WO2014054174A1 - 低重合度プロアントシアニジンの製法およびそれにより得られる低重合度プロアントシアニジン - Google Patents

低重合度プロアントシアニジンの製法およびそれにより得られる低重合度プロアントシアニジン Download PDF

Info

Publication number
WO2014054174A1
WO2014054174A1 PCT/JP2012/076002 JP2012076002W WO2014054174A1 WO 2014054174 A1 WO2014054174 A1 WO 2014054174A1 JP 2012076002 W JP2012076002 W JP 2012076002W WO 2014054174 A1 WO2014054174 A1 WO 2014054174A1
Authority
WO
WIPO (PCT)
Prior art keywords
proanthocyanidins
low
polymerization
degree
proanthocyanidin
Prior art date
Application number
PCT/JP2012/076002
Other languages
English (en)
French (fr)
Inventor
吉田 正
Original Assignee
フジッコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フジッコ株式会社 filed Critical フジッコ株式会社
Priority to PCT/JP2012/076002 priority Critical patent/WO2014054174A1/ja
Priority to JP2013516883A priority patent/JP5437537B1/ja
Publication of WO2014054174A1 publication Critical patent/WO2014054174A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/60Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2
    • C07D311/62Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2 with oxygen atoms directly attached in position 3, e.g. anthocyanidins

Definitions

  • the present invention provides a method for producing a low-polymerization degree proanthocyanidin capable of efficiently increasing the production of a low-degree-of-polymerization proanthocyanidin from a proanthocyanidin raw material containing a high-polymerization-degree proanthocyanidin or a proanthocyanidin constituent monomer. It relates to low polymerization degree proanthocyanidins.
  • Proanthocyanidins are compounds conventionally called “condensed tannins” and “non-hydrolyzable tannins”, and are known as a kind of polyphenols contained in plants.
  • the structure of proanthocyanidins generally has a bonding mode in which flavan-3-ol is a structural unit and condensed or polymerized at the 4-6 position or the 4-8 position.
  • proanthocyanidins are a general term for polymers of dimers or higher that are condensed or polymerized according to the above-mentioned bonding mode.
  • proanthocyanidins include arteriosclerosis prevention, cardiovascular disease prevention, anti-diabetes, anti-obesity, visceral fat accumulation suppression, anti-tumor, anti-inflammatory, anti-aging, antioxidant, anti-glycation, anti-allergy, anti-bacterial, hair growth, It has been reported that some of them exhibit physiological activities such as whitening action and blood flow improving action. Regarding the structure-activity relationship between these physiological activities and the degree of polymerization of proanthocyanidins, the current situation has not yet been fully elucidated. However, for hair growth activity, for example, the degree of polymerization (2 to 5 mer) is low. Proanthocyanidins have been reported to exhibit the highest activity (see Patent Document 1). In addition, as described above, those having a low degree of polymerization are considered to be effective in physiological activities other than hair-growth activity because they exhibit characteristics that are easily absorbed into the body.
  • this is a method of reducing the molecular weight of proanthocyanidins having a high degree of polymerization in the raw material by a method of decomposing by heating at high temperature in the presence of hydrochloric acid, nitric acid or hydrogen, or a method of decomposing by reacting with thiol compounds. .
  • the method of fragmenting high-polymerization proanthocyanidins into low molecules in the presence of hydrochloric acid, nitric acid, or hydrogen requires a reaction at a high temperature for a long time as described above, so it can be said that it is a simple method. Absent.
  • racemization structural transformation
  • the method of reacting with a thiol compound has a problem that the product becomes a non-natural product containing sulfur, and there is a problem that safety is concerned in application to foods, and that the flavor is poor.
  • the rate of fragmentation is high until the reaction proceeds too much to become a monomer (catechin or epicatechin), and proanthocyanidins with a low degree of polymerization (2-5 mer) can be obtained efficiently. Even so, there is a problem that the reaction control is difficult.
  • the present invention has been made in view of such circumstances, and a method for producing a low-polymerization degree proanthocyanidin capable of increasing the production of a target natural-type low-polymerization degree proanthocyanidin by a simple method and a method obtained thereby.
  • An object of the present invention is to provide a proanthocyanidin having a low polymerization degree.
  • the present invention provides a low polymerization degree proanthocyanidin in which an aqueous solution of a proanthocyanidin raw material is heated at a low temperature in the presence of a sulfo group-containing compound to increase the production of a natural low polymerization degree proanthocyanidin.
  • This manufacturing method is the first gist.
  • the second gist of the present invention is a low polymerization degree proanthocyanidin obtained by the production method of the first gist.
  • the present inventor conducted intensive studies on a production method for increasing the production of a desired natural low-polymerization degree proanthocyanidin by a simple method.
  • an aqueous solution of a proanthocyanidin raw material such as a plant body (a raw material containing a proanthocyanidin monomer such as catechin or epicatechin) is added to the presence of a sulfo group-containing compound. It has been found that when it is heated at a low temperature under low temperature, it is possible to efficiently produce the desired natural type low-polymerization proanthocyanidins without causing racemization.
  • the method for producing low-polymerization proanthocyanidins according to the present invention is to increase the production of natural-type low-polymerization proanthocyanidins by heating an aqueous solution of proanthocyanidins at low temperature in the presence of a sulfo group-containing compound. It is. This makes it possible to increase the production of the target natural type low-polymerization degree proanthocyanidins by a simple method. And since the low polymerization degree proanthocyanidins obtained by the production method of the present invention are natural proanthocyanidins, they are safe when applied to the human body such as food.
  • low-polymerization proanthocyanidins with increased production as described above were isolated and purified, and the desired physiological activity (arteriosclerosis prevention, cardiovascular disease prevention, anti-diabetes, anti-obesity, visceral fat accumulation suppression, anti-tumor, Anti-inflammatory, anti-aging, anti-oxidation, anti-glycation, anti-allergy, antibacterial, hair growth, whitening action, blood flow improving action, etc. be able to.
  • the above-mentioned proanthocyanidin raw material is a mixture of low-polymerization proanthocyanidins or low-polymerization proanthocyanidins, and higher-polymerization proanthocyanidins than low-polymerization proanthocyanidins. If it is, the target natural type low-polymerization degree proanthocyanidins can be produced more efficiently.
  • the sulfo group-containing compound is at least one selected from the group consisting of sulfuric acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, 10-camphorsulfonic acid, and sulfo group-containing ion exchange resin.
  • the target natural type low polymerization degree proanthocyanidins can be produced more efficiently.
  • the desired natural type low-polymerization degree proanthocyanidins can be produced more efficiently without causing racemization. be able to.
  • the target natural type low-polymerization degree proanthocyanidins can be produced more efficiently.
  • the target natural type low-polymerization degree proanthocyanidins can be produced more efficiently.
  • the aqueous solution of the above proanthocyanidin raw material uses a mixed water of at least one of methanol and ethanol and water as a solvent, it is possible to increase the production of the desired natural type low-polymerization proanthocyanidins.
  • 6 is a graph showing the results of quantitative analysis of low molecular weight substances in Experiment 1.
  • 6 is a chromatogram showing the results of liquid chromatography of Example 4.
  • 6 is a chromatogram showing the results of liquid chromatography of Comparative Example 4.
  • 10 is a chromatogram showing the results of liquid chromatography of Comparative Example 5.
  • 10 is a chromatogram showing the results of liquid chromatography of Comparative Example 6.
  • 10 is a chromatogram showing the results of liquid chromatography of Comparative Example 7.
  • 6 is a graph showing the results of quantitative analysis of low molecular weight substances for each reaction time in Example 4.
  • 6 is a chromatogram showing the results of liquid chromatography of Example 5.
  • 10 is a chromatogram showing the results of liquid chromatography of Example 6.
  • Example 6 is a graph showing the results of quantitative analysis of low molecular weight substances for each reaction time in Example 5.
  • 10 is a graph showing the results of quantitative analysis of low molecular weight substances for each reaction time in Example 6.
  • 10 is a graph showing the results of quantitative analysis of low molecular weight substances for each reaction time in Example 7.
  • 10 is a graph showing the results of quantitative analysis of low molecular weight substances for each reaction time in Example 8. It is a graph which shows the quantitative analysis result of the low molecular weight body in Experiment 5. It is a graph which shows the quantitative analysis result of the low molecular weight body in Experiment 6. It is a graph which shows the quantitative analysis result of the low molecular weight body in Experiment 7. It is a graph which shows the quantitative analysis result of the low molecular weight body in Experiment 8. It is a graph which shows the quantitative analysis result of the low molecular weight body in Experiment 9.
  • the process for producing low-polymerization proanthocyanidins has a configuration in which an aqueous solution of a proanthocyanidin raw material is heated at a low temperature in the presence of a sulfo group-containing compound to increase the production of the desired natural low-polymerization proanthocyanidins.
  • the “raw material for proanthocyanidins” means proanthocyanidins having a polymerization degree different from that of proanthocyanidins to be increased in production (polymers of proanthocyanidins, etc.), and constituent monomers of proanthocyanidins (catechin and epicatechin) The raw material containing is shown.
  • the low polymerization degree proanthocyanidins usually indicate dianthrames of proanthocyanidins. Since the low polymerization degree proanthocyanidins obtained by the production method of the present invention are natural types, procyanidins B1 (dimer), B2 (dimer), C1 (trimer), cinnamtannin A2 ( Tetramer).
  • plant materials include, for example, grapes, oysters, apples, pine, chestnuts, peanuts, azuki bean, cranberries, black soybeans, cacao, cinnamon, mutamba, hawthorn, bunoki, carambola, mother wort, keclopia, cola ( (Cola nut), lychee, ginkgo and other plants, fruits, pericarps, seeds, astringent skin, shells, leaves, bark and the like.
  • These plant raw materials are usually used as extraction raw materials after being subjected to a drying step such as air drying, but can also be used as extraction raw materials as they are.
  • the raw material may be applied to the production method of the present invention after rough purification in advance.
  • the above-mentioned rough purification includes, for example, solid-liquid extraction method, liquid-liquid distribution method, adsorption chromatography, distribution chromatography, hydrophobic interaction chromatography, ion exchange chromatography, size exclusion chromatography, countercurrent liquid-liquid distribution.
  • This method is carried out by applying a treatment method such as a method for adsorbent treatment.
  • proanthocyanidin raw materials contain a large amount of low-polymerization degree proanthocyanidins, but in the production method of the present invention, in addition to this, monomers such as high-polymerization degree proanthocyanidins, catechin, and epicatechin are used as raw materials. As a result of the decomposition and synthesis, proanthocyanidins with a low polymerization degree are increased. Therefore, if the proanthocyanidin raw material contains a high-polymerization degree proanthocyanidin and a monomer, more low-polymerization degree proanthocyanidins can be obtained by applying the production method of the present invention.
  • a monomer such as high polymerization degree proanthocyanidins, catechins, and epicatechins, which are available as commercially available reagents without using plant raw materials as materials as described above, are used. It may be used as an anthocyanidin raw material.
  • the production method of the present invention if the proanthocyanidin raw material contains proanthocyanidins with a higher degree of polymerization than proanthocyanidins with a higher degree of polymerization, the production of proanthocyanidins with the desired low degree of polymerization will be increased by decomposition. As long as it contains proanthocyanidins having a lower degree of polymerization than proanthocyanidins that increase the production, the target low-polymerization degree proanthocyanidins can be increased by synthesis.
  • the above-mentioned proanthocyanidin raw material is a mixture of low-polymerization proanthocyanidins or low-polymerization proanthocyanidins, and higher-polymerization proanthocyanidins than low-polymerization proanthocyanidins. It is preferable that the desired natural type low polymerization degree proanthocyanidins can be produced more efficiently.
  • the production method of the present invention when only a monomer is used as a proanthocyanidin raw material, it is not possible to synthesize a low polymerization degree proanthocyanidin. Must be used in combination with proanthocyanidins.
  • the proanthocyanidin raw material is added to an aqueous solvent such as water, methanol, and ethanol to prepare an aqueous solution of the proanthocyanidin raw material.
  • an aqueous solvent such as water, methanol, and ethanol
  • the above solution use methanol or a mixed water of ethanol and water as a solvent because it can increase the production of the desired natural type low-polymerization proanthocyanidins.
  • concentration of methanol and ethanol in the said mixed water shall be 80% or less from the said viewpoint.
  • the aqueous solution of the proanthocyanidin raw material thus obtained is heated at a low temperature in the presence of a sulfo group-containing compound as described above.
  • a sulfo group-containing compound various compounds can be used.
  • sulfuric acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, 10-camphorsulfonic acid, and sulfo group-containing ion exchange resin are used.
  • it is preferable in that the target natural type low polymerization degree proanthocyanidins can be produced more efficiently.
  • the normality of the acid in the aqueous solution is preferably in the range of 0.01 to 0.5N, more preferably in the range of 0.03 to 0.5N, from the viewpoint of reactivity.
  • the low-temperature heating in the presence of the sulfo group-containing compound is usually performed at a temperature of 40 to 100 ° C., preferably 50 to 80 ° C., more preferably 60 to 70 ° C. That is, such low-temperature heating makes it possible to more efficiently produce the target natural type low polymerization degree proanthocyanidins without causing racemization.
  • the low temperature heating is preferably performed for 10 to 240 minutes, more preferably 30 to 120 minutes. That is, even in such a short period of time, the process for producing a low degree of polymerization proanthocyanidins of the present invention makes it possible to produce the target natural type low degree of polymerization proanthocyanidins more efficiently. is there.
  • the low-temperature heating in the presence of the sulfo group-containing compound is usually performed under conditions of pH 4.0 or less, preferably pH 2.0 or less, more preferably pH 0.3 to 1.5. That is, when the reaction is carried out under such conditions, the target natural type low polymerization degree proanthocyanidins can be produced more efficiently.
  • the reaction proceeds excessively (high polymerization or monomerization proceeds), and the yield of the desired natural low-polymerization degree proanthocyanidins Therefore, it is necessary to neutralize the reaction at an appropriate place to stop the reaction.
  • the neutralization for example, caustic soda (sodium hydroxide), potassium hydroxide, quick lime (CaO), slaked lime (calcium hydroxide), limestone, magnesium hydroxide and the like are used.
  • the reaction is stopped by cooling to 20 ° C. or lower, preferably 0 to 20 ° C.
  • the separated and purified proanthocyanidins can be used for various purposes such as research reagents.
  • the proanthocyanidins when used for materials such as pharmaceuticals and foods and drinks, the proanthocyanidins are safe so as not to cause health hazards.
  • the desulfurization is performed using, for example, various anion exchange resins, ion exchange membranes, adsorption resins, and the like.
  • the low polymerization degree proanthocyanidins thus separated and purified are useful as materials for research reagents, pharmaceuticals, foods and drinks, cosmetics and the like.
  • the desired physiological activity arteriosclerosis prevention, cardiovascular disease prevention, anti-diabetes, anti-obesity, visceral fat accumulation suppression, anti-tumor, anti-inflammatory, anti-aging, anti-aging Oxidation, anti-glycation, anti-allergy, antibacterial, hair growth, whitening action, blood flow improving action, etc.
  • a polymerization degree having a polymerization degree can be applied as a material for pharmaceuticals, foods and drinks, cosmetics and the like.
  • the amount of low-degree-of-polymerization proanthocyanidins extracted every hour depending on the extraction solvent was as shown in the graph of FIG. That is, as shown in FIG. 1, procyanidin B1 (Examples 1 to 3) using a 0.2N sulfuric acid solution as an extraction solvent (Examples 1 to 3) was compared to those using an extraction solvent not containing sulfuric acid (Comparative Examples 1 to 3). Extraction efficiency of low molecular weight proanthocyanidins such as dimer), B2 (dimer), C1 (trimer), X (unidentified proanthocyanidin trimer), CT (synamtannin A2, tetramer) It can be confirmed that it is expensive.
  • Example 4 using a sulfuric acid aqueous solution Comparative Example 4 using a hydrochloric acid aqueous solution
  • Comparative Example 5 using a phosphoric acid aqueous solution Comparative Example 6 using a nitric acid aqueous solution
  • Formic acid aqueous solution The used sample is referred to as Comparative Example 7.
  • the analysis result of Example 4 is shown in the chromatogram of FIG. 2, the analysis result of Comparative Example 4 is shown in the chromatogram of FIG. 3, the analysis result of Comparative Example 5 is shown in the chromatogram of FIG. 5 is shown in the chromatogram of FIG. 5, and the analysis result of Comparative Example 7 is shown in the chromatogram of FIG.
  • procyanidin B2 as a starting material and monomeric epicatechin as a decomposition product thereof were used.
  • polymers such as procyanidin C1 (trimer) and tetramer CT (synamtannin A2) have also been detected, whereas aqueous solutions of hydrochloric acid, phosphoric acid, nitric acid, and formic acid are used.
  • EC monomer epicatechin
  • Example 4 using an aqueous sulfuric acid solution, the synthesis of low molecular weight proanthocyanidins (trimers and tetramers) not found in Comparative Examples 4 to 7 using other aqueous acid solutions can be confirmed.
  • Example 4 the ratio of the low polymerization degree proanthocyanidins in the solution after the elapse of a predetermined time after addition of procyanidin B2 (after the elapse of 0 minutes, 15 minutes, 30 minutes, 60 minutes) was determined by high performance liquid chromatography (HPLC), the result shown in the graph of FIG. 7 was obtained. That is, from FIG. 7, in Example 4, procyanidin B2 decreased with time, and the ratio of procyanidin C1 (trimer) and tetramer CT (synamtannin A2) increased with it. I understand.
  • Example 3 Production experiment of low polymerization degree proanthocyanidins with different starting materials> First, a 0.2N aqueous sulfuric acid solution was prepared, and to this was added procyanidin C1 (trimer) or CT (synamtannin A2, tetramer) as a starting material to 100 ⁇ g / ml, and at 70 ° C. Heated for 30 minutes. Thereafter, the solution was analyzed by high performance liquid chromatography (HPLC). In addition, what added procyanidin C1 (trimer) is set as Example 5, and what added CT (tetramer) is set as Example 6. FIG. The analysis result of Example 5 is shown in the chromatogram of FIG. 8, and the analysis result of Example 6 is shown in the chromatogram of FIG.
  • Example 5 From the analysis results of proanthocyanidins according to the difference in starting materials shown in FIGS. 8 and 9, in Example 5 using procyanidin C1 (trimer) as a starting material, the starting material procyanidin C1 and its decomposition product were used. In addition to monomeric epicatechin (EC), polymers such as tetramer CT (synamtannin A2) and procyanidin B2 (dimer) were also detected. In Example 6 using CT (tetramer) as a starting material, procyanidin C1 (trimer) as well as CT as a starting material and monomeric epicatechin (EC) as a decomposition product thereof were used. ), Procyanidin B2 (dimer) and proanthocyanidin 5- to 7-mer peaks were also detected.
  • CT tetramer
  • EC monomeric epicatechin
  • Example 5 the proportion of low-polymerization proanthocyanidins in the solution after the lapse of a predetermined time (after 0 minutes, 10 minutes, 20 minutes, and 30 minutes) from the addition of the starting material was determined using high performance liquid chromatography.
  • HPLC high performance liquid chromatography
  • Example 4 Production Experiment of Low Polymer from High Polymerization Proanthocyanidin>
  • grape seed extract product name: Gravinol, manufactured by Kikkoman
  • Seed extract product name: gravinol, manufactured by Kikkoman
  • EC epicatechin
  • Example 7 From the analysis results shown in FIG. 12, in Example 7 in which only the grape seed extract was added, epicatechin (EC) in the grape seed proanthocyanidins decreased with time, and the proportion of 2- to 4-mer of proanthocyanidins along with it. It can be seen that is increased approximately twice.
  • Example 8 in which epicatechin (EC) was added together with grape seed extract, a large amount of epicatechin decreased with time, and the proportion of diantherogen of proanthocyanidins was also increased. It can be seen that there is an increase of about 8 times. This indicates that a low polymer can be efficiently produced by the reaction between the monomer and the high polymer.
  • Example 9 using 100% water as a solvent
  • Example 10 using 100% methanol as a solvent
  • Example 11 using 50% methanol + 50% water as a solvent
  • Example 11 using 50% methanol + 50% water as a solvent
  • Example 12 using% as the solvent
  • Example 13 using 50% ethanol + 50% water as the solvent is Example 13.
  • Example 14 using 0.01N sulfuric acid aqueous solution as solvent, Example 15 using 0.05N sulfuric acid aqueous solution as solvent, Example 15 using 0.1N sulfuric acid aqueous solution as solvent Example 16, Example 17 using 0.2N sulfuric acid aqueous solution as solvent, Example 17, Example using 0.5N sulfuric acid aqueous solution as solvent Example 18, Example using 1N sulfuric acid aqueous solution as solvent Example 19 And the analysis result of these Examples is shown in the graph of FIG.
  • Example 7 Examination of reaction temperature> First, a 0.2N sulfuric acid aqueous solution was prepared, and procyanidin B2 (dimer) was added to the sulfuric acid aqueous solution so as to be 100 ⁇ g / ml. And this solution was heated for 30 minutes at predetermined temperature (any of 30 degreeC, 40 degreeC, 50 degreeC, 60 degreeC, 70 degreeC, and 80 degreeC). Thereafter, the solution was analyzed by high performance liquid chromatography (HPLC). In addition, what set temperature to 50 degreeC as Example 20, what changed 60 degreeC into Example 21, what changed 70 degreeC into Example 22, and what changed into 80 degreeC are set as Example 23. These analysis results are shown in the graph of FIG.
  • Example 24 using methanesulfonic acid aqueous solution
  • Example 25 using benzenesulfonic acid aqueous solution
  • Example 26 using p-toluenesulfonic acid aqueous solution
  • Example 26 10-camphorsulfonic acid aqueous solution.
  • the used one is referred to as Example 27.
  • the analysis result of these Examples is shown in the graph of FIG.
  • Example 28 the amount of low-polymerized proanthocyanidins extracted in Example 28 was larger than the amount of low-polymerized proanthocyanidins extracted in the comparative example using water or dilute hydrochloric acid, and the efficiency of low-polymerized proanthocyanidins from black soybean seed coats It turns out that it becomes a typical extraction method.
  • Example 29 Extract 50 g of raw Delaware grape seeds in 500 ml of 0.5% (v / v) sulfuric acid aqueous solution with stirring at 60-65 ° C. for 2 hours, and then remove solids by filtration to obtain an extract. It was. The extract was passed through a 30 mm inner diameter column packed with 50 ml of polystyrene resin Sepa beads SP700 (manufactured by Mitsubishi Chemical Corporation) at a flow rate of SV5 to adsorb proanthocyanidins to the resin. Thereafter, 400 ml of purified water was passed through the column to wash the column.
  • Example 10 The extraction method using hydrous ethanol, which is a conventional extraction method, was performed on Example 29 described above. That is, extraction was performed under the same conditions as in Example 29 except that 50% ethanol + 50% water without addition of sulfuric acid was used as an extraction solvent. After removing ethanol from the obtained extract with an evaporator, water was added. 500 ml of an aqueous solution was obtained. This solution was purified and concentrated under the same conditions as in Example 29 above using a 30 mm inner diameter column packed with 50 ml of polystyrene resin Sepa beads SP700 (manufactured by Mitsubishi Chemical) to obtain 2.9 g of an extract.
  • hydrous ethanol which is a conventional extraction method
  • Table 1 shows the results of analyzing the compositions of the extracts of Example 29 and Comparative Example 10 thus obtained by various analysis methods.
  • the grape seed extract obtained by the conventional proanthocyanidin extraction method has a low polymerization degree of proanthocyanidins (2 to 4 mer) content of less than 3% by weight as seen in Comparative Example 10.
  • the extraction method of the present invention in Example 29 was performed, it was confirmed from the results in Table 1 that an extract having a content of low-polymerized proanthocyanidins (2 to 4 mer) far exceeding this was obtained. .
  • An extract containing about 20 to 30% of polymerized proanthocyanidins could be obtained.
  • the production method of low-polymerization proanthocyanidins according to the present invention can produce the desired natural-type low-polymerization proanthocyanidins from a variety of proanthocyanidin raw materials including plants, and increase production. It becomes. And since the low polymerization degree proanthocyanidins obtained by the production method of the present invention are natural proanthocyanidins, they are safe when applied to the human body such as food.
  • the low polymerization degree proanthocyanidins produced as described above are isolated and purified, and the desired physiological activity (arteriosclerosis prevention, cardiovascular disease prevention, antidiabetes, antiobesity, visceral fat accumulation suppression, antitumor, Anti-inflammatory, anti-aging, anti-oxidation, anti-glycation, anti-allergy, antibacterial, hair growth, whitening action, blood flow improving action, etc. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyrane Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 プロアントシアニジン原料の水系溶液を、スルホ基含有化合物の存在下で低温加熱して、天然型の低重合度プロアントシアニジンを生成する、低重合度プロアントシアニジンの製法である。これにより、簡易な手法で、目的とする天然型の低重合度プロアントシアニジンを生成し、増産することが可能となる。

Description

低重合度プロアントシアニジンの製法およびそれにより得られる低重合度プロアントシアニジン
 本発明は、高重合度プロアントシアニジンもしくはプロアントシアニジンの構成モノマーを含有するプロアントシアニジン原料から、低重合度プロアントシアニジンを効率よく増産することが可能な、低重合度プロアントシアニジンの製法およびそれにより得られる低重合度プロアントシアニジンに関するものである。
 プロアントシアニジンは、従来より「縮合型タンニン」や「非加水分解性タンニン」と呼ばれている化合物であり、植物体に含まれるポリフェノールの一種として知られる。プロアントシアニジンの構造は、一般に、フラバン-3-オールを構成単位とし、4-6位または4-8位などで縮合もしくは重合する結合様式をとる。このように、プロアントシアニジンとは、上記結合様式に従い縮合もしくは重合した、2量体以上の重合体の総称である。
 近年、プロアントシアニジンのなかには、動脈硬化症予防、心血管疾患予防、抗糖尿病、抗肥満、内臓脂肪蓄積抑制、抗腫瘍、抗炎症、抗老化、抗酸化、坑糖化、抗アレルギー、抗菌、育毛、美白作用、血流改善作用等の生理活性を示すものがあるとの報告がなされている。これらの生理活性とプロアントシアニジンの重合度数との構造活性相関に関しては、未だ充分に解明されていないのが現状であるが、例えば、育毛活性については、低重合度(2~5量体)のプロアントシアニジンが最も高い活性を示すことが報告されている(特許文献1参照)。また、上記のように低重合度のものは、体内に吸収されやすい特性を示すことから、育毛活性以外の生理活性においても有効であると考えられている。
 そして、上記のような低重合度プロアントシアニジンを得る手法としては、従来、それを多く含む植物体をプロアントシアニジン原料とし、下記の(1)~(5)に示す精製方法で分離・精製を行うといった手法がとられている。
(1)向流クロマトグラフィーによる精製方法(特許文献2参照)。
(2)酢酸エチル、ジクロロメタンを用いた固液抽出方法(特許文献3参照)。
(3)セファデックスLH-20カラムを用いた精製方法(特許文献4参照)。
(4)ポリスチレン系吸着樹脂を用いた精製方法(特許文献5参照)。
(5)順相シリカゲルクロマトグラフィーを用いた精製方法(特許文献6,7参照)。
WO96/00561公報 特開昭61-16982号公報 特開平8-176137号公報 特開平3-200781号公報 特公平7-62014号公報 特開2006-38763公報 WO00/64883公報
 しかしながら、上記のように分離・精製のみで所望の低重合度プロアントシアニジンを得るには、上記のように低重合度プロアントシアニジンを多く含む植物体をプロアントシアニジン原料として用いないと、生産性が悪く、効率的でないといった問題がある。
 そこで、低重合度プロアントシアニジンを多く含まなくとも、高重合度プロアントシアニジンを低分子に断片化することにより低重合度プロアントシアニジンを増産する方法が検討されている。例えば、原料中の高重合度プロアントシアニジンを、塩酸や硝酸や水素の存在下で高温加熱して分解するといった手法や、チオール化合物と反応させて分解するといった手法により、低分子化する方法である。
 ところが、塩酸や硝酸や水素の存在下で高重合度プロアントシアニジンを低分子に断片化する手法は、上記のように高温で、かつ長時間にわたり反応させることを要するため、簡易な手法とは言えない。しかも、高温によりラセミ化(構造変態)も起こりやすいことから、所望の天然型低重合度プロアントシアニジンを効率的に生産することが難しいといった問題もある。また、チオール化合物と反応させる手法では、産物が硫黄を含有する非天然物となり、食用への適用に際し安全性が懸念されるといった問題や、風味に劣るといった問題がある。さらに、これらの手法では、反応が進行し過ぎて単量体(カテキンやエピカテキン)になるまで断片化される割合が高く、低重合度(2~5量体)のプロアントシアニジンを効率良く得ようとしても、その反応制御が困難であるといった問題もある。
 本発明は、このような事情に鑑みなされたもので、簡易な手法により、目的とする天然型の低重合度プロアントシアニジンを増産することが可能な、低重合度プロアントシアニジンの製法およびそれにより得られる低重合度プロアントシアニジンの提供をその目的とする。
 上記の目的を達成するために、本発明は、プロアントシアニジン原料の水系溶液を、スルホ基含有化合物の存在下で低温加熱して、天然型の低重合度プロアントシアニジンを増産する低重合度プロアントシアニジンの製法を、第1の要旨とする。
 また、本発明は、上記第1の要旨の製法により得られる低重合度プロアントシアニジンを、第2の要旨とする。
 すなわち、本発明者は、簡易な手法により、目的とする天然型の低重合度プロアントシアニジンを増産する製法について、鋭意研究を重ねた。そして、各種実験の結果、植物体等のプロアントシアニジン原料(プロアントシアニジンの高分子体や、カテキン,エピカテキンといったプロアントシアニジンの単量体を含有する原料)の水系溶液を、スルホ基含有化合物の存在下で低温加熱すると、ラセミ化を生じさせることなく、目的とする天然型の低重合度プロアントシアニジンを効率的に生産することができることを見いだし、本発明に到達した。
 上記のようにスルホ基含有化合物の存在下で低温加熱すると、高重合度のプロアントシアニジンはその分解が促進され、カテキン,エピカテキンといった単量体はその重合が促進され、結果的に、目的とする天然型の低重合度プロアントシアニジンが生成され、増産されるようになる。このようになる理由に関しては未だ充分に解明されていないが、不均化反応によるものと考えられる。また、上記製法における反応制御は、比較的容易であり、加熱温度を低温にして行うことができ、しかも短時間の加熱処理で済むことから、従来の製法に比べ、効率良く行うことができる。さらに、従来の製法では、高重合度プロアントシアニジンの分解による低重合度プロアントシアニジンの生成は可能であったが、本発明の製法のように単量体や2単量体等からの低重合度プロアントシアニジンの合成は不可能であった。つまり、本発明の製法では、このような単量体や2単量体等からの低重合度プロアントシアニジンの合成も行われることから、従来の製法よりも、より効率良く、目的とする天然型の低重合度プロアントシアニジンを増産することができるようになる。
 以上のように、本発明の低重合度プロアントシアニジンの製法は、プロアントシアニジン原料の水系溶液を、スルホ基含有化合物の存在下で低温加熱して、天然型の低重合度プロアントシアニジンを増産するものである。これにより、簡易な手法により、目的とする天然型の低重合度プロアントシアニジンを増産することが可能となる。そして、本発明の製法により得られた低重合度プロアントシアニジンは、天然型プロアントシアニジンであるため、食用等の、人体への適用に際しても安全である。そのため、上記のようにして増産した低重合度プロアントシアニジンを分離・精製し、目的とする生理活性(動脈硬化症予防、心血管疾患予防、抗糖尿病、抗肥満、内臓脂肪蓄積抑制、抗腫瘍、抗炎症、抗老化、抗酸化、坑糖化、抗アレルギー、抗菌、育毛、美白作用、血流改善作用等)を示す重合度数のものを、医薬品,飲食品,化粧品等の材料として安心して適用することができる。
 特に、上記プロアントシアニジン原料が、増産する低重合度プロアントシアニジンよりも低重合度のプロアントシアニジンもしくはプロアントシアニジンの構成モノマーと、増産する低重合度プロアントシアニジンよりも高重合度のプロアントシアニジンとが混在したものであると、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができる。
 また、上記スルホ基含有化合物が、硫酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、10-カンファースルホン酸、スルホ基含有イオン交換樹脂からなる群から選ばれた少なくとも一つであると、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができる。
 また、上記スルホ基含有化合物の存在下での低温加熱を、特定の温度条件で行うと、ラセミ化を生じさせることなく、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができる。
 また、上記スルホ基含有化合物の存在下での低温加熱を、10~240分間行うと、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができる。
 また、上記スルホ基含有化合物の存在下での低温加熱を特定のpH条件で行うと、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができる。
 また、上記プロアントシアニジン原料の水系溶液が、メタノールおよびエタノールの少なくとも一つと水との混合水を溶媒とすると、より多く、目的とする天然型の低重合度プロアントシアニジンを増産することができる。
実験1における低分子量体の定量分析結果を示すグラフである。 実施例4の液体クロマトグラフィーの結果を示すクロマトグラムである。 比較例4の液体クロマトグラフィーの結果を示すクロマトグラムである。 比較例5の液体クロマトグラフィーの結果を示すクロマトグラムである。 比較例6の液体クロマトグラフィーの結果を示すクロマトグラムである。 比較例7の液体クロマトグラフィーの結果を示すクロマトグラムである。 実施例4での反応時間毎の低分子量体の定量分析結果を示すグラフである。 実施例5の液体クロマトグラフィーの結果を示すクロマトグラムである。 実施例6の液体クロマトグラフィーの結果を示すクロマトグラムである。 実施例5での反応時間毎の低分子量体の定量分析結果を示すグラフである。 実施例6での反応時間毎の低分子量体の定量分析結果を示すグラフである。 実施例7での反応時間毎の低分子量体の定量分析結果を示すグラフである。 実施例8での反応時間毎の低分子量体の定量分析結果を示すグラフである。 実験5における低分子量体の定量分析結果を示すグラフである。 実験6における低分子量体の定量分析結果を示すグラフである。 実験7における低分子量体の定量分析結果を示すグラフである。 実験8における低分子量体の定量分析結果を示すグラフである。 実験9における低分子量体の定量分析結果を示すグラフである。
 つぎに、本発明の実施の形態を詳しく説明する。
 本発明の低重合度プロアントシアニジンの製法は、プロアントシアニジン原料の水系溶液を、スルホ基含有化合物の存在下で低温加熱して、目的とする天然型の低重合度プロアントシアニジンを増産するという構成をとる。なお、本発明において「プロアントシアニジン原料」とは、増産する低重合度プロアントシアニジンとは異なる重合度のプロアントシアニジン(プロアントシアニジンの高分子体等)や、プロアントシアニジンの構成モノマー(カテキンやエピカテキン)を含有する原料を示す。また、低重合度プロアントシアニジンとは、通常、プロアントシアニジンの2~5量体を示すものである。本発明の製法により得られる低重合度プロアントシアニジンは、天然型であることから、プロシアニジンB1(2量体),B2(2量体),C1(3量体),シナムタンニン(cinnamtannin)A2(4量体)といったものがあげられる。
 上記プロアントシアニジン原料としては、植物原料では、例えば、ブドウ,カキ,リンゴ,マツ,栗,落花生,アズキ,クランベリー,黒大豆,カカオ,シナモン,ムタンバ,サンザシ,ブニノキ,ゴレンシ,マザーワート,ケクロピア,コーラ(コーラナッツ),ライチ、イチョウ等の植物の、果実、果皮、種子、渋皮、殻、葉、樹皮等があげられる。これらの植物原料は、通常、空気乾燥等の乾燥工程に付した後、抽出原料とするが、そのまま抽出原料とすることもできる。
 また、上記原料は、予め粗精製した後、本発明の製法に適用してもよい。ここで、上記粗精製は、例えば、固液抽出法,液液分配法,吸着クロマトグラフィー,分配クロマトグラフィー,疎水性相互作用クロマトグラフィー,イオン交換クロマトグラフィー,サイズ排除クロマトグラフィー,向流液液分配法、吸着剤処理法といった処理法を適用することにより行われる。
 なお、上記プロアントシアニジン原料中には、低重合度プロアントシアニジンを多く含むものもあるが、本発明の製法では、これに加え、高重合度プロアントシアニジンや、カテキン,エピカテキンといった単量体を原料とし、その分解・合成により、低重合度プロアントシアニジンが増産される。したがって、上記プロアントシアニジン原料が高重合度プロアントシアニジンや単量体を含んでいれば、本発明の製法を適用することによって、より多くの低重合度プロアントシアニジンを得ることができる。
 また、本発明の製法では、上記のように植物原料を材料として用いなくとも、例えば、市販の試薬として入手可能な、高重合度プロアントシアニジンや、カテキン,エピカテキンといった単量体を、上記プロアントシアニジン原料として用いてもよい。
 本発明の製法では、上記プロアントシアニジン原料が、増産する低重合度プロアントシアニジンよりも高重合度のプロアントシアニジンを含有するものであれば、その分解により目的とする低重合度プロアントシアニジンを増産することができ、増産する低重合度プロアントシアニジンよりも低重合度のプロアントシアニジンを含有するものであれば、その合成により目的とする低重合度プロアントシアニジンを増産することができる。特に、上記プロアントシアニジン原料が、増産する低重合度プロアントシアニジンよりも低重合度のプロアントシアニジンもしくはプロアントシアニジンの構成モノマーと、増産する低重合度プロアントシアニジンよりも高重合度のプロアントシアニジンとが混在したものであると、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができるようになるため、好ましい。なお、本発明の製法において、単量体のみをプロアントシアニジン原料とした場合、低重合度プロアントシアニジンを合成することができなかったことから、単量体を使用する場合は、2単量体以上のプロアントシアニジンと併用する必要がある。
 つぎに、上記プロアントシアニジン原料を、水、メタノール、エタノールといった水系溶媒に添加し、プロアントシアニジン原料の水系溶液を調製する。特に、上記溶液が、メタノールやエタノールと水との混合水を溶媒とすることが、より多く、目的とする天然型の低重合度プロアントシアニジンを増産することができるようになるため好ましい。また、上記混合水におけるメタノールやエタノールの濃度は、上記観点から、80%以下とすることが好ましい。
 このようにして得られたプロアントシアニジン原料の水系溶液を、先に述べたように、スルホ基含有化合物の存在下で低温加熱する。上記スルホ基含有化合物としては、各種のものを用いることができるが、好ましくは、硫酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、10-カンファースルホン酸、およびスルホ基含有イオン交換樹脂が、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができる点において好ましい。
 そして、上記水系溶液における酸の規定度は、その反応性の観点から、0.01~0.5Nの範囲が好ましく、より好ましくは0.03~0.5Nの範囲である。
 上記スルホ基含有化合物の存在下での低温加熱は、通常は40~100℃、好ましくは50~80℃、より好ましくは60~70℃の温度条件で行われる。すなわち、このような低温加熱により、ラセミ化を生じさせることなく、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができるからである。
 そして、低温加熱は、好ましくは10~240分間、より好ましくは30~120分間行われる。すなわち、このように短時間であっても、本発明の低重合度プロアントシアニジンの製法では、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができるようになるからである。
 さらに、上記スルホ基含有化合物の存在下での低温加熱は、通常はpH4.0以下、好ましくはpH2.0以下、より好ましくはpH0.3~1.5の条件で行われる。すなわち、このような条件で行うと、目的とする天然型の低重合度プロアントシアニジンをより効率的に生産することができるようになるからである。
 なお、本発明の製法において、上記のように低温加熱を続けると、反応が進行しすぎ(高重合化あるいは単量体化が進行する)、目的とする天然型の低重合度プロアントシアニジンの収量が減少することから、適切なところで中和して反応を止める必要がある。上記中和には、例えば、苛性ソーダ(水酸化ナトリウム)、水酸化カリウム、生石灰(CaO)、消石灰(水酸化カルシウム)、石灰石、水酸化マグネシウム等が用いられる。または、20℃以下、好ましくは0~20℃に冷却し、反応を止める。
 上記のようにして反応を終えた後、重合度別に分離精製する必要があれば、例えば、ポリエチレングリコール基で化学修飾されたシリカゲル逆相液体クロマトグラフィーを用いた精製方法(特開2010-260823公報)、向流クロマトグラフィーによる精製方法(特開昭61-16982号公報)、酢酸エチルやジクロロメタンを用いた固液抽出方法(特開平8-176137号公報)、セファデックスLH-20カラムを用いた精製方法(特開平3-200781号公報)、ポリスチレン系吸着樹脂を用いた精製方法(特公平7-62014号公報)、順相シリカゲルクロマトグラフィーを用いた精製方法(特開2006-38763公報)等の、従来公知の分離精製方法により、目的とする天然型の低重合度プロアントシアニジンを得ることができる。
 なお、上記分離精製後のプロアントシアニジンは、研究用試薬等の各種用途に用いることが可能であるが、例えば、医薬品や飲食品等の材料に用いる場合、健康被害を生じるおそれがないよう、安全性が確保されるレベルまで脱硫することが好ましい。すなわち、上記分離精製時に脱硫が行われない場合、別途、脱硫工程を設け、上記分離精製物の脱硫を行うことが好ましい。上記脱硫は、例えば、各種陰イオン交換樹脂、イオン交換膜、吸着樹脂等により行う。
 このようにして分離・精製された低重合度プロアントシアニジンは、研究用試薬、医薬品、飲食品、化粧品等の材料として有用である。そして、上記プロアントシアニジンは天然型であることから、目的とする生理活性(動脈硬化症予防、心血管疾患予防、抗糖尿病、抗肥満、内臓脂肪蓄積抑制、抗腫瘍、抗炎症、抗老化、抗酸化、坑糖化、抗アレルギー、抗菌、育毛、美白作用、血流改善作用、等)を示す重合度数のものを、医薬品,飲食品,化粧品等の材料として安心して適用することができる。
 つぎに、実施例について比較例と併せて説明する。ただし、本発明はこれら実施例に限定されるものではない。
<実験1:ブドウ種子中の高分子プロアントシアニジンの低分子化実験>
 まず、硫酸濃度(0N、0.2Nの2条件)とエタノール濃度(0%、50%、75%EtOHの3条件)との違いにより、6種類の抽出溶媒を調製した。これらの抽出溶媒5mlに、甲州ブドウの種子約0.5gを加え、70℃にて撹拌しながら3時間抽出を行った。そして、上記抽出に際し、1時間毎に抽出液のサンプリングを実施し、高速液体クロマトグラフィー(HPLC)にて抽出液を分析した。なお、0.2N硫酸水溶液を使用したものを実施例(エタノール濃度0%が実施例1、エタノール濃度50%が実施例2、エタノール濃度75%が実施例3)とし、硫酸濃度0Nの抽出溶媒を使用したものを比較例(エタノール濃度0%が比較例1、エタノール濃度50%が比較例2、エタノール濃度75%が比較例3)とする。
 抽出溶媒の違いによる1時間毎の低重合度プロアントシアニジンの抽出量は、図1のグラフに示す通りであった。すなわち、図1より、0.2N硫酸溶液を抽出溶媒として用いたもの(実施例1~3)は、硫酸を含まない抽出溶媒を用いたもの(比較例1~3)に比べ、プロシアニジンB1(2量体),B2(2量体),C1(3量体),X(未同定のプロアントシアニジン3量体),CT(シナムタンニンA2、4量体)といった低分子プロアントシアニジンの抽出効率が高いことが確認できる。
<実験2:酸の違いによる低重合度プロアントシアニジンの合成実験>
 まず、硫酸,塩酸,リン酸,硝酸,ギ酸のいずれかを用いた、0.2Nの酸水溶液を調製した(5種類)。これら酸水溶液に、プロシアニジンB2(2量体)を100μg/mlとなるよう加え、70℃にて60分間加熱した。その後、高速液体クロマトグラフィー(HPLC)にて溶液を分析した。なお、硫酸水溶液を使用したものを実施例4、塩酸水溶液を使用したものを比較例4、リン酸水溶液を使用したものを比較例5、硝酸水溶液を使用したものを比較例6、ギ酸水溶液を使用したものを比較例7とする。そして、実施例4の分析結果を図2のクロマトグラムに示し、比較例4の分析結果を図3のクロマトグラムに示し、比較例5の分析結果を図4のクロマトグラムに示し、比較例6の分析結果を図5のクロマトグラムに示し、比較例7の分析結果を図6のクロマトグラムに示す。
 図2~図6に示す、酸水溶液の違いによるプロアントシアニジンの分析結果より、硫酸水溶液を用いた実施例4では、出発物質であるプロシアニジンB2や、その分解物である、単量体のエピカテキン(EC)の他、プロシアニジンC1(3量体)や、4量体であるCT(シナムタンニンA2)といった重合体も検出されているのに対し、塩酸,リン酸,硝酸,ギ酸の水溶液を用いた比較例4~7では、単量体であるエピカテキン(EC)のみが検出されていることがわかる。すなわち、硫酸水溶液を用いた実施例4では、その他の酸水溶液を用いた比較例4~7にみられなかった低分子プロアントシアニジン(3量体や4量体)の合成が確認できる。
 なお、実施例4において、プロシアニジンB2を添加して所定時間経過後(0分、15分、30分、60分経過後)の溶液中の低重合度プロアントシアニジンの割合を、高速液体クロマトグラフィー(HPLC)にて測定したところ、図7のグラフに示す結果となった。すなわち、図7より、実施例4では、プロシアニジンB2が、経時により減少し、それとともにプロシアニジンC1(3量体)や、4量体であるCT(シナムタンニンA2)の割合が増加していることがわかる。
<実験3:出発物質の違いによる低重合度プロアントシアニジンの生成実験>
 まず、0.2Nの硫酸水溶液を調製し、これに、出発物質であるプロシアニジンC1(3量体)またはCT(シナムタンニンA2、4量体)を100μg/mlとなるよう加え、70℃にて30分間加熱した。その後、高速液体クロマトグラフィー(HPLC)にて溶液を分析した。なお、プロシアニジンC1(3量体)を添加したものを実施例5、CT(4量体)を添加したものを実施例6とする。そして、実施例5の分析結果を図8のクロマトグラムに示し、実施例6の分析結果を図9のクロマトグラムに示す。
 図8および図9に示す、出発物質の違いによるプロアントシアニジンの分析結果より、出発物質としてプロシアニジンC1(3量体)を用いた実施例5では、出発物質であるプロシアニジンC1や、その分解物である、単量体のエピカテキン(EC)の他、4量体であるCT(シナムタンニンA2)やプロシアニジンB2(2量体)といった重合体も検出された。また、出発物質としてCT(4量体)を用いた実施例6では、出発物質であるCTや、その分解物である、単量体のエピカテキン(EC)の他、プロシアニジンC1(3量体)やプロシアニジンB2(2量体)、さらにはプロアントシアニジンの5~7量体のピークも検出された。
 また、実施例5,6において、出発物質を添加して所定時間経過後(0分、10分、20分、30分経過後)の溶液中の低重合度プロアントシアニジンの割合を、高速液体クロマトグラフィー(HPLC)にて測定したところ、図10および図11のグラフに示す結果となった。すなわち、図10より、実施例5では、プロシアニジンC1が、経時により減少し、それとともにCT(4量体)やプロシアニジンB2(2量体)の割合が増加していることがわかる。また、図11より、実施例6では、CT(4量体)が、経時により減少し、それとともにプロシアニジンC1(3量体)やプロシアニジンB2(2量体)の割合が増加していることがわかる。
<実験4:高重合プロアントシアニジンからの低重合体の生成実験>
 まず、0.2Nの硫酸水溶液を調製した。そして、実施例7では上記硫酸水溶液に高重合プロアントシアニジンを高含有するブドウ種子エキス(製品名:グラビノール、キッコーマン社製)を1mg/mlとなるよう加え、実施例8では上記硫酸水溶液に同ブドウ種子エキス(製品名:グラビノール、キッコーマン社製)を1mg/ml,エピカテキン(EC)を100μg/mlとなるよう加え、それぞれ、70℃にて30分間加熱した。その後、高速液体クロマトグラフィー(HPLC)にて溶液を分析した。なお、実施例7の分析結果を図12のグラフに示し、実施例8の分析結果を図13のグラフに示す。
 図12に示す分析結果より、ブドウ種子エキスのみを加えた実施例7では、ブドウ種子プロアントシアニジン中のエピカテキン(EC)が、経時により減少し、それとともにプロアントシアニジンの2~4量体の割合が約2倍に増加していることがわかる。また、図13に示す分析結果より、ブドウ種子エキスとともにエピカテキン(EC)を加えた実施例8では、大量のエピカテキンが経時により減少し、それとともにプロアントシアニジンの2~4量体の割合が約8倍に増加していることがわかる。このことから、単量体と高重合体との反応により、効率よく低重合体を生成できることがわかる。
<実験5:溶媒条件(エタノール、メタノール、水)の検討実験>
 まず、水100%,メタノール100%,メタノール50%+水50%,エタノール100%,エタノール50%+水50%のいずれかを溶媒として用いた、0.2Nの硫酸溶液を調製した(5種類)。これら硫酸溶液に、プロシアニジンB2(2量体)を100μg/mlとなるよう加え、70℃にて30分間加熱した。その後、高速液体クロマトグラフィー(HPLC)にて溶液を分析した。なお、水100%を溶媒に使用したものを実施例9、メタノール100%を溶媒に使用したものを実施例10、メタノール50%+水50%を溶媒に使用したものを実施例11、エタノール100%を溶媒に使用したものを実施例12、エタノール50%+水50%を溶媒に使用したものを実施例13とする。そして、これら実施例の分析結果を図14のグラフに示す。
 図14の分析結果より、実施例9~13では、総じてプロシアニジンC1(3量体)やCT(4量体)といった重合体が検出されたが、なかでも、メタノールやエタノールの混合水を抽出溶媒として用いた実施例11,13においては、水のみやエタノールのみといった純粋溶媒を用いたものに比べ、上記重合体の増加量が多いことがわかる。
<実験6:硫酸濃度の検討実験>
 まず、硫酸濃度の違いにより、0.01N,0.05N,0.1N,0.2N,0.5N,1Nの硫酸水溶液を調製した(6種類)。これら硫酸水溶液に、プロシアニジンB2(2量体)を100μg/mlとなるよう加え、70℃にて30分間加熱した。その後、高速液体クロマトグラフィー(HPLC)にて溶液を分析した。なお、0.01Nの硫酸水溶液を溶媒に使用したものを実施例14、0.05Nの硫酸水溶液を溶媒に使用したものを実施例15、0.1Nの硫酸水溶液を溶媒に使用したものを実施例16、0.2Nの硫酸水溶液を溶媒に使用したものを実施例17、0.5Nの硫酸水溶液を溶媒に使用したものを実施例18、1Nの硫酸水溶液を溶媒に使用したものを実施例19とする。そして、これら実施例の分析結果を図15のグラフに示す。
 図15の分析結果より、実施例14~19では、プロシアニジンC1(3量体)やCT(4量体)といった重合体が検出された。そして、図15における上記重合体の増加量から、硫酸濃度が0.01~1Nの範囲内で適応範囲を設定できることがわかる。
<実験7:反応温度の検討実験>
 まず、0.2Nの硫酸水溶液を調製し、上記硫酸水溶液に、プロシアニジンB2(2量体)を100μg/mlとなるよう加えた。そして、この溶液を、所定温度(30℃,40℃,50℃,60℃,70℃,80℃のいずれか)にて30分間加熱した。その後、高速液体クロマトグラフィー(HPLC)にて溶液を分析した。なお、温度設定を50℃にしたものを実施例20、60℃にしたものを実施例21、70℃にしたものを実施例22、80℃にしたものを実施例23とする。そして、これらの分析結果を図16のグラフに示す。
 図16の分析結果より、実施例20~23では、プロシアニジンC1(3量体)やCT(4量体)といった重合体が検出された。この結果より、50~80℃の温度帯が適温となることがわかる。なお、80℃を超えると、エピカテキンからカテキンへの異性化が起こる現象が確認されている。
<実験8:各種スルホ基含有化合物による重合化反応実験>
 まず、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、10-カンファースルホン酸のいずれかのスルホ基含有化合物を用いた、0.2Nの酸水溶液を調製した(4種類)。これら酸水溶液に、プロシアニジンB2(2量体)を100μg/mlとなるよう加え、70℃にて30分間加熱した。その後、高速液体クロマトグラフィー(HPLC)にて溶液を分析した。なお、メタンスルホン酸水溶液を使用したものを実施例24、ベンゼンスルホン酸水溶液を使用したものを実施例25、p-トルエンスルホン酸水溶液を使用したものを実施例26、10-カンファースルホン酸水溶液を使用したものを実施例27とする。そして、これら実施例の分析結果を図17のグラフに示す。
 図17の分析結果より、実施例24~27のいずれのスルホ基含有化合物を用いた場合であっても、プロシアニジンB2が減少し、一方でプロシアニジンC1(3量体)やシナムタンニンA2(4量体)が合成された。
<実験9:黒大豆種皮からの低重合プロアントシアニジン抽出実験>
 まず、水、0.2N硫酸水溶液、0.2N塩酸水溶液を抽出溶媒として準備した。そして、黒大豆種皮に、上記各抽出溶媒を20倍量加え、70℃にて1時間加熱した。このようにして得られた抽出液を、高速液体クロマトグラフィー(HPLC)にて分析した。なお、0.2N硫酸水溶液で抽出したものを実施例28とし、水で抽出したものを比較例8とし、0.2N塩酸水溶液で抽出したものを比較例9とする。そして、これらの分析結果を図18のグラフに示す。
 図18の分析結果より、実施例28における低重合プロアントシアニジン抽出量は、水や希塩酸を用いた比較例における低重合プロアントシアニジンの抽出量よりも多く、黒大豆種皮からの低重合プロアントシアニジンの効率的な抽出法となることがわかる。
<実験10:ブドウ種子からの、低重合度プロアントシアニジン高含有抽出物作成実験>
〔実施例29〕
 生のデラウエア種のブドウ種子50gを0.5%(v/v)硫酸水溶液500ml中で、60~65℃で2時間撹拌しながら抽出を行い、その後濾過により固形物を除去し抽出液を得た。この抽出液を、ポリスチレン系樹脂セパビーズSP700(三菱化学社製)50mlを充填した内径30mmのカラムに、SV5の流速で通液させ、樹脂にプロアントシアニジンを吸着させた。その後、400mlの精製水をカラムに流しカラムを洗浄した。更に、60%エタノール水溶液200mlをSV5の流速でカラムに流し、カラム樹脂よりプロアントシアニジンを溶出させ、溶出液を回収した。この溶出液をエバポレータにて濃縮し3.1gの抽出物を得た。
〔比較例10〕
 上記実施例29に対し、従来の抽出方法である含水エタノールを用いた抽出方法を行った。すなわち、硫酸を加えないエタノール50%+水50%を抽出溶媒として用いる以外は、上記実施例29と同様の条件で抽出し、得られた抽出液からエバポレータにてエタノールを除去した後に水を加えて500mlの水溶液を得た。この溶液を、上記実施例29と同様の条件で、ポリスチレン系樹脂セパビーズSP700(三菱化学製)50mlを充填した内径30mmのカラムを用いて、精製・濃縮し2.9gの抽出物を得た。
 このようにして得られた実施例29および比較例10の抽出物の組成を、各種分析方法で分析した結果を、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 従来のプロアントシアニジン抽出方法で得られるブドウ種子抽出物の低重合度プロアントシアニジン(2~4量体)含有率は、比較例10にみられるように、3重量%にも満たないものであるが、実施例29における本発明の抽出方法を行ったところ、表1の結果より、これを遥かに上回る低重合プロアントシアニジン(2~4量体)含有率の抽出物が得られることが認められた。なお、表に記載していないが、構造が同定できなかった低重合プロアントシアニジン(2~5量体)が、約15重量%程度含有されていることも確認しており、上記抽出法により低重合プロアントシアニジンが20~30%程度含有される抽出物を得ることができた。
 なお、上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。さらに、請求の範囲の均等範囲に属する変更は、全て本発明の範囲内である。
 本発明の低重合度プロアントシアニジンの製法により、植物体をはじめとする各種のプロアントシアニジン原料から、簡易な手法で、目的とする天然型の低重合度プロアントシアニジンを生成し、増産することが可能となる。そして、本発明の製法により得られた低重合度プロアントシアニジンは、天然型プロアントシアニジンであるため、食用等の、人体への適用に際しても安全である。そのため、上記のようにして生成した低重合度プロアントシアニジンを分離・精製し、目的とする生理活性(動脈硬化症予防、心血管疾患予防、抗糖尿病、抗肥満、内臓脂肪蓄積抑制、抗腫瘍、抗炎症、抗老化、抗酸化、坑糖化、抗アレルギー、抗菌、育毛、美白作用、血流改善作用等)を示す重合度数のものを、医薬品,飲食品,化粧品等の材料として安心して適用することができる。

Claims (11)

  1.  プロアントシアニジン原料の水系溶液を、スルホ基含有化合物の存在下で低温加熱して、天然型の低重合度プロアントシアニジンを増産することを特徴とする低重合度プロアントシアニジンの製法。
  2.  上記プロアントシアニジン原料が、増産する低重合度プロアントシアニジンよりも高重合度のプロアントシアニジンを含有するものであり、その分解により上記低重合度プロアントシアニジンを増産する、請求項1記載の低重合度プロアントシアニジンの製法。
  3.  上記プロアントシアニジン原料が、増産する低重合度プロアントシアニジンよりも低重合度のプロアントシアニジンを含有するものであり、その合成により上記低重合度プロアントシアニジンを増産する、請求項1記載の低重合度プロアントシアニジンの製法。
  4.  上記プロアントシアニジン原料が、増産する低重合度プロアントシアニジンよりも低重合度のプロアントシアニジンもしくはプロアントシアニジンの構成モノマーと、増産する低重合度プロアントシアニジンよりも高重合度のプロアントシアニジンとが混在したものである、請求項1~3のいずれか一項に記載の低重合度プロアントシアニジンの製法。
  5.  上記低重合度プロアントシアニジンが、天然型プロアントシアニジンの2~5量体である、請求項1~4のいずれか一項に記載の低重合度プロアントシアニジンの製法。
  6.  上記スルホ基含有化合物が、硫酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、10-カンファースルホン酸、およびスルホ基含有イオン交換樹脂からなる群から選ばれた少なくとも一つである、請求項1~5のいずれか一項に記載の低重合度プロアントシアニジンの製法。
  7.  上記スルホ基含有化合物の存在下での低温加熱を、40~100℃の温度条件で行う、請求項1~6のいずれか一項に記載の低重合度プロアントシアニジンの製法。
  8.  上記スルホ基含有化合物の存在下での低温加熱を、10~240分間行う、請求項1~7のいずれか一項に記載の低重合度プロアントシアニジンの製法。
  9.  上記スルホ基含有化合物の存在下での低温加熱を、pH4.0以下の条件で行う、請求項1~8のいずれか一項に記載の低重合度プロアントシアニジンの製法。
  10.  上記プロアントシアニジン原料の水系溶液が、メタノールおよびエタノールの少なくとも一つと水との混合水を溶媒とする、請求項1~9のいずれか一項に記載の低重合度プロアントシアニジンの製法。
  11.  請求項1~10のいずれか一項に記載の製法により得られる低重合度プロアントシアニジン。
PCT/JP2012/076002 2012-10-05 2012-10-05 低重合度プロアントシアニジンの製法およびそれにより得られる低重合度プロアントシアニジン WO2014054174A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/076002 WO2014054174A1 (ja) 2012-10-05 2012-10-05 低重合度プロアントシアニジンの製法およびそれにより得られる低重合度プロアントシアニジン
JP2013516883A JP5437537B1 (ja) 2012-10-05 2012-10-05 低重合度プロアントシアニジンの製法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076002 WO2014054174A1 (ja) 2012-10-05 2012-10-05 低重合度プロアントシアニジンの製法およびそれにより得られる低重合度プロアントシアニジン

Publications (1)

Publication Number Publication Date
WO2014054174A1 true WO2014054174A1 (ja) 2014-04-10

Family

ID=50396687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076002 WO2014054174A1 (ja) 2012-10-05 2012-10-05 低重合度プロアントシアニジンの製法およびそれにより得られる低重合度プロアントシアニジン

Country Status (2)

Country Link
JP (1) JP5437537B1 (ja)
WO (1) WO2014054174A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194756A (zh) * 2019-07-22 2019-09-03 刘文倩 一种制备低聚合度原花青素的方法
JP2021187785A (ja) * 2020-05-29 2021-12-13 フジッコ株式会社 精神性疲労、意欲低下または眠気の改善剤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116982A (ja) * 1984-07-03 1986-01-24 Kikkoman Corp 抗酸化剤
JP2001519426A (ja) * 1997-10-09 2001-10-23 マーズ インコーポレーテッド ポリフェノールの合成方法
WO2004103988A1 (ja) * 2003-05-26 2004-12-02 Amino Up Chemical Co., Ltd. 含硫プロアントシアニジンオリゴマー組成物及びその製造方法
WO2006011640A1 (en) * 2004-07-29 2006-02-02 Suntory Limited Method for analyzing oligomeric proanthocyanidin (opc)
JP2006510730A (ja) * 2002-10-02 2006-03-30 マーズ インコーポレイテッド エピカテキンおよびカテキン由来のプロシアニジン類オリゴマーの合成法
WO2006090830A1 (ja) * 2005-02-25 2006-08-31 Nagasaki University プロアントシアニジンオリゴマーの製造方法
JP2007084536A (ja) * 2005-08-26 2007-04-05 Geol Kagaku Kk プロシアニジンb1〜b4およびカテキン重合体の製造方法
CN101125844A (zh) * 2007-09-28 2008-02-20 天津市尖峰天然产物研究开发有限公司 原花青素b2的提取方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116982A (ja) * 1984-07-03 1986-01-24 Kikkoman Corp 抗酸化剤
JP2001519426A (ja) * 1997-10-09 2001-10-23 マーズ インコーポレーテッド ポリフェノールの合成方法
JP2006510730A (ja) * 2002-10-02 2006-03-30 マーズ インコーポレイテッド エピカテキンおよびカテキン由来のプロシアニジン類オリゴマーの合成法
WO2004103988A1 (ja) * 2003-05-26 2004-12-02 Amino Up Chemical Co., Ltd. 含硫プロアントシアニジンオリゴマー組成物及びその製造方法
WO2006011640A1 (en) * 2004-07-29 2006-02-02 Suntory Limited Method for analyzing oligomeric proanthocyanidin (opc)
WO2006090830A1 (ja) * 2005-02-25 2006-08-31 Nagasaki University プロアントシアニジンオリゴマーの製造方法
JP2007084536A (ja) * 2005-08-26 2007-04-05 Geol Kagaku Kk プロシアニジンb1〜b4およびカテキン重合体の製造方法
CN101125844A (zh) * 2007-09-28 2008-02-20 天津市尖峰天然产物研究开发有限公司 原花青素b2的提取方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194756A (zh) * 2019-07-22 2019-09-03 刘文倩 一种制备低聚合度原花青素的方法
JP2021187785A (ja) * 2020-05-29 2021-12-13 フジッコ株式会社 精神性疲労、意欲低下または眠気の改善剤
JP7305595B2 (ja) 2020-05-29 2023-07-10 フジッコ株式会社 精神性疲労、意欲低下または眠気の改善剤

Also Published As

Publication number Publication date
JP5437537B1 (ja) 2014-03-12
JPWO2014054174A1 (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
EP2033641B1 (en) Process of preparation of extracts rich in proanthocyanidins
JP4941991B2 (ja) プロアントシアニジンオリゴマーの製造方法
WO2002022148A1 (fr) Polyphenol de la pomme sauvage et procede de production correspondant
US8372445B2 (en) Grape seeds extracts obtainable by fractioning on a resin
JP2010241840A (ja) プロアントシアニジンオリゴマーの精製方法
JP3808494B2 (ja) プロアントシアニジン高含有物の製造方法
JP2002097187A (ja) ポリフェノール類の抽出方法および該方法の行程で得られるポリフェノール金属塩
EP0384796A1 (fr) Procédé de préparation d'extraits polyphénoliques de type flavane-3-ol purifiés et extraits obtenus
JP5437537B1 (ja) 低重合度プロアントシアニジンの製法
WO2003091237A1 (fr) Procede de production de materiau riche en proanthocyanidine
US7863466B2 (en) Method of producing proanthocyanidin-containing material
JP2008074747A (ja) コラーゲン産生促進剤
JPH07238078A (ja) ポリフェノール化合物の精製法
JPH0631208B2 (ja) プロアントシアニジンの製造法
WO2005033053A1 (ja) プロアントシアニジン高含有物の製造方法
KR20060069885A (ko) 프로안토시아니딘 고함유물의 제조방법
JP4977024B2 (ja) プロアントシアニジン含有物の製造方法
JP2002087978A (ja) テロメラーゼ阻害剤
KR101689618B1 (ko) 소나무 수피로부터 저분자 프로안토시아니딘류의 제조방법
KR20040067605A (ko) 과실추출물로부터 프로안토시아니딘 올리고머의 분리방법
Seker Adsorptive Recovery of Polyphenolic Antioxidants from Winery By-Products Using Polyethylene Glycol (PEG) Grafted Silica Particles
Seker et al. 1. Producing a High-Value Food Additive, Polyphenols, from Fruit Pomace
JP2009001535A (ja) ルテイン高含有組成物の調製方法およびルテイン

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013516883

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886039

Country of ref document: EP

Kind code of ref document: A1