CN108039375A - 指状交叉背接触太阳电池的制备方法 - Google Patents

指状交叉背接触太阳电池的制备方法 Download PDF

Info

Publication number
CN108039375A
CN108039375A CN201711050571.6A CN201711050571A CN108039375A CN 108039375 A CN108039375 A CN 108039375A CN 201711050571 A CN201711050571 A CN 201711050571A CN 108039375 A CN108039375 A CN 108039375A
Authority
CN
China
Prior art keywords
solar cell
treatment process
finger
laser
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711050571.6A
Other languages
English (en)
Inventor
李华
靳玉鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Longi Solar Technology Co Ltd
Original Assignee
Taizhou Longi Solar Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Longi Solar Technology Co Ltd filed Critical Taizhou Longi Solar Technology Co Ltd
Priority to CN201711050571.6A priority Critical patent/CN108039375A/zh
Publication of CN108039375A publication Critical patent/CN108039375A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种指状交叉背接触太阳电池的制备方法,对硅基底进行去损伤和清洗过程;在背面分别形成局域发射极和背表面场;前表面织构化;前表面场制备;正面钝化减反射及背面钝化;在背面图形化形成包含导电材料的电极浆料层;进行第一热处理过程;进行第二热处理过程,第二热处理过程采用激光局域辐照处理过程,激光局域辐照处理过程为在电极浆料层上进行局域辐照;经过激光局域辐照处理,使得电极和半导体形成局域接触,有效降低了金属复合对电池性能的影响。能够降低烧结温度,拓宽电池烧结工艺窗口,使得钝化性能和接触性能等同时达到最佳,从而达到更好的电池转换效率;免去了提前开孔等复杂的工艺流程。

Description

指状交叉背接触太阳电池的制备方法
技术领域
本发明涉及一种指状交叉背接触太阳电池的制备方法。
背景技术
目前,随着化石能源的逐渐耗尽,太阳电池作为新的能源替代方案,使用越来越广泛。太阳电池是将太阳的光能转换为电能的装置。太阳电池利用光生伏特原理产生载流子,然后使用电极将载流子引出,从而利于将电能有效利用。
指状交叉背接触电池,又称为IBC电池。其中IBC是指Interdigitated backcontact指状交叉背接触。IBC电池最大的特点是发射极和金属接触都处于电池的背面,正面没有金属电极遮挡的影响,因此具有更高的短路电流Jsc,同时背面可以容许较宽的金属栅线来降低串联电阻Rs从而提高填充因子FF;并且这种正面无遮挡的电池不仅转换效率高,而且看上去更美观,同时,全背电极的组件更易于装配。IBC电池是目前实现高效晶体硅电池的技术方向之一。
目前使用的指状交叉背接触太阳电池的制备方法的步骤中,在形成图形化导电浆料的涂布需要通过激光开膜或化学腐蚀等方法在电池的发射极和背面场的相应位置形成电池正负极的接触开口,工艺流程较为复杂,稳定性也较难控制。
发明内容
本发明的目的是提供一种指状交叉背接触太阳电池的制备方法解决现有技术中存在的在形成图形化导电浆料的涂布需要通过激光开膜或化学腐蚀等方法在电池的发射极和背面场的相应位置形成电池正负极的接触开口,工艺流程较为复杂,稳定性也较难控制问题。
本发明的技术解决方案是:
一种指状交叉背接触太阳电池的制备方法,包括以下步骤,
步骤1、对硅基底进行去损伤和清洗过程;
步骤2、在背面分别形成局域发射极和背表面场;
步骤3、前表面织构化;
步骤4、前表面场制备;
步骤5、正面钝化减反射及背面钝化;
步骤6、在背面图形化形成包含导电材料的电极浆料层;
步骤7、进行第一热处理过程;
步骤8、进行第二热处理过程,第二热处理过程采用激光局域辐照处理过程,激光局域辐照处理过程为在电极浆料层上进行局域辐照,电极浆料层经过激光辐照的区域穿透介质膜和硅基底直接形成接触,未经过激光辐照的区域不穿透介质膜,电极浆料层上经过辐照区域的面积小于电极浆料层的面积。
进一步地,步骤1-5中的各步骤进行一次或多次。
进一步地,第一热处理过程使用的峰值温度为500~750℃。
进一步地,激光局域辐照处理过程使用的激光器的波长是300~1100nm。
进一步地,激光局域辐照处理过程的光斑行进方向采用沿着栅线方向进行或垂直于栅线方向进行。
进一步地,激光辐照方法中,激光辐照的光斑大小采用小于或等于太阳能电池栅线宽度的光斑进行扫描式辐照,或者采用大于太阳能电池栅线的宽度进行扫描式辐照,辐照次数采用一次以上。
进一步地,在电极浆料层上经过激光辐照的区域不连续。
该种指状交叉背接触太阳电池的制备方法,对硅基底进行去损伤和清洗过程;在背面分别形成局域发射极和背表面场;前表面织构化;前表面场制备;正面钝化减反射及背面钝化;在背面图形化形成包含导电成分的电极浆料层;在已经完成至少发射极制备和介质膜制备的半导体上,图形化形成包含导电成分的电极浆料层,然后通过第一热处理过程和激光局部辐照处理过程,形成局部接触。
本发明的有益效果是:该种指状交叉背接触太阳电池的制备方法,指状交叉背接触太阳电池的电极经过激光局域辐照处理,可以使得电极和半导体形成局域接触,有效降低了金属复合对电池性能的影响。另外由于采用激光局域加热的方法,降低烧结温度,可以拓宽电池烧结工艺窗口,因使得钝化性能和接触性能等同时达到最佳,从而达到更好的电池转换效率;免去了提前开孔等复杂的工艺流程。
附图说明
图1是本发明实施例指状交叉背接触太阳电池的结构示意图;
图2是实施例中指状交叉背接触太阳电池的背面电极整体结构示意图;
图3是实施例中指状交叉背接触太阳电池的电极局部接触结构的制备方法的流程示意图;其中:a为表面涂覆有电极浆料层的有介质膜的硅基底的剖面图,a1为表面涂覆有电极浆料层的有介质膜的硅基底的俯视图,b为经过激光辐照后电极区域形成了穿透介质膜的接触结构的剖面图,b1为经过激光辐照后电极区域形成了穿透介质膜的接触结构的俯视图。
其中:1-减反射层,2-钝化层,3-前表面场,4-硅基底,5-背表面场,6-背面钝化层,7-负电极细栅,8-绒面结构,9-经过局域加热处理形成的接触区域,10-发射极,11-正电极细栅,12-绝缘胶,13-负电极主栅,14-正电极主栅。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
实施例
一种指状交叉背接触太阳电池的制备方法,对硅基底4进行去损伤和清洗过程,形成绒面结构8;在背面分别形成局域发射极10和背表面场5;前表面织构化;前表面场3制备;正面钝化减反射及背面钝化;在背面图形化形成包含导电成分的电极浆料层;在已经完成至少发射极10制备和介质膜制备的半导体上,图形化形成包含导电成分的电极浆料层,然后通过第一热处理过程和激光局部辐照处理过程,形成局部接触,第一热处理过程和第二热处理过程可以交换顺序。有效降低了金属复合对电池性能的影响,另外由于采用激光局域加热的方法,降低烧结温度,可以拓宽电池烧结工艺窗口,因使得钝化性能和接触性能等同时达到最佳,从而达到更好的电池转换效率;免去了提前开孔等复杂的工艺流程,使得指状交叉背接触太阳电池的制备流程简化。
以下举例一种使用上述结构和方法的背接触太阳电池的制备方法,为如图1、图2和图3所示结构。此背接触太阳电池的制备方法具体如下:
1)对硅基底4进行去损伤和清洗过程。n型单晶硅作为电池硅基底4,使用含有KOH的溶液进行去损伤处理,并使用还有氢氟酸的溶液进行清洗。
2)在背面分别形成局域发射极10和背表面场5。使用BBr3热扩散完成背面发射极10的制备,并在热扩散过程中通入足量的氧气在970℃条件下氧化,形成较厚的氧化层。然后使用激光氧化层上进行局部开膜,局域化预留出背表面场5的区域。开槽根数为150根。对开膜区域进行腐蚀清洗后进行磷注入形成背表面场5。然后在电池背面沉积氮化硅掩膜
3)使用三甲基氢氧化铵溶液中完成正面的织构化,溶液浓度5%wt,温度80℃。
4)使用POCl3热扩散完成前表面场3 n+层的制备。前表面场3的方块电阻200-400ohm/sq。
5)使用增强型等离子化学气相沉积(PECVD)在电池正面沉积SiNx作为钝化及减反射层1,厚度为80nm,折射率2.03。背面使用原子层沉积(ALD)沉积5-10nm氧化铝作为背面钝化层5,底层再使用PECVD在其上沉积70nm厚的氮化硅。在制备背面钝化层5之前仍然有包含氢氟酸洗在内的去除掩膜、清洗等过程。
6)采用丝网印刷方式在电池背面发射极10和背表面场5上方形成包含导电成分的电极浆料层。正极和负极的栅线互不相连;正电极细栅11和正电极主栅14相互连接,负电极细栅7和负电极主栅13相互连接;正电极主栅和负电极细栅之间印刷有绝缘胶12进行隔绝,负电极主栅和正电极细栅之间印刷有绝缘胶12进行隔绝。正电极细栅150根,负电极细栅150根,正电极主栅4根,负电极主栅4根。如图3所示。
7)烧结炉中完成第一加热处理。加热峰值温度400-750℃。本实施例中优选的加热处理峰值温度为650℃。
8)激光辐照从背面进行第二局部热处理。扫描方式为对细栅线进行脉冲式局部激光辐照处理,扫描方向沿着细栅线方向,其中辐照激光的波长为532nm,光斑大小为50um直径圆形,扫描速度为10000mm/s,频率为10kHz,在栅线上激光辐照的区域浆料穿透钝化层2和半导体形成接触,栅线上未辐照的区域则没有形成接触,在此条件下,在电极浆料处,两个相邻的激光辐照的间距为1mm,即在电极细栅线上每隔1mm有一个直径为50um圆形区域的电极浆料烧穿介质膜和底层的半导体形成接触,得到经过局域加热处理形成的接触区域9,其他电极浆料区域则不烧穿介质膜,也未形成接触。如图3所示即为电极浆料层经过激光辐照后,在辐照过的区域局域形成接触的过程,图3中:a为表面涂覆有电极浆料层的有介质膜的硅基底4的剖面图,a1为表面涂覆有电极浆料层的有介质膜的硅基底4的俯视图,b为经过激光辐照后电极区域形成了穿透介质膜的接触结构的剖面图,b1为经过激光辐照后电极区域形成了穿透介质膜的接触结构的俯视图。在电极区域上进行激光辐照,然后激光辐照的区域由于受热从而穿透介质膜层,和介质膜下方的半导体形成接触。
实际情况中,在半成品的制备流程中,表面织构化、发射极10制备以及钝化、减反射等的每个步骤可能出现一次或多次,顺序也可能完全不同,也可能加入或省略一个或几个步骤。上述钝化层2、减反射层1等的膜结构,均可以有一层或一层以上的结构。
实际电池流程中,同样地,将烧结步骤和激光辐照步骤进行调换,也可以达到相应的效果。
另外,本发明的上述实施方式为实力,具有与本发明的权利要求书所述的技术思想使之相同的方法并发挥相同作用效果的技术方案,均包含在本发明内。

Claims (7)

1.一种指状交叉背接触太阳电池的制备方法,其特征在于:包括以下步骤,
步骤1、对硅基底进行去损伤和清洗过程;
步骤2、在背面分别形成局域发射极和背表面场;
步骤3、前表面织构化;
步骤4、前表面场制备;
步骤5、正面钝化减反射及背面钝化;
步骤6、在背面图形化形成包含导电材料的电极浆料层;
步骤7、进行第一热处理过程;
步骤8、进行第二热处理过程,第二热处理过程采用激光局域辐照处理过程,激光局域辐照处理过程为在电极浆料层上进行局域辐照,电极浆料层经过激光辐照的区域穿透介质膜和硅基底直接形成接触,未经过激光辐照的区域不穿透介质膜,电极浆料层上经过辐照区域的面积小于电极浆料层的面积。
2.如权利要求1所述的指状交叉背接触太阳电池的制备方法,其特征在于:步骤1-5中的各步骤进行一次或多次。
3.如权利要求1所述的指状交叉背接触太阳电池的制备方法,其特征在于:第一热处理过程使用的峰值温度为500~750℃。
4.如权利要求1所述的指状交叉背接触太阳电池的制备方法,其特征在于:激光局域辐照处理过程使用的激光器的波长是300~1100nm。
5.如权利要求1-4任一项所述的指状交叉背接触太阳电池的制备方法,其特征在于:激光局域辐照处理过程的光斑行进方向采用沿着栅线方向进行或垂直于栅线方向进行。
6.如权利要求1-4任一项所述的指状交叉背接触太阳电池的制备方法,其特征在于:激光辐照方法中,激光辐照的光斑大小采用小于或等于太阳能电池栅线宽度的光斑进行扫描式辐照,或者采用大于太阳能电池栅线的宽度进行扫描式辐照,辐照次数采用一次以上。
7.如权利要求1-4任一项所述的指状交叉背接触太阳电池的制备方法,其特征在于:在电极浆料层上经过激光辐照的区域不连续。
CN201711050571.6A 2017-10-31 2017-10-31 指状交叉背接触太阳电池的制备方法 Pending CN108039375A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711050571.6A CN108039375A (zh) 2017-10-31 2017-10-31 指状交叉背接触太阳电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711050571.6A CN108039375A (zh) 2017-10-31 2017-10-31 指状交叉背接触太阳电池的制备方法

Publications (1)

Publication Number Publication Date
CN108039375A true CN108039375A (zh) 2018-05-15

Family

ID=62093871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711050571.6A Pending CN108039375A (zh) 2017-10-31 2017-10-31 指状交叉背接触太阳电池的制备方法

Country Status (1)

Country Link
CN (1) CN108039375A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404296A (zh) * 2008-11-13 2009-04-08 中山大学 一种改进型太阳电池前电极及其制作方法
WO2009153792A2 (en) * 2008-06-19 2009-12-23 Utilight Ltd. Light induced patterning
CN102263164A (zh) * 2011-07-06 2011-11-30 杨雪 硅太阳能电池金属半导体接触合金化制备工艺
CN102569522A (zh) * 2012-02-09 2012-07-11 常州大学 一种高效晶体硅太阳电池局部背接触结构的制备方法
CN104201217A (zh) * 2014-09-12 2014-12-10 合肥海润光伏科技有限公司 背面铝箔点接触的perc晶体硅太阳能电池制备方法
CN104704639A (zh) * 2012-10-04 2015-06-10 信越化学工业株式会社 太阳能电池单元的制造方法
CN106356431A (zh) * 2016-11-30 2017-01-25 浙江晶科能源有限公司 一种制备太阳能电池的方法
CN206179885U (zh) * 2016-08-26 2017-05-17 泰州中来光电科技有限公司 一种背接触太阳能电池及其组件和系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153792A2 (en) * 2008-06-19 2009-12-23 Utilight Ltd. Light induced patterning
CN101404296A (zh) * 2008-11-13 2009-04-08 中山大学 一种改进型太阳电池前电极及其制作方法
CN102263164A (zh) * 2011-07-06 2011-11-30 杨雪 硅太阳能电池金属半导体接触合金化制备工艺
CN102569522A (zh) * 2012-02-09 2012-07-11 常州大学 一种高效晶体硅太阳电池局部背接触结构的制备方法
CN104704639A (zh) * 2012-10-04 2015-06-10 信越化学工业株式会社 太阳能电池单元的制造方法
CN104201217A (zh) * 2014-09-12 2014-12-10 合肥海润光伏科技有限公司 背面铝箔点接触的perc晶体硅太阳能电池制备方法
CN206179885U (zh) * 2016-08-26 2017-05-17 泰州中来光电科技有限公司 一种背接触太阳能电池及其组件和系统
CN106356431A (zh) * 2016-11-30 2017-01-25 浙江晶科能源有限公司 一种制备太阳能电池的方法

Similar Documents

Publication Publication Date Title
CN105185858B (zh) 基于p型硅衬底的背接触式太阳能电池及其制备方法
CN106409956B (zh) 一种n型晶体硅双面太阳能电池结构及其制备方法
CN101937940B (zh) 印刷磷源单步扩散法制作选择性发射结太阳电池工艺
CN105405899A (zh) N型双面电池及其制作方法
WO2024055475A1 (zh) 一种联合钝化背接触电池及其制备方法
CN107863417A (zh) n型太阳能电池的制备方法
CN108039374A (zh) n型双面太阳电池的制备方法
CN205564789U (zh) 一种钝化接触n型太阳能电池及其组件和系统
CN204834653U (zh) 基于p型硅衬底的背接触式太阳能电池
CN106784152B (zh) 一种ibc电池的制备方法
CN108666386B (zh) 一种p型背接触太阳电池及其制备方法
CN115498057B (zh) 联合钝化背接触太阳能电池及其基于激光扩散的制备方法
CN102769070B (zh) 一种高效的太阳能电池制作方法
CN108666377A (zh) 一种p型背接触太阳电池及其制备方法
CN208352305U (zh) 一种p型背接触太阳电池
CN106098807A (zh) 一种n型晶体硅太阳能电池结构及其制备方法
CN108666379A (zh) 一种p型背接触太阳电池及其制备方法
CN105428453A (zh) 一种叉指型背接触电池的制作方法
CN102263164A (zh) 硅太阳能电池金属半导体接触合金化制备工艺
WO2012040917A1 (zh) 一种浅结太阳能电池及其制备方法
CN107993940A (zh) p型太阳能电池的制备方法
CN103066135A (zh) 一种前电极主栅线与硅衬底隔离的选择性发射极太阳电池及其制备方法
CN104009121B (zh) P型晶体硅双面刻槽埋栅电池制备方法
CN208538871U (zh) 一种p型背接触太阳电池
CN102800739B (zh) 一种选择性发射极单晶硅太阳电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180515

RJ01 Rejection of invention patent application after publication