WO2014050832A1 - 緩衝器 - Google Patents

緩衝器 Download PDF

Info

Publication number
WO2014050832A1
WO2014050832A1 PCT/JP2013/075760 JP2013075760W WO2014050832A1 WO 2014050832 A1 WO2014050832 A1 WO 2014050832A1 JP 2013075760 W JP2013075760 W JP 2013075760W WO 2014050832 A1 WO2014050832 A1 WO 2014050832A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
extension
chamber
piston
Prior art date
Application number
PCT/JP2013/075760
Other languages
English (en)
French (fr)
Inventor
崇志 寺岡
和隆 稲満
英樹 川上
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to EP13842865.1A priority Critical patent/EP2902657A4/en
Priority to US14/431,772 priority patent/US20150210136A1/en
Priority to KR1020157008205A priority patent/KR20150051228A/ko
Priority to CN201380050070.1A priority patent/CN104662324A/zh
Publication of WO2014050832A1 publication Critical patent/WO2014050832A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/08Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3485Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of supporting elements intended to guide or limit the movement of the annular discs
    • F16F9/3487Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of supporting elements intended to guide or limit the movement of the annular discs with spacers or spacing rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3488Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features intended to affect valve bias or pre-stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/516Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics resulting in the damping effects during contraction being different from the damping effects during extension, i.e. responsive to the direction of movement
    • F16F9/5165Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics resulting in the damping effects during contraction being different from the damping effects during extension, i.e. responsive to the direction of movement by use of spherical valve elements or like free-moving bodies

Definitions

  • the present invention relates to a shock absorber.
  • a shock absorber used in a vehicle or the like is slidably inserted into a cylinder, a cylinder, a piston partitioning the inside of the cylinder into an extension side chamber and a pressure side chamber, and movably inserted into the cylinder.
  • Piston rod connected to the piston, expansion side and pressure side ports provided on the piston, extension side leaf valve stacked on the piston to open and close the expansion side port, and layered on the piston to open and close the pressure side port And a pressure side leaf valve.
  • an orifice is provided in parallel with the leaf valve, and when the piston speed is in a low speed range, the damping force is mainly generated by the orifice.
  • the leaf valve is opened so that the damping force is mainly exerted by the leaf valve (JP2003-42214A).
  • the damping characteristics (damping force characteristics with respect to the piston speed) to which the above damping valve is applied are characteristic of the orifice proportional to the square of the piston speed when the piston speed is in the low speed range, and the piston speed is high. When in the range, the leaf valve opens and the characteristic is proportional to the piston speed unique to the leaf valve.
  • the valve opening pressure can be tuned by changing the setting of the bending rigidity of the leaf valve.
  • the bending rigidity of the leaf valve is increased in order to increase the damping of vibration when the piston speed is in the low speed range and reduce the vibration in the resonance frequency band of the vehicle body, the valve opening pressure increases, so the piston of the shock absorber When the speed is in the high speed range, there is a problem that the damping force becomes too large, and the ride comfort in the vehicle is deteriorated. For this reason, the riding comfort in the vehicle may not be satisfied in all speed regions.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a shock absorber capable of improving the riding comfort of the vehicle in the entire speed range.
  • a shock absorber a cylinder, a piston that is slidably inserted into the cylinder, and divides the cylinder into an extension side chamber and a pressure side chamber, and moves into the cylinder.
  • a piston rod that is freely inserted and connected to the piston, an extension side passage that allows only the flow of fluid from the extension side chamber to the compression side chamber, and only the flow of fluid from the compression side chamber to the extension side chamber.
  • An allowable pressure side passage an extension side damping valve that provides resistance to the flow of fluid that passes through the extension side passage, a pressure side damping valve that provides resistance to the flow of fluid that passes through the pressure side passage, and bypasses the extension side passage
  • An extension side bypass passage that communicates the extension side chamber and the compression side chamber, and an extension side that is provided in the middle of the extension side bypass passage and opens the extension side bypass passage by the pressure of the extension side chamber
  • a relief valve A pressure side bypass passage that bypasses the side passage and communicates the extension side chamber and the pressure side chamber, and a pressure side that is provided in the middle of the pressure side bypass passage and opens the pressure side bypass passage by opening the pressure side chamber.
  • a relief valve is provided.
  • FIG. 1 is a longitudinal sectional view of a shock absorber according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating attenuation characteristics of the shock absorber according to the first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view of a shock absorber according to a second embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view of a shock absorber according to a third embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view of a shock absorber D1 according to a first embodiment of the present invention.
  • the shock absorber D ⁇ b> 1 is slidably inserted into the cylinder 1, the piston 2 that divides the cylinder 1 into an expansion side chamber R ⁇ b> 1 and a compression side chamber R ⁇ b> 2, and moves into the cylinder 1
  • the piston rod 3 that is freely inserted and connected to the piston 2, the expansion side passage 4 and the pressure side passage 5 that communicate the expansion side chamber R 1 and the compression side chamber R 2, and resistance to the flow of fluid that passes through the expansion side passage 4.
  • An extension side leaf valve 6 as an extension side damping valve to give, a pressure side leaf valve 7 as a compression side damping valve to give resistance to the flow of fluid passing through the compression side passage 5, and an extension side chamber R1 bypassing the extension side passage 4
  • An expansion side bypass passage 8 communicating with the compression side chamber R2, an expansion side relief valve 9 provided in the middle of the expansion side bypass passage 8 and opened by the pressure of the expansion side chamber R1 to open the expansion side bypass passage 8; Bypassing the pressure side passage 5 and the extension side chamber R1 and the pressure side A pressure side bypass passage 10 communicating with R2, and a pressure side relief valve 11 provided in the middle of the pressure side bypass passage 10 and opened by the pressure of the pressure side chamber R2 to open the pressure side bypass passage 10; It is interposed between a vehicle body and an axle in a vehicle to generate a damping force and suppress vibrations of the vehicle body.
  • the extension side chamber R1 is a chamber that is compressed when the vehicle body and the axle are separated and the shock absorber D1 is extended, and the compression side chamber R2 is when the vehicle body and the axle are close and the shock absorber D1 is contracted.
  • the chamber is compressed into
  • the shock absorber D1 is a so-called single rod-type shock absorber.
  • the extension side chamber R1 and the compression side chamber R2 are filled with a liquid such as hydraulic oil.
  • the shock absorber D1 is a single rod type in which the piston rod 3 is inserted only into the extension side chamber R1, in order to compensate the volume of the piston rod 3 entering and exiting the cylinder 1, a cylinder is disposed below the cylinder 1.
  • 1 is a single-cylinder shock absorber provided with a sliding partition wall 14 slidably in contact with the inner circumference of 1 and partitioning the gas chamber G below the pressure side chamber R2.
  • a reservoir may be provided outside the cylinder 1 in addition to providing the gas chamber G in the cylinder 1.
  • an outer cylinder that covers the outer periphery of the cylinder 1 is provided to form a double cylinder type shock absorber that forms a reservoir between the cylinder 1 and the outer cylinder. You may provide the tank which forms.
  • a partition member that partitions the pressure side chamber R2 and the reservoir, and a liquid flow that is provided in the partition member and travels from the pressure side chamber R2 toward the reservoir. You may make it provide the base valve which gives resistance.
  • a liquid such as water or an aqueous solution can be used for the extension side chamber R1 and the pressure side chamber R2, and a gas other than the liquid may be used. That is, the fluid may be filled.
  • the shock absorber D1 may be a double rod type instead of a single rod type.
  • the piston rod 3 has a small-diameter portion 3a formed at the end on the side inserted into the cylinder 1, and a screw portion 3b formed at the tip of the small-diameter portion 3a.
  • a bracket (not shown) that can be connected to one of the vehicle body and the axle of the vehicle is provided at the end opposite to the small diameter portion 3a of the piston rod 3, and the vehicle body and axle of the vehicle are provided on the cap 13.
  • a bracket (not shown) that can be connected is provided on the side where the bracket of the piston rod 3 is not connected.
  • the piston rod 3 is provided with a common passage 15.
  • the common passage 15 opens at the tip of the small-diameter portion 3a and is provided along the axial direction of the piston rod 3, and opens upward from the small-diameter portion 3a in FIG. 1 to open the vertical hole 15a and the extension side chamber R1.
  • a second lateral hole 15c that opens to the side of the small diameter portion 3a and communicates with the longitudinal hole 15a.
  • the piston 2 is formed in an annular shape, and a small diameter portion 3a of the piston rod 3 is inserted on the inner peripheral side. Further, the piston 2 is provided with an extension side passage 4 and a pressure side passage 5 that communicate the extension side chamber R1 and the pressure side chamber R2.
  • the lower end in FIG. 1 of the extension side passage 4 is closed by an extension side leaf valve 6 as an extension side damping valve, and the upper end in FIG. 1 of the compression side passage 5 is closed by a pressure side leaf valve 7 as a compression side damping valve. Yes.
  • extension side leaf valve 6 and the pressure side leaf valve 7 are laminated leaf valves formed by laminating annular leaf valves, and the small diameter portion 3a of the piston rod 3 is inserted on the inner peripheral side.
  • An annular valve stopper 16 that regulates the amount of bending of the pressure side leaf valve 7 is laminated above the pressure side leaf valve 7 in FIG.
  • the expansion side leaf valve 6 is opened by the differential pressure between the expansion side chamber R1 and the compression side chamber R2 when the shock absorber D1 is extended, and the liquid that moves from the expansion side chamber R1 to the compression side chamber R2 through the expansion side passage 4 is opened. Provides resistance to flow. Further, the expansion side passage 4 is closed when the shock absorber D1 contracts. Thereby, the extension side passage 4 functions as a one-way passage that allows only the flow of liquid from the extension side chamber R1 to the compression side chamber R2.
  • the pressure side leaf valve 7 is opened by the differential pressure between the expansion side chamber R1 and the pressure side chamber R2, and flows through the pressure side passage 5 from the pressure side chamber R2 to the expansion side chamber R1. Give resistance. Further, when the shock absorber D1 is extended, the pressure side passage 5 is closed. Thereby, the pressure side passage 5 functions as a one-way passage that allows only the flow of liquid from the pressure side chamber R2 toward the extension side chamber R1.
  • the expansion side leaf valve 6 functions as an expansion side damping valve that generates an expansion side damping force when the shock absorber D1 extends
  • the compression side leaf valve 7 generates a compression side damping force when the shock absorber D1 contracts.
  • the extension side passage 4 and the pressure side passage 5 are closed by the extension side leaf valve 6 and the pressure side leaf valve 7, the notches 6a and 7a provided on the outer circumferences of the extension side leaf valve 6 and the pressure side leaf valve 7 can be used.
  • the extension side chamber R1 and the compression side chamber R2 are communicated with each other by a known orifice formed.
  • the orifice is formed by providing notches 6a and 7a on the outer periphery of the extension side leaf valve 6 and the pressure side leaf valve 7, and by providing a recess in the valve seat on which the extension side leaf valve 6 and the pressure side leaf valve 7 are seated, for example.
  • the extension side damping valve and the pressure side damping valve may have a configuration in which a choke and a leaf valve are provided in parallel, or other configurations. Further, the number of leaf valves stacked can be arbitrarily set.
  • a pressure side relief valve 11 that allows only the flow of liquid passing through the pressure side bypass passage 10 from the pressure side chamber R2 toward the expansion side chamber R1, and a pressure side from the expansion side chamber R1.
  • An extension-side relief valve 9 that allows only the flow of liquid that passes through the extension-side bypass path 8 toward the chamber R2 is sequentially assembled to the outer periphery of the small-diameter portion 3a of the piston rod 3.
  • the pressure side relief valve 11 is attached to the piston rod 3 on the lower side of the piston 2 in FIG. 1, that is, on the pressure side chamber R2 side.
  • the pressure-side relief valve 11 includes an annular pressure-side valve disk 18 attached to the small-diameter portion 3a of the piston rod 3 below the annular spacer 17 stacked on the expansion-side leaf valve 6 in FIG. And an annular pressure side valve body 19 composed of a laminated leaf valve that is laminated.
  • the pressure side valve disk 18 has an annular shape and is provided with a pressure side bypass port 18a penetrating vertically and having an upper end in FIG. 1 opened to the pressure side chamber R2. Further, the pressure side valve body 19 is laminated on the lower surface of the pressure side valve disk 18 in FIG. 1, and the inner periphery is fixed to the piston rod 3, so that the lower opening end of the pressure side bypass port 18a can be opened and closed. It is like that.
  • the extension-side relief valve 9 is attached to the piston rod 3 below the pressure-side relief valve 11 in FIG. 1, that is, on the pressure-side chamber R2 side.
  • the expansion side relief valve 9 includes an annular expansion side valve disc 21 mounted on the small diameter portion 3a of the piston rod 3 via an annular spacer 20 below the compression side valve body 19 in FIG. And an annular extension side valve element 22 composed of a laminated leaf valve laminated below.
  • the expansion side valve disk 21 is annular and penetrates vertically, and an expansion side bypass port 21a whose lower end in FIG. 1 opens into the pressure side chamber R2, an annular groove 21b provided on the inner peripheral side, an annular groove 21b, And a communication passage 21c communicating with the side bypass port 21a.
  • the expansion side valve disc 21 is assembled to the small diameter portion 3a of the piston rod 3, the annular groove 21b is opposed to the second lateral hole 15c.
  • the extension side valve element 22 is laminated on the lower surface of the extension side valve disk 21 in FIG. 1, and the inner periphery is fixed to the piston rod 3, so that the lower opening end of the extension side bypass port 21a can be opened and closed. It can be done.
  • a partition cylinder 23 is fitted to the outer periphery of the pressure side valve disk 18 and the expansion side valve disk 21, and a space A between the pressure side valve disk 18 and the expansion side valve disk 21 is formed from the pressure side chamber R2. It is partitioned. And the exit end of the 2nd horizontal hole 15c provided in the small diameter part 3a of the piston rod 3 is facing the annular groove 21b of the expansion side valve disc 21 as mentioned above, and the space A is an expansion side bypass port. It communicates with the common passage 15 through 21a, and finally communicates with the extension side chamber R1 through the common passage 15. In addition, when communicating the space A with the common channel
  • the pressure in the compression side chamber R2 becomes higher than the pressure in the expansion side chamber R1, and when the pressure difference between the two reaches the valve opening pressure of the compression side valve body 19,
  • the pressure side valve body 19 receives the pressure of the pressure side chamber R2 acting from the pressure side bypass port 18a and bends to open the pressure side bypass port 18a.
  • the pressure side chamber R2 and the extension side chamber R1 communicate with each other through the pressure side bypass port 18a, the space A, and the common passage 15.
  • the expansion side valve element 22 When the pressure in the compression side chamber R2 is higher than the pressure in the expansion side chamber R1, the expansion side valve element 22 is pressed against the expansion side valve disc 21 by the pressure in the compression side chamber R2, and closes the expansion side bypass port 21a. Will remain.
  • the pressure side bypass passage 10 is formed by the pressure side bypass port 18a, the space A, the common passage 15, a part of the extension side bypass port 21a, the annular groove 21b and the communication passage 21c.
  • the valve-opening pressure of the pressure-side relief valve 11 is higher than the valve-opening pressure at which the pressure-side leaf valve 7 is bent to open the pressure-side passage 5.
  • the expansion side valve body 22 acts from the expansion side bypass port 21a. Under the pressure of the extending side chamber R1, the extension side bypass port 21a is opened. Thereby, the compression side chamber R2 and the extension side chamber R1 communicate with each other through the extension side bypass port 21a, the space A, and the common passage 15.
  • the pressure side valve body 19 is pressed against the pressure side valve disk 18 by the pressure in the expansion side chamber R1, and the pressure side bypass port 18a remains closed.
  • the extension side bypass path 8 is formed by the extension side bypass port 21a, the space A, the common passage 15, the annular groove 21b, and the communication passage 21c in the present embodiment.
  • the valve opening pressure of the expansion side relief valve 9 is higher than the valve opening pressure at which the expansion side leaf valve 6 bends to open the expansion side passage 4.
  • the pressure-side relief valve 11 and the extension-side relief valve 9 configured as described above are sequentially assembled below the extension-side leaf valve 6 in FIG. 1, and a cap nut-like piston nut 24 is provided at the tip of the piston rod 3.
  • the valve stopper 16 When screwed into the threaded portion 3b, the valve stopper 16, the pressure side leaf valve 7, the piston 2, the extension side leaf valve 6, the spacer 17, the pressure side relief valve 11, the spacer 20, the partition wall cylinder 23, and the extension side relief valve 9 become pistons. It is fixed to the small diameter portion 3a of the rod 3.
  • the piston nut 24 is not a cap nut but a normal annular shape. It may be a nut.
  • plugging for example, a steel ball may be press-fitted into the open end of the vertical hole 15a and the open end may be crimped to prevent the steel ball from coming off.
  • the damping characteristic of the shock absorber D1 when the piston speed is in the low speed region in the extension stroke is a square characteristic peculiar to the orifice that exhibits a damping force proportional to the square of the piston speed, as shown in FIG. Become.
  • the damping characteristic of the shock absorber D1 when the piston speed is in the middle speed range in the extension stroke is substantially equal to the piston speed peculiar to the extension side leaf valve 6 that is the extension side damping valve, as shown in FIG. It becomes a characteristic that exhibits a proportional damping force, and the damping coefficient is lower than when the piston speed is in the low speed range.
  • the damping characteristic of the shock absorber D1 when the piston speed is in the high speed region in the extension stroke is that not only the extension side passage 4 but also the extension side bypass passage 8 is opened, as shown in FIG.
  • the damping coefficient is lower than when the piston speed is in the middle speed range.
  • the damping characteristic of the shock absorber D1 is a square characteristic peculiar to the orifice that exhibits a damping force proportional to the square of the piston speed, as shown in FIG. Become.
  • the damping characteristic of the shock absorber D1 when the piston speed is in the middle speed range in the contraction stroke is substantially proportional to the piston speed, which is peculiar to the pressure side leaf valve 7 that is the pressure side damping valve, as shown in FIG.
  • the damping force is exhibited, and the damping coefficient is lower than when the piston speed is in the low speed range.
  • the damping characteristic of the shock absorber D1 when the piston speed is in the high speed region in the contraction stroke is that not only the pressure side passage 5 but also the pressure side bypass passage 10 is opened, and as shown in FIG.
  • the attenuation coefficient is lower than that in the case of the medium speed range.
  • the shock absorber D1 includes the expansion side bypass path 8, the expansion side relief valve 9, the pressure side bypass path 10, and the pressure side relief valve 11, and when the piston speed is in the high speed range, the expansion is performed. Since the side relief valve 9 and the pressure side relief valve 11 are opened, excessive damping force can be suppressed.
  • shock absorber D1 according to the present embodiment, it is possible to satisfy the riding comfort in the vehicle in all speed regions.
  • the extension side bypass passage 8 and the pressure side bypass passage 10 are formed including the common passage 15 provided in the piston rod 3, so that the passage for the extension side bypass passage 8 and the pressure side bypass passage are provided. It is not necessary to provide the passage for 10 in the piston rod 3 independently, which is advantageous in terms of strength of the piston rod 3 and is easy to process.
  • valve opening pressure of the expansion side relief valve 9 is made higher than the valve opening pressure of the expansion side damping valve, and the valve opening pressure of the pressure side relief valve 11 is made higher than the valve opening pressure of the compression side damping valve, whereby the piston speed is increased.
  • the valve opening pressure of the expansion side relief valve 9 can be the same as or lower than the valve opening pressure of the expansion side damping valve, and the valve opening pressure of the pressure side relief valve 11 can be the same as or lower than the valve opening pressure of the compression side damping valve. It is. Even if it does so, said effect of the buffer D1 which concerns on this embodiment is not lost.
  • FIG. 3 is a longitudinal sectional view of the shock absorber D2 according to the second embodiment of the present invention.
  • the shock absorber D2 is obtained by switching the order of assembling the expansion side relief valve 9 and the pressure side relief valve 11 of the shock absorber D1 according to the first embodiment to the piston rod 3 and reversing the assembling directions. All other configurations are common. Therefore, the same components are denoted by the same reference numerals, description thereof is omitted, and differences from the first embodiment will be described in detail.
  • the shock absorber D2 is obtained by replacing the arrangement of the extension side relief valve 9 and the pressure side relief valve 11 of the shock absorber D1 and reversing the assembly direction.
  • the pressure side relief valve 11 is assembled below the expansion side leaf valve 6 so that the pressure side valve body 19 is arranged below the pressure side valve disk 18, and then the expansion side is extended.
  • the expansion side relief valve 9 is assembled below the compression side relief valve 11 so that the side valve body 22 is disposed below the expansion side valve disk 21, but in the shock absorber D2, as shown in FIG.
  • the expansion-side relief valve 9 is assembled below the expansion-side leaf valve 6 so that the expansion-side valve body 22 is disposed above the expansion-side valve disk 21, and then the compression-side valve body 19 is connected to the compression-side valve disk 18.
  • the pressure side relief valve 11 is assembled below the expansion side relief valve 9 and is fixed by a piston nut 24 so as to be disposed above.
  • the piston nut 24 has a tapered chamfered portion 24a on the outer periphery of the upper end so as not to close the lower opening of the pressure side bypass port 18a of the pressure side valve disk 18. 24 has the same function and structure.
  • the shock absorber D2 By disposing the expansion side relief valve 9 and the pressure side relief valve 11 as described above, in the shock absorber D2, the incomplete screw portion at the upper end of the screw portion 3b of the piston rod 3 is connected to the pressure side valve disk 18. Even in this case, the radial position of the leaf valve constituting the pressure side valve body 19 is not affected. On the other hand, in the shock absorber D1, when the incomplete screw portion of the screw portion 3b is opposed to the leaf valve constituting the compression side valve body 19, a gap is formed between the inner periphery of each leaf valve and the incomplete screw portion. Therefore, each leaf valve is idle with respect to the piston rod 3, and positioning in the radial direction becomes difficult.
  • the incomplete screw portion at the upper end of the screw portion 3 b is applied to the compression side valve body 19. If the incomplete screw portion at the upper end of the screw portion 3b is applied to the pressure side valve body 19, and the incomplete screw portion faces the inner periphery of the pressure side valve body 19, the position of the leaf valve of the pressure side valve body 19 is predetermined in the radial direction. In some cases, the damping force when the pressure side relief valve 11 is not opened is not as designed.
  • the shock absorber D1 depending on the number of stacked leaf valves constituting the expansion side leaf valve 6, the compression side leaf valve 7 and the expansion side valve body 22, and the thicknesses of the piston 2, the spacers 17, 20 and the valve stopper 16, Since the position of the pressure side valve body 19 is shifted in the vertical direction, the leaf valves constituting the extension side leaf valve 6, the pressure side leaf valve 7 and the extension side valve body 22 are laminated to the maximum, and the piston 2, the spacers 17, 20 are stacked. Assuming that the thickness of each of the valve stoppers 16 is maximized, the incomplete screw portion at the upper end of the screw portion 3 b is not applied to the compression side valve body 19.
  • the position of the incomplete screw portion at the upper end of the screw portion 3b must be arranged below the structure of the shock absorber D2. That is, in the shock absorber D2, since the position of the upper end of the screw portion 3b can be disposed above the shock absorber D1, the length of the small-diameter portion 3a of the piston rod 3 can be shortened, which is smaller than that of the shock absorber D1. Ensuring the length of the expansion / contraction stroke is easy. In addition, since it is the structure which replaced arrangement
  • FIG. 4 is a longitudinal sectional view of the shock absorber D3 according to the third embodiment of the present invention.
  • the shock absorber D3 is different from the shock absorber D1 according to the first embodiment in that the expansion side relief valve 30 and the pressure side relief valve 31 are arranged on the expansion side chamber R1 side of the piston 2.
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and differences from the first embodiment will be described in detail.
  • the piston rod 3 in the shock absorber D3 includes a common passage 32 formed by a vertical hole 32a and a lateral hole 32b that opens at a position close to the upper end of the small diameter portion 3a of the piston rod 3 in FIG.
  • the vertical hole 32a opens to the pressure side chamber R2, and the common passage 32 is always in communication with the pressure side chamber R2.
  • a general annular piston nut 40 can be used instead of a cap nut.
  • a pressure side relief valve 31 and an extension side relief valve 30 are sequentially assembled to the small diameter portion 3a of the piston rod 3 above the pressure side leaf valve 7.
  • the extension side relief valve 30 is attached to the piston rod 3 above the piston 2 in FIG. 4, that is, on the extension side chamber R1 side.
  • the expansion side relief valve 30 includes an annular expansion side valve disk 33 mounted on the small diameter portion 3a of the piston rod 3 above the compression side leaf valve 7 in FIG. 4 and a laminated leaf stacked above the expansion side valve disk 33.
  • the expansion side valve disk 33 is annular, and includes an expansion side bypass port 33a that penetrates up and down and whose lower end in FIG. 4 opens into the expansion side chamber R1.
  • the expansion side valve element 34 is laminated on the upper surface of the expansion side valve disc 33 in FIG. 4 and the inner periphery is fixed to the piston rod 3 to open and close the upper opening end of the expansion side bypass port 33a. Can be done.
  • the pressure side relief valve 31 is attached to the piston rod 3 above the extension side relief valve 30 in FIG. 4, ie, on the extension side chamber R1 side.
  • the pressure side relief valve 31 includes an annular pressure side valve disk 36 mounted on the small diameter portion 3a of the piston rod 3 via an annular spacer 35 above the extension side valve body 34 in FIG. And an annular pressure side valve element 37 composed of laminated leaf valves to be laminated.
  • the pressure side valve disk 36 is annular and penetrates vertically, and a pressure side bypass port 36a whose upper end in FIG. 4 opens into the extension side chamber R1, an annular groove 36b provided on the inner peripheral side, an annular groove 36b and a pressure side bypass port.
  • a communication passage 36c communicating with 36a.
  • the compression side valve disc 36 is assembled to the small diameter portion 3a of the piston rod 3, the annular groove 36b is opposed to the lateral hole 32b.
  • the pressure side valve body 37 is laminated on the upper surface in FIG. 4 of the pressure side valve disk 36, and the inner periphery is fixed to the piston rod 3, so that the upper open end of the pressure side bypass port 36a can be opened and closed. ing.
  • a partition wall cylinder 38 is fitted on the outer periphery of the expansion side valve disc 33 and the pressure side valve disc 36, and the space B between the expansion side valve disc 33 and the pressure side valve disc 36 is extended from the expansion side chamber R1. It is partitioned.
  • the outlet end of the horizontal hole 32b provided in the small diameter portion 3a of the piston rod 3 faces the annular groove 36b of the pressure side valve disk 36, and the space B is connected to the common passage through the pressure side bypass port 36a. 32, and finally communicates with the pressure side chamber R ⁇ b> 2 via the common passage 32.
  • a through-hole may be provided in the spacer 35 and this through-hole and the horizontal hole 32b may be made to oppose.
  • the pressure in the pressure side chamber R2 becomes higher than the pressure in the expansion side chamber R1, and when the pressure difference between the two reaches the valve opening pressure of the pressure side valve element 37,
  • the pressure side valve body 37 receives the pressure of the pressure side chamber R2 acting from the pressure side bypass port 36a and bends to open the pressure side bypass port 36a.
  • the pressure side chamber R2 and the extension side chamber R1 communicate with each other through the pressure side bypass port 36a, the space B, and the common passage 32.
  • the expansion side valve element 34 When the pressure in the compression side chamber R2 is higher than the pressure in the expansion side chamber R1, the expansion side valve element 34 is pressed against the expansion side valve disk 33 by the pressure in the compression side chamber R2, and closes the expansion side bypass port 33a. Will remain.
  • the pressure side bypass passage 51 is formed by the pressure side bypass port 36a, the space B, the common passage 32, the annular groove 36b, and the communication passage 36c in the present embodiment.
  • the valve-opening pressure of the pressure-side relief valve 31 is higher than the valve-opening pressure at which the pressure-side leaf valve 7 is bent to open the pressure-side passage 5.
  • the expansion side valve body 34 acts from the expansion side bypass port 33a.
  • the expansion side bypass port 33a is opened by bending under the pressure of the expansion side chamber R1.
  • the compression side chamber R2 and the extension side chamber R1 communicate with each other through the extension side bypass port 33a, the space B, and the common passage 32.
  • the extension side bypass passage 50 is formed by the extension side bypass port 33a, the space B, the common passage 32, a part of the compression side bypass port 36a, the annular groove 36b and the communication passage 36c in this embodiment. Yes.
  • the valve opening pressure of the expansion side relief valve 30 is higher than the valve opening pressure when the expansion side leaf valve 6 is bent to open the expansion side passage 4.
  • a rebound stopper 41 is provided above the small diameter portion 3a of the piston rod 3 in FIG. 4 so as to abut against the head member 12 and prevent further expansion when the shock absorber D3 is fully extended.
  • the extension side relief valve 30 and the pressure side relief valve 31 are disposed between the rebound stopper 41 and the piston 2.
  • the operation is the same as that of the shock absorber D1, and when the piston speed is in the high speed range, the expansion side relief valve 30 and the pressure side relief valve 31 are opened. By doing so, excessive damping force can be suppressed.
  • the shock absorber D3 according to the present embodiment the ride comfort in the vehicle can be satisfied in all speed regions, and the same structure as that of the shock absorber D1 is adopted. An effect is obtained.
  • the shock absorber D3 pivotally supports the piston rod 3 with the head member 12, and the piston 2 connected to the tip of the piston rod 3 is in sliding contact with the cylinder 1, so that a lateral force (lateral force) is generated.
  • a lateral force lateral force
  • the head member 12 and the piston 2 receive the lateral force.
  • the rebound stopper 41 By preventing the rebound stopper 41 from coming into contact with the head member 12 and further extending the shock absorber D3, the minimum The necessary fitting length is secured. Therefore, the length from the rebound stopper 41 to the piston 2 does not contribute to the stroke length of the shock absorber D3.
  • the expansion side relief valve 30 and the pressure side relief valve 31 are mounted on the expansion side chamber R1 side rather than the piston 2, so that the minimum necessary from the head member 12 to the piston 2 is required.
  • the expansion side relief valve 30 and the pressure side relief valve 31 can be provided without affecting the stroke length of the shock absorber D3.
  • the expansion side relief valve 30 and the pressure side relief valve 31 are accommodated between the rebound stopper 41 and the piston 2, the expansion side relief valve 30 and the compression side relief valve 30 and the stroke length of the shock absorber D3 are not sacrificed at all.
  • the pressure side relief valve 31 can be provided, and the total length of the shock absorber D3 is not affected at all.
  • the expansion side relief valve 30 and the pressure side relief valve 31 can be provided without sacrificing the stroke length of the shock absorber D3, and the overall length of the shock absorber D3 is also increased. There is no.
  • the total length of the piston rod 3 can be shortened with respect to the shock absorber D1 and the shock absorber D2. Therefore, the total length of the shock absorber D3 can be shortened.
  • the shock absorber D3 by providing the extension side bypass passage 50, the pressure side bypass passage 51, the extension side relief valve 30, and the pressure side relief valve 31, the stroke is improved while improving the riding comfort in the vehicle. It is possible to secure the length and improve the mounting property to the vehicle.
  • the arrangement of the expansion side relief valve 30 and the pressure side relief valve 31 of the shock absorber D3 is changed, and the assembly directions of the expansion side relief valve 30 and the pressure side relief valve 31 are reversed.
  • a structure is also possible.
  • the piston speed is set to a low speed for the sake of convenience in order to explain the operation of the extension side leaf valve 6, the pressure side leaf valve 7, the extension side relief valves 9, 30 and the pressure side relief valves 11, 31.
  • the boundary speeds of these sections are the speeds at which the expansion side leaf valve 6, the pressure side leaf valve 7, the expansion side relief valves 9, 30 and the pressure side relief valves 11, 31 are opened, respectively.
  • the low, medium and high boundary speeds need not be the same. Accordingly, the valve opening pressures of the extension side leaf valve 6, the pressure side leaf valve 7, the extension side relief valves 9, 30 and the pressure side relief valves 11, 31 can be arbitrarily set.

Abstract

 緩衝器は、シリンダと、シリンダ内に摺動自在に挿入され、シリンダ内を伸側室と圧側室とに区画するピストンと、シリンダ内に移動自在に挿通され、ピストンに連結されるピストンロッドと、伸側室から圧側室へ向かう流体の流れのみを許容する伸側通路と、圧側室から伸側室へ向かう流体の流れのみを許容する圧側通路と、伸側通路を通過する流体の流れに抵抗を与える伸側減衰弁と、圧側通路を通過する流体の流れに抵抗を与える圧側減衰弁と、伸側通路を迂回して伸側室と圧側室とを連通する伸側バイパス路と、伸側バイパス路の途中に設けられ、伸側室の圧力で開弁して伸側バイパス路を開放する伸側リリーフ弁と、圧側通路を迂回して伸側室と圧側室とを連通する圧側バイパス路と、圧側バイパス路の途中に設けられ、圧側室の圧力で開弁して圧側バイパス路を開放する圧側リリーフ弁と、を備える。

Description

緩衝器
 本発明は、緩衝器に関する。
 一般的に、車両等に使用される緩衝器は、シリンダと、シリンダ内に摺動自在に挿入され、シリンダ内を伸側室と圧側室に区画するピストンと、シリンダ内に移動自在に挿通され、ピストンに連結されるピストンロッドと、ピストンに設けた伸側および圧側のポートと、ピストンに積層され、伸側のポートを開閉する伸側のリーフバルブと、ピストンに積層され、圧側のポートを開閉する圧側のリーフバルブと、を備えて構成されている。
 特に、車両のサスペンションに組み込まれる緩衝器に適用される減衰バルブにあっては、上記のリーフバルブに並列してオリフィスを備えており、ピストン速度が低速域にある場合は、主としてオリフィスで減衰力を発揮し、ピストン速度が高速域にある場合は、リーフバルブを開かせて、主としてリーフバルブで減衰力を発揮させるようにしている(JP2003-42214A)。
 上記の減衰バルブを適用した緩衝器の減衰特性(ピストン速度に対する減衰力の特性)は、ピストン速度が低速域にある場合は、ピストン速度の二乗に比例するオリフィス特有の特性となり、ピストン速度が高速域にある場合は、リーフバルブが開弁してリーフバルブ特有のピストン速度に比例する特性となる。
 そして、上記の減衰バルブでは、ピストン速度が低速域にある場合は、オリフィスによって減衰力が立ち上がる減衰特性により比較的大きな減衰力を発生させることができるので、車体の共振周波数帯の振動をしっかりと減衰させることができ、また、ピストン速度が高速域にある場合は、リーフバルブが開弁して減衰力過多を防止するようになっている。
 上記の緩衝器にあっては、リーフバルブの撓み剛性の設定を変更することで開弁圧をチューニングすることができる。しかしながら、ピストン速度が低速域にある場合の振動の減衰性を高めて車体の共振周波数帯の振動を低減するべくリーフバルブの撓み剛性を大きくすると、開弁圧が高くなることで緩衝器のピストン速度が高速域にある場合の減衰力が大きくなりすぎ、却って車両における乗り心地が悪化するという問題がある。このため、全ての速度領域において車両における乗り心地を満足させることができない場合がある。
 本発明は、上記の問題点に鑑みてなされたものであり、全速度領域での車両の乗心地を向上することができる緩衝器を提供することを目的とする。
 本発明のある態様によれば、緩衝器であって、シリンダと、前記シリンダ内に摺動自在に挿入され、前記シリンダ内を伸側室と圧側室とに区画するピストンと、前記シリンダ内に移動自在に挿通され、前記ピストンに連結されるピストンロッドと、前記伸側室から前記圧側室へ向かう流体の流れのみを許容する伸側通路と、前記圧側室から前記伸側室へ向かう流体の流れのみを許容する圧側通路と、前記伸側通路を通過する流体の流れに抵抗を与える伸側減衰弁と、前記圧側通路を通過する流体の流れに抵抗を与える圧側減衰弁と、前記伸側通路を迂回して前記伸側室と前記圧側室とを連通する伸側バイパス路と、前記伸側バイパス路の途中に設けられ、前記伸側室の圧力で開弁して前記伸側バイパス路を開放する伸側リリーフ弁と、前記圧側通路を迂回して前記伸側室と前記圧側室とを連通する圧側バイパス路と、前記圧側バイパス路の途中に設けられ、前記圧側室の圧力で開弁して前記圧側バイパス路を開放する圧側リリーフ弁と、を備えた緩衝器が提供される。
図1は、本発明の第1実施形態に係る緩衝器の縦断面図である。 図2は、本発明の第1実施形態に係る緩衝器の減衰特性を示した図である。 図3は、本発明の第2実施形態に係る緩衝器の縦断面図である。 図4は、本発明の第3実施形態に係る緩衝器の縦断面図である。
 <第1実施形態>
 以下、添付図面を参照しながら本発明の第1実施形態について説明する。
 図1は、本発明の第1実施形態に係る緩衝器D1の縦断面図である。
 緩衝器D1は、図1に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入され、シリンダ1内を伸側室R1と圧側室R2に区画するピストン2と、シリンダ1内に移動自在に挿通され、ピストン2に連結されるピストンロッド3と、伸側室R1と圧側室R2とを連通する伸側通路4および圧側通路5と、伸側通路4を通過する流体の流れに抵抗を与える伸側減衰弁としての伸側リーフバルブ6と、圧側通路5を通過する流体の流れに抵抗を与える圧側減衰弁としての圧側リーフバルブ7と、伸側通路4を迂回して伸側室R1と圧側室R2とを連通する伸側バイパス路8と、伸側バイパス路8の途中に設けられ、伸側室R1の圧力で開弁して伸側バイパス路8を開放する伸側リリーフ弁9と、圧側通路5を迂回して伸側室R1と圧側室R2とを連通する圧側バイパス路10と、圧側バイパス路10の途中に設けられ、圧側室R2の圧力で開弁して圧側バイパス路10を開放する圧側リリーフ弁11と、を備えて構成され、車両における車体と車軸との間に介装されて減衰力を発生し、車体の振動を抑制するものである。なお、伸側室R1は、車体と車軸が離間して緩衝器D1が伸長作動する際に圧縮される室であり、圧側室R2は、車体と車軸が接近して緩衝器D1が収縮作動する際に圧縮される室である。
 シリンダ1の図1における上端には環状のヘッド部材12が装着され、シリンダ1の下端はキャップ13によって閉塞されている。ピストンロッド3は、ヘッド部材12によって摺動自在に軸支され、上端がシリンダ1外に突出する。つまり、緩衝器D1は、所謂、片ロッド型の緩衝器とされている。伸側室R1および圧側室R2には、作動油等の液体が充満されている。また、緩衝器D1は、伸側室R1にのみピストンロッド3が挿通される片ロッド型であるので、ピストンロッド3がシリンダ1内に出入りする体積を補償するため、シリンダ1内の下方に、シリンダ1の内周に摺接して圧側室R2の下方に気体室Gを区画する摺動隔壁14が設けられた単筒型の緩衝器となっている。
 ピストンロッド3がシリンダ1内に出入りする体積の補償については、シリンダ1内に気体室Gを設けるほか、シリンダ1外にリザーバを設けるようにしてもよい。リザーバをシリンダ1外に設ける場合は、シリンダ1の外周を覆う外筒を設けてシリンダ1と外筒との間にリザーバを形成する複筒型緩衝器とするほか、シリンダ1とは別個にリザーバを形成するタンクを設けてもよい。また、緩衝器Dの収縮作動時に圧側室R2の圧力を高めるために、圧側室R2とリザーバとの間を仕切る仕切部材と、仕切部材に設けられて圧側室R2からリザーバへ向かう液体の流れに抵抗を与えるベースバルブとを備えるようにしてもよい。なお、伸側室R1および圧側室R2には、作動油以外にも、たとえば、水、水溶液といった液体を使用することもでき、また、液体以外に気体を利用してもよい。すなわち、流体を充填するようにすればよい。また、緩衝器D1は、片ロッド型ではなく、両ロッド型であってもよい。
 以下、各部について詳細に説明する。ピストンロッド3は、図1に示すように、シリンダ1内に挿通される側の端部に小径部3aが形成されるとともに、小径部3aの先端には螺子部3bが形成されている。なお、ピストンロッド3の小径部3aと反対側の端部には、車両の車体と車軸との一方に連結可能なブラケット(図示せず)が設けられ、キャップ13には、車両の車体と車軸とのピストンロッド3のブラケットが連結されない方に連結可能なブラケット(図示せず)が設けられる。これにより、緩衝器D1を車両の車体と車軸との間に介装することができるようになっている。
 また、ピストンロッド3には、共通通路15が設けられている。共通通路15は、小径部3aの先端に開口してピストンロッド3の軸方向に沿って設けられた縦孔15aと、図1における小径部3aより上方に開口して縦孔15aと伸側室R1とを連通する第一横孔15bと、小径部3aの側方に開口して縦孔15aと通じる第二横孔15cと、からなる。
 ピストン2は、環状に形成され、内周側にピストンロッド3の小径部3aが挿入されている。また、ピストン2には、伸側室R1と圧側室R2とを連通する伸側通路4と圧側通路5とが設けられる。伸側通路4の図1における下端は、伸側減衰弁としての伸側リーフバルブ6にて閉塞され、圧側通路5の図1における上端は、圧側減衰弁としての圧側リーフバルブ7によって閉塞されている。
 本実施形態では、伸側リーフバルブ6および圧側リーフバルブ7は、環状のリーフバルブを積層して形成される積層リーフバルブとされ、内周側にピストンロッド3の小径部3aが挿入される。圧側リーフバルブ7の図1における上方には、圧側リーフバルブ7の撓み量を規制する環状のバルブストッパ16が積層されている。
 伸側リーフバルブ6は、緩衝器D1の伸長時には、伸側室R1と圧側室R2との差圧によって開弁するとともに、伸側通路4を通って伸側室R1から圧側室R2へ移動する液体の流れに抵抗を与える。また、緩衝器D1の収縮時には伸側通路4を閉塞する。これにより、伸側通路4が、伸側室R1から圧側室R2へ向かう液体の流れのみを許容する一方通行の通路として機能する。圧側リーフバルブ7は、緩衝器D1の収縮時には、伸側室R1と圧側室R2との差圧によって開弁するとともに、圧側通路5を通って圧側室R2から伸側室R1へ移動する液体の流れに抵抗を与える。また、緩衝器D1の伸長時には圧側通路5を閉塞する。これにより、圧側通路5が、圧側室R2から伸側室R1へ向かう液体の流れのみを許容する一方通行の通路として機能する。
 すなわち、伸側リーフバルブ6は、緩衝器D1の伸長時における伸側減衰力を発生させる伸側減衰弁として機能し、圧側リーフバルブ7は、緩衝器D1の収縮時における圧側減衰力を発生させる圧側減衰弁として機能する。また、伸側リーフバルブ6および圧側リーフバルブ7で伸側通路4および圧側通路5を閉じた状態であっても、伸側リーフバルブ6および圧側リーフバルブ7の外周に設けた切欠6a、7aにより形成される周知のオリフィスで、伸側室R1と圧側室R2とが連通されるようになっている。オリフィスは、伸側リーフバルブ6および圧側リーフバルブ7の外周に切欠6a、7aを設けるほか、たとえば、伸側リーフバルブ6および圧側リーフバルブ7が着座する弁座に凹部を設けるなどして形成される。
 伸側減衰弁および圧側減衰弁は、オリフィスとリーフバルブとを並列に設ける構成以外にも、たとえば、チョークとリーフバルブとを並列に設ける構成や、その他の構成にすることもできる。また、リーフバルブの積層枚数についても、任意に設定することができる。
 さらに、図1における伸側リーフバルブ6の下方には、圧側室R2から伸側室R1へ向けて圧側バイパス路10を通過する液体の流れのみを許容する圧側リリーフ弁11と、伸側室R1から圧側室R2へ向けて伸側バイパス路8を通過する液体の流れのみを許容する伸側リリーフ弁9とが、ピストンロッド3の小径部3aの外周に順に組付けられている。
 圧側リリーフ弁11は、図1におけるピストン2の下方側、すなわち圧側室R2側でピストンロッド3に装着されている。圧側リリーフ弁11は、伸側リーフバルブ6に積層された環状のスペーサ17の図1における下方でピストンロッド3の小径部3aに装着される環状の圧側バルブディスク18と、圧側バルブディスク18の下方に積層される積層リーフバルブで構成される環状の圧側弁体19と、を備える。圧側バルブディスク18は環状であって、上下に貫通し、図1における上端が圧側室R2に開口する圧側バイパスポート18aを備えている。また、圧側弁体19は、圧側バルブディスク18の図1における下面に積層されるとともに、内周がピストンロッド3に固定されていて、圧側バイパスポート18aの下側開口端を開閉することができるようになっている。
 また、伸側リリーフ弁9は、図1における圧側リリーフ弁11の下方側、すなわち圧側室R2側でピストンロッド3に装着されている。伸側リリーフ弁9は、圧側弁体19の図1における下方で環状のスペーサ20を介してピストンロッド3の小径部3aに装着される環状の伸側バルブディスク21と、伸側バルブディスク21の下方に積層される積層リーフバルブで構成される環状の伸側弁体22と、を備える。伸側バルブディスク21は環状であって、上下に貫通し、図1における下端が圧側室R2に開口する伸側バイパスポート21aと、内周側に設けた環状溝21bと、環状溝21bと伸側バイパスポート21aとを連通する連絡通路21cと、を備えている。伸側バルブディスク21は、上記のように、ピストンロッド3の小径部3aに組み付けられると、環状溝21bが第二横孔15cと対向するようになっている。伸側弁体22は、伸側バルブディスク21の図1における下面に積層されるとともに、内周がピストンロッド3に固定されていて、伸側バイパスポート21aの下側開口端を開閉することができるようになっている。
 さらに、圧側バルブディスク18と伸側バルブディスク21との外周には、隔壁筒23が嵌合しており、圧側バルブディスク18と伸側バルブディスク21との間の空間Aが、圧側室R2から区画されている。そして、ピストンロッド3の小径部3aに設けた第二横孔15cの出口端は、上記のように、伸側バルブディスク21の環状溝21bに対向しており、空間Aは、伸側バイパスポート21aを通じて共通通路15に連通され、最終的には、共通通路15を介して伸側室R1に連通されている。なお、空間Aを共通通路15に連通させる際に、スペーサ20に透孔を設けて、この透孔と第二横孔15cとを対向させるようにしてもよい。
 このように、空間Aが伸側室R1に連通されているため、圧側室R2の圧力が伸側室R1の圧力よりも高くなり、両者の差圧が圧側弁体19の開弁圧に達すると、圧側弁体19が圧側バイパスポート18aから作用する圧側室R2の圧力を受けて撓み、圧側バイパスポート18aを開放する。これにより、圧側バイパスポート18a、空間A、共通通路15を介して圧側室R2と伸側室R1とが連通する。圧側室R2の圧力が伸側室R1の圧力よりも高いと、伸側弁体22は、圧側室R2の圧力で伸側バルブディスク21に押しつけられた状態となって、伸側バイパスポート21aを閉塞したままとなる。上記から解るように、圧側バイパス路10は、本実施形態では、圧側バイパスポート18a、空間A、共通通路15、伸側バイパスポート21aの一部、環状溝21bおよび連絡通路21cによって形成されている。なお、圧側リリーフ弁11の開弁圧は、本実施形態では、圧側リーフバルブ7が撓んで圧側通路5を開放する開弁圧よりも高くしてある。
 反対に、伸側室R1の圧力が圧側室R2の圧力よりも高くなり、両者の差圧が伸側弁体22の開弁圧に達すると、伸側弁体22が伸側バイパスポート21aから作用する伸側室R1の圧力を受けて撓み、伸側バイパスポート21aを開放する。これにより、伸側バイパスポート21a、空間A、共通通路15を介して圧側室R2と伸側室R1とが連通する。伸側室R1の圧力が圧側室R2の圧力よりも高いと、圧側弁体19は、伸側室R1の圧力で圧側バルブディスク18に押しつけられた状態となって、圧側バイパスポート18aを閉塞したままとなる。上記から解るように、伸側バイパス路8は、本実施形態では、伸側バイパスポート21a、空間A、共通通路15、環状溝21bおよび連絡通路21cによって形成されている。なお、伸側リリーフ弁9の開弁圧は、本実施形態では、伸側リーフバルブ6が撓んで伸側通路4を開放する開弁圧よりも高くしてある。
 上記のように構成された圧側リリーフ弁11および伸側リリーフ弁9を、図1における伸側リーフバルブ6の下方に順番に組付け、袋ナット状のピストンナット24をピストンロッド3の先端に設けた螺子部3bに螺着すると、バルブストッパ16、圧側リーフバルブ7、ピストン2、伸側リーフバルブ6、スペーサ17、圧側リリーフ弁11、スペーサ20、隔壁筒23および伸側リリーフ弁9が、ピストンロッド3の小径部3aに固定される。
 また、ピストンナット24をピストンロッド3の先端に螺着することで、ピストンロッド3の先端に開口する縦孔15aが閉鎖される。これにより、伸側バイパス路8が、伸側リリーフ弁9を介さずに伸側室R1と圧側室R2とを連通することを阻止し、また、圧側バイパス路10が、圧側リリーフ弁11を介さずに伸側室R1と圧側室R2とを連通することを阻止している。なお、図1におけるピストンロッド3の第二横孔15cよりも下方で縦孔15aを閉塞するボールを打ち込んだり、閉塞する栓を設けたりすれば、ピストンナット24を袋ナットではなく通常の環状のナットとしてもよい。図示はしないが、栓をする場合は、たとえば、縦孔15aの開口端にスチールボールを圧入するとともに開口端を加締めて、スチールボールの抜け止めを図るとよい。
 続いて、緩衝器D1の作動について説明する。まず、シリンダ1に対してピストン2が図1における上方へ移動する、つまり、緩衝器D1が伸長する場合について説明する。
 シリンダ1に対してピストン2が図1における上方へ移動すると、伸側室R1が圧縮され、圧側室R2が拡大されるので、圧縮される伸側室R1の圧力が上昇し、拡大される圧側室R2の圧力が減少する。ピストン速度が低い場合は、伸側室R1と圧側室R2との差圧が、伸側リーフバルブ6および伸側リリーフ弁9の開弁圧に達しないので、伸側リーフバルブ6および伸側リリーフ弁9は開弁しない。このため、液体は、オリフィスとして機能する切欠6aおよび切欠7aを通過して、伸側室R1から圧側室R2へ移動する。
 したがって、伸長行程にあってピストン速度が低速域にある場合の緩衝器D1の減衰特性は、図2に示すように、ピストン速度の二乗に比例した減衰力を発揮する、オリフィス特有の二乗特性となる。
 ピストン速度が低速を超える中速に達する場合は、伸側室R1と圧側室R2との差圧が、伸側リーフバルブ6の開弁圧に達し、伸側リリーフ弁9の開弁圧には達しないので、伸側リーフバルブ6のみ開弁する。このため、液体は、ピストン2と伸側リーフバルブ6との間にできる環状隙間を通過して、伸側室R1から圧側室R2へ移動する。
 したがって、伸長行程にあってピストン速度が中速域にある場合の緩衝器D1の減衰特性は、図2に示すように、伸側減衰弁である伸側リーフバルブ6特有の、ピストン速度に略比例した減衰力を発揮する特性となり、ピストン速度が低速域にある場合よりも減衰係数は低くなる。
 ピストン速度が中速を超える高速に達する場合は、伸側室R1と圧側室R2との差圧が、伸側リーフバルブ6だけでなく、伸側リリーフ弁9の開弁圧にも達し、伸側リーフバルブ6および伸側リリーフ弁9が開弁する。このため、液体は、伸側通路4だけでなく、伸側バイパス路8をも通過して伸側室R1から圧側室R2へ移動する。
 したがって、伸長行程にあってピストン速度が高速域にある場合の緩衝器D1の減衰特性は、伸側通路4のみならず伸側バイパス路8も開放されることで、図2に示すように、ピストン速度が中速域にある場合よりも減衰係数がより低い特性となる。
 次に、シリンダ1に対してピストン2が図1における下方へ移動する、つまり、緩衝器D1が収縮する場合について説明する。
 シリンダ1に対してピストン2が図1における下方へ移動すると、圧側室R2が圧縮され、伸側室R1が拡大されるので、圧縮される圧側室R2の圧力が上昇し、拡大される伸側室R1の圧力が減少する。ピストン速度が低い場合は、圧側室R2と伸側室R1との差圧が、圧側リーフバルブ7および圧側リリーフ弁11の開弁圧に達しないので、圧側リーフバルブ7および圧側リリーフ弁11は開弁しない。このため、液体は、オリフィスとして機能する切欠6aおよび切欠7aを通過して、圧側室R2から伸側室R1へ移動する。
 したがって、収縮行程にあってピストン速度が低速域にある場合の緩衝器D1の減衰特性は、図2に示すように、ピストン速度の二乗に比例した減衰力を発揮する、オリフィス特有の二乗特性となる。
 ピストン速度が低速を超える中速に達する場合は、圧側室R2と伸側室R1との差圧が、圧側リーフバルブ7の開弁圧に達し、圧側リリーフ弁11の開弁圧には達しないので、圧側リーフバルブ7のみ開弁する。このため、液体は、ピストン2と圧側リーフバルブ7との間にできる環状隙間を通過して、圧側室R2から伸側室R1へ移動する。
 したがって、収縮行程にあってピストン速度が中速域にある場合の緩衝器D1の減衰特性は、図2に示すように、圧側減衰弁である圧側リーフバルブ7特有の、ピストン速度に略比例した減衰力を発揮する特性となり、ピストン速度が低速域にある場合よりも減衰係数は低くなる。
 ピストン速度が中速を超える高速に達する場合は、圧側室R2と伸側室R1との差圧が、圧側リーフバルブ7だけでなく、圧側リリーフ弁11の開弁圧にも達し、圧側リーフバルブ7および圧側リリーフ弁11が開弁する。このため、液体は、圧側通路5だけでなく、圧側バイパス路10をも通過して圧側室R2から伸側室R1へ移動する。
 したがって、収縮行程にあってピストン速度が高速域にある場合の緩衝器D1の減衰特性は、圧側通路5のみならず圧側バイパス路10も開放されることで、図2に示すように、ピストン速度が中速域にある場合よりも減衰係数がより低い特性となる。
 このように、本実施形態に係る緩衝器D1は、伸側バイパス路8、伸側リリーフ弁9、圧側バイパス路10および圧側リリーフ弁11を備え、ピストン速度が高速域にある場合には、伸側リリーフ弁9および圧側リリーフ弁11を開弁させるので、減衰力過多を抑制することができる。
 また、ピストン速度が低速域にある場合の振動の減衰性を高めても、これとは独立してピストン速度が高速域にある場合の減衰力過多を抑制することができるので、ピストン速度が低速域にある場合の車体姿勢を安定させることに長けるだけでなく、車両走行中に突起や凹部を通過する際の振動を絶縁して、車体への振動の伝達を抑制することができる。
 よって、本実施形態に係る緩衝器D1によれば、全ての速度領域において車両における乗り心地を満足させることができる。
 また、本実施形態では、伸側バイパス路8と圧側バイパス路10とが、ピストンロッド3内に設けた共通通路15を含んで形成されるので、伸側バイパス路8用の通路と圧側バイパス路10用の通路とを独立してピストンロッド3内に設ける必要が無く、ピストンロッド3の強度面で有利になるとともに、加工も簡単となる。
 また、伸側リリーフ弁9の開弁圧を伸側減衰弁の開弁圧よりも高くし、圧側リリーフ弁11の開弁圧を圧側減衰弁の開弁圧より高くすることで、ピストン速度が低中高速域における減衰力を高めて、車体の振動をしっかり減衰させるとともに車輪のばたつきを低減させることができ、さらに、ピストン速度が高速域にある場合の減衰力過多を抑制して、車両における乗り心地を良好なものとすることができる。なお、伸側リリーフ弁9の開弁圧を伸側減衰弁の開弁圧と同じか低くし、圧側リリーフ弁11の開弁圧を圧側減衰弁の開弁圧と同じか低くすることも可能である。そのようにしても、本実施形態に係る緩衝器D1の上記の効果が失われることはない。
 <第2実施形態>
 続いて、本発明の第2実施形態について説明する。
 図3は、本発明の第2実施形態に係る緩衝器D2の縦断面図である。
 緩衝器D2は、第1実施形態に係る緩衝器D1の伸側リリーフ弁9と圧側リリーフ弁11とをピストンロッド3に組付ける順序を入れ替えるとともに、組付け方向をそれぞれ逆にしたものであり、その他の構成はすべて共通している。よって、同一の構成については同一の符号を付して説明を省略し、第1実施形態との相違点について詳しく説明する。
 上記のように、緩衝器D2は、緩衝器D1の伸側リリーフ弁9と圧側リリーフ弁11との配置を入れ替え、組付け方向をそれぞれ逆にしたものである。
 緩衝器D1では、図1に示すように、圧側弁体19が圧側バルブディスク18の下方に配置されるように、圧側リリーフ弁11を伸側リーフバルブ6の下方に組付け、つづいて、伸側弁体22が伸側バルブディスク21の下方に配置されるように、伸側リリーフ弁9を圧側リリーフ弁11の下方に組付けていたが、緩衝器D2では、図3に示すように、伸側弁体22が伸側バルブディスク21の上方に配置されるように、伸側リリーフ弁9を伸側リーフバルブ6の下方に組付け、つづいて、圧側弁体19が圧側バルブディスク18の上方に配置されるように、圧側リリーフ弁11を伸側リリーフ弁9の下方に組付け、ピストンナット24で固定している。
 なお、ピストンナット24は、圧側バルブディスク18の圧側バイパスポート18aの下側開口部を閉塞しないように、上端外周にテーパ状の面取り部24aが形成されているほかは、緩衝器D1のピストンナット24と同様の機能と構造を備えている。
 上記のように伸側リリーフ弁9と圧側リリーフ弁11とを配置することにより、緩衝器D2にあっては、ピストンロッド3の螺子部3bの上端の不完全螺子部分を、圧側バルブディスク18と対向させることができ、このようにしても、圧側弁体19を構成するリーフバルブの径方向位置に影響を与えることが無い。一方、緩衝器D1にあっては、螺子部3bの不完全螺子部分が圧側弁体19を構成するリーフバルブと対向すると、各リーフバルブの内周と不完全螺子部分との間に隙間ができるので、各リーフバルブがピストンロッド3に対して遊んでしまい、径方向の位置決めが難しくなる。このため、螺子部3bの上端の不完全螺子部分が圧側弁体19にかからないようにする必要がある。仮に、螺子部3bの上端の不完全螺子部分が圧側弁体19にかかり、不完全螺子部分が圧側弁体19の内周と対向すると、圧側弁体19のリーフバルブの位置が径方向で所定位置に配置されず、圧側リリーフ弁11の開弁時の減衰力が設計通りにならない場合がある。
 緩衝器D1の構造では、伸側リーフバルブ6、圧側リーフバルブ7および伸側弁体22をそれぞれ構成するリーフバルブの積層枚数と、ピストン2、スペーサ17、20およびバルブストッパ16の厚みとによって、圧側弁体19の位置が上下方向にずれるので、伸側リーフバルブ6、圧側リーフバルブ7および伸側弁体22をそれぞれ構成するリーフバルブを最大限に積層するとともに、ピストン2、スペーサ17、20およびバルブストッパ16のそれぞれの厚みを最大とした場合を想定して、螺子部3bの上端の不完全螺子部分が、圧側弁体19にかからないようにすることになる。このため、緩衝器D1の構造では、緩衝器D2の構造よりも、螺子部3bの上端の不完全螺子部分の位置を下方へ配置しなくてはならない。つまり、緩衝器D2では、螺子部3bの上端の位置を、緩衝器D1よりも上方に配置することができるので、ピストンロッド3の小径部3aの長さが短くて済み、緩衝器D1よりも伸縮ストローク長の確保が容易となる。なお、緩衝器D2にあっては、緩衝器D1に対して、伸側リリーフ弁9と圧側リリーフ弁11との配置を入れ替えた構成であるから、上述した緩衝器D1と同様の作用効果を奏することは当然である。
 <第3実施形態>
 続いて、本発明の第3実施形態について説明する。
 図4は、本発明の第3実施形態に係る緩衝器D3の縦断面図である。
 緩衝器D3は、ピストン2の伸側室R1側に伸側リリーフ弁30および圧側リリーフ弁31を配置した点が、第1実施形態に係る緩衝器D1と相違する。以下、第1実施形態と同一の構成については同一の符号を付して説明を省略し、第1実施形態との相違点について詳しく説明する。
 緩衝器D3におけるピストンロッド3は、縦孔32aと、ピストンロッド3の小径部3aの図4における上端に近い位置で開口する横孔32bとで形成される共通通路32を備えている。縦孔32aは圧側室R2に開口しており、共通通路32は圧側室R2に常時連通されている。この場合は、縦孔32aを閉塞する必要がないから、袋ナットではなく、一般的な環状のピストンナット40を利用することができる。
 図4における圧側リーフバルブ7の上方には、圧側リリーフ弁31と伸側リリーフ弁30とが、ピストンロッド3の小径部3aに順に組付けられている。
 伸側リリーフ弁30は、図4におけるピストン2よりも上方側、すなわち伸側室R1側でピストンロッド3に装着されている。伸側リリーフ弁30は、圧側リーフバルブ7の図4における上方でピストンロッド3の小径部3aに装着される環状の伸側バルブディスク33と、伸側バルブディスク33の上方に積層される積層リーフバルブで構成される環状の伸側弁体34と、を備える。伸側バルブディスク33は環状であって、上下に貫通し、図4における下端が伸側室R1に開口する伸側バイパスポート33aを備えている。また、伸側弁体34は、伸側バルブディスク33の図4における上面に積層されるとともに、内周がピストンロッド3に固定されていて、伸側バイパスポート33aの上側開口端を開閉することができるようになっている。
 また、圧側リリーフ弁31は、図4における伸側リリーフ弁30の上方側、すなわち伸側室R1側でピストンロッド3に装着されている。圧側リリーフ弁31は、伸側弁体34の図4における上方で環状のスペーサ35を介してピストンロッド3の小径部3aに装着される環状の圧側バルブディスク36と、圧側バルブディスク36の上方に積層される積層リーフバルブで構成される環状の圧側弁体37と、を備える。圧側バルブディスク36は環状であって、上下に貫通し、図4における上端が伸側室R1に開口する圧側バイパスポート36aと、内周側に設けた環状溝36bと、環状溝36bと圧側バイパスポート36aとを連通する連絡通路36cと、を備えている。圧側バルブディスク36は、上記のように、ピストンロッド3の小径部3aに組み付けられると、環状溝36bが横孔32bと対向するようになっている。圧側弁体37は、圧側バルブディスク36の図4における上面に積層されるとともに、内周がピストンロッド3に固定されていて、圧側バイパスポート36aの上側開口端を開閉することができるようになっている。
 さらに、伸側バルブディスク33と圧側バルブディスク36との外周には、隔壁筒38が嵌合しており、伸側バルブディスク33と圧側バルブディスク36との間の空間Bが、伸側室R1から区画されている。そして、ピストンロッド3の小径部3aに設けた横孔32bの出口端は、上記のように、圧側バルブディスク36の環状溝36bと対向しており、空間Bは、圧側バイパスポート36aを通じて共通通路32に連通され、最終的には、共通通路32を介して圧側室R2に連通されている。なお、空間Bを共通通路32に連通させる際に、スペーサ35に透孔を設けて、この透孔と横孔32bとを対向させるようにしてもよい。
 このように、空間Bが圧側室R2に連通されているため、圧側室R2の圧力が伸側室R1の圧力よりも高くなり、両者の差圧が圧側弁体37の開弁圧に達すると、圧側弁体37が圧側バイパスポート36aから作用する圧側室R2の圧力を受けて撓み、圧側バイパスポート36aを開放する。これにより、圧側バイパスポート36a、空間B、共通通路32を介して圧側室R2と伸側室R1とが連通する。圧側室R2の圧力が伸側室R1の圧力よりも高いと、伸側弁体34は、圧側室R2の圧力で伸側バルブディスク33に押しつけられた状態となって、伸側バイパスポート33aを閉塞したままとなる。上記から解るように、圧側バイパス路51は、本実施形態では、圧側バイパスポート36a、空間B、共通通路32、環状溝36bおよび連絡通路36cによって形成されている。なお、圧側リリーフ弁31の開弁圧は、本実施形態では、圧側リーフバルブ7が撓んで圧側通路5を開放する開弁圧よりも高くしてある。
 反対に、伸側室R1の圧力が圧側室R2の圧力よりも高くなり、両者の差圧が伸側弁体34の開弁圧に達すると、伸側弁体34が伸側バイパスポート33aから作用する伸側室R1の圧力を受けて撓み、伸側バイパスポート33aを開放する。これにより、伸側バイパスポート33a、空間B、共通通路32を介して圧側室R2と伸側室R1とが連通する。伸側室R1の圧力が圧側室R2の圧力よりも高いと、圧側弁体37は、伸側室R1の圧力で圧側バルブディスク36に押しつけられた状態となって、圧側バイパスポート36aを閉塞したままとなる。上記から解るように、伸側バイパス路50は、本実施形態では、伸側バイパスポート33a、空間B、共通通路32、圧側バイパスポート36aの一部、環状溝36bおよび連絡通路36cによって形成されている。なお、伸側リリーフ弁30の開弁圧は、本実施形態では、伸側リーフバルブ6が撓んで伸側通路4を開放する際の開弁圧よりも高くしてある。
 上記のように構成された、バルブストッパ16、圧側リリーフ弁31、スペーサ35、隔壁筒38および伸側リリーフ弁30を、順番にピストンロッド3の小径部3aに組付けてから、スペーサ17、圧側リーフバルブ7、ピストン2および伸側リーフバルブ6を順番に組付けて環状のピストンナット40を螺子部3bに螺着すると、バルブストッパ16、圧側リリーフ弁31、スペーサ35、隔壁筒38、伸側リリーフ弁30、スペーサ17、圧側リーフバルブ7、ピストン2および伸側リーフバルブ6が、ピストンロッド3の小径部3aに固定される。
 なお、図4におけるピストンロッド3の小径部3aよりも上方には、緩衝器D3が最伸長したときに、ヘッド部材12に衝合してそれ以上の伸長を阻止するリバウンドストッパ41が設けられており、伸側リリーフ弁30および圧側リリーフ弁31は、このリバウンドストッパ41とピストン2との間に配置されている。
 上記のように構成された緩衝器D3にあっても、作動は緩衝器D1と同様であって、ピストン速度が高速域にある場合には、伸側リリーフ弁30および圧側リリーフ弁31を開弁させることで、減衰力過多を抑制することができる。
 また、ピストン速度が低速域にある場合の振動の減衰性を高めても、これとは独立してピストン速度が高速域にある場合の減衰力過多を抑制することができるので、ピストン速度が低速域にある場合の車体姿勢を安定させることに長けるだけでなく、車両走行中に突起や凹部を通過する際の振動を絶縁して、車体への振動の伝達を抑制することができる。
 よって、本実施形態に係る緩衝器D3にあっても、全ての速度領域において車両における乗り心地を満足させることができるほか、緩衝器D1と同じ構造を採用しているので、これに対応した作用効果が得られる。
 ところで、緩衝器D3は、ピストンロッド3をヘッド部材12で軸支するとともに、ピストンロッド3の先端に連結されるピストン2がシリンダ1に摺接しており、横方向からの力(横力)を受けた際に、ヘッド部材12とピストン2とで、この横力を受ける構造となっている。このため、ヘッド部材12からピストン2までの嵌合長さをある程度確保する必要があり、リバウンドストッパ41がヘッド部材12と当接してそれ以上は緩衝器D3が伸長しないようにすることで、最低限必要な嵌合長さを確保している。よって、リバウンドストッパ41からピストン2までの間の長さは、緩衝器D3のストローク長に寄与しない。
 ここで、緩衝器D3にあっては、伸側リリーフ弁30および圧側リリーフ弁31が、ピストン2よりも伸側室R1側に装着されているので、ヘッド部材12からピストン2までの最低限必要な嵌合長さの範囲内に収めることで、緩衝器D3のストローク長に影響を与えることなく、伸側リリーフ弁30および圧側リリーフ弁31を設けることができる。
 つまり、リバウンドストッパ41とピストン2との間に、伸側リリーフ弁30および圧側リリーフ弁31が収まるようにすれば、緩衝器D3のストローク長を全く犠牲にすることなく、伸側リリーフ弁30および圧側リリーフ弁31を設けることができ、緩衝器D3の全長にも影響を全く与えることが無い。
 よって、緩衝器D3にあっては、伸側リリーフ弁30および圧側リリーフ弁31を、緩衝器D3のストローク長を犠牲にすること無く設けることができ、また、緩衝器D3の全長も長くなることが無い。
 さらに、バルブストッパ16とリバウンドストッパ41との間に、共通通路32と連通する孔を設けずに済むので、緩衝器D1および緩衝器D2に対して、ピストンロッド3の全長を短くすることができ、その分、緩衝器D3の全長を短くすることができる。
 したがって、本実施形態に係る緩衝器D3によれば、伸側バイパス路50、圧側バイパス路51、伸側リリーフ弁30および圧側リリーフ弁31を設けることで、車両における乗り心地を向上させつつ、ストローク長も確保し、車両への搭載性も向上させることが可能となる。
 なお、図示はしないが、緩衝器D3の伸側リリーフ弁30と圧側リリーフ弁31との配置を入れ替えて、さらに、伸側リリーフ弁30と圧側リリーフ弁31との組付け方向をそれぞれ逆にした構造とすることも可能である。
 なお、上記の各実施形態においては、伸側リーフバルブ6、圧側リーフバルブ7、伸側リリーフ弁9、30および圧側リリーフ弁11、31の動作を説明するために、便宜上、ピストン速度に低速、中速および高速という区分を設けている。これらの区分の境界速度は、伸側リーフバルブ6、圧側リーフバルブ7、伸側リリーフ弁9、30および圧側リリーフ弁11、31が、それぞれ開弁する速度であり、伸長側と収縮側とで、低速、中速および高速の各境界速度を、同じにしなくてもよい。したがって、伸側リーフバルブ6、圧側リーフバルブ7、伸側リリーフ弁9、30および圧側リリーフ弁11、31の各開弁圧は、任意に設定することが可能である。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2012年9月27日に日本国特許庁に出願された特願2012-214414に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  緩衝器であって、
     シリンダと、
     前記シリンダ内に摺動自在に挿入され、前記シリンダ内を伸側室と圧側室とに区画するピストンと、
     前記シリンダ内に移動自在に挿通され、前記ピストンに連結されるピストンロッドと、
     前記伸側室から前記圧側室へ向かう流体の流れのみを許容する伸側通路と、
     前記圧側室から前記伸側室へ向かう流体の流れのみを許容する圧側通路と、
     前記伸側通路を通過する流体の流れに抵抗を与える伸側減衰弁と、
     前記圧側通路を通過する流体の流れに抵抗を与える圧側減衰弁と、
     前記伸側通路を迂回して前記伸側室と前記圧側室とを連通する伸側バイパス路と、
     前記伸側バイパス路の途中に設けられ、前記伸側室の圧力で開弁して前記伸側バイパス路を開放する伸側リリーフ弁と、
     前記圧側通路を迂回して前記伸側室と前記圧側室とを連通する圧側バイパス路と、
     前記圧側バイパス路の途中に設けられ、前記圧側室の圧力で開弁して前記圧側バイパス路を開放する圧側リリーフ弁と、
    を備えた緩衝器。
  2.  請求項1に記載の緩衝器であって、
     前記伸側リリーフ弁の開弁圧を前記伸側減衰弁の開弁圧よりも大きくし、前記圧側リリーフ弁の開弁圧を前記圧側減衰弁の開弁圧よりも大きくした緩衝器。
  3.  請求項1に記載の緩衝器であって、
     前記伸側リリーフ弁は、
     伸側バイパスポートを有し、前記ピストンロッドの外周に装着される伸側バルブディスクと、
     前記伸側バルブディスクに積層され、前記伸側バイパスポートを開閉する伸側弁体と、を備え、
     前記圧側リリーフ弁は、
     圧側バイパスポートを有し、前記ピストンロッドの外周に装着される圧側バルブディスクと、
     前記圧側バルブディスクに積層され、前記圧側バイパスポートを開閉する圧側弁体と、を備え、
     前記ピストンロッドは、前記伸側室と前記圧側室とのいずれかと連通する共通通路を備え、
     前記伸側バイパス路は、前記共通通路と前記伸側バイパスポートとを含んで形成され、
     前記圧側バイパス路は、前記共通通路と前記圧側バイパスポートとを含んで形成される緩衝器。
  4.  請求項3に記載の緩衝器であって、
     前記ピストンは、前記ピストンロッドの外周に装着され、
     前記伸側リリーフ弁は、前記ピストンよりも前記圧側室側で前記ピストンロッドの外周に装着され、
     前記圧側リリーフ弁は、前記伸側リリーフ弁よりも前記圧側室側で前記ピストンロッドの外周に装着され、
     前記ピストン、前記伸側リリーフ弁および前記圧側リリーフ弁が、前記ピストンロッドの先端に螺着されるピストンナットによって前記ピストンロッドに固定され、
     前記圧側弁体が、前記圧側バルブディスクの前記伸側室側に積層される緩衝器。
  5.  請求項1に記載の緩衝器であって、
     前記ピストンは、前記ピストンロッドの外周に装着され、
     前記伸側リリーフ弁および前記圧側リリーフ弁は、前記ピストンよりも前記伸側室側で前記ピストンロッドの外周に装着される緩衝器。
PCT/JP2013/075760 2012-09-27 2013-09-24 緩衝器 WO2014050832A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13842865.1A EP2902657A4 (en) 2012-09-27 2013-09-24 DAMPER
US14/431,772 US20150210136A1 (en) 2012-09-27 2013-09-24 Shock absorber
KR1020157008205A KR20150051228A (ko) 2012-09-27 2013-09-24 완충기
CN201380050070.1A CN104662324A (zh) 2012-09-27 2013-09-24 缓冲器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-214414 2012-09-27
JP2012214414A JP5876806B2 (ja) 2012-09-27 2012-09-27 緩衝器

Publications (1)

Publication Number Publication Date
WO2014050832A1 true WO2014050832A1 (ja) 2014-04-03

Family

ID=50388229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075760 WO2014050832A1 (ja) 2012-09-27 2013-09-24 緩衝器

Country Status (6)

Country Link
US (1) US20150210136A1 (ja)
EP (1) EP2902657A4 (ja)
JP (1) JP5876806B2 (ja)
KR (1) KR20150051228A (ja)
CN (1) CN104662324A (ja)
WO (1) WO2014050832A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309424A4 (en) * 2015-06-10 2019-03-13 KYB Corporation DAMPER

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108550B2 (ja) * 2013-09-19 2017-04-05 Kyb株式会社 緩衝装置
CN106402250A (zh) * 2016-06-23 2017-02-15 爱思恩梯大宇汽车部件(昆山)有限公司 变位可变型减震器
DE102016217113A1 (de) * 2016-09-08 2016-12-01 Zf Friedrichshafen Ag Frequenzabhängige Dämpfventilanordnung
DE102016217114A1 (de) * 2016-09-08 2016-12-01 Zf Friedrichshafen Ag Frequenzabhängige Dämpfventilanordnung
RU178990U1 (ru) * 2016-09-15 2018-04-24 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Ростар" Демпфирующее устройство транспортного средства
JP2018162880A (ja) * 2017-03-28 2018-10-18 Kyb株式会社 緩衝器
KR20200134529A (ko) * 2019-05-22 2020-12-02 주식회사 만도 주파수 감응형 쇽업소버
KR20200142293A (ko) * 2019-06-12 2020-12-22 주식회사 만도 주파수 감응형 쇽 업소버
EP3786478A1 (en) * 2019-09-02 2021-03-03 Öhlins Racing AB Adjustable bleed valve assembly for shock absorber
DE112020005357T5 (de) * 2019-10-30 2022-08-11 Kyb Corporation Stossdämpfer
EP3885615B1 (en) 2020-03-23 2024-01-17 Goodrich Corporation Pneumatic damper for piston used in pressure regulator
DE102020209288A1 (de) 2020-07-23 2022-01-27 Thyssenkrupp Ag Schwingungsdämpfer-Ventilanordnung mit schaltbarem Bypass
US20230287954A1 (en) 2020-07-29 2023-09-14 Hitachi Astemo, Ltd. Shock absorber
CN113983106B (zh) * 2021-11-25 2022-05-24 宁波瑞丰汽车零部件有限公司 低速流量可调的减震器活塞

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042214A (ja) 2001-07-31 2003-02-13 Kayaba Ind Co Ltd 油圧緩衝器
DE102008043564A1 (de) * 2008-11-07 2010-05-20 Zf Friedrichshafen Ag Schwingungsdämpfer mit einstellbarer Dämpfkraft
JP2010261547A (ja) * 2009-05-11 2010-11-18 Kayaba Ind Co Ltd バルブ構造
WO2011071120A1 (ja) * 2009-12-11 2011-06-16 カヤバ工業株式会社 緩衝装置
JP2012214414A (ja) 2011-03-31 2012-11-08 Inabata Koryo Kk β‐セクレターゼ阻害剤及びβ‐セクレターゼ阻害剤を含む飲食品、並びにその阻害率を測定する阻害率測定法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2220726B (en) * 1988-06-07 1992-07-08 Tokico Ltd A hydraulic damper of adjustable damping force type
DE4120122A1 (de) * 1990-06-29 1992-01-09 Boge Ag Hydraulischer, verstellbarer schwingungsdaempfer fuer kraftfahrzeuge
US5207300A (en) * 1990-06-29 1993-05-04 Boge Aktiengesellschaft Hydraulic, adjustable vibration damper for motor vehicles
DE69212443T2 (de) * 1991-12-06 1996-11-28 Kayaba Industry Co Ltd Aufhängungssystem
DE4237156C1 (de) * 1992-11-04 1994-03-10 Bilstein August Gmbh Co Kg Steuerbarer hydraulischer Schwingungsdämpfer für Kraftfahrzeuge
US6491145B2 (en) * 2000-08-18 2002-12-10 Krupp Bilstein Gmbh Regulable dashpot for motor vehicles, and method of adjusting such a dashpot
CN100526674C (zh) * 2004-05-25 2009-08-12 日产自动车株式会社 液压缓冲器
JP5758119B2 (ja) * 2010-03-03 2015-08-05 日立オートモティブシステムズ株式会社 緩衝器
US8820495B2 (en) * 2010-07-21 2014-09-02 King Shock Technology, Inc. Adjustable internal bypass shock absorber featuring a fluid flow regulator
KR101239919B1 (ko) * 2011-01-28 2013-03-06 주식회사 만도 쇽업소버의 밸브 구조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042214A (ja) 2001-07-31 2003-02-13 Kayaba Ind Co Ltd 油圧緩衝器
DE102008043564A1 (de) * 2008-11-07 2010-05-20 Zf Friedrichshafen Ag Schwingungsdämpfer mit einstellbarer Dämpfkraft
JP2010261547A (ja) * 2009-05-11 2010-11-18 Kayaba Ind Co Ltd バルブ構造
WO2011071120A1 (ja) * 2009-12-11 2011-06-16 カヤバ工業株式会社 緩衝装置
JP2012214414A (ja) 2011-03-31 2012-11-08 Inabata Koryo Kk β‐セクレターゼ阻害剤及びβ‐セクレターゼ阻害剤を含む飲食品、並びにその阻害率を測定する阻害率測定法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902657A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309424A4 (en) * 2015-06-10 2019-03-13 KYB Corporation DAMPER

Also Published As

Publication number Publication date
US20150210136A1 (en) 2015-07-30
EP2902657A1 (en) 2015-08-05
CN104662324A (zh) 2015-05-27
KR20150051228A (ko) 2015-05-11
JP5876806B2 (ja) 2016-03-02
JP2014070643A (ja) 2014-04-21
EP2902657A4 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2014050832A1 (ja) 緩衝器
JP5132590B2 (ja) 緩衝装置
JP5961129B2 (ja) 緩衝装置
WO2011071120A1 (ja) 緩衝装置
WO2017013960A1 (ja) 緩衝器
JP5603817B2 (ja) 緩衝装置
WO2017038886A1 (ja) 緩衝装置
WO2014024765A1 (ja) バルブ及び緩衝器
JP5988755B2 (ja) 緩衝装置
JP5878840B2 (ja) 緩衝装置
JP5564368B2 (ja) リヤクッションユニット
JP5438487B2 (ja) 緩衝装置
JP5142971B2 (ja) 緩衝装置
JP5567955B2 (ja) 懸架装置
JP5878841B2 (ja) 緩衝装置
JP5555037B2 (ja) 緩衝装置
JP5690179B2 (ja) 緩衝装置
JP2012082850A (ja) 懸架装置
JP5220560B2 (ja) リーフバルブ
JP5831976B2 (ja) 緩衝装置
JP6013956B2 (ja) 緩衝装置
JP2008196618A (ja) 緩衝器
JP5831977B2 (ja) 緩衝装置
JP6108532B2 (ja) 緩衝装置
JP5822355B2 (ja) 緩衝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14431772

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008205

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013842865

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013842865

Country of ref document: EP