on the functional element of the solar cell, for example the layer based on chalcopyrite. Indeed, at low concentration sodium has a positive effect on the functional element, but the effect quickly becomes negative if the concentration increases beyond a certain level.
  • CIS or CIGS having a Mo electrode deposited on a glass substrate.
  • This document proposes to deposit between the substrate and the electrode a barrier layer of SiO 2 or SiO x to prevent the diffusion of alkali ions from the glass.
  • the invention relates to a glass substrate carrying at least one electrode, for an electronic device, in the form of a thin layer, characterized in that a barrier coating comprising at least one layer based on a mixed zinc oxide and at least one other element, containing at least 10% by weight of zinc, is disposed between the substrate and the electrode
  • barrier coating is meant a coating which obstructs migrating species from the glass substrate, such as oxygen and alkali ions, by curbing their migration.
  • zinc mixed oxide and another element containing at least 10% zinc and at least 10% of another element used in the present description mean that there is at least 10% by weight zinc and at least 10% by weight of the other element in the mixed oxide with respect to the total weight of zinc and the other element in the mixed oxide. It is the same for the different percentages of zinc and the other element in the mixed oxide given below, as well as for other values than 10%, which are taken here by way of illustration.
  • the said barrier coating and the electrode are preferably deposited by sputtering under reduced pressure, advantageously improved by means of a magnetic field in a device called a magnetron.
  • the magnetron device may be a horizontal device where the glass substrate moves horizontally under the appropriate spray targets.
  • a vertical device has the advantage of reducing the number of "pinhole" type defects from residues falling on the glass inside the deposition device.
  • reducing the thickness of the electrode also has the advantage of reducing the risk of forming holes, called "pinholes", in the layer that pass ions such as sodium ions, and also to reduce the intensity of the internal stresses, which is an advantage as regards the adhesion of the electrode to the substrate.
  • a layer based on mixed zinc oxide and another element is easier to deposit without defects and provides a better magnetron deposition efficiency than the known barrier layers of silicon nitride or silicon oxides. .
  • the control of the deposit process is simpler and promotes a substantial saving in industrial mass production.
  • this barrier layer based on a mixed oxide of zinc and another element also promotes a very good adhesion of the electrode relative to the glass substrate.
  • the invention provides these advantageous results, particularly in the case of application of solar cells of CIS, CZTS or CIGS type.
  • elements Zn and the other element are introduced into the structure, with respect to which the functional layer is more sensitive than vis-à-vis the silicon of the glass. If these metals reach the functional layer, it may degrade it adversely. The problem does not arise with the barriers Si 3 N 4 or SiO 2 which are elements close to the glass and silicon-based like him. It has been found that the functional layer is not polluted by these metals.
  • the mixed oxide of zinc and the other element is undoubtedly sufficiently thermally stable so that there is no diffusion of zinc or the other element through the electrode.
  • the glass substrate may be any suitable vitreous material containing species likely to migrate under the effect of an external phenomenon such as temperature increase.
  • the substrate is formed of a glass with a high melting point, such as a glass having a softening point ("strain point") of the order of 570-590 ° C. C.
  • strain point a softening point
  • This type of glass makes it possible to carry out thermal treatments at very high temperatures, favorable to obtain quality functional layers for solar cells of CIS, CZTS or CIGS type. It may be glass of the system SiO 2 - Al 2 O 3 -oxides of alkaline-alkaline earth oxides.
  • the glass sold under the name PD200 by Asahi Glass Company suitable for the production of emitting screens or the glass sold under the name PV200 by the same company which is more particularly adapted to serve as a substrate in the production. of photovoltaic cells.
  • the glass substrate is formed of an ordinary soda-lime-calcium glass whose base composition comprises the following proportions: 60 to 75% SiO 2 , 10 to 20% Na 2 O, 0 at 16% CaO, 0 to 10% K 2 O, 0 to 10% MgO, 0 to 5% Al 2 O 3 and 0 to 2% BaO.
  • base composition comprises the following proportions: 60 to 75% SiO 2 , 10 to 20% Na 2 O, 0 at 16% CaO, 0 to 10% K 2 O, 0 to 10% MgO, 0 to 5% Al 2 O 3 and 0 to 2% BaO.
  • the glass substrate is transparent.
  • the electrode is formed of a metal that is resistant to the high temperatures of manufacture of the electronic device.
  • the metal of the electrode must withstand attack by selenium and / or sulfur. In addition, it must not readily form alloys with copper and indium. It may for example be made of tungsten, tantalum or niobium.
  • the electrode is based on molybdenum. It is the metal commonly used to form the base electrode of a chalcopyrite solar photovoltaic cell type CIS, CZTS or CIGS because of its properties suitable for this purpose.
  • the layer electrode may be a uniform layer over the entire surface of the glass substrate or extend over only a portion of that surface.
  • the electrode layer is cut in a specific pattern adapted to the electronic device of which it is part in the finished product. It is usually cut with a laser beam. Its thickness is in general between 50 and 1500 nm.
  • the layer constituting the electrode has a total thickness of less than 1000 nm, advantageously less than 800 nm, and ideally less than 600 nm.
  • the thickness is advantageously between 250 and 520 nm.
  • the electrical resistance can be of the order of 10 to 15 ⁇ / D (Ohms per square), or even of the order of 5 to 8 ⁇ / D, but this type of electronic device generally requires that the electrical resistance of the electrode is as much as possible less than 5 Ohms / ⁇ (Ohms per square) or less than 2 or 3 ⁇ / D, and even preferably less than 1 Ohms / ⁇ when the device is in working order, that is that is to say that the electrode has possibly had to undergo a heat treatment at high temperature consecutive to the manufacture of the cell.
  • the surface electrical resistance of a very thin layer deposited on an insulating substrate is usually expressed in "Ohms per square", the value of the resistance does not depend on the size of the square. As a reference, it is considered in the present description that this value of the surface resistance must be obtained after a thermal treatment at 500 ° C. for 30 minutes of the substrate carrying the electrode, the latter being protected from the surrounding atmosphere during the heat treatment to avoid surface oxidation.
  • the electrical resistance of the electrode is less than 2 ohms / ⁇ , advantageously less than 0.8 ohms / ⁇ and preferably equal to or less than 0.6 ohms / ⁇ , and this after said heat treatment.
  • this low resistance can be obtained, after heat treatment at high temperature, for a lower thickness of the electrode than in the structures without the barrier layer, especially for a thickness of less than 510 nm in the case of a molybdenum electrode. Since molybdenum is a very expensive material, the advantage of a reduction in thickness is obvious. The invention allows this reduction in thickness without having to complicate the manufacturing process and add additional conductive materials, sources of defects, as proposed in WO 02/065554 A1 which adds additional conductive layers made of a material other than molybdenum .
  • the electrode in the form of a layer may be subdivided in its thickness into a multilayer deposition consisting of at least two layers formed by cathodic sputtering in a neutral atmosphere from the same cathode but under deposition conditions (power and / or pressure ) different. Preferably, it is subdivided into at least three layers, for example into five layers. It is thus possible to obtain a succession of less dense and denser layers. It has been discovered that it is thus possible to improve the adhesion to the glass substrate, in particular after heat treatment, and to obtain good electrical contact at the interface with the functional layer.
  • the mixed oxide of the barrier coating comprises zinc and at least one other element.
  • said other element is chosen from the following elements: Sn, Ti, Ta, Zr, Nb, Ga, Bi, Al and their mixture. Oxides of these elements mixed with zinc oxide have a favorable effect to form an effective barrier to migratory species of glass.
  • the barrier coating preferably comprises a stack of at least two layers of different compositions. The multiplication of the interfaces improves the barrier effect.
  • said other element is present in a proportion of at least 4% by weight, for example 5% by weight.
  • said other element is present in a proportion of at least 10% by weight, preferably at least 12% by weight.
  • the mixed oxide of the barrier coating may advantageously be formed of a mixed oxide of zinc and aluminum, in a proportion of at least 4% by weight of aluminum, for example 5% (ie about 12 at%). It may also preferably contain at least 10%, advantageously at least 12% by weight of aluminum and thus form a very effective barrier to migrating species of the glass.
  • This mixed oxide can be formed from a cathode of a zinc-aluminum alloy sprayed in a reactive atmosphere of oxygen and argon. It can also be obtained from a mixed oxide ceramic cathode sprayed in a neutral or slightly oxidizing atmosphere.
  • the mixed oxide of the barrier coating may also advantageously be formed of a mixed oxide of zinc and titanium, or a mixed oxide of zinc, titanium and aluminum.
  • the mixed oxide of zinc and another element comprises at least 20% of zinc, and advantageously at least 30%.
  • said other element is tin and the zinc-tin mixed oxide contains at least 20% tin. It has been found that zinc-tin mixed oxide forms a particularly effective barrier coating.
  • the barrier coating may consist of a single layer of suitable thickness based on a zinc-tin mixed oxide advantageously having a composition close to Zn 2 SnO 4 .
  • the barrier coating comprises a stack of at least two layers based on mixed zinc-tin oxide of different compositions.
  • a zinc-tin mixed oxide layer formed by reactive cathode sputtering in the presence of oxygen from a cathode of a zinc-tin alloy of about 90% by weight of zinc and 10% by weight of tin is sandwiched between two layers based on a zinc-tin mixed oxide having a composition close to Zn 2 SnO 4 .
  • the layer based on a zinc-tin mixed oxide may contain at least
  • At least one zinc-tin mixed oxide layer comprises at least 40% tin and at least 40% zinc.
  • the zinc-tin mixed oxide is formed by reactive cathodic sputtering in the presence of oxygen from a cathode of a tin-zinc alloy at 52% by weight of zinc and 48% by weight of tin, in to obtain an oxide having the composition closest to zinc stannate Zn 2 SnO 4 in the layer. We have discovered that it is by approaching this particular composition that the best effect of blocking the migration of the alkaline ions is obtained.
  • the total thickness of the barrier coating must be sufficient to provide an effective barrier and oppose the migration of alkali ions from the glass substrate to the electrode and even to the functional layer deposited on the electrode.
  • a barrier thickness of at least 50 nm is necessary when the heat treatment is more than 400 0 C for a duration greater than 5 minutes. The thickness should not be unnecessarily high so as not to burden the manufacturing costs.
  • a thickness greater than 500 nm is not justified and a thickness of less than 200 nm is sufficient for most applications.
  • the barrier coating has a total thickness of between 80 and 500 nm, advantageously between 80 and 200 and preferably between 100 and 150 nm.
  • Good adhesion of the electrode to the substrate is important because if the electrode is detached from the substrate, the electronic device becomes defective.
  • an adhesion test which is as follows: A flat circular Teflon head covered with a cotton fabric is dragged on the layer with a constant load and integrated. The area of the layer covered by the friction of the fabric is 2.81 cm 2 and the applied load is 3.850 g. The abrasion of the cotton on the coated surface will damage (or remove) the layer after a number of cycles.
  • Cotton should be kept moist with deionized water for the duration of the test.
  • the speed must be adjusted between 60 and 90 full oscillations (back-and-forth) per minute.
  • the test is used to define the threshold where the layer fades and / or the threshold where scratches appear in the layer.
  • the sample is observed under an artificial sky to determine if discoloration or scratches can be seen on the sample. No detachment should be identified to pass the test.
  • the electrode is not torn off from the substrate when subjected to the adhesion test described above.
  • Adhesion is also an important element at the interface between the functional layer and the electrode. If the sodium migrated to this interface, there would be a risk of detachment of the functional layer relative to the electrode.
  • the invention also extends to an electronic device comprising a glass substrate carrying an electrode as described above.
  • This electronic device is preferably a photovoltaic solar cell based on chalcopyrite, comprising a selenide layer and / or copper sulphide and indium or tin, optionally with gallium or aluminum or zinc, deposited on the electrode, preferably in molybdenum.
  • FIG. 1 shows a cross-section of a glass sheet carrying an electrode according to the invention
  • FIG. 2 represents the graph of an XPS analysis carried out on the glass sheet carrying the electrode of FIG. 1 before heat treatment
  • FIG. 3 represents the graph of an XPS analysis carried out on the glass sheet carrying the electrode of FIG. 1 after heat treatment.
  • the reference 1 represents the glass substrate
  • the reference 2 represents the barrier coating as a whole
  • the reference 3 represents the electrode.
  • Comparative example An ordinary 2.1 mm thick soda-lime glass sheet was introduced into a magnetron layer deposition device. In this device, an electrode was deposited in the form of a 500 nm thick layer of Mo at a pressure of 0.4 Pa and a power of 1.14 W / cm 2 . The resistance of the electrode is 0.6 ⁇ / D. In order to test this structure for comparison purposes, it was subjected to a heat treatment similar to that carried out during the manufacture of a CIS type solar cell. It should be noted that the Mo electrode was not protected from the external atmosphere during heat treatment. The molybdenum layer has therefore oxidized on the outer surface, which is not the case during the actual manufacture of the solar cell. The heat treatment was carried out at 500 ° C. for 30 minutes in an uncontrolled atmosphere, therefore in air.
  • the electrical resistance of the molybdenum electrode was again measured after heat treatment and a value of 3.2 to 12 ⁇ / D was found depending on the location on the surface of the electrode. This value is variable depending on the location because of oxidation of molybdenum during heat treatment.
  • a barrier coating formed of a zinc-zinc mixed oxide layer was first deposited on the glass.
  • tin 130 nm thick according to the invention. This layer was deposited from a cathode zinc-tin alloy at 52% by weight of zinc and 48% by weight of tin to form a layer of Zn 2 SnO 4 on the glass.
  • An ordinary soda-lime glass sheet 2.1 mm thick was introduced into a magnetron layer deposition device. Under a total pressure of 0.4 Pa and in an atmosphere of an oxygen-argon mixture at 80% O 2 , a 130 nm zinc-tin 2 mixed oxide layer 2 was deposited on the glass. from a cathode of zinc-tin alloy at 52% by weight of zinc and 48% by weight of tin. A molybdenum electrode layer 3 having a total thickness of 500 nm was then deposited from a molybdenum target in a neutral atmosphere of argon.
  • This molybdenum electrode has been subdivided into 5 layers whose thicknesses are respectively 40/190/40/190/40 nm under conditions of total pressure and power respectively identified by A / C / A / C / A, these corresponding letters under the conditions given in Table 1 below.
  • the electrical resistance of the molybdenum electrode was measured before and after heat treatment. Before heat treatment, the value of 0.29 Ohm / ⁇ was found. After heat treatment, the value of 0.36 Ohm / ⁇ was found. It can therefore be seen that the electrical resistance has not substantially increased as a result of the heat treatment and that its final value, for a 500 nm electrode, is entirely adequate to constitute a solar cell of CIS, CZTS or CIGS type.
  • the sample is irradiated with monochromatic x-rays that cause the ionization of its atoms by photoelectric effect.
  • the kinetic energy of these photoelectrons is measured which allows to deduce the binding energy and therefore the nature of the atom.
  • the surface of the sample to be analyzed is bombarded with an ion beam.
  • the sample is then pulverized, and some of the pulverized material is ionized.
  • These secondary ions are then accelerated to a mass spectrometer that will measure the elemental or isotopic composition of the surface of the sample.
  • FIG. 2 represents the graph obtained following the XPS analysis of the sample according to example 2 before the heat treatment.
  • Figure 3 represents the graph obtained following the XPS analysis of the sample according to Example 2 after the heat treatment.
  • the irradiation time in seconds is represented as the abscissa and the atomic percentage of the elements is represented on the ordinates.
  • Example 1 was repeated by modifying certain parameters.
  • the structures and electrode deposition conditions are given in Table 2 below.
  • the molybdenum electrode has been subdivided into 5 layers whose thicknesses and deposition conditions are given in Table 2, the letters A, B, C and D corresponding to the given deposition conditions. in Table 1 above.
  • the barrier coating was subdivided into three layers of zinc-tin mixed oxide: a layer of lower tin content was enclosed between two layers of Zn 2 SnO 4 zinc stannate.
  • the initials ZSO5 represents a zinc-tin mixed oxide obtained by sputtering in an oxidizing atmosphere from a metal target of a ZnSn alloy containing 52% by weight of Zn and 48% by weight of Sn
  • the initials ZSO9 represents a zinc-tin mixed oxide obtained by cathodic sputtering in an oxidizing atmosphere from a metal target of a ZnSn alloy containing 90% by weight of Zn and 10% by weight of Sn weight.
  • the samples of these examples were subjected to a heat treatment at 500 ° C. for 30 minutes in an uncontrolled atmosphere, ie in air, as in the previous examples. It should be noted, however, that the molybdenum electrodes were not covered and were therefore not protected from oxidation during heat treatment.
  • the electrical resistances of the electrodes were measured before and after heat treatment.
  • the measured values are given in Table 2. It should be noted that these values are variable depending on the location due to oxidation of molybdenum during the heat treatment, so the table gives the minimum and maximum measured.
  • Example 7 shows that it is advantageous to subdivide the barrier coating.
  • Examples 8 to 10 show that, for the given structure and for any other parameter remaining constant, the 130 nm thickness of the barrier coating is sufficient and that a thickness of 180 nm is superfluous. Examples 11 and 12.
  • An ordinary soda-lime glass sheet 2.1 mm thick was introduced into a magnetron layer deposition device. Under a total pressure of 0.4 Pa and in an atmosphere of an oxygen-argon mixture at 80% O 2 , a layer of mixed zinc-titanium oxide 2 was deposited on the glass. 130 nm from a planar cathode of 432 x 127 mm of a zinc-titanium alloy with 70% by weight of zinc and 30% by weight of titanium. A molybdenum electrode layer 3 was then deposited from a molybdenum target, of the same size as the zinc-titanium alloy cathode, in a neutral atmosphere of argon at a pressure of 0.6 Pa and at a temperature of power of 3 kW. The thickness of the molybdenum electrode layer was 300 nm in Example 11 and 500 nm in Example 12.
  • this structure was subjected to a heat treatment similar to that carried out during the manufacture of a CIS type solar cell. To protect this structure from the external atmosphere during the heat treatment, it was covered, for examination, with a 130 nm layer of Zn 2 SnO 4 zinc stannate. The heat treatment was carried out at 500 ° C. for 30 minutes in an uncontrolled atmosphere, therefore in air.
  • the electrical resistance of the molybdenum electrode was measured before and after heat treatment. Before heat treatment, the value of 0.61 Ohm / ⁇ was found for Example 11 and 0.35 Ohm / ⁇ for Example 12. After heat treatment, the value of 0.94 Ohm / was found. ⁇ for example 11 and of
  • the electrical resistance has changed little as a result of the heat treatment and that its final value is less than 1 Ohm / ⁇ , and even less than 0.6 Ohm / ⁇ for Example 12, quite adequate to constitute a solar cell type CIS, CZTS or CIGS.
  • Example 13 As an alternative to Example 11, the replacement of titanium by 12% by weight of aluminum in the zinc-titanium alloy cathode forming the mixed oxide layer 2 also provided a suitable substrate for forming a solar cell CIS, CZTS or CIGS type.
  • Example 13
  • Example 11 was reproduced except for the mixed oxide layer 2.
  • the layer 2 was subdivided into three films according to the following sequence: a first 50 nm film of ZSO5 (mixed oxide zinc-tin as in Example 3), followed by a second 30 nm film of a zinc-titanium mixed oxide ZnTiOx having the same composition as in Example 11 and a third 50 nm film of ZSO5 (identical to first film).
  • This Example 13 was subjected to the same heat treatment as Example 11, and the electrical resistance of the molybdenum electrode was measured before and after heat treatment. Before heat treatment, the value of 0.58 Ohm / ⁇ was found. After heat treatment, the value of 0.89 Ohm / ⁇ was found.
  • the molybdenum electrode 3 had a total thickness of 330 nm and was subdivided into two films: a first film 30 nm thick deposited at 0.4 Pa by activating the cathode of Mo under a power of specific 2.41 kW / cm 2 , followed by a second film 300 nm thick deposited at 0.6 Pa by activating the cathode of Mo under a specific power of 9.64 kW / cm 2 .
  • the mixed oxide layer 2 according to Example 14 was subdivided into three films in the same manner as in Example 7.
  • the assembly was subjected to the same heat treatment as in Example 1, the electrode layer 3 being Mo was not protected from the atmosphere during the treatment, and the electrical resistance of the molybdenum electrode was measured before and after heat treatment. Before heat treatment, the value of 0.58 Ohm / ⁇ was found. After heat treatment, a value of 0.99 to 1.06 ⁇ / D was found depending on the location on the surface of the electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention se rapporte à un substrat en verre portant au moins une électrode sous forme de couche mince. Un revêtement barrière 2 aux espèces migrantes du verre comprenant au moins une couche à base d'un oxyde mixte de zinc et d'au moins un autre élément, contenant au moins 10% de zinc, est disposé entre le substrat 1 et l'électrode 3. L'invention s'applique particulièrement aux dispositifs électroniques tels que les cellules photovoltaïques à base de chalcopyrite.

Description

Substrat en verre portant une électrode.
La présente invention se rapporte à un substrat en verre portant au moins une électrode, pour dispositif électronique telle une cellule photovoltaïque, sous forme de couche mince, ainsi qu'au dispositif électronique comprenant un tel substrat portant au moins une électrode. L'électrode d'un dispositif électronique est destinée à distribuer ou à collecter un courant électrique. Pour que le dit dispositif fonctionne correctement, il est fondamentale que l'électrode présente une résistance électrique aussi faible que possible, en tenant compte des autres impératifs de construction ou de fonctionnement du dispositif, pour réduire au maximum les pertes électriques. Les dispositifs électroniques qui utilisent un substrat en verre portant au moins une électrode sont variés. On peut notamment citer des vitrages intelligents, tels que des vitrages électrochromes, des dispositifs utilisant un éclairage basé sur des LEDs (diodes électroluminescentes) ou des OLEDs (diodes électroluminescentes organiques) dans lesquels l'amenée de courant se fait via des électrodes déposées sur du verre, etc. L'invention sera décrite en se référant plus particulièrement aux cellules photovoltaïques, appelées aussi cellules solaires, destinées à transformer la lumière solaire en électricité. Ces dispositifs électroniques ont pris un essor tout particulier ces dernières années suite à la recherche d'énergies de substitution à l'énergie d'origine fossile. Différentes technologies se sont développées pour remplacer les traditionnelles cellules photovoltaïques à base de silicium cristallin, et notamment les cellules à base de chalcopyrite telles que les cellules solaire dites CIS (à base de séléniure et/ou de sulfure de cuivre et d'indium, tels que CuInSe2, CuInS2) ou CIGS (à base de séléniure et/ou de sulfure de cuivre, d'indium et de gallium), ou de cellules solaires à base de séléniure et/ou de sulfure de cuivre, d'indium et d'aluminium, ou des cellules solaire dites CZTS (à base de séléniure et/ou de sulfure de cuivre, zinc et étain, tels que Cu2ZnSnS4 ou Cu2ZnSnSe4).
Lors de la fabrication de certains dispositifs électroniques tels que des cellules solaires, et notamment des cellules solaires de type CIS, CZTS ou CIGS (incluant les cellules ou l'aluminium remplace le gallium), le substrat portant l'électrode peut être soumis à un traitement thermique à haute température, par exemple à une température supérieure à 5000C, voir supérieure à 5500C (par exemple 550-6000C), pendant 5 à 30 minutes environ en une ou plusieurs étapes dans une atmosphère généralement à base de sélénium ou de soufre, ou à base de sélénium puis de soufre, pour faire réagir des couches de Cu et d'In, déposées sur l'électrode, avec du Se et/ou du S. Lorsqu'un substrat en verre, notamment en verre silico-sodo-calcique ordinaire, est soumis à ces températures élevées, il se produit une diffusion d'ions alcalins, tels que des ions de sodium, vers la surface du substrat. Ces ions viennent polluer, de manière incontrôlable, l'électrode déposée sur le substrat. Cette pollution, au moins à partir d'un certain niveau, peut réduire de manière indésirable la conductivité de l'électrode. Elle a aussi une action néfaste aux interfaces en réduisant l'adhésion entre les couches, et en particulier l'adhésion entre l'électrode et la couche fonctionnelle, par exemple à base de chalcopyrite. Elle peut aussi avoir une action néfaste sur l'élément fonctionnel de la cellule solaire, par exemple la couche à base de chalcopyrite. En effet, à faible concentration le sodium a un effet positif sur l'élément fonctionnel, mais l'effet devient vite négatif si la concentration augmente au-delà d'un certain niveau.
Pour atténuer ce problème, on a proposé de déposer une couche barrière sur le substrat avant de déposer l'électrode pour réduire la migration des ions sodium.
La demande de brevet internationale WO 02/065554 Al , déposée par Saint-Gobain Glass France, décrit une cellule solaire de type CIS formée sur une feuille de verre portant une électrode en molybdène. Pour faire barrage à la migration d'ions alcalins hors du substrat en verre et éviter la dégradation de l'électrode en molybdène, ce document propose de disposer sur le substrat une couche-barrière formée de nitrure, oxynitrure ou oxyde de silicium, ou de nitrure ou oxynitrure d'aluminium. Etant donné que le molybdène est onéreux, ce document propose aussi de substituer une partie du Mo de l'électrode en ajoutant une autre couche conductrice. La demande de brevet européen EP 1 833 096 Al, déposée par
Showa Shell Sekiyu Kabushiki Kaisha Minato-ku, décrit une cellule solaire de type
CIS ou CIGS ayant une électrode de Mo déposée sur un substrat en verre. Ce document propose de déposer entre le substrat et l'électrode une couche-barrière en SiO2 ou SiOx pour faire obstacle à la diffusion des ions alcalins provenant du verre.
La demande de brevet internationale WO 2007/106250 A2, déposée par Guardian Industries Corp., propose de disposer une couche-barrière en nitrure de silicium entre le substrat en verre et l'électrode en molybdène d'une cellule solaire de type CIS ou CIGS, afin de réduire la migration du sodium provenant du verre. Ces propositions permettent d'atténuer le problème mais ne sont pas tout à fait satisfaisantes et elles présentent certaines difficultés de mise en oeuvre, notamment en ce qui concerne les rendements et taux de dépôt. D'autre part, certains problèmes de manque d'adhérence peuvent se manifester aux interfaces. Si3N4 ou Si3NxOy, éventuellement dopés avec de l'aluminium, par exemple forment une couche dont les contraintes internes résiduelles sont élevées, ce qui pose des problèmes d'adhérence. On constate parfois également la formation de trous, appelés « pinholes » dans l'empilage.
L'invention se rapporte à un substrat en verre portant au moins une électrode, pour dispositif électronique, sous forme de couche mince, caractérisé en ce qu'un revêtement barrière comprenant au moins une couche à base d'un oxyde mixte de zinc et d'au moins un autre élément, contenant au moins 10% en poids de zinc, est disposé entre le substrat et l'électrode
Par revêtement barrière, on entend un revêtement qui fait obstacle aux espèces migrantes provenant du substrat en verre, tels que l'oxygène et les ions alcalins, en freinant leur migration.
Les expressions similaires à « oxyde mixte de zinc et d'un autre élément contenant au moins 10 % de zinc et au moins 10% d'un autre élément » utilisées dans la présente description signifie qu'il y a au moins 10% en poids de zinc et au moins 10% en poids de l'autre élément dans l'oxyde mixte par rapport au poids total de zinc et de l'autre élément dans l'oxyde mixte. Il en est de même pour les différents pourcentages de zinc et de l'autre élément dans l'oxyde mixte donnés ci-après, ainsi que pour d'autres valeurs que 10% qui sont pris ici à titre d'illustration.
Le dit revêtement barrière et l'électrode sont de préférence déposés par pulvérisation cathodique sous pression réduite, avantageusement améliorée à l'aide d'un champ magnétique dans un dispositif appelé magnétron. Le dispositif magnétron peut être un dispositif horizontal où le substrat en verre se déplace horizontalement sous les cibles de pulvérisation adéquates. Avantageusement, on peut utiliser un dispositif vertical où le substrat en verre se déplace en position sensiblement verticale devant des cibles de pulvérisation. Un dispositif vertical présente l'avantage de réduire le nombre de défauts de type « pinholes » provenant de résidus tombant sur le verre à l'intérieur du dispositif de dépôt.
On a découvert qu'une telle couche à base d'oxyde mixte de zinc et d'un autre élément forme une barrière efficace pour atténuer fortement la migration des ions alcalins provenant du substrat lorsque ce dernier est chauffé et qu'elle a un effet très favorable sur la conductibilité de l'électrode après traitement thermique. On peut ainsi réduire l'épaisseur de l'électrode pour l'obtention d'une même valeur de la conductance, ce qui est avantageux en termes de coûts de production. Etant donné que dans certains cas d'application la matière de l'électrode est très onéreuse, par exemple le molybdène pour les cellules solaires CIS, CZTS ou CIGS, l'invention apporte un avantage manifeste. Outre l'avantage sur les coûts, la réduction d'épaisseur de l'électrode a aussi l'avantage de réduire le risque de formation de trous, appelés « pinholes », dans la couche qui laissent passer des ions tels que les ions sodium, et aussi de réduire l'intensité des contraintes internes, ce qui est un avantage en ce qui concerne l'adhérence de l'électrode au substrat. De plus, une couche à base d'oxyde mixte de zinc et d'un autre élément est plus simple à déposer sans défauts et procure un meilleur rendement de dépôt en magnétron que les couches barrières connues de nitrure de silicium ou d'oxydes de silicium. Le contrôle du processus de dépôt est plus simple et favorise une économie substantielle lors d'une fabrication industrielle en série. D'autre part, on a trouvé que cette couche barrière à base d'un oxyde mixte de zinc et d'un autre élément favorise aussi une très bonne adhérence de l'électrode par rapport au substrat en verre.
Il est surprenant que l'invention procure ces résultats avantageux, notamment dans le cas d'application des cellules solaires de type CIS, CZTS ou CIGS. En effet, on introduit ainsi dans la structure des éléments, Zn et l'autre élément, vis-à-vis desquels la couche fonctionnelle est plus sensible que vis-à-vis du silicium du verre. Si ces métaux atteignent la couche fonctionnelle, il risque de la dégrader de manière néfaste. Le problème ne se présente pas avec les barrières Si3N4 ou SiO2 qui sont des éléments proches du verre et à base de silicium comme lui. On a constaté que la couche fonctionnelle n'est nullement polluée par ces métaux. L'oxyde mixte de zinc et de l'autre élément est sans doute suffisamment stable thermiquement pour qu'il n'y ait aucune diffusion de zinc ou de l'autre élément au travers de l'électrode. Le substrat en verre peut être constitué de toute matière vitreuse appropriée contenant des espèces susceptibles de migrer sous l'effet d'un phénomène externe tel que l'augmentation de température. Selon un mode préféré de réalisation de l'invention, le substrat est formé d'un verre à haut point de fusion, tel qu'un verre ayant un point de ramollissement (« strain point ») de l'ordre de 570- 5900C. Ce type de verre permet de réaliser des traitements thermiques à très haute température, favorables à l'obtention de couches fonctionnelles de qualité pour des cellules solaires de type CIS, CZTS ou CIGS. Il peut s'agir de verre du système SiO2- Al2O3-oxydes d'alcalins-oxydes d'alcalino-terreux. On peut par exemple citer le verre vendu sous la dénomination PD200 p ar Asahi Glass Company adapté à la réalisation d'écrans émissifs, ou le verre vendu sous la dénomination PV200 par la même société qui est plus particulièrement adapté pour servir de substrat dans la réalisation de cellules photovoltaïques.
Selon un autre mode préféré de réalisation, le substrat en verre est formé d'un verre silico-sodo-calcique ordinaire dont la composition de base comprend les proportions suivantes : 60 à 75% SiO2, 10 à 20% Na2O, 0 à 16% CaO, 0 à 10% K2O, 0 à 10% MgO, 0 à 5% Al2O3 et 0 à 2% BaO. A cette composition de base peuvent être ajoutés différents colorants. De préférence, le substrat en verre est transparent.
L'électrode est formée d'un métal qui résiste aux températures élevées de fabrication du dispositif électronique. Dans le cas de cellules solaires de type CIS, CZTS ou CIGS, le métal de l'électrode doit résister à l'attaque par le sélénium et/ou le soufre. De plus, il ne doit pas former aisément d'alliage avec le cuivre et l'indium. Il peut par exemple être constitué de tungstène, de tantale ou de niobium. De préférence, l'électrode est à base de molybdène. C'est le métal couramment utilisé pour former l'électrode de base d'une cellule solaire photovoltaïque à base de chalcopyrite de type CIS, CZTS ou CIGS à cause de ses propriétés appropriées à cet usage. Ce métal réfractaire supporte aisément le traitement thermique à haute température nécessaire à la fabrication de la cellule et il résiste bien au séléniure et/ou au soufre utilisés pour former la couche fonctionnelle de la cellule en contact avec l'électrode portée par le substrat en verre. Il a une faible réactivité à leur égard. L'électrode sous forme de couche peut être une couche uniforme sur la totalité de la surface du substrat en verre ou s'étendre sur une partie seulement de cette surface. Généralement, la couche électrode est découpée selon un dessin spécifique adapté au dispositif électronique dont elle fait partie dans le produit fini. Elle est généralement découpée à l'aide d'un faisceau laser. Son épaisseur est en général comprise entre 50 et 1500 nm. De préférence, la couche constituant l'électrode a une épaisseur totale inférieure à 1000 nm, avantageusement inférieure à 800 nm, et idéalement inférieure à 600 nm. Dans le cas d'une cellule solaire de type CIS, CZTS ou CIGS, son épaisseur est avantageusement comprise entre 250 et 520 nm. La résistance électrique peut être de l'ordre de 10 à 15 Ω/D (Ohms par carré), voire de l'ordre de 5 à 8 Ω/D, mais ce type de dispositif électronique requiert généralement que la résistance électrique de l'électrode soit autant que possible inférieure à 5 Ohms/α (Ohms par carré) ou inférieure à 2 ou 3 Ω/D, et même de préférence inférieure à 1 Ohms/α lorsque le dispositif est en ordre de fonctionnement, c'est-à-dire que l'électrode ait éventuellement dû subir un traitement thermique à haute température consécutif à la fabrication de la cellule. La résistance électrique superficielle d'une très fine couche déposée sur un substrat isolant est généralement exprimée en « Ohms par carré », la valeur de la résistance ne dépendant pas de la taille du carré. A titre de référence, on considère dans la présente description que cette valeur de la résistance superficielle doit être obtenue après un traitement thermique à 5000C pendant 30 minutes du substrat portant l'électrode, cette dernière étant protégée de l'atmosphère environnante pendant le traitement thermique pour éviter son oxydation superficielle. De préférence, la résistance électrique de l'électrode est inférieure à 2 Ohms/α, avantageusement inférieure à 0,8 Ohms/α et préférentiellement égale ou inférieure à 0,6 Ohms/α, et ceci après le dit traitement thermique. Grâce à l'invention, cette faible résistance peut être obtenue, après traitement thermique à haute température, pour une épaisseur plus faible de l'électrode que dans les structures sans la couche barrière, notamment pour une épaisseur inférieure à 510 nm dans le cas d'une électrode en molybdène. Etant donné que le molybdène est un matériau très onéreux, l'avantage d'une réduction d'épaisseur est manifeste. L'invention permet cette réduction d'épaisseur sans devoir compliquer le processus de fabrication et ajouter des matériaux conducteurs supplémentaires, sources de défauts, comme le propose le document WO 02/065554 Al qui ajoute des couches conductrices supplémentaires en un autre matériau que le molybdène.
L'électrode sous forme de couche peut être subdivisée dans son épaisseur en un dépôt multicouche constitué d'au moins deux couches formé par pulvérisation cathodique en atmosphère neutre à partir d'une même cathode mais dans des conditions de dépôt (puissance et/ou pression) différentes. De préférence, elle est subdivisée en au moins trois couches, par exemple en cinq couches. On peut ainsi obtenir une succession de couches moins denses et plus denses. On a découvert qu'on pouvait ainsi améliorer l'adhésion au substrat en verre, en particulier après traitement thermique, et obtenir un bon contact électrique à l'interface avec la couche fonctionnelle.
L'oxyde mixte du revêtement barrière comprend du zinc et au moins un autre élément. De préférence, le dit autre élément est choisi parmi les éléments suivants : Sn, Ti, Ta, Zr, Nb, Ga, Bi, Al et leur mélange. Les oxydes de ces éléments mélangés à l'oxyde de zinc ont un effet favorable pour former une barrière efficace aux espèces migrantes du verre.
Le revêtement barrière comprend de préférence un empilement d'au moins deux couches de compositions différentes. La multiplication des interfaces améliorent l'effet barrière.
De préférence, le dit autre élément est présent à raison d'au moins 4% en poids, par exemple 5% en poids. Avantageusement, le dit autre élément est présent à raison d'au moins 10% en poids, de préférence au moins 12% en poids.
L'oxyde mixte du revêtement barrière peut être avantageusement formé d'un oxyde mixte de zinc et d'aluminium, à raison d'au moins 4% en poids d'aluminium, par exemple 5% (soit environ 12% atomique). Il peut aussi de préférence contenir au moins 10%, avantageusement au moins 12% en poids d'aluminium et former ainsi une barrière très efficace aux espèces migrantes du verre. Cet oxyde mixte peut être formé à partir d'une cathode d'un alliage zinc- aluminium pulvérisé dans une atmosphère réactive d'oxygène et d'argon. Il peut aussi être obtenu à partir d'une cathode céramique d'oxyde mixte pulvérisé en atmosphère neutre ou légèrement oxydante.
L'oxyde mixte du revêtement barrière peut aussi être avantageusement formé d'un oxyde mixte de zinc et de titane, ou un oxyde mixte de zinc, de titane et d'aluminium.
De préférence, l'oxyde mixte de zinc et d'un autre élément comprend au moins 20% de zinc, et avantageusement au moins 30%.
De préférence, le dit autre élément est de l'étain et l'oxyde mixte zinc- étain contient au moins 20% d'étain. On a constaté que l'oxyde mixte zinc-étain formait un revêtement barrière particulièrement efficace.
Le revêtement barrière peut être constitué d'une seule couche d'épaisseur adéquate à base d'un oxyde mixte zinc-étain ayant avantageusement une composition proche de Zn2SnO4. De préférence, le revêtement barrière comprend un empilement d'au moins deux couches à base d'oxyde mixte zinc-étain de compositions différentes. Avantageusement, une couche d'oxyde mixte zinc-étain formé par pulvérisation cathodique réactive en présence d'oxygène à partir d'une cathode d'un alliage zinc-étain d'environ 90% en poids de zinc et 10% en poids d'étain, est prise en sandwich entre deux couches à base d'un oxyde mixte zinc-étain ayant une composition proche de Zn2SnO4. On a trouvé que cette disposition particulière favorise l'augmentation de la conductivité de l'électrode après traitement thermique à haute température par rapport à un revêtement barrière formé d'une seule couche d'oxyde mixte. On ne connaît pas bien la raison de cette amélioration, mais on pense que la création d'interface dans la couche d'oxyde mixte zinc-étain, avec formation de portions de couche plus amorphes aux interfaces qui améliorent l'effet barrière aux ions migrateurs, joue un rôle particulier. La couche à base d'un oxyde mixte zinc-étain peut contenir au moins
30% d'étain. De préférence, au moins une couche à base d'oxyde mixte zinc-étain comprend au moins 40% d'étain et au moins 40% de zinc. Avantageusement, l'oxyde mixte zinc-étain est formé par pulvérisation cathodique réactive en présence d'oxygène à partir d'une cathode d'un alliage zinc-étain à 52% en poids de zinc et 48% en poids d'étain, en vue d'obtenir un oxyde ayant la composition la plus proche du stannate de zinc Zn2SnO4 dans la couche. Nous avons découvert que c'est en s' approchant de cette composition particulière qu'on obtient le meilleur effet de blocage de la migration des ions alcalins.
L'épaisseur totale du revêtement barrière doit être suffisante pour réaliser une barrière efficace et s'opposer à la migration des ions alcalins à partir du substrat en verre vers l'électrode et même vers la couche fonctionnelle déposée sur l'électrode. Une épaisseur de la barrière d'au moins 50 nm s'avère nécessaire lorsque le traitement thermique se fait à plus de 4000C pour une durée supérieure à 5 minutes. L'épaisseur ne doit pas être inutilement trop élevée afin de ne pas grever les coûts de fabrication. Une épaisseur supérieure à 500 nm ne se justifie pas et une épaisseur inférieure à 200 nm s' avère suffisante pour la plupart des cas d'applications. De préférence, le revêtement barrière a une épaisseur totale comprise entre 80 et 500 nm, avantageusement entre 80 et 200 et préférentiellement entre 100 et 150 nm. Une épaisseur entre 120 et 140 nm, par exemple, se trouve être un bon compromis pour la réalisation de cellule solaire photovoltaïque de type CIS, CZTS ou CIGS. Une bonne adhésion de l'électrode au substrat est élément important car si l'électrode se détache du substrat, le dispositif électronique devient défectueux. Afin de qualifier l'adhésion de l'électrode au substrat, nous avons défini un test d'adhésion qui se présente comme suit : Une tête circulaire plate en téflon couverte d'un tissu de coton est traînée sur la couche avec une charge constante et intégrée. La surface de la couche couverte par le frottement du tissu est de 2,81 cm2 et la charge appliquée est de 3.850 g. L'abrasion du coton sur la surface revêtue endommagera (ou enlèvera) la couche après un certain nombre de cycles. Le coton doit être maintenu humide avec de l'eau dé-ionisée pendant toute la durée du test. La vitesse doit être ajustée entre 60 et 90 oscillations complètes (de va-et-vient) par minute. Le test est employé pour définir le seuil où la couche se décolore et/ou le seuil où des éraflures apparaissent dans la couche. On observe l'échantillon sous un ciel artificiel pour déterminer si une décoloration ou des éraflures peuvent être vues sur l'échantillon. Aucun décollement ne doit être identifié pour réussir l'essai.
De préférence, après avoir subi un traitement thermique à 5000C pendant 30 minutes, l'électrode n'est pas arrachée du substrat lorsqu'on lui fait subir le test d'adhésion décrit ci-dessus.
L'adhésion est également un élément important à l'interface entre la couche fonctionnelle et l'électrode. Si le sodium migrait jusqu'à cet interface, il y aurait un risque de décollement de la couche fonctionnelle par rapport à l'électrode.
L'invention s'étend aussi à un dispositif électronique comprenant un substrat en verre portant une électrode comme décrit ci-dessus.
Ce dispositif électronique est de préférence une cellule solaire photovoltaïque à base de chalcopyrite, comprenant une couche de séléniure et/ou de sulfure de cuivre et d'indium ou d'étain, avec éventuellement du gallium ou de l'aluminium ou du zinc, déposée sur l'électrode, de préférence en molybdène.
L'invention sera maintenant décrite plus en détail en se référant aux exemples ci-après et aux dessins annexés, dans lesquels: La figure 1 représente une coupe transversale d'une feuille de verre portant une électrode selon l'invention ; La figure 2 représente le graphique d'une analyse XPS réalisée sur la feuille de verre portant l'électrode de la figure 1 avant traitement thermique ; et
La figure 3 représente le graphique d'une analyse XPS réalisée sur la feuille de verre portant l'électrode de la figure 1 après traitement thermique. Dans la figure 1 , la référence 1 représente le substrat en verre, la référence 2 représente le revêtement barrière dans son ensemble et la référence 3 représente l'électrode.
Exemples : Exemple comparatif. Une feuille de verre sodocalcique ordinaire de 2,1 mm d'épaisseur a été introduite dans un dispositif de dépôt de couche de type magnétron. Dans ce dispositif, on a déposé une électrode sous forme d'une couche de 500 nm d'épaisseur de Mo à une pression de 0,4 Pa et sous une puissance de 1,14 W/cm2. La résistance de l'électrode est de 0,6 Ω/D. Afin de tester cette structure aux fins de comparaison, on lui a fait subir un traitement thermique semblable à celui réalisé lors de la fabrication d'une cellule solaire de type CIS. Il est à noter que l'électrode de Mo n'était pas protégée de l'atmosphère externe pendant le traitement thermique. La couche de Molybdène s'est donc oxydée en surface externe, ce qui n'est pas le cas lors de la fabrication réelle de la cellule solaire. Le traitement thermique a été effectué à 5000C pendant 30 minutes en atmosphère non-contrôlée, donc dans l'air.
On a mesuré de nouveau la résistance électrique de l'électrode en molybdène après traitement thermique et on a trouvé une valeur allant de 3,2 à 12 Ω/D selon l'endroit sur la surface de l'électrode. Cette valeur est variable selon l'emplacement à cause de l'oxydation du molybdène pendant le traitement thermique. Exemple 1.
On a reproduit le même essai que dans l'exemple de comparaison ci- dessus, sauf qu'avant de déposer l'électrode on a tout d'abord déposé sur le verre un revêtement barrière formé d'une couche d'oxyde mixte zinc-étain de 130 nm d'épaisseur, selon l'invention. Cette couche a été déposée à partir d'une cathode d'un alliage zinc-étain à 52% en poids de zinc et 48% en poids d'étain pour former une couche de Zn2SnO4 sur le verre.
Après traitement thermique comme dans l'exemple comparatif, on a mesuré une résistance électrique allant de 2,5 à 3,2 Ω/D selon l'endroit sur la surface de l'électrode. Cette valeur est variable suivant l'endroit parce que l'électrode s'est oxydée pendant le traitement thermique car elle n'était pas protégée de l'atmosphère oxydante. On constate toutefois que la valeur maximum est très nettement plus faible que pour l'exemple comparatif ci-dessus. La présence du revêtement barrière selon l'invention a donc nettement protégé l'électrode des espèces migrantes du verre pendant le traitement thermique, car la résistance électrique a nettement moins augmenté que pour l'exemple comparatif. Exemple 2.
Une feuille de verre 1 sodo-calcique ordinaire de 2,1 mm d'épaisseur a été introduite dans un dispositif de dépôt de couche de type magnétron. Sous une pression totale de 0,4 Pa et dans une atmosphère d'un mélange oxygène-argon, à raison de 80% d'O2, on a déposé sur le verre une couche d'oxyde mixte zinc-étain 2 de 130 nm à partir d'une cathode d'un alliage zinc-étain à 52% en poids de zinc et 48% en poids d'étain. On a déposé ensuite une couche électrode 3 en molybdène de 500 nm d'épaisseur totale à partir d'une cible de molybdène dans une atmosphère neutre d'argon. Cette électrode de molybdène a été subdivisée en 5 couches dont les épaisseurs sont respectivement 40/190/40/190/40 nm sous des conditions de pression totale et de puissance respectivement repérées par A/C/A/C/A, ces lettres correspondant aux conditions données dans le tableau 1 ci-après.
Tableau 1.
Puissance
Condition Pression [Pa] [W/cm2]
A 0,63 0,66 B 1,56 0,4 C 2,08 0,4 D 1,15 0,4 Afin de tester cette structure, on lui a fait subir un traitement thermique semblable à celui réalisé lors de la fabrication d'une cellule solaire de type CIS. Pour protéger cette structure de l'atmosphère externe pendant le traitement thermique, on l'a recouvert, aux fins d'examen, par une couche de 130 nm de stannate de zinc Zn2SnO4. Le traitement thermique a été effectué à 5000C pendant 30 minutes en atmosphère non-contrôlée, donc dans l'air.
On a mesuré la résistance électrique de l'électrode en molybdène avant et après traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,29 Ohm/α. Après traitement thermique, on a trouvé la valeur de 0,36 Ohm/α. On constate donc que la résistance électrique n'a pratiquement pas augmenté suite au traitement thermique et que sa valeur finale, pour une électrode de 500 nm, est tout à fait adéquate pour constituer une cellule solaire de type CIS, CZTS ou CIGS.
D'autre part, on a réalisé des analyses XPS et SIMS dynamiques, avant et après traitement thermique, qui confirment très clairement que la couche d'oxyde mixte selon l'invention a constitué une barrière très efficace à la migration du sodium à partir du verre.
Dans une analyse XPS, l'échantillon est irradié par des rayons X monochromatiques qui provoquent l'ionisation de ses atomes par effet photoélectrique. L'énergie cinétique de ces photoélectrons est mesurée ce qui permet de déduire l'énergie de liaison et donc la nature de l'atome.
Dans une analyse SIMS dynamique, la surface de l'échantillon à analyser est bombardée avec un faisceau d'ions. L'échantillon est alors pulvérisé, et une partie de la matière pulvérisée est ionisée. Ces ions secondaires sont alors accélérés vers un spectromètre de masse qui permettra de mesurer la composition élémentaire ou isotopique de la surface de l'échantillon.
Ces analyses montrent de plus que le zinc et l'étain de l'oxyde mixte n'ont nullement migres au travers de l'électrode en molybdène, ce qui veut dire que ces métaux ne pollueront pas la couche fonctionnelle de la cellule solaire. La figure 2 représente le graphique obtenu suite à l'analyse XPS de l'échantillon selon l'exemple 2 avant le traitement thermique. La figure 3 représente le graphique obtenu suite à l'analyse XPS de l'échantillon selon l'exemple 2 après le traitement thermique. Le temps d'irradiation en seconde est représenté en abscisse et pourcentage atomique des éléments est représenté en ordonnées. En examinant la figure 3, en comparaison de la figure 2, on constate que le sodium n'a pas migré dans l'électrode 3 au cours du traitement thermique et est resté bloqué par la couche barrière 2 d'oxyde mixte zinc-étain. On constate également que le zinc et l'étain, n'ont pas migres au travers de la couche électrode 3. En effet, on constate que le % de sodium (NaIS) tombe à zéro dans la zone où le zinc (Zn2p3) et l'étain (Sn3d5) ont des valeurs élevées. On constate aussi que dans la plage où le molybdène (Mo3d) est au maximum, le sodium, le zinc et l'étain sont à zéro.
D'autre part, on a fait subir au substrat revêtu un test d'adhésion comme décrit ci-dessus. Aucun arrachement ni aucune décoloration de la couche n'ont pas être observés. Exemples 3 à 10. L'exemple 1 a été répété en modifiant certains paramètres. Les structures et les conditions de dépôts de l'électrode sont donnés au tableau 2 ci- dessous.
Dans les exemples 4, 6 et 7, l'électrode en molybdène a été subdivisée en 5 couches dont les épaisseurs et les conditions de dépôt sont données dans le tableau 2, les lettres A, B, C et D correspondant aux conditions de dépôts données dans le tableau 1 ci-dessus. Dans l'exemple 7, le revêtement barrière a été subdivisé en trois couches d'oxyde mixte zinc-étain : une couche de teneur moins élevée en étain a été enfermée entre deux couches de stannate de zinc Zn2SnO4. Dans la colonne « structure » de ce tableau 2, le sigle ZSO5 représente un oxyde mixte zinc- étain obtenu par pulvérisation cathodique dans une atmosphère oxydante à partir d'une cible métallique d'un alliage de ZnSn à 52% en poids de Zn et 48% en poids de Sn, et le sigle ZSO9 représente un oxyde mixte zinc-étain obtenu par pulvérisation cathodique dans une atmosphère oxydante à partir d'une cible métallique d'un alliage de ZnSn à 90% en poids de Zn et 10% en poids de Sn. On a fait subir aux échantillons de ces exemples un traitement thermique à 5000C pendant 30 minutes en atmosphère non-contrôlée, donc dans l'air, comme pour les exemples précédent. Il est à noter toutefois que les électrodes en molybdène n'ont pas été recouvertes et qu'elles n'étaient donc pas protégées de l'oxydation lors du traitement thermique.
Les résistances électriques des électrodes ont été mesurées avant et après traitement thermique. Les valeurs mesurées sont données dans le tableau 2. Il faut noter que ces valeurs sont variables selon l'emplacement à cause de l'oxydation du molybdène pendant le traitement thermique, c'est pourquoi le tableau donne le minimum et le maximum mesurés.
Tableau II.
Figure imgf000016_0001
L'exemple 7 montre qu'il est avantageux de subdiviser le revêtement barrière. Les exemples 8 à 10 montrent que, pour la structure donnée et pour tout autre paramètre restant constant, l'épaisseur de 130 nm du revêtement barrière est suffisante et qu'une épaisseur de 180 nm est superflue. Exemples 11 et 12.
Une feuille de verre 1 sodo-calcique ordinaire de 2,1 mm d'épaisseur a été introduite dans un dispositif de dépôt de couche de type magnétron. Sous une pression totale de 0,4 Pa et dans une atmosphère d'un mélange oxygène-argon, à raison de 80% d'O2, on a déposé sur le verre une couche d'oxyde mixte zinc-titane 2 de 130 nm à partir d'une cathode plane de 432 x 127 mm d'un alliage zinc-titane à 70% en poids de zinc et 30% en poids de titane. On a déposé ensuite une couche électrode 3 en molybdène à partir d'une cible de molybdène, de même dimension que la cathode d'alliage zinc-titane, dans une atmosphère neutre d'argon sous une pression de 0,6 Pa et à une puissance de 3 kW. L'épaisseur de la couche électrode en molybdène était de 300 nm dans l'exemple 11 et de 500 nm dans l'exemple 12.
Afin de tester cette structure, on lui a fait subir un traitement thermique semblable à celui réalisé lors de la fabrication d'une cellule solaire de type CIS. Pour protéger cette structure de l'atmosphère externe pendant le traitement thermique, on l'a recouvert, aux fins d'examen, par une couche de 130 nm de stannate de zinc Zn2SnO4. Le traitement thermique a été effectué à 5000C pendant 30 minutes en atmosphère non-contrôlée, donc dans l'air.
On a mesuré la résistance électrique de l'électrode en molybdène avant et après traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,61 Ohm/α pour l'exemple 11 et de 0,35 Ohm/α pour l'exemple 12. Après traitement thermique, on a trouvé la valeur de 0,94 Ohm/α pour l'exemple 11 et de
0,51 Ohm/α pour l'exemple 12.
On constate donc que la résistance électrique a peu évolué suite au traitement thermique et que sa valeur finale est inférieur à 1 Ohm/α, et même inférieure à 0,6 Ohm/α pour l'exemple 12, tout à fait adéquate pour constituer une cellule solaire de type CIS, CZTS ou CIGS.
A titre de variante de l'exemple 11, le remplacement du titane par 12% en poids d'aluminium dans la cathode d'alliage zinc-titane formant la couche d'oxyde mixte 2 a également fourni un substrat adéquat pour constituer une cellule solaire de type CIS, CZTS ou CIGS. Exemple 13.
L'exemple 11 a été reproduit sauf en ce qui concerne la couche d'oxyde mixte 2. Dans l'exemple 13, la couche 2 était subdivisée en trois films selon la séquence suivante : un premier film de 50 nm de ZSO5 (oxyde mixte zinc-étain comme dans l'exemple 3), suivi d'un second film de 30 nm d'un oxyde mixte zinc- titane ZnTiOx ayant la même composition que dans l'exemple 11 et d'un troisième film de 50 nm de ZSO5 (identique au premier film). Cet exemple 13 a été soumis au même traitement thermique que l'exemple 11, et on a mesuré la résistance électrique de l'électrode en molybdène avant et après traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,58 Ohm/α. Après traitement thermique, on a trouvé la valeur de 0,89 Ohm/α.
On constate de nouveau que la résistance électrique a peu évolué suite au traitement thermique et que sa valeur finale est inférieur à 1 Ohm/α, tout à fait adéquate pour constituer une cellule solaire de type CIS, CZTS ou CIGS. Exemple 14.
Dans l'exemple 14, l'électrode en molybdène 3 avait une épaisseur totale de 330 nm et était subdivisée en deux films : un premier film de 30 nm d'épaisseur déposé sous 0,4 Pa en activant la cathode de Mo sous une puissance spécifique de 2,41 kW/cm2, suivi d'un deuxième film de 300 nm d'épaisseur déposé sous 0,6 Pa en activant la cathode de Mo sous une puissance spécifique de 9,64 kW/cm2.
La couche d'oxyde mixte 2 selon l'exemple 14 était subdivisée en trois films de manière identique à l'exemple 7. On a fait subir à l'ensemble le même traitement thermique que dans l'exemple 1, la couche électrode 3 en Mo n'étant pas protégée de l'atmosphère lors du traitement, et on a mesuré la résistance électrique de l'électrode en molybdène avant et après traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,58 Ohm/α. Après traitement thermique, on a trouvé une valeur allant de 0,99 à 1,06 Ω/D selon l'endroit sur la surface de l'électrode.
A titre de comparaison, une couche électrode identique en Mo a été déposée directement sur une feuille de verre, sans couche d'oxyde mixte 2, dans les mêmes conditions que l'exemple 14 et la feuille revêtue a été soumise au même traitement thermique. Avant traitement thermique, on a trouvé la valeur de 0,60 Ohm/α. Après traitement thermique, on a trouvé une valeur allant de 5,89 à 11,02 Ohm /D selon l'endroit sur la surface de l'électrode.

Claims

REVENDICATIONS
1. Substrat en verre portant au moins une électrode, pour dispositif électronique, sous forme de couche mince, caractérisé en ce qu'un revêtement barrière comprenant au moins une couche à base d'un oxyde mixte de zinc et d'au moins un autre élément, contenant au moins 10% de zinc, est disposé entre le substrat et l'électrode.
2. Substrat en verre selon la revendication 1, caractérisé en ce que l'électrode est à base de molybdène.
3. Substrat en verre selon l'une des revendications 1 ou 2, caractérisé en ce que la couche mince constituant l'électrode a une épaisseur totale inférieure à 1000 nm, de préférence inférieure à 800 nm, et avantageusement inférieure à 600 nm.
4. Substrat en verre selon l'une des revendications précédentes, caractérisé en ce que la couche mince constituant l'électrode est subdivisée en au moins deux couches, de préférence au moins trois couches, obtenue par pulvérisation cathodique dans des conditions de dépôt différentes.
5. Substrat en verre selon l'une des revendications précédentes, caractérisé en ce que la résistance électrique de l'électrode, après avoir subi un traitement thermique à 5000C pendant 30 minutes protégée de l'oxydation, est inférieure à 2 Ohms/α, de préférence inférieure à 0,8 Ohms/α et avantageusement égale ou inférieure à 0,6 Ohms/α.
6. Substrat en verre selon l'une des revendications précédentes, caractérisé en ce que le dit autre élément est choisi parmi les éléments suivants : Sn, Ti, Ta, Zr, Nb, Ga, Bi, Al et leur mélange, de préférence Sn, Ti et/ou Al.
7. Substrat en verre selon l'une des revendications précédentes, caractérisé en ce que le revêtement barrière comprend un empilement d'au moins deux couches de compositions différentes.
8. Substrat en verre selon l'une des revendications précédentes, caractérisé en ce que le dit autre élément est présent à raison d'au moins 4% en poids.
9. Substrat en verre selon l'une des revendications précédentes, caractérisé en ce que le dit autre élément est de l'étain et en ce que l'oxyde mixte zinc-étain contient au moins 20% d'étain.
10. Substrat en verre la revendication 9, caractérisé en ce que le revêtement barrière comprend un empilement d'au moins deux couches à base d'oxyde mixte zinc-étain de compositions différentes.
11. Substrat en verre selon l'une des revendications 9 ou 10, caractérisé en ce qu'au moins une couche d'oxyde mixte zinc-étain comprend au moins 40% d'étain et au moins 40% de zinc.
12. Substrat en verre selon l'une des revendications précédentes, caractérisé en ce que le revêtement barrière a une épaisseur totale comprise entre 80 et 500 nm, de préférence entre 80 et 200 et avantageusement entre 100 et 150 nm.
13. Substrat en verre selon l'une des revendications précédentes, caractérisé en ce que, après avoir subi un traitement thermique à 5000C pendant 30 minutes, l'électrode n'est pas arrachée du substrat lorsqu'on lui fait subir le test d'adhésion décrit dans la description.
14. Dispositif électronique comprenant un substrat en verre selon l'une des revendications précédentes.
15. Dispositif électronique selon la revendication 14, caractérisé en ce qu'il constitue une cellule solaire photovoltaïque.
16. Dispositif électronique selon l'une des revendications 14 ou 15, caractérisé en ce qu'une couche à base de séléniure et/ou de sulfure de cuivre et d'indium ou de cuivre, de zinc et d'étain est déposée sur l'électrode.
PCT/EP2009/054509 2008-04-16 2009-04-16 Substrat en verre portant une electrode WO2009144086A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09753741A EP2266140A1 (fr) 2008-04-16 2009-04-16 Substrat en verre portant une electrode
JP2011504460A JP2011517132A (ja) 2008-04-16 2009-04-16 電極を支持するガラス基板
CN2009801135056A CN102047433B (zh) 2008-04-16 2009-04-16 带电极的玻璃基材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08103576 2008-04-16
EP08103576.8 2008-04-16

Publications (1)

Publication Number Publication Date
WO2009144086A1 true WO2009144086A1 (fr) 2009-12-03

Family

ID=39800724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/054509 WO2009144086A1 (fr) 2008-04-16 2009-04-16 Substrat en verre portant une electrode

Country Status (5)

Country Link
US (1) US20090260678A1 (fr)
EP (1) EP2266140A1 (fr)
JP (1) JP2011517132A (fr)
CN (1) CN102047433B (fr)
WO (1) WO2009144086A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838788A (zh) * 2010-05-06 2010-09-22 深圳丹邦投资集团有限公司 一种原位生长Cu2SixSn1-xS3光伏薄膜的方法
JP2012160556A (ja) * 2011-01-31 2012-08-23 Showa Shell Sekiyu Kk Czts系薄膜太陽電池の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402996B (zh) * 2010-01-12 2013-07-21 Univ Nat Kaohsiung Marine 以銅鋅錫(CuZnSn)合金製備太陽能電池的CuxZn SnSy(CZTS)薄膜之方法
EP2556542A1 (fr) * 2010-04-09 2013-02-13 Platzer-Björkman, Charlotte Cellules solaires photovoltaïques à couches minces
WO2012037242A2 (fr) * 2010-09-14 2012-03-22 E. I. Du Pont De Nemours And Company Substrats polymères flexibles enrobés de verre pour cellules photovoltaïques
US20120064352A1 (en) * 2010-09-14 2012-03-15 E. I. Du Pont De Nemours And Company Articles comprising a glass - flexible stainless steel composite layer
FR2969389A1 (fr) * 2010-12-21 2012-06-22 Saint Gobain Substrat conducteur a base de molybdène
GB201101910D0 (en) * 2011-02-04 2011-03-23 Pilkington Group Ltd Growth layer for the photovol taic applications
KR20140047113A (ko) * 2011-08-10 2014-04-21 쌩-고벵 글래스 프랑스 전력 손실이 감소된 태양광 모듈 및 그의 제조 방법
US20130133745A1 (en) * 2011-11-30 2013-05-30 James Patrick Hamilton Incorporation of alkaline earth ions into alkali-containing glass surfaces to inhibit alkali egress
US9246025B2 (en) 2012-04-25 2016-01-26 Guardian Industries Corp. Back contact for photovoltaic devices such as copper-indium-diselenide solar cells
US8809674B2 (en) 2012-04-25 2014-08-19 Guardian Industries Corp. Back electrode configuration for electroplated CIGS photovoltaic devices and methods of making same
US9935211B2 (en) 2012-04-25 2018-04-03 Guardian Glass, LLC Back contact structure for photovoltaic devices such as copper-indium-diselenide solar cells
US9419151B2 (en) 2012-04-25 2016-08-16 Guardian Industries Corp. High-reflectivity back contact for photovoltaic devices such as copper—indium-diselenide solar cells
US9876129B2 (en) * 2012-05-10 2018-01-23 International Business Machines Corporation Cone-shaped holes for high efficiency thin film solar cells
CN102867860B (zh) * 2012-09-12 2015-08-12 厦门神科太阳能有限公司 一种用于cigs基薄膜光伏电池的过渡层及其制备方法
KR101436539B1 (ko) 2012-11-06 2014-09-02 엘에스엠트론 주식회사 박막형 태양전지 및 그 제조방법
US20140261668A1 (en) * 2013-03-15 2014-09-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Growth of cigs thin films on flexible glass substrates
AT14576U1 (de) * 2014-08-20 2016-01-15 Plansee Se Metallisierung für ein Dünnschichtbauelement, Verfahren zu deren Herstellung und Sputtering Target
US11185440B2 (en) 2017-02-02 2021-11-30 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
US5711824A (en) * 1995-01-09 1998-01-27 Semiconductor Energy Laboratory Co., Ltd. Solar cell
DE10127255A1 (de) * 2001-06-05 2003-01-16 Univ Stuttgart Konditionierung von Glasoberflächen für den Transfer von CIGS-Solarzellen auf flexible Kunstoffsubstrate
WO2007071663A1 (fr) * 2005-12-21 2007-06-28 Shell Erneuerbare Energien Gmbh Procédé de fabrication d’un dispositif photovoltaïque à pellicule mince et dispositif photovoltaïque à pellicule mince
EP1833096A1 (fr) 2004-12-09 2007-09-12 Showa Shell Sekiyu Kabushiki Kaisha Batterie solaire à film mince à base cis et procédé de fabrication de ladite batterie
US20070209700A1 (en) * 2004-04-28 2007-09-13 Honda Motor Co., Ltd. Chalcopyrite Type Solar Cell
WO2007106250A2 (fr) 2006-02-22 2007-09-20 Guardian Industries Corp. Structure d'electrode a utiliser dans un dispositif electronique et son procede de fabrication

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352755B1 (en) * 1994-10-04 2002-03-05 Ppg Industries Ohio, Inc. Alkali metal diffusion barrier layer
JPH0936407A (ja) * 1995-07-24 1997-02-07 Sanyo Electric Co Ltd 太陽電池
US6833194B1 (en) * 1998-05-12 2004-12-21 Ppg Industries Ohio, Inc. Protective layers for sputter coated article
DE19848751C1 (de) * 1998-10-22 1999-12-16 Ver Glaswerke Gmbh Schichtsystem für transparente Substrate
FR2820241B1 (fr) * 2001-01-31 2003-09-19 Saint Gobain Substrat transparent muni d'une electrode
WO2004032189A2 (fr) * 2002-09-30 2004-04-15 Miasolé Appareil et procede de fabrication conçus pour produire a grande echelle de cellules solaires a film mince
JP4241446B2 (ja) * 2003-03-26 2009-03-18 キヤノン株式会社 積層型光起電力素子
SE0400631D0 (sv) * 2004-03-11 2004-03-11 Forskarpatent I Uppsala Ab Thin film solar cell and manufacturing method
US20050238923A1 (en) * 2004-04-27 2005-10-27 Thiel James P Hybrid coating stack
JP2006222384A (ja) * 2005-02-14 2006-08-24 Matsushita Electric Ind Co Ltd 集積型薄膜太陽電池及びその製造方法
JP2007059484A (ja) * 2005-08-22 2007-03-08 Matsushita Electric Ind Co Ltd 太陽電池の製造方法および太陽電池
US7601558B2 (en) * 2006-10-24 2009-10-13 Applied Materials, Inc. Transparent zinc oxide electrode having a graded oxygen content
US20080105293A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
US5711824A (en) * 1995-01-09 1998-01-27 Semiconductor Energy Laboratory Co., Ltd. Solar cell
DE10127255A1 (de) * 2001-06-05 2003-01-16 Univ Stuttgart Konditionierung von Glasoberflächen für den Transfer von CIGS-Solarzellen auf flexible Kunstoffsubstrate
US20070209700A1 (en) * 2004-04-28 2007-09-13 Honda Motor Co., Ltd. Chalcopyrite Type Solar Cell
EP1833096A1 (fr) 2004-12-09 2007-09-12 Showa Shell Sekiyu Kabushiki Kaisha Batterie solaire à film mince à base cis et procédé de fabrication de ladite batterie
WO2007071663A1 (fr) * 2005-12-21 2007-06-28 Shell Erneuerbare Energien Gmbh Procédé de fabrication d’un dispositif photovoltaïque à pellicule mince et dispositif photovoltaïque à pellicule mince
WO2007106250A2 (fr) 2006-02-22 2007-09-20 Guardian Industries Corp. Structure d'electrode a utiliser dans un dispositif electronique et son procede de fabrication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. SAKURAI; M. YONEMURA; S. ISHIZUKA; K. MATSUBARA; A. YAMADA; S. NIKI; M. SUGIYAMA; H. NAKANISHI: "CIGS solar cells using ZnO back contact layers", 22ND EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, MILAN, ITALY, 3 September 2007 (2007-09-03), pages 1867 - 1869
See also references of EP2266140A1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838788A (zh) * 2010-05-06 2010-09-22 深圳丹邦投资集团有限公司 一种原位生长Cu2SixSn1-xS3光伏薄膜的方法
JP2012160556A (ja) * 2011-01-31 2012-08-23 Showa Shell Sekiyu Kk Czts系薄膜太陽電池の製造方法

Also Published As

Publication number Publication date
CN102047433B (zh) 2013-02-13
CN102047433A (zh) 2011-05-04
EP2266140A1 (fr) 2010-12-29
US20090260678A1 (en) 2009-10-22
JP2011517132A (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
EP2266140A1 (fr) Substrat en verre portant une electrode
EP2777075B1 (fr) Substrat conducteur pour cellule photovoltaïque
EP1151480A1 (fr) Procede pour la fabrication de cellules solaires et cellule solaire a couche mince
EP2286458A2 (fr) Cellule photovoltaïque et substrat de cellule photovoltaïque
FR2985092A1 (fr) Anode transparente pour oled
FR2939563A1 (fr) Substrat de face avant de panneau photovoltaique, panneau photovoltaique et utilisation d'un substrat pour une face avant de panneau photovoltaique
WO2011107697A1 (fr) Cellule photovoltaïque
WO2011107701A1 (fr) Cellule photovoltaïque incorporant une nouvelle couche tco
EP2400555A1 (fr) Cellule comprenant un materiau photovoltaïque à base de cadmium
WO2012110613A2 (fr) Substrat verrier transparent conducteur pour cellule photovoltaique
FR2976729A1 (fr) Substrat a electrode pour dispositif oled et un tel dispositif oled
EP2521183A2 (fr) Cellule photovoltaïque incorporant une couche tampon d'oxyde(s) de zinc et d'etain
FR2994509A1 (fr) Support conducteur diffusant pour dispositif oled, ainsi que dispositif oled l'incorporant
EP2783402A1 (fr) Substrat à couche fonctionnelle comprenant un composé soufré
FR2932611A1 (fr) Cellule photovoltaique et substrat de cellule photovoltaique
FR2991980A1 (fr) Procede de depot de couches minces avec etape de traitement sous vide et produit obtenu
EP2400556A2 (fr) Cellule comprenant un materiau photovoltaïque à base de cadmium
FR3031240A3 (fr) Substrat conducteur pour cellule photovoltaique
EP3069386B1 (fr) Substrat de contact arrière pour cellule photovoltaïque
WO2013001222A1 (fr) Substrat conducteur pour cellule photovoltaïque
WO2012085395A2 (fr) Substrat conducteur a base de molybdene

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113505.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09753741

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6934/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009753741

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011504460

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE