WO2014051089A1 - ニッケルコバルト複合水酸化物とその製造方法および製造装置、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 - Google Patents

ニッケルコバルト複合水酸化物とその製造方法および製造装置、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 Download PDF

Info

Publication number
WO2014051089A1
WO2014051089A1 PCT/JP2013/076363 JP2013076363W WO2014051089A1 WO 2014051089 A1 WO2014051089 A1 WO 2014051089A1 JP 2013076363 W JP2013076363 W JP 2013076363W WO 2014051089 A1 WO2014051089 A1 WO 2014051089A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
positive electrode
composite hydroxide
particle size
active material
Prior art date
Application number
PCT/JP2013/076363
Other languages
English (en)
French (fr)
Inventor
加瀬 克也
康孝 鎌田
一臣 漁師
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2014538648A priority Critical patent/JP6094591B2/ja
Priority to CN201380049306.XA priority patent/CN104661963B/zh
Priority to US14/431,995 priority patent/US10141571B2/en
Publication of WO2014051089A1 publication Critical patent/WO2014051089A1/ja
Priority to US16/028,479 priority patent/US10236510B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel cobalt composite hydroxide, a production method thereof, and a production apparatus.
  • the present invention also provides a positive electrode active material for a non-aqueous electrolyte secondary battery using the nickel-cobalt composite hydroxide as a raw material, a method for producing the same, and a positive electrode active material for the non-aqueous electrolyte secondary battery as a positive electrode material.
  • the present invention relates to a non-aqueous electrolyte secondary battery to be used.
  • Lithium ion secondary batteries which are non-aqueous electrolyte secondary batteries, are frequently used to satisfy such requirements.
  • As a positive electrode active material of a lithium ion secondary battery lithium cobalt composite oxide (LiCoO 2 ) that is relatively easy to synthesize is mainly used.
  • the raw material for the lithium cobalt composite oxide includes rare and expensive cobalt compounds. For this reason, the unit price per capacity of a lithium ion secondary battery using lithium cobalt composite oxide as a positive electrode material has reached about four times that of a nickel metal hydride battery. Due to this high cost, the use of lithium ion batteries is currently quite limited. Therefore, reducing the cost of the positive electrode active material and making it possible to provide a cheaper lithium-ion secondary battery has a great significance for reducing the weight and size of portable electronic devices that are currently popular. .
  • LiMn 2 O 4 Lithium-manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium-nickel composite oxide using nickel ( LiNiO 2 ) has been studied.
  • lithium manganese composite oxide is a material that is excellent in thermal stability and safety in addition to being inexpensive as the raw material manganese.
  • the theoretical capacity is only about half that of the lithium cobalt composite oxide, there is a drawback that it is difficult to meet the demand for higher capacity of the lithium ion secondary battery that is increasing year by year.
  • a temperature of 45 ° C. or higher there is a drawback that self-discharge is intense and the charge / discharge life is also reduced.
  • lithium-nickel composite oxides are inexpensive and stable as well as manganese, and moreover have a higher capacity than lithium-cobalt composite oxides. This is expected, and research and development is actively underway.
  • the lithium ion secondary battery using a lithium nickel composite oxide composed only of lithium and nickel as a positive electrode active material has a problem that the cycle characteristics are inferior compared to the case of using a lithium cobalt composite oxide. is there. This is because the lithium-nickel composite oxide changes its crystal structure (phase transition) between hexagonal crystal and monoclinic crystal as lithium is desorbed, and the reversibility of the change is poor. For this reason, it is considered that the sites where lithium can be desorbed and inserted are gradually lost while the charge / discharge reaction is repeated.
  • a reaction crystallization method As a method that enables uniform dispersion of cobalt, there is a reaction crystallization method.
  • a nickel salt aqueous solution, a cobalt salt aqueous solution and a caustic alkaline aqueous solution are continuously supplied into a reaction vessel whose pH value and temperature are adjusted while controlling the concentration and flow rate.
  • a continuous crystallization method is described in which the product is collected from the reaction aqueous solution overflowing from the reaction vessel to control the characteristics of the resulting nickel cobalt composite hydroxide.
  • the stability of the crystal structure of the nickel-cobalt composite hydroxide is improved, and phase transfer accompanying charge / discharge is suppressed.
  • the number of crystal grain boundaries that cause the destruction of the particle structure is extremely reduced, and the particles can be prevented from being refined or dropped off, so that a positive electrode active material having good cycle characteristics can be obtained.
  • the batch method is more advantageous than the continuous crystallization method, but the batch method has a disadvantage that it is inferior in productivity to the continuous crystallization method.
  • the batch method if it is attempted to obtain large particles of 10 ⁇ m or more by the batch method, it is necessary to increase the amount of raw material to be supplied. For this purpose, a large reaction tank must be used, and productivity is increased. It will be inferior.
  • Japanese Patent Application Laid-Open No. 10-265225 and Japanese Patent Application Laid-Open No. 2003-86182 disclose a technique for collecting particles collected by continuous crystallization while classifying them.
  • the reaction tank is constituted by a main body and a separation device integrally provided below the main body, and the particles grown in the main body and having increased specific gravity are separated by a separation device provided on the lower side of the main body.
  • a system is disclosed that classifies by collecting undeveloped particles back to the main body by upward flow in the separator while recovering through the system.
  • JP-A-9-270258 Japanese Patent Laid-Open No. 10-265225 JP 2003-86182 A
  • an object of the present invention is to provide a nickel cobalt composite hydroxide having a sharp particle size distribution. Another object of the present invention is to provide a method and an apparatus for producing such a nickel cobalt composite hydroxide by a continuous crystallization method advantageous for production on an industrial scale. Furthermore, the present invention provides a non-aqueous electrolyte secondary battery having excellent cycle characteristics by synthesizing a positive electrode active material using the nickel cobalt composite hydroxide as a precursor and using the positive electrode active material as a positive electrode. With the goal.
  • the present inventors have made extensive studies on a nickel-cobalt composite hydroxide used as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same.
  • an aqueous solution containing nickel and cobalt, an aqueous solution containing an ammonium ion supplier, and an aqueous caustic solution are continuously supplied with stirring, and the nickel-cobalt composite produced by the crystallization reaction from this reaction vessel.
  • a slurry containing hydroxide is extracted, separated into a large particle size portion and a small particle size portion by classification, and the small particle size portion is continuously refluxed to the reaction vessel, so that particles having a uniform particle size can be efficiently obtained.
  • the inventors have found that it can be manufactured and have completed the present invention.
  • the nickel-cobalt composite hydroxide of the present invention have the general formula: Ni 1-xy Co x M y (OH) 2 (although, 0.05 ⁇ x ⁇ 0.50,0 ⁇ y ⁇ 0.10,0 0.05 ⁇ x + y ⁇ 0.50, where M is a nickel cobalt composite hydroxide represented by at least one metal element selected from Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga) , The relationship of (D50 ⁇ D10) /D50 ⁇ 0.30 and (D90 ⁇ D50) /D50 ⁇ 0.30 is established between D10, D50 and D90 of the nickel cobalt composite hydroxide. To do.
  • the nickel cobalt composite hydroxide preferably has a tap density of 2.0 g / cm 3 or more.
  • the average particle diameter of the nickel cobalt composite hydroxide is preferably in the range of 10 ⁇ m to 30 ⁇ m.
  • an aqueous solution containing nickel and cobalt, an aqueous solution containing an ammonium ion supplier, and a caustic aqueous solution are continuously supplied to the reaction vessel and reacted.
  • a refluxing step of continuously refluxing the small particle diameter portion to the reaction vessel In the reaction step of obtaining nickel-cobalt composite hydroxide, the separation step of continuously extracting the slurry containing the nickel-cobalt composite hydroxide from the reaction vessel and separating it into a large particle size portion and a small particle size portion by classification And a refluxing step of continuously refluxing the small particle diameter portion to the reaction vessel.
  • the separation step it is preferable to use a wet separation device utilizing centrifugal force.
  • M is at least one metal element selected from Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga), It is preferable to further provide.
  • An apparatus for producing a nickel-cobalt composite hydroxide of the present invention comprises a reaction vessel, an aqueous solution containing nickel and cobalt, an aqueous solution containing an ammonium ion supplier, and an aqueous caustic solution, respectively.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention have the general formula: Li 1 + u Ni 1- xy Co x M y O 2 ( however, 0 ⁇ u ⁇ 0.30,0.05 ⁇ x ⁇ 0 .50, 0 ⁇ y ⁇ 0.10, 0.05 ⁇ x + y ⁇ 0.50, M is at least one metal element selected from Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga) And is composed of a hexagonal lithium nickel cobalt composite oxide having a layered structure, and (D50 ⁇ D10) /D50 ⁇ 0.30 between D10, D50 and D90 of the lithium nickel cobalt composite oxide, and The relationship of (D90 ⁇ D50) /D50 ⁇ 0.30 is established.
  • the tap density of the positive electrode active material for a non-aqueous electrolyte secondary battery is preferably 2.0 g / cm 3 or more.
  • the average particle diameter of the positive electrode active material for a non-aqueous electrolyte secondary battery is preferably in the range of 10 ⁇ m to 30 ⁇ m.
  • the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes the nickel cobalt composite hydroxide or the nickel cobalt composite hydroxide in an oxidizing atmosphere at a temperature of 300 ° C. to 700 ° C.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the positive electrode active material for the non-aqueous electrolyte secondary battery is used as the positive electrode material of the positive electrode. It is characterized by that.
  • a nickel cobalt composite hydroxide having a very sharp particle size distribution can be obtained. For this reason, the cycle characteristic of the non-aqueous electrolyte secondary battery using the positive electrode active material obtained by using this nickel cobalt composite hydroxide as a precursor can be improved.
  • the raw material to be input can be used without waste, not only the cost can be reduced, but also the production efficiency can be improved, so that its industrial significance is very large.
  • FIG. 1 is a graph showing the particle size distributions of the nickel cobalt composite hydroxide obtained by the production method of the present invention and the nickel cobalt composite hydroxide obtained by the conventional production method.
  • FIG. 2 is a flowchart schematically showing the production process of the nickel cobalt composite hydroxide according to the present invention.
  • FIG. 3 is a conceptual diagram showing an apparatus for producing a nickel-cobalt composite hydroxide of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a 2032 type coin type battery used for battery evaluation.
  • the average particle size, crystal shape, and the like can be adjusted by controlling the conditions for producing the nickel-cobalt composite hydroxide.
  • the average particle size is mainly 10 ⁇ m.
  • An example of producing a substantially spherical nickel-cobalt composite hydroxide in the range of ⁇ 30 ⁇ m will be described.
  • Nickel-cobalt composite hydroxide and production method thereof (1) Nickel-cobalt composite hydroxide
  • the nickel-cobalt composite hydroxide of the present invention (hereinafter referred to as “composite hydroxide”) has a general formula: Ni 1-xy Co x M y (OH) 2 (where 0.05 ⁇ x ⁇ 0.50, 0 ⁇ y ⁇ 0.10, 0.05 ⁇ x + y ⁇ 0.50, M represents Al, Mg, Mn, Ti, Fe, At least one metal element selected from Cu, Zn, and Ga), and (D50 ⁇ D10) / D50 ⁇ between D10, D50, and D90 of the composite hydroxide. 0.30 and (D90 ⁇ D50) /D50 ⁇ 0.30 is established. That is, the composite hydroxide of the present invention is characterized by having a very sharp particle size distribution.
  • the value x indicating the amount of cobalt (Co) added is 0.05 to 0.50, preferably 0.10 to 0.50, and more preferably 0.10 to 0.30. If the value of x is less than 0.05, the effect of adding Co cannot be sufficiently obtained. On the other hand, when the value of x exceeds 0.50, the raw material cost increases.
  • the value of y indicating the amount of additive element M added is 0 to 0.10, preferably 0.01 to 0.09, more preferably 0.02 to 0.08. If the value of y exceeds 0.10, the charge / discharge capacity is reduced.
  • the additive element M is selected from aluminum (Al), magnesium (Mg), manganese (Mn), titanium (Ti), iron (Fe), copper (Cu), zinc (Zn), and gallium (Ga). Although at least one kind of metal element can be used, it is preferable to use aluminum and / or magnesium from the viewpoint of cost and battery characteristics.
  • the total amount of cobalt and additive element M is 0.05 to 0.50, preferably 0.05 to 0.40, and more preferably 0.05 to 0.25.
  • the total amount of cobalt and additive element M is less than 0.05, the effect of adding cobalt and additive element M cannot be obtained.
  • the total amount of cobalt and additive element M exceeds 0.50, not only the raw material cost increases, but also the charge / discharge capacity decreases, and the merit of the nickel (Ni) -based positive electrode active material is reduced. It will be damaged.
  • the composite hydroxide of the present invention is characterized in that a relationship of (D50 ⁇ D10) /D50 ⁇ 0.30 and (D90 ⁇ D50) /D50 ⁇ 0.30 is established between D10, D50 and D90.
  • D10, D50, and D90 mean particle sizes corresponding to 10%, 50%, and 90% of integrated values of the particle size distribution, respectively.
  • the method for obtaining D10, D50, and D90 is not particularly limited, and for example, it can be obtained from the volume integrated value measured with a laser diffraction / scattering particle size analyzer.
  • the particle size distribution of the composite hydroxide is extremely sharp. Therefore, a secondary battery using a positive electrode active material obtained using this composite hydroxide as a precursor is used. In this case, the cycle characteristics can be sufficiently improved. Specifically, it is possible to set the capacity maintenance rate, which is an index of the cycle characteristics of the nonaqueous electrolyte secondary battery, to 97.5% or more. On the other hand, when either one of (D50-D10) / D50 and (D90-D50) / D50 exceeds 0.30, the uniformity of the particle size deteriorates, and this nickel-cobalt composite hydroxide is reduced.
  • the capacity retention rate in the present invention is a non-aqueous electrolyte secondary battery, which is left for a certain period of time, and after the open circuit voltage (OCV) is stabilized, the current density with respect to the positive electrode is 0.5 mA / cm 2.
  • Such values of (D50-D10) / D50 and (D90-D50) / D50 can be realized by repeating the reaction step, the separation step, and the reflux step in the production process of the composite hydroxide.
  • the composite hydroxide of the present invention preferably has a tap density of 2.0 g / cm 3 or more, more preferably 2.2 g / cm 3 or more, which serves as an index of filling.
  • the tap density represents the density after tapping the sample powder collected in the container 100 times based on JIS Z-2504, and can be measured using a shaking specific gravity measuring instrument.
  • the tap density of the composite hydroxide is in such a range, the battery characteristics of the non-aqueous electrolyte secondary battery using the lithium composite oxide obtained by using the composite hydroxide as a precursor as the positive electrode active material can be further improved. It can be excellent. On the other hand, when the tap density is less than 2.0 g / cm 3 , the packing density of the positive electrode active material is not sufficient, and the characteristics of the obtained secondary battery may not be sufficiently improved.
  • the upper limit of the tap density is not limited, but in the embodiment of the present invention, the upper limit is about 2.4 g / cm 3 .
  • the average particle size of the composite hydroxide is preferably in the range of 10 ⁇ m to 30 ⁇ m, more preferably in the range of 13 ⁇ m to 26 ⁇ m, and still more preferably in the range of 15 ⁇ m to 25 ⁇ m.
  • the average particle diameter in the present invention means a particle diameter corresponding to an integrated value of particle size distribution of 50%, that is, D50 (median diameter). If the average particle size of the composite hydroxide is in such a range, the battery characteristics of the non-aqueous electrolyte secondary battery using the lithium composite oxide obtained by using the composite hydroxide as a precursor as the positive electrode active material, It can be made better.
  • the capacity retention rate is preferably 98.0% or more, more preferably 98.5% or more. be able to.
  • the average particle size is less than 10 ⁇ m, the packing density of the positive electrode active material may not be sufficient, and the characteristics of the secondary battery may not be sufficiently improved.
  • the average particle size exceeds 30 ⁇ m, the specific surface area of the positive electrode active material becomes small, and similarly, the characteristics of the secondary battery may not be sufficiently improved.
  • the method for producing a composite hydroxide of the present invention comprises an aqueous solution containing nickel and cobalt, an aqueous solution containing an ammonium ion supplier, and a caustic alkali. While stirring, the aqueous solution is continuously supplied to the reaction vessel and reacted to obtain a composite hydroxide, and the slurry containing the composite hydroxide is extracted from the reaction vessel and classified into large particles by classification. It is characterized by comprising a separation step for separating the diameter portion and the small particle size portion, and a reflux step for continuously refluxing the small particle size portion obtained by the separation step to the reaction vessel.
  • the reaction step comprises an aqueous solution containing nickel and cobalt (hereinafter referred to as “raw material aqueous solution”), an aqueous solution containing an ammonium ion supplier (hereinafter referred to as “ammonium ion supply aqueous solution”), a caustic alkali
  • a composite solution represented by the above-described general formula is formed by continuously supplying each aqueous solution to the reaction vessel while stirring to form a reaction aqueous solution composed of these mixed aqueous solutions and causing a crystallization reaction. This is a step of continuously producing hydroxide.
  • the caustic aqueous solution is supplied by adjusting the addition amount so that the pH value of the reaction aqueous solution is maintained within a predetermined range.
  • the crystal structure and powder characteristics of the resulting composite hydroxide can be controlled by controlling the pH value of the reaction aqueous solution. That is, in such a continuous crystallization method, the nickel concentration, the cobalt concentration, and the concentration of the additive element M in the reaction aqueous solution formed in the reaction vessel are the same as the solubility of the nickel, cobalt, and additive element M in the reaction aqueous solution (saturated solubility). ), The crystallization reaction of the composite hydroxide occurs. By controlling the pH value of the reaction aqueous solution and adjusting the solubility, the crystal structure and powder of the composite hydroxide obtained are adjusted. Body characteristics can be controlled.
  • the raw material aqueous solution is simply supplied to a reaction vessel having low solubility, if the difference between the solubility at the pH value and the concentration of the metal component in the raw material aqueous solution is large, it is a fine and irregular composite hydroxide. Will be deposited at once.
  • the present invention from the viewpoint of preventing such a situation, by supplying an ammonium ion supply aqueous solution simultaneously with the raw material aqueous solution to the reaction vessel and forming complex ions of nickel, cobalt, and additive element M, respectively, at the same pH value. Even so, the solubility of the metal component is stabilized on the high side.
  • the composite hydroxide can be gradually precipitated, and the composite hydroxide can be grown into a substantially spherical shape by repeating the precipitation and re-dissolution process.
  • the crystal structure of the composite hydroxide can be controlled to a desired shape by adjusting the ammonium ion concentration of the aqueous ammonium ion supply solution.
  • reaction conditions The conditions for the reaction step should be appropriately selected according to the size of the reaction vessel, the diameter and shape of the stirring blade, or the size and shape of the target particles, and cannot be uniquely determined.
  • the particle size distribution of the resulting composite hydroxide may be widened depending on the reaction conditions. There is a possibility that the load of the separation process increases and the overall production efficiency deteriorates. Further, excessive repetition of the reaction process, separation process and reflux process may generate coarse particles, which may further widen the particle size distribution. For this reason, it is preferable to appropriately adjust the conditions in the reaction step from the viewpoint of controlling the particle size distribution of the resulting composite hydroxide within a predetermined range.
  • reaction vessel with a volume of 34 L and a propeller blade having a diameter of 7 cm to 15 cm and 2 to 5 blades (inclination angle of 15 ° to 45 °)
  • a substantially spherical composite hydroxide of about 10 ⁇ m to 30 ⁇ m
  • the pH value of the reaction aqueous solution is preferably 11.8 or more, more preferably 12.0 or more, based on a liquid temperature of 25 ° C.
  • the upper limit of the pH value is preferably about 13.0, more preferably about 12.8, based on a liquid temperature of 25 ° C.
  • nucleation and particle growth tend to proceed simultaneously, and a composite hydroxide having an average particle size in the range of 10 to 30 ⁇ m and a sharp particle size distribution can be obtained. It becomes difficult.
  • the liquid temperature of the reaction aqueous solution is preferably 35 ° C. or higher, more preferably 40 ° C. or higher. When the liquid temperature is less than 35 ° C., the tap density of the composite hydroxide is lowered, and similarly, the characteristics of the finally obtained battery may be deteriorated.
  • the upper limit of the liquid temperature is preferably about 40 to 60 ° C., more preferably about 50 ° C. This is because when the liquid temperature exceeds 60 ° C., the volatilization amount of ammonia increases and the complex concentration of nickel, cobalt, and additive element M becomes unstable.
  • the stirring speed of the reaction aqueous solution is preferably controlled in the range of 600 rpm to 1400 rpm, and more preferably in the range of 700 rpm to 1300 rpm.
  • the stirring speed is less than 600 rpm, it is difficult to uniformly mix the raw material aqueous solution, the ammonium ion supply aqueous solution, and the caustic alkaline aqueous solution.
  • it exceeds 1400 rpm the produced composite hydroxides may collide with each other and fine particles may be generated. For this reason, in any case, the particle size distribution of the obtained composite hydroxide tends to be widened.
  • the raw material aqueous solution is not particularly limited, it is preferable to use an aqueous solution in which nitrates, sulfates or hydrochlorides of nickel and cobalt are dissolved. From the viewpoint of prevention of contamination by halogen and cost, these aqueous solutions of sulfuric acid It is more preferable to use
  • the concentration of the raw material aqueous solution is preferably a total of nickel salt and cobalt salt, preferably 1.0 mol / L to 2.4 mol / L, more preferably 1.5 mol / L to 2.4 mol / L, still more preferably 2.0 mol. / L to 2.4 mol / L.
  • concentration of the raw material aqueous solution is less than 1.0 mol / L, the amount of crystallized material per reaction tank is reduced, and productivity is lowered, which is not preferable.
  • the salt concentration of the raw material aqueous solution exceeds 2.4 mol / L, the saturation solubility of the raw material aqueous solution is exceeded, and the metal salt is precipitated in the raw material aqueous solution. There is a risk that things will be generated.
  • the nickel salt and cobalt salt do not necessarily have to be supplied to the reaction vessel as a raw material aqueous solution.
  • the nickel salt or cobalt salt that reacts when mixed to produce compounds other than the desired composite hydroxide, prepare a nickel salt aqueous solution and a cobalt salt aqueous solution separately and include them in these aqueous solutions.
  • the concentration of the nickel salt and cobalt salt to be adjusted may be adjusted so as to be in the above range in total, and simultaneously supplied to the reaction tank at a predetermined ratio.
  • the composite hydroxide of the present invention contains an additive element M (M is at least one metal element selected from Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga). Can be made.
  • M is at least one metal element selected from Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga.
  • an aqueous solution in which the salt containing the additive element M is dissolved is added to or added to the aqueous solution containing the nickel salt and the cobalt salt.
  • An aqueous solution in which a salt containing the element M is dissolved and an aqueous solution containing a nickel salt and a cobalt salt are simultaneously supplied to the reaction vessel, and the additive element M is co-precipitated while being uniformly dispersed inside the composite hydroxide. You can do it.
  • the additive element M is not necessarily added in the reaction step, and the surface of the composite hydroxide obtained by the present invention may be coated with the additive element M.
  • the large particle diameter part obtained by the separation step described later is mixed with an aqueous solution in which a salt containing the additive element M is dissolved or an alkoxide solution of the additive element M to make a slurry, and the slurry has a predetermined pH.
  • the surface of the composite hydroxide can be uniformly coated with the additive element M by precipitating the additive element M on the surface of the composite hydroxide by a crystallization reaction while controlling to be a value.
  • the surface of the composite hydroxide can be coated with the additive element M by spraying an aqueous solution or slurry containing the additive element M on the large particle diameter portion and drying it. Furthermore, the slurry in which the salt containing the large particle size portion and the additive element M is suspended is spray-dried, or the salt containing the composite hydroxide and the additive element M is mixed by the solid phase method. The surface of the hydroxide can also be coated with the additive element M.
  • ammonium ion supply aqueous solution used in the present invention is not particularly limited, but aqueous ammonia or an aqueous solution containing ammonium sulfate or ammonium chloride is preferable, and from the viewpoint of preventing contamination by halogen, aqueous ammonia or ammonium sulfate is contained. An aqueous solution is more preferred.
  • ammonia water when used as the ammonium ion supply aqueous solution, a general commercial product having an ammonium ion concentration of about 25% by mass to 30% by mass can be used as it is. If the ammonium ion concentration is too low as compared with the above range, a predetermined amount of ammonium ions is supplied, so a large amount of aqueous solution of ammonium ions must be supplied, and productivity is lowered. On the other hand, even if the ammonium ion concentration exceeds the above range, there is no particular problem as long as ammonium ions are supplied smoothly. However, when the ammonium ion concentration is higher than 30% by mass, Volatilization increases, making safe operation difficult.
  • the aqueous caustic solution is used as a pH adjuster for the neutralization reaction.
  • a caustic alkali aqueous solution a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a lithium hydroxide aqueous solution or the like can be used, but it is preferable to use a sodium hydroxide aqueous solution from the viewpoint of ease of handling and cost. .
  • the concentration of the caustic aqueous solution is preferably 10% by mass to 30% by mass, more preferably 15% by mass to 25% by mass. If the amount is less than 10% by mass, the amount of the caustic aqueous solution necessary for pH adjustment is increased, and the productivity is lowered. On the other hand, when it exceeds 30% by mass, a caustic crystal is precipitated in the caustic aqueous solution or the viscosity of the caustic aqueous solution is increased, which causes a problem that a mechanical load is applied to the reaction apparatus. There is a fear.
  • the supply of the caustic aqueous solution is appropriately adjusted according to the supply amounts of the raw material aqueous solution and the ammonium ion supply aqueous solution so that the pH value of the reaction aqueous solution can be controlled in the range of 10% by mass to 30% by mass. It is preferable.
  • the large particle size portion produced and grown in the reaction vessel is selectively discharged out of the reaction vessel, and the small particle size portion repeats particle growth until reaching the target particle size. Therefore, the particle size of the finally obtained composite hydroxide becomes uniform, and the particle size distribution can be sharpened.
  • a wet classification method for classification of the composite hydroxide.
  • fine particles are generated by the collision of particles, so that the particle size distribution is likely to be widened, and the particle shape is deformed and the tap density may be reduced.
  • the wet classification method is not particularly limited, but it is preferable to employ a method utilizing centrifugal force, specifically, a wet cyclone method.
  • the classification point can be easily controlled by the shape and size of the cyclone portion and the introduction pressure of the treatment slurry.
  • a substantially spherical composite hydroxide grown to an average particle size of 10 ⁇ m to 30 ⁇ m by the reaction step is (D50-D10) /D50 ⁇ 0.30 and (D90-D50) / D50 ⁇ 0.
  • the shape of the cyclone portion is cylindrical and the introduction pressure of the treatment slurry is adjusted to be within a range of 0.3 MPa to 0.5 MPa.
  • the slurry containing the small particle size portion discharged from the separation device in the separation step (hereinafter referred to as “small particle size portion slurry”) is returned (refluxed) into the reaction vessel. It is a process.
  • the reflux method is not particularly limited, and known means can be used.
  • the small particle size portion slurry discharged from the separation device may be directly returned to the reaction vessel by a pump.
  • concentration means and a dilution means when it is necessary to adjust the concentration of the small particle diameter portion slurry, it is necessary to separately provide a concentration means and a dilution means.
  • the reflux rate that is, the rate at which the small particle size portion is returned to the reaction vessel may be appropriately adjusted according to the supply rate of the raw material aqueous solution or the aqueous solution containing the ammonium ion supplier.
  • a composite hydroxide having a composition and particle size distribution suitable as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery can be easily obtained.
  • the composite hydroxide production device of the present invention while stirring the raw material aqueous solution, the ammonium ion supply aqueous solution, and the caustic aqueous solution.
  • the reaction mixture is continuously supplied to the reaction tank and reacted to obtain the composite hydroxide, and the composite hydroxide is continuously extracted from the reaction tank (1) and classified to give the composite water.
  • a separation device (7) for separating the oxide into a large particle size portion and a small particle size portion and a reflux device (9) for continuously refluxing the small particle size portion to the reaction vessel are provided.
  • the reaction tank (1) used for the reaction step includes a stirring means (2), a raw material aqueous solution supply means (3), an ammonium ion supply aqueous solution supply means (4), and a caustic alkaline aqueous solution supply means (5), and is produced. If it is the thing of the overflow system which can discharge
  • the slurry produced by the reaction step is introduced into the separation device (7) by the pump (6).
  • the separation device (7) to be used is preferably a wet separation device, and more preferably a separation device using a wet cyclone method.
  • the classification point can be easily controlled by the shape and size of the cyclone part and the pressure of the treatment slurry introduced.
  • the reflux device (9) is not particularly limited, and a known device can be used.
  • emitted from the separation apparatus should just return to a reaction tank directly with a pump.
  • a diluting device or a dehydrating device for adjusting the slurry concentration of the small particle size slurry obtained in the separation step may be combined.
  • the liquid component is usually distributed more to the small particle size portion side, so before returning the small particle size portion to the reaction vessel, It is necessary to perform dehydration.
  • a coating apparatus means for precipitating the additive element M on the surface of the composite hydroxide, means for spraying and drying an aqueous solution or slurry containing the additive element M, or slurry in which a salt containing the additive element M is suspended It is preferable that the apparatus is provided with a means for spray drying.
  • control means for controlling the reaction rate, classification rate or reflux rate in each step such as a computer control system.
  • Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof (1) Cathode active material for non-aqueous electrolyte secondary battery
  • the positive electrode active material for non-aqueous electrolyte secondary battery of the present invention is represented by the general formula: Li 1 + u Ni 1-xy Co x M y O 2 ( however, 0 ⁇ u ⁇ 0.30,0.05 ⁇ x ⁇ 0.50,0 ⁇ y ⁇ 0.10,0.05 ⁇ x + y ⁇ 0.50, M is And at least one metal element selected from Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga), and a hexagonal lithium composite oxide having a layered structure.
  • the value of u indicating the excess amount of lithium is preferably 0 to 0.30, and more preferably 0 to 0.15. If the value of u is less than 0, the reaction resistance of the positive electrode in the nonaqueous electrolyte secondary battery using the obtained positive electrode active material increases, and the output of the battery decreases. On the other hand, if the value of u exceeds 0.30, not only the initial discharge capacity when the positive electrode active material is used for the positive electrode of the battery, but also the reaction resistance of the positive electrode is increased.
  • the positive electrode active material of the present invention is characterized in that a relationship of (D50 ⁇ D10) /D50 ⁇ 0.30 and (D90 ⁇ D50) /D50 ⁇ 0.30 is established between D10, D50 and D90. To do.
  • the capacity maintenance rate which is an index of the cycle characteristics of the nonaqueous electrolyte secondary battery, to 97.5% or more.
  • the tap density of the positive electrode active material of the present invention is preferably 2.0 g / cm 3 or more, and more preferably 2.2 g / cm 3 or more. If the tap density of the positive electrode active material is within such a range, the battery characteristics of the non-aqueous electrolyte secondary battery used as the positive electrode active material can be further improved. On the other hand, when the tap density is less than 2.0 g / cm 3 , the packing density of the positive electrode active material is not sufficient, and the characteristics of the non-aqueous electrolyte secondary battery may not be sufficiently improved.
  • the average particle diameter of the positive electrode active material of the present invention is preferably in the range of 10 ⁇ m to 30 ⁇ m, more preferably in the range of 13 ⁇ m to 26 ⁇ m, and still more preferably in the range of 15 ⁇ m to 25 ⁇ m. If the average particle diameter of the positive electrode active material is within such a range, the battery characteristics of the non-aqueous electrolyte secondary battery using this positive electrode active material can be further improved.
  • the capacity retention rate is preferably 98.0% or more, more preferably 98.5% or more. be able to.
  • the average particle size is less than 10 ⁇ m, the packing density of the positive electrode active material may not be sufficient, and the characteristics of the non-aqueous electrolyte secondary battery may not be sufficiently improved.
  • the average particle size exceeds 30 ⁇ m, the specific surface area of the positive electrode active material becomes small, and similarly, the characteristics of the non-aqueous electrolyte secondary battery may not be sufficiently improved.
  • the mixing step is a step of obtaining a lithium mixture by mixing the composite hydroxide and the lithium compound.
  • the lithium compound used in this case is not particularly limited, and for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof can be used.
  • lithium hydroxide or lithium carbonate is preferably used in consideration of ease of handling and quality stability.
  • the composite hydroxide and the lithium compound are the number of atoms of metals other than lithium in the lithium mixture, that is, the sum of the number of atoms of nickel, cobalt, and additive element M (Me) and the number of atoms of lithium (Li).
  • Mixing is performed so that the ratio (Li / Me) is 1.00 to 1.30, preferably 1.00 to 1.15. That is, since Li / Me does not change before and after the firing step, Li / Me mixed in this mixing step becomes Li / Me in the positive electrode active material, so that Li / Me in the lithium mixture is to be obtained. To be the same as Li / Me.
  • a general mixer for mixing the composite hydroxide and the lithium compound, a general mixer can be used, for example, a shaker mixer, a Roedige mixer, a Julia mixer, a V blender, or the like can be used. At this time, it is necessary to sufficiently mix the composite hydroxide so as not to be destroyed.
  • the composite hydroxide Prior to the mixing step, it is preferable to further include a roasting step of roasting the composite hydroxide in advance in an oxidizing atmosphere at a temperature of 300 ° C. to 700 ° C.
  • a roasting step of roasting the composite hydroxide in advance in an oxidizing atmosphere at a temperature of 300 ° C. to 700 ° C.
  • the composite hydroxide can be made into a nickel cobalt composite oxide (hereinafter referred to as “composite oxide”).
  • composite oxide When this composite oxide is mixed with a lithium compound, the lithium composite oxide The composition ratio of lithium and metal element in the lithium composite oxide can be stabilized while maintaining the filling property of the object.
  • the roasting temperature is preferably 300 ° C to 700 ° C, more preferably 400 ° C to 600 ° C.
  • the roasting temperature is less than 300 ° C., a part of the composite hydroxide may remain, and the composition of the obtained lithium composite oxide may not be stable.
  • the temperature exceeds 700 ° C., sintering between particles occurs to generate coarse particles, which may deteriorate the particle size distribution.
  • the firing step is a step of firing the lithium mixture obtained in the mixing step at 600 ° C. to 850 ° C. in an oxidizing atmosphere.
  • the firing temperature in the firing step is 600 to 850 ° C., preferably 700 to 800 ° C.
  • the diffusion reaction rate of lithium is not sufficient, surplus lithium remains, the crystal structure is not aligned, and sufficient characteristics cannot be obtained when used in a battery.
  • the temperature exceeds 850 ° C. intense sintering occurs between the particles of the lithium composite oxide, and abnormal grain growth may occur. In this case, the particles after firing become coarse and cannot maintain a substantially spherical particle form. Since such a positive electrode active material has a reduced specific surface area, when used in a battery, the resistance of the positive electrode increases and the battery capacity decreases.
  • the temperature is preferable to raise the temperature to the above temperature with a rate of temperature rise of 1 ° C./min to 2.5 ° C./min. . Furthermore, the reaction can be carried out more uniformly by maintaining the temperature around the melting point of the lithium compound for about 1 to 5 hours.
  • the holding time at the firing temperature is preferably 5 hours or more, more preferably 5 to 10 hours.
  • the holding time is less than 5 hours, the lithium composite oxide may not be sufficiently synthesized.
  • the atmosphere during firing is preferably an oxidizing atmosphere.
  • an atmosphere with an oxygen concentration of 18% by volume to 100% by volume is preferable, and an atmosphere with an oxygen concentration of 70% by volume to 100% by volume is more preferable. More preferably, a mixed atmosphere of gas is used. If the oxygen concentration is less than 18% by volume, the lithium composite oxide may not have sufficient crystallinity.
  • the furnace used for firing is not particularly limited as long as it can heat the lithium mixture with an oxidizing atmosphere non-aqueous electrolyte. From the viewpoint of maintaining a uniform atmosphere in the furnace, gas generation is not caused. No electric furnace is preferred, and either a batch or continuous furnace can be used.
  • Non-aqueous electrolyte secondary battery of the present invention includes the same components as a general non-aqueous electrolyte secondary battery, such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution.
  • a general non-aqueous electrolyte secondary battery such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution.
  • the embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention is applied to various modified and improved embodiments based on the embodiment described in the present specification. It is also possible to do.
  • Positive electrode Using the positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the present invention, for example, a positive electrode of a non-aqueous electrolyte secondary battery is produced as follows.
  • a conductive material and a binder are mixed with the powdered positive electrode active material obtained according to the present invention, and activated carbon and a solvent such as viscosity adjustment are added as necessary, and these are kneaded and mixed.
  • a material paste is prepared.
  • the mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the non-aqueous electrolyte secondary battery.
  • the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass
  • the content of the positive electrode active material is 60 parts by mass to 95 parts by mass as in the case of the positive electrode of a general non-aqueous electrolyte secondary battery.
  • the content of is preferably 1 to 20 parts by mass
  • the content of the binder is preferably 1 to 20 parts by mass.
  • the obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced.
  • the sheet-like positive electrode can be cut into an appropriate size according to the target battery and used for battery production.
  • the method for manufacturing the positive electrode is not limited to such a method, and other methods may be used.
  • the conductive material for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), and carbon black materials such as acetylene black and ketjen black can be used.
  • the binder plays a role of anchoring the active material particles.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluorine rubber ethylene propylene diene rubber
  • styrene butadiene styrene butadiene
  • cellulosic resin and polyacrylic
  • An acid can be used.
  • a positive electrode active material, a conductive material and activated carbon can be dispersed and a solvent for dissolving the binder can be added to the positive electrode mixture.
  • a solvent for dissolving the binder can be added to the positive electrode mixture.
  • an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.
  • activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
  • Negative electrode The negative electrode composite material in which the negative electrode is made of metal lithium, lithium alloy, or the like, or a negative electrode active material capable of occluding and desorbing lithium ions, mixed with a binder, and added with an appropriate solvent to form a paste. Is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
  • the negative electrode active material for example, a fired organic compound such as natural graphite, artificial graphite and phenol resin, and a powdery substance of carbon material such as coke can be used.
  • a fluorine-containing resin such as PVDF can be used as the negative electrode binder as in the positive electrode
  • an organic material such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active materials and the binder.
  • a solvent can be used.
  • Separator A separator is interposed between the positive electrode and the negative electrode.
  • the separator separates the positive electrode and the negative electrode and retains an electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
  • Non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, tetrahydrofuran, 2- Use one kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, or a mixture of two or more. Can do.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate
  • chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, tetrahydrofuran, 2- Use one kind selected from ether compounds
  • LiPF 6 LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used.
  • non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • the non-aqueous electrolyte secondary battery of the present invention composed of the positive electrode, negative electrode, separator and non-aqueous electrolyte described above has various shapes such as a cylindrical shape and a laminated shape. Can be.
  • the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside. Connect between the positive electrode terminal and between the negative electrode current collector and the negative electrode terminal leading to the outside using a current collecting lead, etc., and seal the battery case to complete the nonaqueous electrolyte secondary battery. .
  • the coin-type battery (10) includes a case (11) and an electrode (12) accommodated in the case (11).
  • the case (11) is composed of a positive electrode can (11a) that is hollow and open at one end, and a negative electrode can (11b) that is disposed in the opening of the positive electrode can (11a). If it arrange
  • the electrode (12) includes a positive electrode (11a), a separator (12c), and a negative electrode (12b), which are stacked in this order, and the positive electrode (11a) is in contact with the inner surface of the positive electrode can (11a). (12b) is accommodated in the case (11) so as to contact the inner surface of the negative electrode can (11b).
  • the case (11) is provided with a gasket (11c), and the gasket (11c) is arranged so that the positive electrode can (11a) and the negative electrode can (11b) are electrically insulated. 11) Arranged and fixed inside.
  • the gasket (11c) has a function of sealing the gap between the positive electrode can (11a) and the negative electrode can (11b) so as to block the inside of the case (11) from the outside in an airtight and liquidtight manner. .
  • a nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention constitutes this nonaqueous electrolyte secondary battery, and after the open circuit voltage (OCV) is stabilized, the current density with respect to the positive electrode is 0.5 mA. capacity maintenance rate after 25 cycles of charge / discharge tests at 25 ° C. with a cut-off voltage of 4.3 V to 3.0 V / cm 2 , preferably 97.5% or more, more preferably 98.0% or more Is 98.5% or more.
  • the nonaqueous electrolyte secondary battery of the present invention has very excellent cycle characteristics, it can be said that the nonaqueous electrolyte secondary battery is suitable as a power source for small portable electronic devices and electric vehicles.
  • the present invention can be used not only as a power source for an electric vehicle driven purely by electric energy but also as a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.
  • each reagent grade sample manufactured by Wako Pure Chemical Industries, Ltd. was used for the production of the composite hydroxide, the positive electrode active material, and the production of the secondary battery.
  • Example 1 Into an overflow crystallization reaction tank having a capacity of 34 L to which four baffle plates were attached, 32 L of industrial water and 1300 mL of 25% by mass ammonia water were added and heated to 50 ° C. in a thermostatic bath and a heating jacket. Thereafter, a 24% by mass aqueous caustic soda solution was added, and the pH value was controlled to 12.2 based on the liquid temperature of 25 ° C. Specifically, in order to accurately control the pH value, the reaction aqueous solution in the reaction vessel is collected, cooled to 25 ° C., and the pH value is measured. The pH value at 50 ° C. was controlled to be in the range of 12.3.
  • the crystallization reaction was performed by stirring the inside of the reaction vessel maintained at 50 ° C., using a metering pump, and adjusting the Ni molar concentration to 1.69 mol / L and the Co molar concentration to 0.31 mol / L. While supplying an aqueous solution at 30 mL / min and supplying 25 mass% aqueous ammonia at 2.5 mL / min, a 24 mass% aqueous sodium hydroxide solution was intermittently added, and the pH value was 12.2 based on a liquid temperature of 25 ° C. The control was carried out so as to be maintained.
  • the slurry generated in the reaction step is extracted by a metering pump through a extraction nozzle inserted into the reaction tank, and after adjusting the slurry concentration to 150 g / L, the slurry introduction pressure is 0.3 MPa to 0.5 MPa. After adjusting to the range, it was introduced into a wet cyclone separation apparatus (manufactured by Nippon Chemical Machinery Co., Ltd., Hydrocyclone NHC-10). In the wet cyclone separator used at this time, the shape of the cyclone portion was cylindrical, and the inner diameter of the cross section was 5 mm to 10 mm.
  • this composite hydroxide was confirmed to be represented by the general formula: Ni 0.85 Co 0.15 (OH) 2 .
  • the particle size distribution (D10, D50, D90) was measured using the laser diffraction scattering type particle diameter and particle size distribution meter (the Nikkiso Co., Ltd. make, Microtrac).
  • the tap density was measured using a tap density measuring device (manufactured by Kuramochi Scientific Instruments Co., Ltd., shaking specific gravity measuring device KRS-409).
  • the composite hydroxide is dispersed in an aqueous solution in which sodium hydroxide (NaOH) and sodium aluminate (NaAlO 2 ) are dissolved, and neutralized with an aqueous sulfuric acid solution (H 2 SO 4 ) while stirring.
  • a slurry containing a composite hydroxide in which aluminum hydroxide was precipitated was obtained.
  • the slurry was washed with water and filtered, then dried at about 100 ° C., and then heated to 700 ° C. and baked to synthesize a composite oxide coated with aluminum.
  • this composite oxide was confirmed to be represented by the general formula: Ni 0.83 Co 0.13 Al 0.04 O 2 .
  • lithium hydroxide (LiOH) as a lithium (Li) supply source is added to the obtained composite oxide, and the number of lithium atoms (Li) and the metal elements constituting the composite oxide (Ni, Co, Al) was mixed so that the ratio (Li / Me) to the sum of the number of atoms (Me) was 1.05 to prepare a lithium mixture. Thereafter, this lithium mixture is heated from room temperature to a temperature range of 700 ° C. to 800 ° C. in an oxidizing atmosphere, and is baked for about 7 hours in the temperature range to obtain a lithium composite oxide (positive electrode active material). It was.
  • this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 .
  • the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • this positive electrode active material was analyzed by X-ray diffraction, it was confirmed that it had a hexagonal layered structure. In this analysis, it was confirmed that the lithium seat occupancy obtained from the X-ray diffraction chart using Rietveld analysis was 98.2% to 98.9%.
  • a 2032 type coin battery (10) as shown in FIG. 4 was prepared and used as follows. First, 90% by mass of the obtained positive electrode active material powder was mixed with 5% by mass of acetylene black and 5% by mass of PVDF (polyvinylidene fluoride), and NMP (n-methylpyrrolidone) was added to make a paste. This paste was applied to an aluminum foil having a thickness of 20 ⁇ m so that the mass of the positive electrode active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and then on a 1 cm ⁇ disc. A positive electrode (12a) was punched out.
  • PVDF polyvinylidene fluoride
  • NMP n-methylpyrrolidone
  • a coin battery (10) in a glow box in an argon (Ar) atmosphere with a dew point controlled to ⁇ 80 ° C. or lower. was made.
  • lithium metal is used for the negative electrode (12b)
  • a polyethylene porous film having a thickness of 25 ⁇ m is used for the separator (12c)
  • ethylene carbonate using 1M lithium perchlorate (LiClO 4 ) as a supporting salt for the electrolyte An equivalent mixed solution of (EC) and diethyl carbonate (DEC) was used.
  • the obtained coin battery (10) was allowed to stand for about 24 hours, and after the open circuit voltage (OCV) was stabilized, the current density with respect to the positive electrode was set to 0.5 mA / cm 2 and the cut-off voltage was 4.3 V to 3.0 V.
  • a charge / discharge test was conducted at ° C. This charge / discharge was repeated, and the capacity retention rate after 25 cycles was measured.
  • Example 2 A composite hydroxide was obtained in the same manner as in Example 1, except that the pH value of the aqueous reaction solution was maintained at 11.8 based on the liquid temperature of 25 ° C., and the stirring speed in the reaction step was 800 rpm. .
  • the pH value is controlled by collecting the reaction aqueous solution in the reaction vessel, cooling to 25 ° C., and measuring the pH value so that the pH value at 25 falls within the range of 11.7 to 11.9.
  • the pH value at 50 ° C. was controlled.
  • the obtained composite hydroxide was appropriately solid-liquid separated, washed with water and dried to obtain a powdery composite hydroxide.
  • this composite hydroxide was confirmed to be represented by the general formula: Ni 0.85 Co 0.15 (OH) 2 .
  • the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 3 A composite hydroxide was obtained in the same manner as in Example 1 except that the pH value of the aqueous reaction solution was maintained at 12.0 based on the liquid temperature of 25 ° C. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.85 Co 0.15 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 4 A composite hydroxide was obtained in the same manner as in Example 1 except that the temperature of the reaction aqueous solution was maintained at 35 ° C. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.85 Co 0.15 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 5 The same procedure as in Example 1 was used except that the raw material aqueous solution adjusted so that the Ni molar concentration was 1.66 mol / L, the Co molar concentration was 0.26 mol / L, and the Al molar concentration was 0.08 mol / L.
  • a composite hydroxide was obtained.
  • this composite hydroxide was confirmed to be represented by the general formula: Ni 0.83 Co 0.13 Al 0.04 (OH) 2 .
  • the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Lithium hydroxide was mixed with this composite hydroxide so that Li / Me was 1.05, and calcined under the same conditions as in Example 1 to obtain a positive electrode active material.
  • this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 .
  • the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 6 Except that the raw material aqueous solution adjusted so that the Ni molar concentration was 1.66 mol / L, the Co molar concentration was 0.26 mol / L, and the Mg molar concentration was 0.08 mol / L, was used in the same manner as in Example 5. A composite hydroxide was obtained. At this time, magnesium sulfate was used as a magnesium source. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.83 Co 0.13 Mg 0.04 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Lithium hydroxide was mixed with this composite hydroxide so that Li / Me was 1.05, and calcined under the same conditions as in Example 1 to obtain a positive electrode active material.
  • this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Mg 0.04 O 2 .
  • the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 7 The composite hydroxide obtained in the same manner as in Example 1 was baked without coating to obtain a composite oxide. As a result of ICP emission spectroscopic analysis, this composite oxide was confirmed to be represented by the general formula: Ni 0.86 Co 0.14 O 2 .
  • the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Lithium hydroxide was mixed with this composite hydroxide so that Li / Me was 1.05, and calcined under the same conditions as in Example 1 to obtain a positive electrode active material.
  • this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.86 Co 0.14 O 2 .
  • the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 8 A composite hydroxide was obtained in the same manner as in Example 1 except that the pH value of the aqueous reaction solution was maintained at 11.6 based on the liquid temperature of 25 ° C. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.85 Co 0.15 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 9 A composite hydroxide was obtained in the same manner as in Example 1 except that the liquid temperature in the reaction vessel was maintained at 25 ° C. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.85 Co 0.15 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 10 A composite hydroxide was obtained in the same manner as in Example 1 except that the slurry concentration in the small particle diameter portion slurry obtained in the separation step was not returned to the reaction vessel. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.85 Co 0.15 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 11 A composite hydroxide was obtained in the same manner as in Example 1 except that the stirring speed was 600 rpm. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.85 Co 0.15 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 12 A composite hydroxide was obtained in the same manner as in Example 1 except that the stirring speed was 1000 rpm. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.85 Co 0.15 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 1 A crystallization reaction was performed in the same manner as in Example 1 except that the separation step was not performed. The supply amounts of the raw material aqueous solution, the ammonia water and the caustic soda aqueous solution were adjusted to be equal to the extracted slurry amount. After a lapse of 48 to 72 hours from the start of the reaction, the obtained composite hydroxide was appropriately solid-liquid separated, washed with water and dried to obtain a composite hydroxide. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.86 Co 0.14 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • Example 2 A crystallization reaction was performed in the same manner as in Example 2 except that the separation step was not performed. The supply amounts of the raw material aqueous solution, the ammonia water and the caustic soda aqueous solution were adjusted to be equal to the extracted slurry amount. After a lapse of 48 to 72 hours from the start of the reaction, the obtained composite hydroxide was appropriately solid-liquid separated, washed with water and dried to obtain a composite hydroxide. As a result of ICP emission spectroscopic analysis, this composite hydroxide was confirmed to be represented by the general formula: Ni 0.86 Co 0.14 (OH) 2 . For this composite hydroxide, the particle size distribution (D10, D50, D90) and the tap density were measured in the same manner as in Example 1. The results are shown in Table 1.
  • a positive electrode active material was obtained in the same manner as in Example 1. As a result of ICP emission spectroscopic analysis, this positive electrode active material was confirmed to be represented by the general formula: Li 1.05 Ni 0.83 Co 0.13 Al 0.04 O 2 . Moreover, about this positive electrode active material, the particle size distribution was measured using the laser diffraction scattering type particle diameter and the particle size distribution meter, and the tap density was measured using the tap density measuring apparatus, respectively.
  • the composite hydroxylation satisfying the relationship of (D50 ⁇ D10) /D50 ⁇ 0.30 and (D90 ⁇ D50) /D50 ⁇ 0.30 between D10, D50 and D90.
  • the positive electrode active material obtained using the product as a precursor can have a capacity maintenance rate of 97.5% or more in a non-aqueous electrolyte secondary battery using the same.
  • the capacity retention rate can be set to 98.0% or more, and the cycle characteristics can be significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】粒度分布がシャープなニッケルコバルト複合水酸化物を得ることにより、該複合水酸化物を前駆体として得られる非水系電解質二次電池のサイクル特性の向上を図る。 【解決手段】少なくともニッケルおよびコバルトを含む水溶液と、アンモニウムイオン供給体水溶液と、苛性アルカリ水溶液とを、それぞれ連続的に反応槽に供給して反応させることにより得られるニッケルコバルト複合水酸化物を含むスラリーを連続的に抜き出し、分級により大粒径部と小粒径部を分離し、小粒径部を連続的に反応槽に還流する。これによって、一般式:Ni1-x-yCoxy(OH)2(ただし、0.05≦x≦0.50、0≦y≦0.10、0.05≦x+y≦0.50、Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種の金属元素)で表され、D10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つニッケルコバルト複合水酸化物を得る。

Description

ニッケルコバルト複合水酸化物とその製造方法および製造装置、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
 本発明は、ニッケルコバルト複合水酸化物とその製造方法および製造装置に関する。また、本発明は、このニッケルコバルト複合水酸化物を原材料とする非水系電解質二次電池用正極活物質とその製造方法、さらには、この非水系電解質二次電池用正極活物質を正極材料として用いる非水系電解質二次電池に関する。
 近年、電子技術の進歩に伴い、電子機器の小型化、軽量化が急速に進んでいる。特に、携帯電話やノートパソコンなどのポータブル電子機器の普及と高機能化により、これらに使用されるポータブル用電源として、高いエネルギ密度を有し、小型で、軽量な二次電池の開発が強く望まれている。このような要求を満たすものとして、非水系電解質二次電池であるリチウムイオン二次電池がさかんに利用されている。リチウムイオン二次電池について、このような用途に限られず、ハイブリッド自動車や電気自動車などの大型電源としての利用を目指した研究開発も進められている。リチウムイオン二次電池の正極活物質には、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)が主に使用されている。
 しかしながら、リチウムコバルト複合酸化物の原料には、希産で高価なコバルト化合物が含まれる。このため、リチウムコバルト複合酸化物を正極材料として使用するリチウムイオン二次電池の容量当たりの単価が、ニッケル水素電池の約4倍程度まで達している。このコスト高に起因して、現時点では、リチウムイオン電池の用途はかなり限定されている。したがって、正極活物質のコストを下げ、より安価なリチウムイオン二次電池の提供を可能とすることは、現在普及しているポータブル電子機器の軽量化や小型化に対して、きわめて大きな意義を有する。
 リチウムコバルト複合酸化物に代替可能なリチウムイオン電池用の正極活物質として、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn24)、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)などが検討されている。
 このうち、リチウムマンガン複合酸化物は、原料であるマンガンが安価である上、熱安定性や安全性に優れた材料である。しかしながら、理論容量がリチウムコバルト複合酸化物の半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点がある。また、45℃以上の温度では、自己放電が激しく、充放電寿命も低下するという欠点もある。
 一方、リチウムニッケル複合酸化物は、マンガンと同様に安価かつ安定して入手可能であり、さらには、リチウムコバルト複合酸化物と比べて高容量であるため、次世代の正極活物質の主流となることが期待されており、その研究開発が活発に進められている。しかしながら、リチウムとニッケルのみで構成されたリチウムニッケル複合酸化物を正極活物質として用いたリチウムイオン二次電池には、リチウムコバルト複合酸化物を用いた場合と比べて、サイクル特性が劣るという問題がある。これは、リチウムニッケル複合酸化物では、リチウムが脱離するに伴って、六方晶と単斜晶との間でのその結晶構造が変化(相転移)し、かつ、その変化における可逆性に乏しいことに起因して、充放電反応を繰り返すうちに、リチウムを脱離および挿入することができるサイトを徐々に失ってしまうためと考えられている。
 この問題を解決するため、ニッケルの一部をコバルトで置換することが検討されている。この置換により、リチウムニッケル複合酸化物の結晶構造が安定化し、リチウムの脱離に伴う結晶構造の相転移が抑制されることになる。この場合、コバルトの置換量が多くなればなるほど、結晶構造が安定し、サイクル特性が改善される一方、コストの上昇を招くという問題が生じる。コバルトの置換量を少量に抑えつつ上述の効果を得るためには、前駆体であるニッケル複合水酸化物中にコバルトを、原子レベルで均一に分散させることが有効である。
 コバルトの均一な分散を可能とする方法には、反応晶析法がある。たとえば、特開平9-270258号公報には、pH値や温度などを調整した反応槽内に、ニッケル塩水溶液、コバルト塩水溶液および苛性アルカリ水溶液を、濃度や流量を制御しながら連続的に供給し、反応槽からオーバーフローする反応水溶液から生成物を採取することによって、得られるニッケルコバルト複合水酸化物の特性を制御する、連続晶析法が記載されている。このような連続晶析法によれば、ニッケルコバルト複合水酸化物の結晶構造の安定性が向上し、充放電に伴う相移転が抑制される。加えて、粒子構造の破壊の原因となる結晶粒界が非常に少なくなり、粒子の微細化や脱落を防止できるため、良好なサイクル特性を備えた正極活物質が得られる。
 しかしながら、このような連続晶析法により、ニッケルコバルト複合水酸化物を製造する場合、粒度分布が正規分布となって広がりやすいため、均一な粒径の粒子を得ることはきわめて困難である。粒度分布が広い粒子により構成される正極活物質を用いると、電極内で粒子に印加される電圧が不均一となることに起因して、充放電を繰り返すうちに微粒子が選択的に劣化し、リチウムイオン電池の容量が低下してしまう。このため、上述した連続晶析法では、正極活物質のサイクル特性を十分に向上させることはできない。
 粒度分布がシャープな粒子を得るためには、連続晶析法よりもバッチ法が有利であるが、バッチ法は、連続晶析法よりも生産性に劣るという欠点がある。特に、バッチ法により、10μm以上の大きな粒子を得ようとすれば、供給する原料の量を増加させる必要があるが、そのためには大型の反応槽を使用せざるを得ず、生産性がますます劣ってしまう。
 これらの事情から、連続晶析法による場合であっても、粒度分布がシャープなニッケル複合水酸化物を得る方法の開発が試みられている。たとえば、特開平10-265225号公報や特開2003-86182号公報には、連続晶析法によって生成した粒子を分級しながら回収する技術が開示されている。具体的には、反応槽を本体とその下側に一体的に設けられた分離装置により構成し、本体内で成長し、比重が増加した粒子を、本体の下側に設けられた分離装置を介して回収する一方、未発達の粒子を分離装置内の上昇流によって本体へ押し戻すことにより、分級するシステムが開示されている。このような方法であれば、連続晶析法であっても、粒度分布がシャープな粒子を得ることが可能である。しかしながら、この技術では、晶析条件などを厳密に管理する必要があるため、工業規模の生産へのその適用は困難であり、また、反応工程と分離工程が、一つの反応槽内で行われるため、未発達の粒子が混入する可能性があり、回収される粒子の均一化を図るには限界がある。
特開平9―270258号公報 特開平10-265225号公報 特開2003-86182号公報
 本発明は、上述した問題に鑑み、粒度分布がシャープなニッケルコバルト複合水酸化物を提供することを目的とする。また、このようなニッケルコバルト複合水酸化物を、工業規模の生産に有利な連続晶析法によって製造する方法およびその装置を提供することを目的とする。さらに、本発明は、このニッケルコバルト複合水酸化物を前駆体として正極活物質を合成し、この正極活物質を正極として用いることで、サイクル特性の優れた非水系電解質二次電池を提供することを目的とする。
 本発明者らは、上記目的を達成するために非水系電解質二次電池用正極活物質の前駆体として使用するニッケルコバルト複合水酸化物およびその製造方法について鋭意検討を重ねた。この結果、ニッケルおよびコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、撹拌しながら、それぞれ連続的に供給し、この反応槽から晶析反応により生成したニッケルコバルト複合水酸化物を含むスラリーを抜き出し、分級により大粒径部と小粒径部に分離し、小粒径部を連続的に反応槽に還流することで、粒径の均一な粒子を効率的に製造することができることを見出し、本発明を完成させるに至った。
 すなわち、本発明のニッケルコバルト複合水酸化物は、一般式:Ni1-x-yCoxy(OH)2(ただし、0.05≦x≦0.50、0≦y≦0.10、0.05≦x+y≦0.50、Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種の金属元素)で表されるニッケルコバルト複合水酸化物であって、
 前記ニッケルコバルト複合水酸化物のD10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つことを特徴とする。
 前記ニッケルコバルト複合水酸化物のタップ密度は、2.0g/cm3以上であることが好ましい。また、前記ニッケルコバルト複合水酸化物の平均粒径は、10μm~30μmの範囲にあることが好ましい。
 本発明のニッケルコバルト複合水酸化物の製造方法は、ニッケルおよびコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、それぞれ連続的に反応槽に供給して反応させることで、ニッケルコバルト複合水酸化物を得る反応工程と、前記反応槽から前記ニッケルコバルト複合水酸化物を含むスラリーを連続的に抜き出し、分級により大粒径部と小粒径部に分離する分離工程と、前記小粒径部を連続的に前記反応槽に還流する還流工程とを備えることを特徴とする。
 前記分離工程において、遠心力を利用した湿式分離装置を使用することが好ましい。
 前記分離された大粒径部の表面を、添加元素M(Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種の金属元素)で被覆する工程を、さらに備えることが好ましい。
 本発明のニッケルコバルト複合水酸化物の製造装置は、反応槽と、該反応槽に、ニッケルおよびコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、それぞれ連続的に供給する手段と、前記反応槽内において晶析反応により生成したニッケルコバルト複合水酸化物を該反応槽から連続的に抜き出す手段と、該抜き出されたニッケルコバルト複合水酸化物を、分級により大粒径部と小粒径部に分離する分離装置と、前記分離された小粒径部を連続的に前記反応槽に還流する還流装置とを備えることを特徴とする。
 本発明の非水系電解質二次電池用正極活物質は、一般式:Li1+uNi1-x-yCoxy2(ただし、0≦u≦0.30、0.05≦x≦0.50、0≦y≦0.10、0.05≦x+y≦0.50、Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種の金属元素)で表され、層状構造を有する六方晶系リチウムニッケルコバルト複合酸化物からなり、前記リチウムニッケルコバルト複合酸化物のD10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つことを特徴とする。
 前記非水系電解質二次電池用正極活物質のタップ密度は、2.0g/cm3以上であることが好ましい。また、前記非水系電解質二次電池用正極活物質の平均粒径は、10μm~30μmの範囲にあることが好ましい。
 また、本発明の非水系電解質二次電池用正極活物質の製造方法は、前記ニッケルコバルト複合水酸化物、または、該ニッケルコバルト複合水酸化物を酸化性雰囲気中、300℃~700℃の温度で焙焼することにより得られるニッケルコバルト複合酸化物を、リチウム化合物と混合してリチウム混合物を形成する混合工程と、このリチウム混合物を酸化性雰囲気中、600℃~850℃の温度で焼成する焼成工程とを備えることを特徴とする。
 本発明の非水系電解質二次電池は、正極と、負極と、セパレータと、非水系電解質とを備え、前記正極の正極材料として、前記非水系電解質二次電池用正極活物質が用いられていることを特徴とする。
 本発明によれば、粒度分布がきわめてシャープなニッケルコバルト複合水酸化物を得ることができる。このため、このニッケルコバルト複合水酸化物を前駆体として得られる正極活物質を用いた非水系電解質二次電池のサイクル特性を向上させることができる。また、本発明によれば、投入する原料を無駄なく利用することができるため、コストを低減することができるばかりでなく、生産効率も向上させることができるため、その工業的意義はきわめて大きい。
図1は、本発明の製造方法により得られたニッケルコバルト複合水酸化物と従来の製造方法により得られたニッケルコバルト複合水酸化物の粒度分布をそれぞれ示すグラフである。 図2は、本発明によるニッケルコバルト複合水酸化物の製造工程を模式的に示したフロー図である。 図3は、本発明のニッケルコバルト複合水酸化物の製造装置を示す概念図である。 図4は、電池評価に使用した2032型コイン型電池の概略断面図である。
 以下、本発明について、「1.ニッケルコバルト複合水酸化物とその製造方法および製造装置」と、「2.非水系電解質二次電池用正極活物質およびその製造方法」と、「3.非水系電解質二次電池」とに分けて、詳細に説明する。なお、本発明では、ニッケルコバルト複合水酸化物を製造する際の条件を制御することにより、その平均粒径や結晶形状などを調整することができるが、以下では、主として、平均粒径が10μm~30μmの範囲にある略球状のニッケルコバルト複合水酸化物を製造する場合を例に挙げて説明する。
 1.ニッケルコバルト複合水酸化物およびその製造方法
 (1)ニッケルコバルト複合水酸化物
 本発明のニッケルコバルト複合水酸化物(以下、「複合水酸化物」という)は、一般式:Ni1-x-yCoxy(OH)2(ただし、0.05≦x≦0.50、0≦y≦0.10、0.05≦x+y≦0.50、Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種の金属元素)で表される複合水酸化物であって、この複合水酸化物のD10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つことを特徴とする。すなわち、本発明の複合水酸化物は、きわめてシャープな粒度分布を有することを特徴とする。
 (組成)
 上記一般式において、コバルト(Co)の添加量を示すxの値は0.05~0.50、好ましくは0.10~0.50、より好ましくは0.10~0.30とする。xの値が0.05未満では、Coの添加による効果を十分に得ることができない。一方、xの値が0.50を超えると、原料コストが増加してしまう。
 また、添加元素Mの添加量を示すyの値は0~0.10、好ましくは0.01~0.09、より好ましくは0.02~0.08とする。yの値が0.10を超えると、充放電容量を低下させてしまう。
 このような添加元素Mとしては、アルミニウム(Al)、マグネシウム(Mg)、マンガン(Mn)、チタン(Ti)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)から選ばれる少なくとも1種の金属元素を用いることができるが、コストおよび電池特性の観点からアルミニウムおよび/またはマグネシウムを用いることが好ましい。
 なお、コバルトと添加元素Mの添加量は、合計で0.05~0.50、好ましくは0.05~0.40、より好ましくは0.05~0.25とする。コバルトと添加元素Mの添加量が、合計で0.05未満では、コバルトおよび添加元素Mを添加することによる効果を得ることができない。一方、コバルトと添加元素Mの添加量が、合計で0.50を超えると、原料コストが増加するばかりでなく、充放電容量が低下してしまい、ニッケル(Ni)系正極活物質のメリットが損なわれてしまう。
 (粒度分布)
 本発明の複合水酸化物は、D10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つことを特徴とする。ここで、D10、D50、D90は、粒度分布の積算値がそれぞれ10%、50%および90%に相当する粒径を意味する。D10、D50、D90を求める方法は特に限定されないが、たとえば、レーザ回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 D10、D50およびD90の間に上記関係が成り立てば、複合水酸化物の粒度分布はきわめてシャープであるといえるため、この複合水酸化物を前駆体として得られる正極活物質を用いて二次電池を構成した場合に、サイクル特性を十分に向上させることが可能となる。具体的には、非水系電解質二次電池のサイクル特性の指標となる容量維持率を97.5%以上とすることが可能となる。一方、(D50-D10)/D50と(D90-D50)/D50のうち、いずれか一方の値が0.30を超えると、粒径の均一度が悪化し、このニッケルコバルト複合水酸化物を前駆体としたリチウムニッケルコバルト複合酸化物(以下、「リチウム複合酸化物」という)からなる正極活物質を用いた非水系電解質二次電池のサイクル特性を十分に向上させることができなくなる。ここで、本発明における容量維持率とは、非水系電解質二次電池を構成し、これを一定時間放置し、開路電圧(OCV)が安定した後、正極に対する電流密度を0.5mA/cm2、カットオフ電圧を4.3V~3.0Vとして、25℃での充放電試験を25サイクル繰り返した後の容量維持率(=25サイクル後の放電容量/初期放電容量×100)を意味する。
 なお、非水系電解質二次電池のサイクル特性をより向上させる観点から、D10、D50およびD90の間に、(D50-D10)/D50≦0.27、かつ、(D90-D50)/D50≦0.27の関係が成り立つことが好ましく、(D50-D10)/D50≦0.20、かつ、(D90-D50)/D50≦0.20の関係が成り立つことがより好ましい。このような(D50-D10)/D50および(D90-D50)/D50の値は、複合水酸化物の製造工程において、反応工程、分離工程および還流工程を繰り返すことで実現することができる。
 (タップ密度)
 正極活物質の構造や大きさは、その前駆体である複合水酸化物の影響を受ける。このため、本発明の複合水酸化物は、充填性の指標となるタップ密度が2.0g/cm3以上であることが好ましく、2.2g/cm3以上であることがより好ましい。ここで、タップ密度とは、JIS Z-2504に基づき、容器に採取した試料粉末を、100回タッピングした後の密度を表し、振とう比重測定器を用いて測定することができる。
 複合水酸化物のタップ密度がこのような範囲にあれば、この複合水酸化物を前駆体として得られるリチウム複合酸化物を正極活物質として用いた非水系電解質二次電池の電池特性を、より優れたものとすることができる。一方、タップ密度が2.0g/cm3未満では、正極活物質の充填密度が十分なものとならず、得られる二次電池の特性を十分に向上させることができない場合がある。なお、タップ密度の上限は限られないが、本発明の実施形態においては、2.4g/cm3程度が上限となる。
 (平均粒径)
 複合水酸化物の平均粒径は、10μm~30μmの範囲にあることが好ましく、13μm~26μmにあることがより好ましく、15μm~25μmの範囲にあることがさらに好ましい。なお、本発明における平均粒径は、粒度分布の積算値が50%に相当する粒径、すなわち、D50(メディアン径)を意味する。複合水酸化物の平均粒径がこのような範囲にあれば、この複合水酸化物を前駆体として得られるリチウム複合酸化物を正極活物質として用いた非水系電解質二次電池の電池特性を、より優れたものとすることができる。特に、タップ密度を上述の範囲に制御するとともに、平均粒径をこのような範囲に制御することで、容量維持率を、好ましくは98.0%以上、より好ましくは98.5%以上とすることができる。
 これに対して、平均粒径が10μm未満では、正極活物質の充填密度が十分なものとならず、二次電池の特性を十分に向上させることができない場合がある。一方、平均粒径が30μmを超えると、正極活物質の比表面積が小さくなり、同様に二次電池の特性を十分に向上させることができない場合がある。
 (2)ニッケルコバルト複合水酸化物の製造方法
 本発明の複合水酸化物の製造方法は、図2に示すように、ニッケルおよびコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、撹拌しながら、それぞれ連続的に反応槽に供給して反応させることで、複合水酸化物を得る反応工程と、反応槽から複合水酸化物を含むスラリーを抜き出し、分級により大粒径部と小粒径部を分離する分離工程と、分離工程により得られた小粒径部を連続的に反応槽に還流する還流工程とを備えることを特徴とする。このような製造方法では、既存の反応工程とは別個に分離工程および還流工程を設けているので、反応工程で同時的に分級を行う方法と比べて、複合水酸化物の晶析条件などに対する制限が少なく、粒子成長に有利な条件のみを選択することができるため、工業規模での生産に有利といえる。また、未発達の粒子が混入する可能性もなく、回収される粒子をより均一なものとすることができる。以下、各工程について詳細に説明する。
 (2-1)反応工程
 反応工程は、ニッケルおよびコバルトを含む水溶液(以下、「原料水溶液」という)と、アンモニウムイオン供給体を含む水溶液(以下、「アンモニウムイオン供給水溶液」という)と、苛性アルカリ水溶液とを、撹拌しながら、それぞれ連続的に反応槽に供給することで、これらの混合水溶液からなる反応水溶液を形成し、晶析反応を起こさせることによって、上述した一般式により表される複合水酸化物を連続的に生成する工程である。ここで、苛性アルカリ水溶液は、反応水溶液のpH値が所定の範囲に維持されるように、その添加量を調整して供給される。
 このような連続晶析法においては、反応水溶液のpH値を制御することで、得られる複合水酸化物の結晶構造や粉体特性を制御することができる。すなわち、このような連続晶析法では、反応槽内で形成された反応水溶液のニッケル濃度、コバルト濃度および添加元素Mの濃度が、この反応水溶液のニッケル、コバルトおよび添加元素Mの溶解度(飽和溶解度)を上回った時点で、複合水酸化物の晶析反応が起こるが、このときの反応水溶液のpH値を制御し、その溶解度を調整することで、得られる複合水酸化物の結晶構造や粉体特性を制御することができる。
 しかしながら、単に、原料水溶液を溶解度の低い反応槽に供給すると、そのpH値での溶解度と、原料水溶液中の金属成分の濃度の差が大きい場合には、微細で、不定形な複合水酸化物が一気に析出してしまう。本発明では、このようなことを防止する観点から、原料水溶液と同時にアンモニウムイオン供給水溶液を反応槽に供給し、ニッケル、コバルトおよび添加元素Mの錯イオンをそれぞれ形成させることで、同じpH値であっても金属成分の溶解度を高い側で安定させている。この結果、複合水酸化物の析出を緩やかに行わせることができ、かつ、析出および再溶解の過程を繰り返させることで、複合水酸化物を略球状に成長させることができる。また、アンモニウムイオン供給水溶液のアンモニウムイオン濃度を調整することで、複合水酸化物の結晶構造を、所望の形状に制御することもできる。
 (反応条件)
 反応工程の条件は、反応槽の大きさ、撹拌翼の径および形状、あるいは、目的とする粒子の大きさや形状などに応じて適宜選択されるべきものであり、一義的に定めることはできない。特に、本発明では、同一の反応槽において核生成と粒子成長が同時に進行するため、反応条件によっては、得られる複合水酸化物の粒度分布が広くなってしまうことがあり、この場合、後述する分離工程の負荷が増大し、全体の生産効率が悪化する可能性がある。また、反応工程、分離工程および還流工程の過度の繰り返しにより粗大粒子が発生し、粒度分布がさらに広くなってしまう可能性もある。このため、得られる複合水酸化物の粒度分布を所定範囲に制御する観点から、反応工程における条件を適宜調整することが好ましい。
 たとえば、容積が34Lの反応槽、および、直径7cm~15cm、2~5枚羽根のプロペラ翼(傾斜角15°~45°)を使用して、10μm~30μm程度の略球形の複合水酸化物を得ようとする場合、反応条件を以下のように調整することが好ましい。
 反応水溶液のpH値は、液温25℃基準で、好ましくは11.8以上、より好ましくは12.0以上とする。pH値が11.8未満では、複合水酸化物のタップ密度が低くなり、最終的に得られる電池の特性が悪化してしまう場合がある。なお、pH値の上限は、液温25℃基準で、好ましくは13.0程度、より好ましくは12.8程度とする。これは、pH値が13.0を超えると、核生成と粒子成長が同時に進行しやすくなり、平均粒径が10μm~30μmの範囲にあり、粒度分布がシャープな複合水酸化物を得ることが困難になる。
 反応水溶液の液温は、好ましくは35℃以上、より好ましくは40℃以上とする。液温が35℃未満では、複合水酸化物のタップ密度が低くなり、同様に、最終的に得られる電池の特性が悪化してしまう場合がある。なお、液温の上限は、好ましくは40~60℃程度、より好ましくは50℃程度とする。これは、液温が60℃を超えると、アンモニアの揮発量が増加し、ニッケル、コバルトおよび添加元素Mの錯体濃度が不安定になるからである。
 また、反応水溶液の撹拌速度は、600rpm~1400rpmの範囲に制御することが好ましく、700rpm~1300rpmの範囲に制御することがより好ましい。撹拌速度が600rpm未満では、原料水溶液、アンモニウムイオン供給水溶液および苛性アルカリ水溶液を均一に混合することが困難となる。一方、1400rpmを超えると、生成した複合水酸化物同士が衝突し、微粒子が発生するおそれがある。このため、いずれの場合であっても、得られる複合水酸化物の粒度分布が広がりやすくなってしまう。
 (原料水溶液)
 原料水溶液は、特に限定されるものではないが、ニッケルおよびコバルトの硝酸塩、硫酸塩または塩酸塩などを溶解した水溶液を用いることが好ましく、ハロゲンによる汚染の防止およびコストの観点から、これらの硫酸水溶液を用いることがより好ましい。
 原料水溶液の濃度は、ニッケル塩とコバルト塩の合計で、好ましくは1.0mol/L~2.4mol/L、より好ましくは1.5mol/L~2.4mol/L、さらに好ましくは2.0mol/L~2.4mol/Lとする。原料水溶液の濃度が1.0mol/L未満では、反応槽当たりの晶析物量が少なくなり、生産性が低下するため好ましくない。一方、原料水溶液の塩濃度が2.4mol/Lを超えると、原料水溶液の飽和溶解度を超えてしまい、原料水溶液内で金属塩が析出するため、目的とする組成とは異なる組成の複合水酸化物が生成されるおそれがある。
 また、ニッケル塩およびコバルト塩は、必ずしも原料水溶液として反応槽に供給しなくてもよい。たとえば、混合すると反応して、目的とする複合水酸化物以外の化合物が生成されてしまうニッケル塩やコバルト塩を用いる場合、個別にニッケル塩水溶液とコバルト塩水溶液を用意し、これらの水溶液に含まれるニッケル塩およびコバルト塩の濃度が、合計で上記範囲となるように調整して、所定の割合で同時に反応槽に供給してもよい。
 (添加元素M)
 上述したように、本発明の複合水酸化物には、添加元素M(Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種以上の金属元素)を含有させることができる。
 添加元素Mを複合水酸化物の内部に均一に分散させる場合には、ニッケル塩およびコバルト塩を含む水溶液に、上述した添加元素Mを含む塩を溶解させた水溶液を添加して、または、添加元素Mを含む塩を溶解させた水溶液と、ニッケル塩およびコバルト塩を含む水溶液とを同時に反応槽に供給して、複合水酸化物の内部に添加元素Mを均一に分散させた状態で共沈させればよい。
 ただし、添加元素Mは、必ずしも反応工程で添加する必要はなく、本発明により得られた複合水酸化物の表面を添加元素Mで被覆してもよい。この場合、たとえば、後述する分離工程により得られた大粒径部を、添加元素Mを含む塩を溶解させた水溶液または添加元素Mのアルコキシド溶液と混合してスラリー化し、このスラリーが所定のpH値となるように制御しつつ、晶析反応により添加元素Mを複合水酸化物の表面に析出させることで、複合水酸化物の表面を添加元素Mで均一に被覆することができる。また、大粒径部に対して、添加元素Mを含んだ水溶液またはスラリーを吹き付けて乾燥させることによって、複合水酸物の表面を添加元素Mで被覆することもできる。さらには、大粒径部と添加元素Mとを含む塩が懸濁したスラリーを噴霧乾燥させ、あるいは、複合水酸化物と添加元素Mとを含む塩を固相法で混合することによって、複合水酸化物の表面を添加元素Mで被覆することもできる。
 (アンモニウムイオン供給水溶液)
 本発明で使用するアンモニウムイオン供給水溶液は、特に限定されるものではないが、アンモニア水、または、硫酸アンモニウムもしくは塩化アンモニウムを含む水溶液が好ましく、ハロゲンによる汚染を防止する観点から、アンモニア水または硫酸アンモニウムを含む水溶液がより好ましい。
 なお、アンモニウムイオン供給水溶液としてアンモニア水を使用する場合、アンモニウムイオン濃度が25質量%~30質量%程度の一般的な市販品をそのまま使用することができる。アンモニウムイオン濃度が上記範囲と比べてあまりに低いと、所定量のアンモニウムイオンを供給するため、多量のアンモニウムイオン供給水溶液を供給しなければならず、生産性が低下してしまう。一方、アンモニウムイオン濃度が上記範囲を超える場合であっても、アンモニウムイオンがスムーズに供給される限り、特に問題となることがないが、アンモニウムイオン濃度が30質量%を超えて高くなると、アンモニアの揮発量が増大し、安全な操業が困難となる。
 (苛性アルカリ水溶液)
 本発明において、苛性アルカリ水溶液は中和反応のpH調整剤として用いられる。このような苛性アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液などを用いることができるが、取扱いの容易性およびコストの観点から、水酸化ナトリウム水溶液を用いることが好ましい。
 苛性アルカリ水溶液の濃度は、好ましくは10質量%~30質量%、より好ましくは15質量%~25質量%とする。10質量%未満では、pH調整に必要な苛性アルカリ水溶液の量が増え、生産性を低下させてしまう。一方、30質量%を超える場合は、苛性アルカリ水溶液中に苛性アルカリ結晶が析出したり、苛性アルカリ水溶液の粘度が高くなったりするため、反応装置に機械的な負荷をかけてしまうという問題が生じるおそれがある。
 なお、苛性アルカリ水溶液の供給は、反応水溶液のpH値を10質量%~30質量%の範囲に制御することができるように、原料水溶液およびアンモニウムイオン供給水溶液の供給量に応じて、適宜調整することが好ましい。
 (2-2)分離工程
 反応工程で生成し、成長した複合水酸化物を含むスラリーは、連続的に反応槽から抜き出され、分離装置により目的とする粒径に達した粒子(以下、「大粒径部」という)と、目的とする粒径に未達の粒子(以下、「小粒径部」という)に分級される。大粒径部は分離装置から反応槽外に排出され、小粒径部は還流装置により、反応槽内に戻される。反応槽内に戻された粒子は、再び反応槽内で成長した後、反応槽内から分離装置に導かれ、目的とする粒径に達していれば反応槽外に排出される。これを繰り返すことにより、反応槽内で生成し、成長した大粒径部を選択的に反応槽外に排出するとともに、小粒径部は、目的とする粒径に達するまで粒子成長を繰り返すことができるため、最終的に得られる複合水酸化物の粒径が均一になり、その粒度分布をシャープなものとすることができる。
 特に、本発明では、二次電池のサイクル特性を向上させる観点から、得られる複合水酸化物のD10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つように分級する必要がある。ここで、特開平10-265225号公報や特開2003-86182号公報に記載の技術のように、反応工程で同時的に分級を行う場合には、晶析条件などを厳密に管理しなければならず、工業規模の生産に適用することは難しい。また、目的とする粒径に未達の粒子が混入する場合があり、上述した関係が成り立つ複合水酸化物を得ることは困難である。一方、本発明では、反応工程と分離工程を完全に分離しているため、上記関係が成り立つ複合水酸化物を容易に得ることができる。
 複合水酸化物の分級は、湿式の分級方法を採用することが好ましい。乾式の分級方法では、粒子同士の衝突により微粉が発生するため、粒度分布が広がりやすく、また、粒子形状が変形し、タップ密度が低下するおそれがある。
 湿式の分級方法としては、特に限定されることはないが、遠心力を利用したもの、具体的には湿式サイクロン法を採用することが好ましい。湿式サイクロン法によれば、サイクロン部の形状、サイズおよび処理スラリーの導入圧力により、分級点を容易に制御することが可能となる。たとえば、反応工程により平均粒径が10μm~30μmとなるまで成長した略球状の複合水酸化物を、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つように分級するためには、サイクロン部の形状を円筒状とし、処理スラリーの導入圧力を0.3MPa~0.5MPaの範囲に調整することが好ましい。
 (2-3)還流工程
 還流工程は、分離工程において、分離装置から排出された小粒径部を含むスラリー(以下、「小粒径部スラリー」という)を反応槽内に戻す(還流する)工程である。還流方法は、特に限定されることなく公知の手段を用いることができる。たとえば、分級後の小粒径部をそのまま反応槽に戻す場合には、分離装置から排出された小粒径部スラリーをポンプにより直接反応槽へ戻せばよい。一方、小粒径部スラリーの濃度を調整することが必要な場合には、濃縮手段や希釈手段を別途設ける必要がある。
 なお、還流速度、すなわち、小粒径部を反応槽に戻す速度は、原料水溶液やアンモニウムイオン供給体を含む水溶液などの供給速度に応じて、適宜調整すればよい。
 以上より、本発明の製造方法によれば、非水系電解質二次電池用正極活物質の前駆体として好適な組成および粒度分布を有する複合水酸化物を容易に得ることができる。
 (3)ニッケルコバルト複合水酸化物の製造装置
 本発明の複合水酸化物の製造装置は、図3に示すように、原料水溶液と、アンモニウムイオン供給水溶液と、苛性アルカリ水溶液とを、撹拌しながら、それぞれ連続的に反応槽に供給して反応させることで、複合水酸化物を得る反応槽(1)と、反応槽(1)から連続的に複合水酸化物を抜き出し、分級により、複合水酸化物を大粒径部と小粒径部に分離する分離装置(7)と、小粒径部を連続的に反応槽に還流する還流装置(9)とを備える。
 (反応槽)
 反応工程に使用する反応槽(1)は、撹拌手段(2)、原料水溶液供給手段(3)、アンモニウムイオン供給水溶液供給手段(4)、苛性アルカリ水溶液供給手段(5)を備え、かつ、生成された複合水酸化物を連続的に排出することができる、オーバーフロー方式のものであれば、特に限定されることはない。ただし、晶析条件を制御するため、温度制御手段、pH値制御手段などを備えることが好ましい。なお、撹拌手段(2)としては、公知のマグネチックスターラー、メカニカルスターラーなど工業規模の生産に適したものを適宜選択すればよい。また、温度制御手段、pH値制御手段、原料水溶液などの供給手段についても、適宜、公知のものを採用することができる。
 (分離装置)
 反応工程により生成したスラリーはポンプ(6)により、分離装置(7)へ導入される。この際、使用する分離装置(7)としては湿式の分離装置であることが好ましく、湿式サイクロン法を利用した分離装置がより好ましい。湿式サイクロン法を利用した分離装置であれば、サイクロン部の形状、サイズおよび処理スラリーの導入圧力により、分級点を容易に制御することができる。
 (還流装置)
 分離工程により分離された大粒径部は、反応槽外に排出される。一方、小粒径部は、還流装置(9)により反応槽に戻されることとなる。
 還流装置(9)としては、特に限定されることなく公知のものを用いることができる。たとえば、簡易的に行う場合には、分離装置から排出された小粒径部スラリーをポンプにより直接反応槽へ戻せばよい。しかしながら、必要な場合には、分離工程で得られた小粒径部スラリーのスラリー濃度を調整するための希釈装置や脱水装置などを組み合わせてもよい。
 なお、小粒径部と大粒径部を分離する際、液体成分は、通常、小粒径部側に多く分配されるため、反応槽に小粒径部を戻す前に、小粒径部の脱水を行うことが必要となる。このように小粒径部の脱水を行う際には、分級点が小さい場合であっても、精度よく小粒径部と液体成分を分離することができる湿式サイクロン式の脱水装置を用いることが好ましい。
 (その他)
 各装置の間には、得られた複合水酸化物のスラリー濃度を調整するため、希釈装置あるいは脱水装置を備えることが好ましい。
 また、分離装置により、分級された大粒径部を収容する受け槽(8)を備えることが好ましく、特に、得られた複合水酸化物を、上述した添加元素Mで被覆する場合には、被覆装置をさらに備えることがより好ましい。被覆装置としては、複合水酸化物の表面に、添加元素Mを析出させる手段、添加元素Mを含んだ水溶液またはスラリーを吹き付けて乾燥させる手段、あるいは、添加元素Mを含む塩が懸濁したスラリーを噴霧乾燥させる手段などを備えたものであることが好ましい。
 さらに、本発明では、コンピュータ制御システムなどの、各工程における反応速度、分級速度または還流速度を制御する制御手段を備えることが好ましい。
 2.非水系電解質二次電池用正極活物質およびその製造方法
 (1)非水系電解質二次電池用正極活物質
 本発明の非水系電解質二次電池用正極活物質は、一般式:Li1+uNi1-x-yCoxy2(ただし、0≦u≦0.30、0.05≦x≦0.50、0≦y≦0.10、0.05≦x+y≦0.50、Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種の金属元素)で表され、層状構造を有する六方晶系リチウム複合酸化物からなり、このリチウム複合酸化物のD10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つことを特徴とする。このような正極活物質は、後述するように、本発明の複合水酸化物を前駆体とすることで容易に得ることができる。
 (組成)
 上記一般式において、リチウムの過剰量を示すuの値は、0~0.30とすることが好ましく、0~0.15とすることがより好ましい。uの値が0未満では、得られる正極活物質を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。一方、uの値が0.30を超えると、正極活物質を電池の正極に用いた場合の初期放電容量が低下するばかりでなく、正極の反応抵抗も増加してしまう。
 なお、コバルトの添加量を示すxの値および添加元素Mの含有量を示すyの値については、上述した複合水酸化物と同様であるため、ここでの説明は省略する。
 (粒度分布)
 本発明の正極活物質は、D10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つことを特徴とする。
 D10、D50およびD90の間に、上記関係が成り立てば、正極活物質の粒度分布はきわめてシャープであるといえるため、この正極活物質用いた非水系電解質二次電池のサイクル特性を十分に向上させることが可能となる。具体的には、非水系電解質二次電池のサイクル特性の指標となる容量維持率を97.5%以上とすることが可能となる。
 これに対して、(D50-D10)/D50と(D90-D50)/D50のうち、いずれか一方の値が0.30を超えると粒径の均一度が悪化し、この正極活物質を用いた非水系電解質二次電池のサイクル特性を十分に向上させることができなくなる。
 なお、非水系電解質二次電池のサイクル特性をより向上させる観点から、D10、D50およびD90の間に、(D50-D10)/D50≦0.27、かつ、(D90-D50)/D50≦0.27の関係が成り立つことが好ましく、(D50-D10)/D50≦0.20、かつ、(D90-D50)/D50≦0.20の関係が成り立つことがより好ましい。
 (タップ密度)
 本発明の正極活物質のタップ密度は、2.0g/cm3以上であることが好ましく、2.2g/cm3以上であることがより好ましい。正極活物質のタップ密度がこのような範囲にあれば、この正極活物質として用いた非水系電解質二次電池の電池特性をより優れたものとすることができる。一方、タップ密度が2.0g/cm3未満では、正極活物質の充填密度が十分なものとならず、非水系電解質二次電池の特性を十分に向上させることができない場合がある。
 (平均粒径)
 本発明の正極活物質の平均粒径は、10μm~30μmの範囲にあることが好ましく、13μm~26μmの範囲にあることがより好ましく、15μm~25μmの範囲にあることがさらに好ましい。正極活物質の平均粒径がこのような範囲にあれば、この正極活物質を用いた非水系電解質二次電池の電池特性をより優れたものとすることができる。特に、タップ密度を上述の範囲に制御するとともに、平均粒径をこのような範囲に制御することで、容量維持率を、好ましくは98.0%以上、より好ましくは98.5%以上とすることができる。
 これに対して、平均粒径が10μm未満では、正極活物質の充填密度が十分なものとならず、非水系電解質二次電池の特性を十分に向上させることができない場合がある。一方、平均粒径が30μmを超えると、正極活物質の比表面積が小さくなり、同様に非水系電解質二次電池の特性を十分に向上させることができない場合がある。
 (2)非水系電解質二次電池用正極活物質の製造方法
 以下、上述したニッケル複合水酸化物を前駆体として、非水系電解質電池用正極活物質を製造する方法について説明する。
 (混合工程)
 混合工程は、複合水酸化物とリチウム化合物とを混合して、リチウム混合物を得る工程である。
 この際に使用するリチウム化合物としては、特に限定されることはなく、たとえば、水酸化リチウム、硝酸リチウム、炭酸リチウム、またはこれらの混合物を用いることができる。特に、取り扱いの容易さや品質の安定性を考慮すると、水酸化リチウムまたは炭酸リチウムを用いることが好ましい。
 複合水酸化物とリチウム化合物とは、リチウム混合物中のリチウム以外の金属の原子数、すなわち、ニッケル、コバルトおよび添加元素Mの原子数の和(Me)と、リチウムの原子数(Li)との比(Li/Me)が1.00~1.30、好ましくは1.00~1.15となるように混合される。すなわち、焼成工程前後でLi/Meは変化しないので、この混合工程で混合するLi/Meが正極活物質におけるLi/Meとなるため、リチウム混合物におけるLi/Meが、得ようとする正極活物質におけるLi/Meと同じになるように混合される。
 複合水酸化物とリチウム化合物との混合には、一般的な混合機を使用することができ、たとえば、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどを用いることができる。この際、複合水酸化物の形骸が破壊されない程度で、十分に混合する必要がある。
 (焙焼工程)
 前記混合工程の前に、予め、複合水酸化物を、酸化性雰囲気中で、300℃~700℃の温度で焙焼する焙焼工程を、さらに備えることが好ましい。このような焙焼工程により、複合水酸化物をニッケルコバルト複合酸化物(以下、「複合酸化物」という)にすることができ、この複合酸化物をリチウム化合物と混合した場合に、リチウム複合酸化物の充填性を保ったまま、リチウム複合酸化物中のリチウムと金属元素の組成比を安定させることができる。
 焙焼温度は300℃~700℃とすることが好ましく、400℃~600℃とすることがより好ましい。焙焼温度が300℃未満では、複合水酸化物が一部残留する可能性があり、得られるリチウム複合酸化物の組成が安定しない場合がある。一方、700℃を超えると、粒子間の焼結が発生して粗大粒子が生成され、粒度分布が悪化する場合がある。
 (焼成工程)
 焼成工程は、混合工程で得られたリチウム混合物を、酸化性雰囲気中、600℃~850℃で焼成する工程である。
 焼成工程における焼成温度は、600℃~850℃、好ましくは700℃~800℃とする。焼成温度が600℃未満では、リチウムの拡散反応速度が十分ではなく、余剰のリチウムが残存し、結晶構造が整わなくなり、電池に用いられた場合に十分な特性が得られない。一方、850℃を超えると、リチウム複合酸化物の粒子間で激しく焼結が生じるとともに、異常粒成長を生じる可能性がある。この場合、焼成後の粒子が粗大となって略球状の粒子形態を保持できなくなる。このような正極活物質は、比表面積が低下するため、電池に用いた場合、正極の抵抗が上昇して電池容量が低下してしまう。
 なお、複合水酸化物または複合酸化物と、リチウム化合物との反応を均一に行わせる観点から、昇温速度を1℃/min~2.5℃/minとして上記温度まで昇温することが好ましい。さらには、リチウム化合物の融点付近の温度で1時間~5時間程度保持することで、より反応を均一に行わせることができる。
 焼成温度での保持時間は、5時間以上とすることが好ましく、5時間~10時間とすることがより好ましい。保持時間が5時間未満では、リチウム複合酸化物の合成が十分に行われないことがある。
 また、焼成時の雰囲気は、酸化性雰囲気とすることが好ましい。具体的には、酸素濃度が18容量%~100容量%の雰囲気とすることが好ましく、酸素濃度が70容量%~100容量%の雰囲気とすることがより好ましく、上記酸素濃度の酸素と不活性ガスの混合雰囲気とすることがさらに好ましい。酸素濃度が18容量%未満であると、リチウム複合酸化物の結晶性が十分なものとならない場合がある。
 なお、焼成に用いられる炉は、特に限定されるものではなく、酸化性雰囲気非水系電解質でリチウム混合物を加熱できるものであればよいが、炉内の雰囲気を均一に保つ観点から、ガス発生がない電気炉が好ましく、バッチ式あるいは連続式の炉をいずれも用いることができる。
 3.非水系電解質二次電池
 本発明の非水系電解質二次電池は、正極、負極、セパレータ、非水系電解液などの、一般の非水系電解質二次電池と同様の構成要素を備える。なお、以下に説明する実施形態は例示にすぎず、本発明の非水系電解質二次電池は、本明細書に記載されている実施形態を基づいて、種々の変更、改良を施した形態に適用することも可能である。
 (1)正極
 本発明により得られた非水系電解質二次電池用正極活物質を用いて、たとえば、以下のようにして非水系電解質二次電池の正極を作製する。
 まず、本発明により得られた粉末状の正極活物質に、導電材および結着剤を混合し、さらに必要に応じて活性炭や、粘度調整などの溶剤を添加し、これらを混練して正極合材ペーストを作製する。その際、正極合材ペースト中のそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分を100質量部とした場合、一般の非水系電解質二次電池の正極と同様に、正極活物質の含有量を60質量部~95質量部とし、導電材の含有量を1質量部~20質量部とし、結着剤の含有量を1質量部~20質量部とすることが望ましい。
 得られた正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレスなどにより加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などをして、電池の作製に供することができる。ただし、正極の作製方法は、このような方法に限られることはなく、他の方法によってもよい。
 導電材としては、たとえば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。
 結着剤は、活物質粒子をつなぎ止める役割を果たすもので、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂およびポリアクリル酸を用いることができる。
 また、必要に応じて、正極活物質、導電材および活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加することができる。溶剤としては、具体的には、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することもできる。
 (2)負極
 負極には、金属リチウムやリチウム合金など、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
 負極活物質としては、たとえば、天然黒鉛、人造黒鉛およびフェノール樹脂などの有機化合物焼成体、およびコークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDFなどの含フッ素樹脂を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
 (3)セパレータ
 正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレンやポリプロピレンなどの薄い膜で、微少な孔を多数有する膜を用いることができる。
 (4)非水系電解液
 非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびトリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートおよびジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフランおよびジメトキシエタンなどのエーテル化合物、エチルメチルスルホンやブタンスルトンなどの硫黄化合物、リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を単独、あるいは2種以上を混合して用いることができる。
 支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO22、およびそれらの複合塩などを用いることができる。
 さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤などを含んでいてもよい。
 (5)電池の形状、構成
 以上のように説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明の非水系電解質二次電池は、円筒形や積層形など、種々の形状にすることができる。
 いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。
 このような二次電池の一例として、図4に示すような2032型コイン電池(10)がある。このコイン型電池(10)は、ケース(11)と、このケース(11)内に収容された電極(12)とにより構成される。
 ケース(11)は、中空かつ一端が開口された正極缶(11a)と、この正極缶(11a)の開口部に配置される負極缶(11b)とからなり、負極缶(11b)を正極缶(11a)の開口部に配置すると、負極缶(11b)と正極缶(11a)との間に電極(12)を収容する空間が形成されるように構成される。
 電極(12)は、正極(11a)、セパレータ(12c)および負極(12b)とからなり、この順で並ぶように積層され、正極(11a)が正極缶(11a)の内面に接触し、負極(12b)が負極缶(11b)の内面に接触するようにケース(11)に収容されている。
 なお、ケース(11)は、ガスケット(11c)を備え、このガスケット(11c)は、正極缶(11a)と負極缶(11b)との間が電気的に絶縁状態を維持するように、ケース(11)内に配置固定されている。また、ガスケット(11c)は、正極缶(11a)と負極缶(11b)との隙間を密封して、ケース(11)内と外部との間を気密液密に遮断する機能を有している。
 (6)特性
 本発明の正極活物質を用いた非水系電解質二次電池は、この非水系電解質二次電池を構成し、開路電圧(OCV)が安定した後、正極に対する電流密度を0.5mA/cm2、カットオフ電圧4.3V~3.0Vとし、25℃での充放電試験を25サイクル行った後の容量維持率が97.5%以上、好ましくは98.0%以上、より好ましくは98.5%以上であることを特徴とする。このように本発明の非水系電解質二次電池は、非常に優れたサイクル特性を備えているため、小型携帯電子機器や電気自動車用の電源として好適であるといえる。なお、本発明は、純粋に電気エネルギで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることが可能である。
 以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、本実施例では、特に断りがない限り、複合水酸化物、正極活物質の製造および二次電池の製造には、和光純薬工業株式会社製試薬特級の各試料を使用した。
 (実施例1)
 邪魔板を4枚取り付けた容積34Lのオーバーフロー式晶析反応槽に、工業用水32L、25質量%アンモニア水を1300mL投入し、恒温槽および加温ジャケットにて50℃に加温した。その後、24質量%苛性ソーダ水溶液を投入して、液温25℃基準でpH値が12.2となるように制御した。具体的には、pH値の管理を正確に行うため、反応槽内の反応水溶液を採取し、25℃に冷却してpH値を測定することにより、25℃でのpH値が12.1~12.3の範囲となるように50℃でのpH値を制御した。
 晶析反応は、50℃に保持した反応槽内を攪拌しつつ、定量ポンプを用いて、Niモル濃度が1.69mol/L、Coモル濃度が0.31mol/Lとなるように調整した原料水溶液を30mL/minで供給するとともに、25質量%アンモニア水を2.5mL/minで供給しつつ、24質量%苛性ソーダ水溶液を断続的に添加し、液温25℃基準でpH値が12.2に維持されるように制御して行った。この際の撹拌は、直径10cmの3枚羽根プロペラ翼(傾斜角30度)を用いて、撹拌速度が1200rpmとなるようにして行った。なお、原料水溶液の供給は、反応水溶液中に供給ノズルを差し込み、原料水溶液が直接供給されるようにして行った。
 その後、反応工程で生成したスラリーを、反応槽内に挿入した抜き取りノズルを介して定量ポンプにより抜き取り、スラリー濃度を150g/Lに調整した後、スラリーの導入圧力を0.3MPa~0.5MPaの範囲に調整した上で、湿式サイクロン分離装置(日本化学機械製造株式会社製、ハイドロサイクロンNHC-10)に導入した。なお、このとき使用した湿式サイクロン分離装置は、サイクロン部の形状が円筒状であり、断面の内径が5mm~10mmであった。
 分離工程では、粒径が15μmに達したものを大粒径部として連続的に排出し、受け層に収容した。一方、粒径が15μmに達しないものについては、小粒径部として、分離工程後、湿式サイクロン脱水装置(日本化学機械製造株式会社製、連続式脱水装置)を用いて、スラリー濃度を150g/Lに調整した後、還流装置へ導入し、反応槽内へ連続的に還流した。
 反応開始から48時間~72時間経過後、得られた複合水酸化物を適宜固液分離し、水洗および乾燥することにより、粉末状の複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.85Co0.15(OH)2により表されるものであることが確認された。また、この複合水酸化物について、レーザ回折散乱式粒子径・粒度分布計(日機装株式会社製、マイクロトラック)を用いて粒度分布(D10、D50、D90)を測定した。さらに、タップ密度測定装置(株式会社蔵持科学器械製作所製、振とう比重測定器KRS-409)を用いてタップ密度を測定した。これらの結果を表1に示す。
 その後、複合水酸化物を、水酸化ナトリウム(NaOH)とアルミン酸ナトリウム(NaAlO2)を溶解した水溶液に分散させ、攪拌しつつ硫酸水溶液(H2SO4)で中和することで、その表面に水酸化アルミニウムが析出した複合水酸化物を含むスラリーを得た。このスラリーを水洗およびろ過し、次いで約100℃で乾燥した後、700℃に加熱して焙焼することによって、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、得られた複合酸化物に、リチウム(Li)の供給源としての水酸化リチウム(LiOH)を、リチウムの原子数(Li)と複合酸化物を構成する金属元素(Ni、Co、Al)の原子数の和(Me)との比(Li/Me)が1.05となるように混合し、リチウム混合物を調製した。その後、このリチウム混合物を酸化性雰囲気中で、室温から700℃~800℃の温度域まで昇温し、当該温度域で約7時間焼成することにより、リチウム複合酸化物(正極活物質)を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。さらに、この正極活物質をX線回折で分析したところ、六方晶系の層状構造を有するものであることが確認された。なお、この分析において、X線回折チャートからリートベルト解析を用いて求められるリチウム席占有率は98.2%~98.9%であることが確認された。
 このようにして得られた正極活物質の評価には、図4に示すような2032型コイン電池(10)を以下のように作製して、使用した。まず、得られた正極活物質の粉末90質量%に、アセチレンブラック5質量%と、PVDF(ポリフッ化ビニリデン)5質量%を混合し、NMP(n-メチルピロリドン)を加えてペースト化した。このペーストを、乾燥後の正極活物質の質量が0.05g/cm2となるように、厚さ20μmのアルミニウム箔に塗布し、120℃で真空乾燥を行った後、1cmφの円板上に打ち抜いて正極(12a)とした。この正極(12a)と、負極(12b)、セパレータ(12c)および電解液とを用いて、露点がー80℃以下に管理されたアルゴン(Ar)雰囲気のグローボックス中で、コイン電池(10)を作製した。この際、負極(12b)にはリチウム金属を、セパレータ(12c)には膜厚25μmのポリエチレン多孔質膜を、電解液には1Mの過塩素酸リチウム(LiClO4)を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を使用した。得られたコイン電池(10)を24時間程度放置し、開路電圧(OCV)が安定した後、正極に対する電流密度を0.5mA/cm2、カットオフ電圧4.3V~3.0Vとして、25℃で充放電試験を行った。この充放電を繰り返し、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例2)
 反応水溶液のpH値を、液温25℃基準で11.8に維持したこと、反応工程における撹拌速度を800rpmとして行ったこと以外は、実施例1と同様にして、複合水酸化物を得た。なお、pH値の管理は、反応槽内の反応水溶液を採取し、25℃に冷却してpH値を測定することにより、25でのpH値が11.7~11.9の範囲となるように50℃でのpH値を制御した。得られた複合水酸化物を適宜固液分離し、水洗および乾燥することにより、粉末状の複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.85Co0.15(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後オン容量維持率を測定した。これらの結果を表2に示す。
 (実施例3)
 反応水溶液のpH値を、液温25℃基準で12.0に維持したこと以外は、実施例1と同様にして、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.85Co0.15(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例4)
 反応水溶液の温度を35℃に維持したこと以外は、実施例1と同様にして、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.85Co0.15(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例5)
 Niモル濃度が1.66mol/L、Coモル濃度が0.26mol/L、Alモル濃度が0.08mol/Lとなるように調整した原料水溶液を使用したこと以外は実施例1と同様にして、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.04(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 この複合水酸化物に、Li/Meが1.05となるように水酸化リチウムを混合し、実施例1と同様の条件で焼成し、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例6)
 Niモル濃度が1.66mol/L、Coモル濃度が0.26mol/L、Mgモル濃度が0.08mol/Lとなるように調整した原料水溶液を使用したこと以外は実施例5と同様にして、複合水酸化物を得た。なお、この際、マグネシウム源として硫酸マグネシウムを使用した。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Mg0.04(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 この複合水酸化物に、Li/Meが1.05となるように水酸化リチウムを混合し、実施例1と同様の条件で焼成し、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Mg0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例7)
 実施例1と同様にして得られた複合水酸化物を、被覆せずに焼成して、複合酸化物を得た。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.86Co0.142により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 この複合水酸化物に、Li/Meが1.05となるように水酸化リチウムを混合し、実施例1と同様の条件で焼成し、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.86Co0.142により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例8)
 反応水溶液のpH値を、液温25℃基準で11.6に維持したこと以外は、実施例1と同様にして、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.85Co0.15(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例9)
 反応槽内の液温を25℃に維持したこと以外は、実施例1と同様にして、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.85Co0.15(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例10)
 分離工程において得られた小粒径部スラリーのスラリー濃度を調整することなく、反応槽に還流したこと以外は、実施例1と同様にして、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.85Co0.15(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例11)
 撹拌速度を600rpmとしたこと以外は、実施例1と同様にして、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.85Co0.15(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (実施例12)
 撹拌速度を1000rpmとしたこと以外は、実施例1と同様にして、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.85Co0.15(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして、正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (比較例1)
 分離工程を行わなかったこと以外は、実施例1と同様にして、晶析反応を行った。なお、原料水溶液、アンモニア水および苛性ソーダ水溶液の供給量は、抜き取ったスラリー量と同等になるように調整した。反応開始から48時間~72時間経過後、得られた複合水酸化物を適宜固液分離し、水洗および乾燥することにより、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.86Co0.14(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
 (比較例2)
 分離工程を行わなかったこと以外は、実施例2と同様にして、晶析反応を行った。なお、原料水溶液、アンモニア水および苛性ソーダ水溶液の供給量は、抜き取ったスラリー量と同等になるように調整した。反応開始から48時間~72時間経過後、得られた複合水酸化物を適宜固液分離し、水洗および乾燥することにより、複合水酸化物を得た。この複合水酸化物は、ICP発光分光分析の結果、一般式:Ni0.86Co0.14(OH)2により表されるものであることが確認された。また、この複合水酸化物について、実施例1と同様にして、粒度分布(D10、D50、D90)およびタップ密度を測定した。この結果を表1に示す。
 その後、実施例1と同様にして、アルミニウムにより被覆された複合酸化物を合成した。この複合酸化物は、ICP発光分光分析の結果、一般式:Ni0.83Co0.13Al0.042により表されるものであることが確認された。
 さらに、実施例1と同様にして正極活物質を得た。この正極活物質は、ICP発光分光分析の結果、一般式:Li1.05Ni0.83Co0.13Al0.042により表されるものであることが確認された。また、この正極活物質について、レーザ回折散乱式粒子径・粒度分布計を用いて粒度分布を、タップ密度測定装置を用いてタップ密度をそれぞれ測定した。
 最後に、この正極活物質を用いて、実施例1と同様にして、2032型コイン電池を作製し、充放電試験を実施することにより、25サイクル後の容量維持率を測定した。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2の結果から、D10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ(D90-D50)/D50≦0.30の関係が成り立つ、複合水酸化物を前駆体として得られた正極活物質は、これを用いた非水系電解質二次電池において、その容量維持率を97.5%以上とすることができることが理解される。特に、タップ密度や平均粒径を好適範囲に規制することにより、その容量維持率を98.0%以上とすることができ、サイクル特性を大幅に改善できることが理解される。
 1 反応槽
 2 撹拌手段
 3 原料水溶液供給手段
 4 アンモニウムイオン供給水溶液供給手段
 5 苛性アルカリ水溶液供給手段
 6 ポンプ
 7 分離装置
 8 受け槽
 9 還流装置
 10 2032型コイン電池
 11 ケース
 11a 正極缶
 11b 負極缶
 11c ガスケット
 12 電極
 12a 正極
 12b 負極
 12c セパレータ

Claims (12)

  1.  一般式:Ni1-x-yCoxy(OH)2(ただし、0.05≦x≦0.50、0≦y≦0.10、0.05≦x+y≦0.50、Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種の金属元素)で表されるニッケルコバルト複合水酸化物であって、
     前記ニッケルコバルト複合水酸化物のD10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つ、
    ニッケルコバルト複合水酸化物。
  2.  タップ密度が2.0g/cm3以上である、請求項1に記載のニッケルコバルト複合水酸化物。
  3.  平均粒径が10μm~30μmの範囲にある、請求項1に記載にニッケルコバルト複合水酸化物。
  4.  ニッケルおよびコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、それぞれ連続的に反応槽に供給して反応させることでニッケルコバルト複合水酸化物を得る反応工程と、
     前記反応槽から、前記ニッケルコバルト複合水酸化物を含むスラリーを連続的に抜き出し、分級により大粒径部と小粒径部に分離する分離工程と、
     前記小粒径部を連続的に前記反応槽に還流する還流工程と
    を備える、ニッケルコバルト複合水酸化物の製造方法。
  5.  前記分離工程において、遠心力を利用した湿式分離装置を使用する、請求項4に記載のニッケルコバルト複合水酸化物の製造方法。
  6.  前記分離された大粒径部の表面を、添加元素M(Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種の金属元素)で被覆する工程をさらに備える、請求項4または5に記載のニッケルコバルト複合水酸化物の製造方法。
  7.  反応槽と、
     該反応槽に、ニッケルおよびコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、それぞれ連続的に供給する手段と、
     前記反応槽内において反応により生成したニッケルコバルト複合水酸化物を該反応槽から連続的に抜き出す手段と、
     該抜き出されたニッケルコバルト複合水酸化物を、分級により大粒径部と小粒径部に分離する分離装置と、
     前記分離された小粒径部を連続的に前記反応槽に還流する還流装置と
    を備える、請求項1に記載のニッケルコバルト複合水酸化物の製造装置。
  8.  一般式:Li1+uNi1-x-yCoxy2(ただし、0≦u≦0.30、0.05≦x≦0.50、0≦y≦0.10、0.05≦x+y≦0.50、Mは、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaから選ばれる少なくとも1種の金属元素)で表され、層状構造を有する六方晶系リチウムニッケルコバルト複合酸化物からなり、
     前記リチウムニッケルコバルト複合酸化物のD10、D50およびD90の間に、(D50-D10)/D50≦0.30、かつ、(D90-D50)/D50≦0.30の関係が成り立つ、
    非水系電解質二次電池用正極活物質。
  9.  タップ密度が2.0g/cm3以上である、請求項8に記載の非水系電解質二次電池用正極活物質。
  10.  平均粒径が10μm~30μmの範囲にある、請求項8に記載に非水系電解質二次電池用正極活物質。
  11.  請求項1~3に記載のニッケルコバルト複合水酸化物、もしくは、該ニッケルコバルト複合水酸化物を酸化性雰囲気中、300℃~700℃の温度で焙焼することにより得られるニッケルコバルト複合酸化物を、リチウム化合物と混合してリチウム混合物を形成する混合工程と、このリチウム混合物を酸化性雰囲気中、600℃~850℃の温度で焼成する焼成工程とを備える、非水系電解質二次電池用正極活物質の製造方法。
  12.  正極と、負極と、セパレータと、非水系電解質とを備え、前記正極の正極材料として、請求項8~10のいずれかに記載の非水系電解質二次電池用正極活物質が用いられている、非水系電解質二次電池。
PCT/JP2013/076363 2012-09-28 2013-09-27 ニッケルコバルト複合水酸化物とその製造方法および製造装置、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 WO2014051089A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014538648A JP6094591B2 (ja) 2012-09-28 2013-09-27 ニッケルコバルト複合水酸化物とその製造方法および製造装置、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
CN201380049306.XA CN104661963B (zh) 2012-09-28 2013-09-27 镍钴复合氢氧化物及其制造方法以及制造装置、非水系电解质二次电池用正极活性物质及其制造方法、以及非水系电解质二次电池
US14/431,995 US10141571B2 (en) 2012-09-28 2013-09-27 Nickel-cobalt composite hydroxide and method and device for producing same, cathode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
US16/028,479 US10236510B2 (en) 2012-09-28 2018-07-06 Nickel-cobalt composite hydroxide and method and device for producing same, cathode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012216000 2012-09-28
JP2012-216000 2012-09-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/431,995 A-371-Of-International US10141571B2 (en) 2012-09-28 2013-09-27 Nickel-cobalt composite hydroxide and method and device for producing same, cathode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
US16/028,479 Continuation US10236510B2 (en) 2012-09-28 2018-07-06 Nickel-cobalt composite hydroxide and method and device for producing same, cathode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2014051089A1 true WO2014051089A1 (ja) 2014-04-03

Family

ID=50388482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076363 WO2014051089A1 (ja) 2012-09-28 2013-09-27 ニッケルコバルト複合水酸化物とその製造方法および製造装置、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Country Status (4)

Country Link
US (2) US10141571B2 (ja)
JP (1) JP6094591B2 (ja)
CN (2) CN107021528B (ja)
WO (1) WO2014051089A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006552A (zh) * 2015-06-09 2015-10-28 海宁美达瑞新材料科技有限公司 一种表面包覆改性的锂离子电池正极材料及其制备方法
WO2017056734A1 (ja) * 2015-09-29 2017-04-06 株式会社日立製作所 リチウム二次電池
JP2017162622A (ja) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 リチウムイオン電池用正極活物質の製造方法
JP2017162623A (ja) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 リチウムイオン電池用正極活物質の製造方法
JP2017162621A (ja) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 リチウムイオン電池用正極活物質の製造方法
JP2017162620A (ja) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 リチウムイオン電池用正極活物質の製造方法
JP2017188444A (ja) * 2016-03-31 2017-10-12 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP2018018776A (ja) * 2016-07-29 2018-02-01 ユミコア 割れのないリチウムイオン電池正極活物質前駆体の製造方法
JP2018502808A (ja) * 2014-11-25 2018-02-01 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 噴霧熱分解による金属酸化物の製造方法
WO2018043436A1 (ja) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 異種金属含有リチウムニッケル複合酸化物及びその製造方法
KR20190104000A (ko) * 2018-02-28 2019-09-05 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법 및 제조장치
JP2020033213A (ja) * 2018-08-29 2020-03-05 住友金属鉱山株式会社 水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法
JP2020092070A (ja) * 2018-12-07 2020-06-11 住友化学株式会社 リチウム二次電池正極活物質用前駆体、リチウム二次電池正極活物質用前駆体の製造方法及びリチウム複合金属化合物の製造方法
EP3161885B1 (en) * 2014-06-30 2021-05-19 Basf Se Process for making cathode materials for lithium ion batteries
WO2021192877A1 (ja) * 2020-03-27 2021-09-30 株式会社田中化学研究所 ニッケル含有水酸化物の製造方法
JP2022008817A (ja) * 2014-05-27 2022-01-14 ダウ グローバル テクノロジーズ エルエルシー 改善されたリチウム金属酸化物カソード材料及びそれらの作製方法
JP7157219B1 (ja) 2021-08-03 2022-10-19 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626382B2 (ja) * 2013-01-30 2014-11-19 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物及びその製造方法
TWI549342B (zh) 2013-03-12 2016-09-11 蘋果公司 使用先進陰極材料之高電壓、高容積能量密度鋰離子電池
JP6252384B2 (ja) 2014-06-27 2017-12-27 住友金属鉱山株式会社 ニッケル複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
WO2017058650A1 (en) 2015-09-30 2017-04-06 Hongli Dai Cathode-active materials, their precursors, and methods of preparation
CN105355902A (zh) * 2015-11-23 2016-02-24 兰州金川新材料科技股份有限公司 一种连续合成锂离子正极材料前驱体的制备方法
US10296594B1 (en) 2015-12-28 2019-05-21 EMC IP Holding Company LLC Cloud-aware snapshot difference determination
US11023433B1 (en) * 2015-12-31 2021-06-01 Emc Corporation Systems and methods for bi-directional replication of cloud tiered data across incompatible clusters
CN109328409A (zh) 2016-03-14 2019-02-12 苹果公司 用于锂离子电池的阴极活性材料
CN112158891B (zh) 2016-09-20 2023-03-31 苹果公司 具有改善的颗粒形态的阴极活性材料
WO2018057621A1 (en) 2016-09-21 2018-03-29 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
JP6928659B2 (ja) 2017-08-14 2021-09-01 三井金属鉱業株式会社 全固体型リチウム二次電池用正極活物質
US20210159496A1 (en) * 2017-08-28 2021-05-27 Mitsui Mining & Smelting Co., Ltd. Positive Electrode Active Substance for All Solid-State Lithium Secondary Battery
CN107946591A (zh) * 2017-11-21 2018-04-20 山东理工大学 一种钠离子电池高镍前驱体及其与正极材料的制备方法
CN107834064B (zh) * 2017-12-04 2021-09-17 宁波容百新能源科技股份有限公司 一种高镍小粒径镍钴锰氢氧化物及其制备方法
CN107895791A (zh) * 2017-12-04 2018-04-10 中国恩菲工程技术有限公司 镍钴锰三元材料前驱体的分级处理工艺
CN108258235B (zh) * 2018-01-12 2020-08-07 宜宾光原锂电材料有限公司 一种分级反应制备镍钴锰三元前驱体材料的方法
CN108314093A (zh) * 2018-01-22 2018-07-24 中国恩菲工程技术有限公司 镍钴锰三元材料前驱体分级系统和方法
JP2020004508A (ja) * 2018-06-25 2020-01-09 凸版印刷株式会社 アルカリ二次電池用負極組成物及びアルカリ二次電池用負極
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
CN108767248A (zh) * 2018-08-09 2018-11-06 中国恩菲工程技术有限公司 制备窄粒径分布的镍钴锰三元材料前驱体材料的装置
CN108807976A (zh) * 2018-08-09 2018-11-13 中国恩菲工程技术有限公司 窄粒径分布的镍钴锰三元材料前驱体材料及其制备方法
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
CN109860542A (zh) * 2018-12-25 2019-06-07 河南科隆新能源股份有限公司 一种锂离子正极材料前驱体的制备方法
CN110563050A (zh) * 2019-07-23 2019-12-13 河南科隆新能源股份有限公司 一种掺杂型高振实密度镍钴铝氢氧化物前驱体及制备方法
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
WO2021112607A1 (ko) * 2019-12-06 2021-06-10 주식회사 엘지에너지솔루션 이차전지용 양극재의 제조방법
KR20220163957A (ko) * 2020-04-03 2022-12-12 가부시끼가이샤 다나까 가가꾸 겡뀨쇼 복합수산화물의 제조방법 및 복합수산화물
CN112194203A (zh) * 2020-10-29 2021-01-08 格林爱科(荆门)新能源材料有限公司 一种镍钴氧化物材料的制备方法
CN113206215B (zh) * 2021-04-30 2023-05-26 珠海冠宇电池股份有限公司 一种正极活性材料、正极材料及锂离子电池
WO2023039748A1 (zh) * 2021-09-15 2023-03-23 宁德新能源科技有限公司 一种电化学装置和电子装置
CA3236209A1 (en) * 2021-10-25 2023-05-04 Daniel Nelis A metal oxide product for manufacturing a positive electrode active material for lithium-ion rechargeable batteries
CN114573046B (zh) * 2022-03-08 2023-08-08 宜宾光原锂电材料有限公司 一种镍钴铝氢氧化物三元前驱体的制备方法
CN115448386B (zh) * 2022-11-14 2023-02-28 宜宾锂宝新材料有限公司 一种中空结构前驱体、正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136572A (en) * 1975-05-23 1976-11-26 Nippon Oil Co Ltd Crystallization reaction apparatus
JPH0394902U (ja) * 1990-01-16 1991-09-27
JPH09270258A (ja) * 1996-04-01 1997-10-14 Matsushita Electric Ind Co Ltd 非水電解液電池活物質用ニッケル−コバルト水酸化物
JP2000334202A (ja) * 1999-06-01 2000-12-05 Mitsubishi Chemicals Corp 結晶製造方法
JP2011187174A (ja) * 2010-03-04 2011-09-22 Agc Seimi Chemical Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP4840545B1 (ja) * 2011-03-31 2011-12-21 住友金属鉱山株式会社 ニッケル複合水酸化物粒子および非水系電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644186B2 (ja) 1997-03-24 2005-04-27 松下電器産業株式会社 電池構成用金属水酸化物製造装置
AUPP848199A0 (en) * 1999-02-02 1999-02-25 University Of Newcastle Research Associates Limited, The A reflux classifier
CN1372338A (zh) * 2001-02-28 2002-10-02 李许明 一种锂二次电池用球形纳米晶镍钴酸锂制备方法
JP4510331B2 (ja) * 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池
JP3827545B2 (ja) 2001-09-13 2006-09-27 松下電器産業株式会社 正極活物質、その製造方法および非水電解質二次電池
US7410511B2 (en) * 2002-08-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
KR101131479B1 (ko) * 2003-09-16 2012-03-30 에이지씨 세이미 케미칼 가부시키가이샤 리튬-니켈-코발트-망간-불소 함유 복합 산화물 및 그제조방법과 그것을 사용한 리튬 이차 전지
JP4726896B2 (ja) 2005-04-28 2011-07-20 日産自動車株式会社 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
CN102869613B (zh) * 2009-12-02 2016-09-07 住友金属矿山株式会社 镍复合氢氧化物粒子和非水电解质二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136572A (en) * 1975-05-23 1976-11-26 Nippon Oil Co Ltd Crystallization reaction apparatus
JPH0394902U (ja) * 1990-01-16 1991-09-27
JPH09270258A (ja) * 1996-04-01 1997-10-14 Matsushita Electric Ind Co Ltd 非水電解液電池活物質用ニッケル−コバルト水酸化物
JP2000334202A (ja) * 1999-06-01 2000-12-05 Mitsubishi Chemicals Corp 結晶製造方法
JP2011187174A (ja) * 2010-03-04 2011-09-22 Agc Seimi Chemical Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP4840545B1 (ja) * 2011-03-31 2011-12-21 住友金属鉱山株式会社 ニッケル複合水酸化物粒子および非水系電解質二次電池

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022008817A (ja) * 2014-05-27 2022-01-14 ダウ グローバル テクノロジーズ エルエルシー 改善されたリチウム金属酸化物カソード材料及びそれらの作製方法
EP3161885B1 (en) * 2014-06-30 2021-05-19 Basf Se Process for making cathode materials for lithium ion batteries
JP2018502808A (ja) * 2014-11-25 2018-02-01 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 噴霧熱分解による金属酸化物の製造方法
CN105006552A (zh) * 2015-06-09 2015-10-28 海宁美达瑞新材料科技有限公司 一种表面包覆改性的锂离子电池正极材料及其制备方法
WO2017056734A1 (ja) * 2015-09-29 2017-04-06 株式会社日立製作所 リチウム二次電池
JP2017162620A (ja) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 リチウムイオン電池用正極活物質の製造方法
JP2017162621A (ja) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 リチウムイオン電池用正極活物質の製造方法
JP2017162623A (ja) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 リチウムイオン電池用正極活物質の製造方法
JP2017162622A (ja) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 リチウムイオン電池用正極活物質の製造方法
JP2022009263A (ja) * 2016-03-31 2022-01-14 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP2017188444A (ja) * 2016-03-31 2017-10-12 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP7265194B2 (ja) 2016-03-31 2023-04-26 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP2018018776A (ja) * 2016-07-29 2018-02-01 ユミコア 割れのないリチウムイオン電池正極活物質前駆体の製造方法
JP7134590B2 (ja) 2016-07-29 2022-09-12 ユミコア 割れのないリチウムイオン電池正極活物質前駆体の製造方法
JPWO2018043436A1 (ja) * 2016-08-30 2019-06-24 国立研究開発法人産業技術総合研究所 異種金属含有リチウムニッケル複合酸化物及びその製造方法
WO2018043436A1 (ja) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 異種金属含有リチウムニッケル複合酸化物及びその製造方法
KR20190104000A (ko) * 2018-02-28 2019-09-05 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법 및 제조장치
KR102277735B1 (ko) * 2018-02-28 2021-07-16 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법 및 제조장치
JP2020033213A (ja) * 2018-08-29 2020-03-05 住友金属鉱山株式会社 水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法
JP7070250B2 (ja) 2018-08-29 2022-05-18 住友金属鉱山株式会社 水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法
KR20210096118A (ko) 2018-12-07 2021-08-04 스미또모 가가꾸 가부시끼가이샤 리튬 이차 전지 정극 활물질용 전구체, 리튬 이차 전지 정극 활물질용 전구체의 제조 방법 및 리튬 복합 금속 화합물의 제조 방법
WO2020116649A1 (ja) 2018-12-07 2020-06-11 住友化学株式会社 リチウム二次電池正極活物質用前駆体、リチウム二次電池正極活物質用前駆体の製造方法及びリチウム複合金属化合物の製造方法
JP2020092070A (ja) * 2018-12-07 2020-06-11 住友化学株式会社 リチウム二次電池正極活物質用前駆体、リチウム二次電池正極活物質用前駆体の製造方法及びリチウム複合金属化合物の製造方法
WO2021192877A1 (ja) * 2020-03-27 2021-09-30 株式会社田中化学研究所 ニッケル含有水酸化物の製造方法
JP7157219B1 (ja) 2021-08-03 2022-10-19 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2023013494A1 (ja) * 2021-08-03 2023-02-09 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2023022605A (ja) * 2021-08-03 2023-02-15 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Also Published As

Publication number Publication date
US10141571B2 (en) 2018-11-27
CN104661963A (zh) 2015-05-27
JP6094591B2 (ja) 2017-03-15
CN104661963B (zh) 2017-07-04
US20180323431A1 (en) 2018-11-08
JPWO2014051089A1 (ja) 2016-08-25
US10236510B2 (en) 2019-03-19
CN107021528B (zh) 2019-04-02
CN107021528A (zh) 2017-08-08
US20150243984A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP6094591B2 (ja) ニッケルコバルト複合水酸化物とその製造方法および製造装置、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
US11909039B2 (en) Nickel-containing composite hydroxide and production process thereof
JP5638232B2 (ja) 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP5877817B2 (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
WO2014034430A1 (ja) 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
WO2012165654A1 (ja) 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
JP6252383B2 (ja) マンガンコバルト複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
CN103797623A (zh) 镍复合氢氧化物及其制造方法、非水电解质二次电池用正极活性物质及其制造方法以及非水电解质二次电池
JP2011116580A5 (ja)
JP5776996B2 (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
JP6511965B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法および非水系電解質二次電池
JP7167491B2 (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
JP6362033B2 (ja) 非水系電解液二次電池用正極活物質と非水系電解液二次電池
JP2022177291A (ja) 高強度リチウムイオン二次電池用正極活物質、及び、該正極活物質を用いたリチウムイオン二次電池
JP2019220361A (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2019212365A (ja) リチウムイオン二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いたリチウムイオン二次電池
JP6409619B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
WO2023228957A1 (ja) リチウムイオン二次電池用正極活物質とその製造方法
WO2023228956A1 (ja) リチウムイオン二次電池用正極活物質とその製造方法
JP7308586B2 (ja) 非水系電解質二次電池用正極活物質
JP5354112B2 (ja) 非水系二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538648

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431995

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840198

Country of ref document: EP

Kind code of ref document: A1