WO2014050825A1 - ガラス基板の製造方法 - Google Patents

ガラス基板の製造方法 Download PDF

Info

Publication number
WO2014050825A1
WO2014050825A1 PCT/JP2013/075733 JP2013075733W WO2014050825A1 WO 2014050825 A1 WO2014050825 A1 WO 2014050825A1 JP 2013075733 W JP2013075733 W JP 2013075733W WO 2014050825 A1 WO2014050825 A1 WO 2014050825A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass substrate
electrode
electrode body
tin oxide
Prior art date
Application number
PCT/JP2013/075733
Other languages
English (en)
French (fr)
Inventor
彰夫 新
尚貴 竹田
太志 杉野
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to JP2013553732A priority Critical patent/JP5735662B2/ja
Priority to CN201380003818.2A priority patent/CN103930381B/zh
Publication of WO2014050825A1 publication Critical patent/WO2014050825A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • C03B5/185Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to a method for manufacturing a glass substrate.
  • a glass raw material put into a melting tank is melted to produce a molten glass.
  • This molten glass is clarified by defoaming or the like, and then formed into a sheet-like glass by a forming apparatus.
  • a glass substrate is obtained by cutting the sheet-like glass with a predetermined length.
  • the glass raw material charged on the liquid surface of the molten glass is melted by a flame such as a burner. Specifically, the glass raw material starts to melt gradually by the heat radiation of the furnace wall heated by a burner or the like or a high-temperature gas phase atmosphere, and then melts in the molten glass below.
  • the molten glass is stored in a melting tank and is energized using a pair of electrodes in contact with the molten glass. By this energization, the molten glass itself generates Joule heat, and this Joule heat heats the molten glass itself.
  • a heat-resistant material such as platinum, a platinum rhodium alloy, molybdenum, or tin oxide is used as a material used for an electrode used in a dissolution tank (Patent Document 1).
  • the tip portion in contact with the molten glass is worn away by erosion, and becomes shorter with time.
  • the position of the tip of the electrode is retracted from a predetermined position due to erosion, a large amount of current flows through the wall of the dissolution tank, and the dissolution tank wall may be eroded.
  • Patent Document 2 When the electrode is eroded and the position of the tip of the electrode is retracted from a predetermined position, it is necessary to push the electrode toward the inside of the dissolution tank so that the tip of the electrode is at the predetermined position (Patent Document 2). .
  • an object of this invention is to provide the manufacturing method of the glass substrate which can estimate the length by which the electrode of the dissolution tank was eroded during operation correctly, and can extend an operation period.
  • One embodiment of the present invention is a method for manufacturing a glass substrate by melting a glass raw material introduced into a melting tank in which electrodes made of tin oxide are provided in at least a pair of through holes.
  • This glass substrate manufacturing method is based on the difference between the weight of tin oxide contained in the glass substrate and the weight of tin oxide supplied from the glass raw material to the glass substrate, from the electrode to the glass substrate.
  • the manufacturing method of the glass substrate of the said aspect may have the process of dividing
  • the step of energizing and heating the molten glass includes the step of cooling the electrode using a cooling device capable of adjusting the cooling amount of the electrode, and cooling the electrode. In the step of performing, the correlation between the erosion rate and the cooling amount may be obtained, and the cooling amount may be adjusted so as to reduce the erosion rate based on the correlation.
  • FIG. 1 It is process drawing explaining the process of the manufacturing method of the glass of this embodiment. It is a figure which shows typically the apparatus which performs from the melt
  • FIG. 1 is a process diagram illustrating the steps of the glass substrate manufacturing method of the present embodiment.
  • the glass substrate manufacturing method includes a melting step (ST1), a clarification step (ST2), a homogenization step (ST3), a supply step (ST4), a molding step (ST5), and a slow cooling step (ST6). And a cutting step (ST7).
  • a plurality of glass plates that have a grinding process, a polishing process, a cleaning process, an inspection process, a packing process, and the like and are stacked in the packing process are conveyed to a supplier.
  • FIG. 2 is a diagram schematically showing an apparatus for performing the melting step (ST1) to the cutting step (ST7).
  • the apparatus mainly includes a melting apparatus 200, a molding apparatus 300, and a cutting apparatus 400.
  • the dissolution apparatus 200 mainly has a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
  • the glass raw material supplied into the melting tank 201 is heated and melted with a flame generated from the burner 206 (see FIG. 3), whereby the molten glass MG is made. Thereafter, the molten glass MG is energized and heated using the electrode body (electrode) 208 (see FIG. 3).
  • the clarification step (ST2) is performed in the clarification tank 202. When the molten glass MG in the clarification tank 202 is heated, bubbles such as O 2 contained in the molten glass MG grow by absorbing oxygen generated by the reductive reaction of the clarifier and float on the liquid surface. And released.
  • the molten glass MG in the stirring vessel 203 supplied through the first pipe 204 is stirred using a stirrer, so that the glass components are homogenized.
  • the molten glass MG in the supplying step (ST4) is supplied to the molding apparatus 300 through the second pipe 205.
  • a molding process (ST5) and a slow cooling process (ST6) are performed.
  • the forming step (ST5) the molten glass MG is formed into a sheet glass, and a flow of the sheet glass is created.
  • an overflow downdraw method is used.
  • the slow cooling step (ST6) the sheet-like glass that is formed and flowed is cooled to have a desired thickness, so that internal distortion does not occur and the thermal shrinkage rate does not increase.
  • the cutting step (ST7) the cutting device 400 cuts the sheet-like glass supplied from the forming device 300 into a predetermined length, thereby obtaining a glass substrate.
  • the cut glass substrate is further cut into a predetermined size to produce a glass substrate of a target size. Thereafter, the glass substrate is ground and polished, cleaned, and inspected for the presence of abnormal defects such as bubbles and striae, and the glass substrate that has passed the inspection is packed as a final product.
  • FIG. 3 is a diagram illustrating a melting tank 201 that performs a melting step.
  • the melting tank 201 has a wall 210 made of a refractory member that is a refractory brick.
  • the dissolution tank 201 has an internal space surrounded by a wall 210.
  • the internal space of the melting tank 201 is formed in a liquid tank B that accommodates the molten glass MG formed by melting the glass raw material introduced into the space while being heated, and an upper layer of the molten glass MG.
  • an upper space A which is a gas phase.
  • the wall 210 of the upper space A is provided with a burner 206 that emits a flame by burning combustion gas mixed with fuel and oxygen.
  • the burner 206 heats the refractory member in the upper space A with a flame to raise the temperature of the wall 210.
  • the glass raw material is heated and melted by the radiant heat of the wall 210 which has become high temperature and by the gas phase atmosphere which has become high temperature.
  • the walls 210 and 210 facing the liquid tank B of the dissolution tank 201 are each provided with three through holes 210a.
  • Three pairs of electrode bodies 208 made of tin oxide are disposed in the through hole 210a.
  • the electrode body 208 can be made of a conductive material having heat resistance such as molybdenum other than tin oxide. All of the three pairs of electrode bodies 208 extend from the outside of the dissolution tank 201 toward the inner wall surface of the liquid tank B through the through holes 210a.
  • Each pair of the three pairs of electrode bodies 208 is disposed in the through hole 210a so as to face each other through the molten glass MG.
  • Each pair of electrode bodies 208 serves as a positive electrode and a negative electrode, and allows a current to flow through the molten glass MG between the electrodes. This energization generates Joule heat in the molten glass MG, and the molten glass MG is heated by the Joule heat generated by itself.
  • the molten glass MG is heated to, for example, 1500 ° C. or higher.
  • the heated molten glass MG is sent to the clarification tank 202 through a glass supply pipe.
  • the dissolution tank 201 is provided with three pairs of electrode bodies 208, but may be provided with one pair, two pairs, or four or more pairs of electrode bodies. That is, in this embodiment, the glass stored in the melting tank 201 is melted using the melting tank 201 in which the electrode body 208 is provided in each of at least the pair of through holes 210a and 210a.
  • FIG. 4A is a horizontal sectional view around the electrode body 208 showing the arrangement of the electrode body 208.
  • FIG. FIG. 4B is a horizontal sectional view around the electrode body for explaining the erosion of the electrode body 208.
  • illustration of connectors and the like provided on the electrode body 208 is omitted.
  • the electrode body 208 is a composite body in which a plurality of elongated electrode body elements 208a are bundled so as to extend in one direction, and each of the electrode body elements 208a energizes the molten glass MG.
  • the electrode body 208 is composed of a total of 16 electrode body elements 208a, with four rows in the vertical direction and four rows in the horizontal direction.
  • the electrode body 208 as a composite body including the electrode body elements 208a is limited to a structure composed of a total of 16 electrode body elements 208a in four rows in the vertical direction and four rows in the horizontal direction as in this embodiment.
  • the total number, the number of columns in the vertical direction, and the number of columns in the horizontal direction are not particularly limited.
  • the electrode body 208 may be composed of one electrode body element 208a.
  • the position of the front end surface 208f is aligned with the position P0 of the inner wall surface (the inner surface of the wall 210) of the liquid tank B of the dissolution tank 201. That is, the front end surface 208f of the electrode body 208 and the inner surface of the wall 210 are adjacent to each other without a step. That is, the front end surface 208 f can be disposed on the same plane as the inner wall surface of the dissolution tank 201.
  • the tip surface 208f of the electrode 208 may be disposed so as to be recessed to the inside of the through-hole 210a to some extent from the inner surface of the wall 210 of the dissolution tank 201, but the position of the tip surface 208f is located on the inner surface of the wall 210.
  • erosion of the electrode body 208 and erosion of the refractory member constituting the wall 210 can be reduced.
  • the tip portion in contact with the molten glass MG is eroded and worn by the molten glass MG, and as shown in FIG.
  • the wall 210 moves back to the outside of the dissolution tank 201 from the position P0 on the inner surface.
  • the front end surface 208f of the electrode body 208 is recessed from the inner surface of the wall 210 to the inside of the through hole 210a, not only the voltage between the opposing electrode bodies 208, 208 increases, but also the electrode body 208.
  • the wall 210 in the vicinity of is easily eroded.
  • a pressing structure 220 that presses the electrode body 208 in the direction of the molten glass MG is provided outside the melting tank 201.
  • the pressing structure 220 includes a horizontal jig 221 spanned across the electrode body element 208a of each stage of the electrode body 208, a vertical jig 222 spanned vertically across the horizontal jig 112, and a melting tank.
  • a warm jack 223 fixed to a frame-like structure (not shown) outside 201.
  • the pressing structure 220 is configured such that a pressing force is applied to the rear end surface 208b of the electrode body 208 by the worm jack 223 via the horizontal jig 221 and the vertical jig 222 to push the electrode body 208 in the direction of the molten glass MG. Yes.
  • the electrode body 208 when the electrode body 208 is worn by erosion of the molten glass MG, the length (erosion) of the electrode body 208 is eroded by operating the warm jack 223 of the pressing structure 220 as shown in FIG.
  • the electrode body 208 can be pushed out in the direction of the molten glass MG by the length (L).
  • the electrode body 208 can stably heat the molten glass MG by energization.
  • the electrode body 208 is preferably pushed out in the direction of the molten glass MG while energization of the molten glass MG is continued except when a new electrode body 208 is added to the rear end face 208b.
  • the several electrode body 208 can be extruded collectively, it is preferable to push out the electrode body 208 one by one sequentially from a viewpoint of preventing the rapid fluctuation
  • the length L1 of the electrode body 208 remaining when the operation of the dissolution tank 201 is temporarily stopped has been measured.
  • a length (erosion length) L in which the electrode 208 is actually eroded is obtained, and the erosion length is obtained.
  • the erosion length per day (L / day) was obtained by dividing the length L by the number of operating days.
  • the electrode in the dissolution tank 201 during operation based on the erosion length (L / day) of the electrode body 208 per day and the number of operation days obtained as described above.
  • the erosion length L of the body 208 was estimated.
  • the speed at which the electrode body 208 is eroded varies depending on various conditions in the dissolution tank 201.
  • the condition before the operation of the dissolution tank 201 is temporarily stopped does not necessarily match the condition after the operation of the dissolution tank 201 is resumed. Therefore, the erosion length (L / day) of the electrode body 208 per day in the dissolution tank 201 before the operation is temporarily suspended and after the resumption of the operation may be different, and the erosion length L of the electrode body 208 during the operation may be different. It was difficult to estimate accurately. For this reason, the operation of the dissolution tank 201 has to be temporarily stopped in a period shorter than the operation period that can be originally performed to perform maintenance of the dissolution tank 201.
  • the erosion length L of the electrode body 208 in the melting tank 201 in operation is obtained by the following procedure. First, the elution weight of tin oxide from the electrode body 208 to the glass substrate is obtained based on the difference between the weight of tin oxide contained in the glass substrate and the weight of tin oxide supplied from the glass raw material to the glass substrate. Next, the erosion length L of the electrode body 208 is obtained based on the obtained elution weight.
  • the weight of tin oxide contained in the glass substrate and the weight of tin oxide supplied from the glass raw material to the glass substrate are obtained.
  • the weight of tin oxide supplied from the glass raw material to the glass substrate is determined by the following procedure.
  • a raw material powder in which a powdery substance serving as a supply source of each component of the composition of the glass substrate is mixed with a cullet obtained by crushing the glass substrate at a predetermined ratio x: y is used as the glass raw material. Therefore, the weight R of tin oxide supplied from the glass raw material to the glass substrate in the predetermined period T is calculated from the weight P of tin oxide supplied from the raw material powder and the cullet as shown in the following formula (2). It is the sum with the weight Q of the supplied tin oxide.
  • R P + Q (2)
  • the weight P of the tin oxide supplied to the glass substrate from the raw material powder charged in the predetermined period T is the weight Wb of the raw material powder charged in the predetermined period T and the content of tin oxide in the raw material powder per unit weight From the rate a (wt%) and the ratio b (wt%) of the tin oxide that volatilizes when the raw material powder per unit weight is dissolved, it is determined as shown in the following formula (3).
  • P (a ⁇ b) ⁇ Wb (3)
  • the elution weight Z which is the weight of tin oxide actually eluted from the electrode body 208 during operation is obtained, and the erosion length L of the electrode body 208 is determined based on the result. Looking for. Therefore, the erosion length L of the electrode body 208 reflecting the variation of various conditions in the melting tank 201 during operation can be obtained, and the electrode body 208 in the dissolution tank 201 during operation can be obtained more accurately than in the past. The erosion length L can be estimated.
  • the molten glass MG is heated to a higher temperature than the conventional case in the following cases (A) to (C).
  • the problem of erosion of the electrode body 208 and the wall 210 of the melting tank 201 becomes more prominent than in the past. Therefore, as in this embodiment, the erosion length L of the electrode body 208 is accurately estimated, and the tip surface 208f of the electrode body 208 is accurately aligned with the position P0 of the inner surface of the wall 210 of the dissolution tank 201. The effect of extending the life of the electrode body 208 and the dissolution bath 201 becomes remarkable.
  • a glass substrate used for a flat panel display (liquid crystal display, organic EL display, etc.) uses a TFT (Thin Film Transistor) on its surface.
  • TFT Thin Film Transistor
  • an alkali-free glass plate using alkali-free glass or an alkali trace-containing glass plate using an alkali trace-containing glass containing a trace amount of an alkali component is preferably used.
  • the alkali trace glass plate or the alkali-free glass plate has a high temperature viscosity.
  • the temperature of the molten glass MG is set higher than when producing a conventional alkali glass glass plate.
  • Examples of the glass composition of the glass substrate used in the present embodiment include the following.
  • the content rate display of the composition shown below is the mass%.
  • SiO 2 50 to 70%, Al 2 O 3 : 0 to 25%, B 2 O 3 : 1 to 15%, MgO: 0 to 10%, CaO: 0-20%, SrO: 0 to 20%, BaO: 0 to 10%, RO: 5 to 30% (where R is at least one selected from Mg, Ca, Sr and Ba, and the glass substrate contains), It is preferable that it is an alkali free glass containing.
  • the glass substrate may be a glass containing a trace amount of alkali containing a trace amount of alkali metal.
  • the total of R ′ 2 O is 0.10% or more and 0.5% or less, preferably 0.20% or more and 0.5% or less (where R ′ is selected from Li, Na, and K) It is preferable that the glass substrate contains at least one kind.
  • the total of R ′ 2 O may be lower than 0.10%. Further, it is preferred not to include As 2 O 3, Sb 2 O 3 and PbO substantially.
  • the glass composition is represented by mass% in addition to the above components, and SnO 2 : 0.01 to 1% (preferably 0.01 To 0.5%), Fe 2 O 3 : 0 to 0.2% (preferably 0.01 to 0.08%), and considering the environmental burden, As 2 O 3 , Sb 2 O 3 Further, the glass raw material may be prepared so as not to substantially contain PbO.
  • the glass used in the glass substrate of this embodiment contains various other oxides to adjust various physical, melting, fining, and forming properties of the glass. There is no problem.
  • examples of such other oxides include, but are not limited to, TiO 2 , MnO, ZnO, Nb 2 O 5 , MoO 3 , Ta 2 O 5 , WO 3 , Y 2 O 3 , and La 2 O 3 is mentioned.
  • the electrode body 208 is operated by operating the worm jack 223 of the pressing structure 220 shown in FIG. The electrode body 208 is pushed out in the direction of the molten glass MG by the eroded length L.
  • the upper limit value of the erosion length L is determined in consideration of, for example, the voltage value between the electrode bodies 208 and 208 facing each other with the molten glass MG interposed therebetween, the erosion of refractory bricks constituting the wall 210 of the melting tank 201, and the like. Since the temperature of the internal space of the dissolution tank 201 differs depending on the position where the burner 206 is provided, the length L eroded by the three pairs of electrode bodies 208 may be different. Therefore, the erosion length L may be estimated in each electrode body 208, and the erosion length L may be estimated from the average value of the erosion lengths L of the three pairs of electrode bodies 208.
  • the front end surface 208f of the electrode body 208 is positioned at the position P0 on the inner surface of the wall 210 of the melting tank 201. Be placed. Therefore, it is possible to prevent an increase in the voltage between the electrode bodies 208 and 208 facing each other with the molten glass MG interposed therebetween, and to suppress an increase in the erosion amount of the refractory bricks constituting the wall 210 of the melting tank 201.
  • the dissolution tank 201 can be stably operated for a long time. Therefore, the operation period of the dissolution tank 201 can be extended more than before.
  • the rear end surface 208b of the electrode body 208 is cooled by a cooling device (not shown).
  • the cooling device includes a plurality of wind cooling tubes that blow cooling air toward the rear end surface 208b of the electrode body 208, and is configured to be able to adjust the cooling amount of the electrode body 208 by adjusting the supply amount of the cooling air. Yes. That is, the cooling device can increase or decrease the cooling amount of the electrode body 208 by increasing or decreasing the supply amount of the cooling air.
  • the erosion rate S obtained by the above equation (9) is used to obtain a plurality of data of the erosion rate S and the cooling amount U when the cooling amount of the cooling device changes, and is shown in FIG.
  • the correlation between the erosion rate S and the cooling amount U is obtained.
  • the cooling amount (cooling air supply amount) U of the electrode body 208 is adjusted so as to reduce the erosion speed S.
  • the erosion rate S is reduced by increasing the cooling amount of the electrode body 208 as much as possible without affecting the melting of the glass raw material.
  • the life of the electrode body 208 can be extended. Therefore, according to this embodiment, the period which extrudes the electrode body 208 in the molten glass MG direction can be extended, and the operation period of the melting tank 201 can be further extended.
  • this invention is not limited to said embodiment, You may make various improvement and change in the range which does not deviate from the main point of this invention.
  • the method of the present invention makes it possible to advantageously perform a glass melting step particularly in the production of a glass substrate by molding molten glass.

Abstract

 操業中に溶解槽の電極が浸食された長さを正確に推定し、操業期間を延長することができるガラス基板の製造方法を提供する。ガラス基板に含まれる酸化錫の重量と、ガラス原料からガラス基板に供給される酸化錫の重量との差に基づいて、電極からガラス基板への酸化錫の溶出重量を求める工程と、溶出重量に基づいて電極の浸食長さを求める工程と、浸食長さに基づいて、電極を所定の位置まで溶融ガラス方向へ押し出す工程と、を有する。

Description

ガラス基板の製造方法
 本発明は、ガラス基板の製造方法に関する。
 例えばフラットパネルディスプレイ(FPD)用のガラス基板を製造する場合、一般に、溶解槽に投入されたガラス原料を溶解させて溶融ガラスがつくられる。この溶融ガラスは、脱泡等により清澄されたのち、成形装置でシート状ガラスに成形される。このシート状ガラスが所定の長さで切断されることによりガラス基板が得られる。
 ガラス原料を溶解して溶融ガラスをつくるとき、溶融ガラスの液面上に投入されたガラス原料は、バーナー等の火炎により溶解される。具体的には、ガラス原料は、バーナー等により加熱された炉壁の熱輻射や高温化した気相雰囲気により次第に溶解を始め、下方の溶融ガラスに溶けて行く。一方、溶融ガラスは、溶解槽に蓄えられ、溶融ガラスと接触する一対の電極を用いて通電される。この通電により、溶融ガラス自身はジュール熱を発し、このジュール熱が溶融ガラス自身を加熱する。
 溶解槽に用いる電極に使用する材料として、白金や白金ロジウム合金、モリブデン、酸化錫等の耐熱性材料を使用することが知られている(特許文献1)。
 酸化錫やモリブデンを用いた電極は、溶融ガラスと接触した先端の部分が浸食によって減耗し、経時的に短小化してしまう。浸食により電極の先端の位置が所定の位置よりも後退すると、溶解槽の壁により多くの電流が流れて、溶解槽の壁が浸食されるおそれがある。そのため、電極が浸食されてその先端の位置が所定の位置よりも後退したら、電極の先端が所定の位置になるように、電極を溶解槽の内側へ向けて押し込む必要がある(特許文献2)。
特開2003-292323号公報 特開昭56-5336号公報
 しかしながら、上記従来の技術では、操業中に電極が浸食された長さを正確に推定することが困難であった。そのため、溶解槽の操業を本来可能な操業期間よりも短い期間で停止して、溶解槽のメンテナンスを行わざるを得なかった。
 そこで、本発明は、操業中に溶解槽の電極が浸食された長さを正確に推定し、操業期間を延長することができるガラス基板の製造方法を提供することを目的とする。
 本発明の一態様は、少なくとも一対の貫通孔に酸化錫からなる電極を設けた溶解槽に導入したガラス原料を溶解してガラス基板を製造する方法である。このガラス基板の製造方法は、前記ガラス基板に含まれる酸化錫の重量と、前記ガラス原料から前記ガラス基板に供給される酸化錫の重量との差に基づいて、前記電極から前記ガラス基板への酸化錫の溶出重量を求める工程と;前記溶出重量に基づいて前記電極の浸食長さを求める工程と;前記浸食長さに基づいて、前記電極を所定の位置まで溶融ガラス方向へ押し出す工程と;を有する。
 上記態様のガラス基板の製造方法は、前記浸食長さを、前記ガラス基板が製造された時間で除して、前記電極の浸食速度を求める工程を有してもよい。
 また、上記態様のガラス基板の製造方法は、前記溶融ガラスを通電加熱する工程は、前記電極の冷却量を調節可能な冷却装置を用いて前記電極を冷却する工程を有し、前記電極を冷却する工程において、前記浸食速度と前記冷却量との相関を求め、その相関に基づいて、前記浸食速度を低下させるように、前記冷却量を調節してもよい。
 上記の態様によれば、操業中に溶解槽の電極が浸食された長さを正確に推定し、溶解槽の操業期間を延長することができる。
本実施形態のガラスの製造方法の工程を説明する工程図である。 図1に示す溶解工程から切断工程までを行う装置を模式的に示す図である。 図1に示す溶解工程を行う溶解槽を説明する図である。 (a)は電極体の配置を示す電極体周辺の水平断面図であり、(b)は電極体の浸食を示す電極体周辺の水平断面図である。 電極体の浸食速度と冷却量との相関を示すグラフである。
 以下、本実施形態のガラスの製造方法について説明する。図1は、本実施形態のガラス基板の製造方法の工程を説明する工程図である。
 ガラス基板の製造方法は、溶解工程(ST1)と、清澄工程(ST2)と、均質化工程(ST3)と、供給工程(ST4)と、成形工程(ST5)と、徐冷工程(ST6)と、切断工程(ST7)と、を主に有する。この他に、研削工程、研磨工程、洗浄工程、検査工程、梱包工程等を有し、梱包工程で積層された複数のガラス板は、納入先の業者に搬送される。
 図2は、溶解工程(ST1)から切断工程(ST7)までを行う装置を模式的に示す図である。当該装置は、図2に示すように、主に溶解装置200と、成形装置300と、切断装置400と、を有する。溶解装置200は、溶解槽201と、清澄槽202と、攪拌槽203と、第1配管204と、第2配管205と、を主に有する。
 溶解工程(ST1)では、溶解槽201内に供給されたガラス原料を、バーナー206(図3参照)から発する火焔で加熱して溶解することで、溶融ガラスMGが作られる。この後、電極体(電極)208(図3参照)を用いて溶融ガラスMGが通電加熱される。
 清澄工程(ST2)は、清澄槽202において行われる。清澄槽202内の溶融ガラスMGが加熱されることにより、溶融ガラスMG中に含まれるO等の気泡は、清澄剤の還元反応により生成される酸素を吸収して成長し、液面に浮上して放出される。あるいは、気泡中の酸素等のガス成分が、清澄剤の酸化反応のために溶融ガラス中に吸収されて、気泡が消滅する。
 均質化工程(ST3)では、第1配管204を通って供給された攪拌槽203内の溶融ガラスMGがスターラを用いて攪拌されることにより、ガラス成分の均質化が行われる。
 供給工程(ST4)では、第2配管205を通して溶融ガラスMGが成形装置300に供給される。
 成形装置300では、成形工程(ST5)及び徐冷工程(ST6)が行われる。
 成形工程(ST5)では、溶融ガラスMGがシート状ガラスに成形され、シート状ガラスの流れが作られる。本実施形態では、オーバーフローダウンドロー法を用いる。徐冷工程(ST6)では、成形されて流れるシート状ガラスが所望の厚さになり、内部歪が生じないように、さらに、熱収縮率が大きくならないように、冷却される。
 切断工程(ST7)では、切断装置400において、成形装置300から供給されたシート状ガラスを所定の長さに切断することで、ガラス基板が得られる。切断されたガラス基板は、さらに所定のサイズに切断され、目標サイズのガラス基板が作られる。この後、ガラス基板は、端面の研削および研磨がされ、洗浄が行われ、さらに気泡や脈理等の異常欠陥の有無が検査され、検査合格品のガラス基板が最終製品として梱包される。
 図3は、溶解工程を行う溶解槽201を説明する図である。
 溶解槽201は、耐火レンガである耐火物部材により構成された壁210を有する。溶解槽201は、壁210で囲まれた内部空間を有する。溶解槽201の内部空間は、上記空間に投入されたガラス原料が溶解してできた溶融ガラスMGを加熱しながら収容する液槽Bと、溶融ガラスMGの上層に形成され、ガラス原料が投入される、気相である上部空間Aとを有する。
 上部空間Aの壁210には、燃料と酸素等を混合した燃焼ガスが燃焼して火炎を発するバーナー206が設けられる。バーナー206は火炎によって上部空間Aの耐火物部材を加熱して壁210を高温にする。ガラス原料は、高温になった壁210の輻射熱により、また、高温となった気相の雰囲気により加熱されて溶解する。
 溶解槽201の液槽Bの向かい合う壁210,210には、それぞれ3つの貫通孔210aが設けられている。貫通孔210aには、酸化錫からなる3対の電極体208が配置されている。電極体208は、酸化錫以外にも、例えばモリブデン等の耐熱性を有する導電性材料で構成することができる。3対の電極体208はいずれも、貫通孔210aを通して溶解槽201の外側から液槽Bの内壁面に向かって延びている。
 3対の電極体208のそれぞれの対のうち、図中奥側の電極体は図示されていない。3対の電極体208の各対は、溶融ガラスMGを通してお互いに対向するように、貫通孔210aに配置されている。各対の電極体208は、正電極、負電極となってこの電極間の溶融ガラスMGに電流を流す。この通電により溶融ガラスMGにジュール熱が発生し、溶融ガラスMGは自ら発するジュール熱により加熱される。溶解槽201では、溶融ガラスMGは例えば1500℃以上に加熱される。加熱された溶融ガラスMGは、ガラス供給管を通して清澄槽202へ送られる。
 本実施形態では、溶解槽201には3対の電極体208が設けられるが、1対、2対あるいは4対以上の電極体が設けられてもよい。すなわち、本実施形態では、少なくとも一対の貫通孔210a,210aの各々に電極体208を設けた溶解槽201を用い、溶解槽201に収納したガラスを溶解する。
 図4の(a)は電極体208の配置を示す電極体208周辺の水平断面図である。図4の(b)は電極体208の浸食を説明する電極体周辺の水平断面図である。図4では、電極体208に設けられるコネクタ等の図示は省略されている。
 電極体208は、複数の長尺状の電極体要素208aを一方向に延びるように束ねた複合体であり、電極体要素208aの各々が溶融ガラスMGに通電する。本実施形態では、電極体208は、縦方向に4段、横方向に4列、合計16本の電極体要素208aで構成されている。電極体要素208aからなる複合体としての電極体208は、本実施形態のように、縦方向に4段、横方向に4列、合計16本の電極体要素208aで構成されることに限定されず、合計本数、縦方向の段数、横方向の列数は特に制限されない。例えば、電極体208は、1つの電極体要素208aで構成されてもよい。
 電極体208は、設置時に、先端面208fの位置が溶解槽201の液槽Bの内壁面(壁210の内表面)の位置P0に合せられている。すなわち、電極体208の先端面208fと壁210の内表面とは段差なく隣接している。すなわち、先端面208fは、溶解槽201の内壁面と同一の平面上に配置することができる。なお、電極208の先端面208fは、ある程度、溶解槽201の壁210の内表面よりも貫通孔210aの内側に窪むように配置しても良いが、先端面208fの位置を壁210の内表面の位置P0に合せることで、電極体208の浸食および壁210を構成する耐火物部材の浸食を低減することができる。
 電極体208は、溶融ガラスMGを通電加熱することで、溶融ガラスMGに接する先端部が溶融ガラスMGによって浸食されて磨耗し、図4の(b)に示すように、先端面208fの位置が壁210の内表面の位置P0よりも溶解槽201の外側へ後退していく。このように、電極体208の先端面208fが壁210の内表面から貫通孔210aの内側に窪んだ状態になると、対向する電極体208,208間の電圧が上昇するだけでなく、電極体208の近傍の壁210が浸食されやすくなる。
 そのため、電極体208は、溶融ガラスMGによって浸食されて摩耗した場合、電極体208を溶融ガラスMG方向に押し出すことができるように構成されている。具体的には、溶解槽201の外側に、電極体208を溶融ガラスMG方向へ押圧する押圧構造220が設けられている。押圧構造220は、電極体208の各段の電極体要素208aに横方向に掛け渡された水平治具221と、水平治具112に縦方向に掛け渡された垂直治具222と、溶解槽201の外側の不図示のフレーム状の構造体に固定されたウォームジャッキ223と、を備えている。押圧構造220は、水平治具221及び垂直治具222を介してウォームジャッキ223によって電極体208の後端面208bに押圧力を作用させ、電極体208を溶融ガラスMG方向に押し出すように構成されている。
 すなわち、電極体208が溶融ガラスMGの浸食によって摩耗した場合、図4(b)に示すように、押圧構造220のウォームジャッキ223を操作することにより、電極体208が浸食された長さ(浸食長さ)Lだけ、電極体208を溶融ガラスMG方向に押し出すことができる。こうして、電極体208は、通電により溶融ガラスMGを安定して加熱することができる。なお、電極体208は、後端面208bに新しい電極体208を継ぎ足す場合を除き、溶融ガラスMGに対する通電を継続したまま、溶融ガラスMG方向へ押し出すことが好ましい。また、複数の電極体208を一括して押し出すこともできるが、溶解条件の急激な変動を防止する観点から、電極体208の押し出しは1つずつ順次行っていくことが好ましい。
 ここで、従来の電極体208の浸食長さLの推定方法について説明する。
 従来は、電極体208の浸食長さLを求めるために、溶解槽201の操業を一時的に停止した際に残存した電極体208の長さL1を測定していた。具体的には、元の電極体の長さL0と残存した電極体208の長さL1との差から、実際に電極208が浸食された長さ(浸食長さ)Lを求め、その浸食長さLを操業日数で割ることで一日あたりの浸食長さ(L/日)を求めていた。そして、溶解槽208の操業を再開した後、上記のように求めた一日あたりの電極体208の浸食長さ(L/日)と操業日数とに基づいて、操業中の溶解槽201における電極体208の浸食長さLを推定していた。
 しかし、電極体208が浸食される速度は、溶解槽201における種々の条件によって変化する。溶解槽201の操業を一時停止する前の条件と、溶解槽201の操業を再開した後の条件とは、必ずしも一致しない。したがって、操業を一時停止する前と操業再開後の溶解槽201における一日あたりの電極体208の浸食長さ(L/日)は異なる場合があり、操業中の電極体208の浸食長さLを正確に推定することが困難であった。そのため、溶解槽201の操業を、本来可能な操業期間よりも短い期間で一時停止して、溶解槽201のメンテナンスを行わざるを得なかった。
 そこで、本実施形態では、以下の手順により操業中の溶解槽201における電極体208の浸食長さLを求めている。まず、ガラス基板に含まれる酸化錫の重量と、ガラス原料からガラス基板に供給される酸化錫の重量との差に基づいて、電極体208からガラス基板への酸化錫の溶出重量を求める。次に、求めた溶出重量に基づいて電極体208の浸食長さLを求める。
 以下、本実施形態の電極体208の浸食長さLの推定方法について詳細に説明する。
 まず、電極体208からガラス基板への酸化錫の溶出重量を求めるために、ガラス基板に含まれる酸化錫の重量と、ガラス原料からガラス基板に供給される酸化錫の重量とを求める。
(ガラス基板に含まれる酸化錫の重量)
 ガラス基板に含まれる酸化錫の重量は、次の手順により求める。
 まず、溶解槽201の操業中に、図1に示す切断工程ST7を経て得られたガラス基板を採取し、ガラス基板の組成分析を行うことにより、ガラス基板の組成中の酸化錫の含有率g(wt%)を求める。所定の期間Tに生産されたガラス基板の重量MGは既知であるので、以下の式(1)に示されるように、ガラス基板の組成中の酸化錫の含有率gから、所定の期間Tに生産されたガラス基板に含まれる酸化錫の重量Wが求められる。
 W=g・MG …(1)
(ガラス原料からガラス基板に供給される酸化錫の重量)
 ガラス原料からガラス基板に供給される酸化錫の重量は、以下の手順により求める。
 ガラス原料は、ガラス基板の組成の各成分の供給源である粉末状の物質が混合された原料粉末と、ガラス基板を破砕したカレットとを所定の比x:yで混合したものが用いられる。したがって、所定の期間Tにガラス原料からガラス基板に供給される酸化錫の重量Rは、以下の式(2)に示されるように、原料粉末から供給される酸化錫の重量Pと、カレットから供給される酸化錫の重量Qとの和である。
 R=P+Q …(2)
 所定の期間Tに投入された原料粉末からガラス基板に供給される酸化錫の重量Pは、所定の期間Tに投入された原料粉末の重量Wbと、単位重量あたりの原料粉末における酸化錫の含有率a(wt%)と、単位重量あたりの原料粉末を溶解する際に揮発する酸化錫の比率b(wt%)と、から以下の式(3)に示すように求められる。
 P=(a-b)・Wb …(3)
 また、所定の期間Tに投入されたカレットからガラス基板に供給される酸化錫の重量Qは、所定の期間Tに投入されたカレットの重量Wcと、ガラス基板の組成中の酸化錫の含有率g(wt%)と、から以下の式(4)に示すように求められる。
 Q=g・Wc …(4)
 所定の期間Tに投入された原料粉末の重量Wbおよびカレットの重量Wcが不明の場合、これらの重量は所定の期間Tに製造されたガラス基板の重量MGから以下の式(5)及び(6)に示すように求めることができる。ここで、ガラス原料中の原料粉末の重量とカレットとの重量の比は既知であり、原料粉末の重量とカレットの重量との比はx:yとする。
 Wb=MG・x/(x+y) …(5)
 Wc=MG・y/(x+y) …(6)
(電極体からガラス基板への酸化錫の溶出重量)
 以上のように求めた、所定の期間Tに生産されたガラス基板に含まれる酸化錫の重量Wと、所定の期間Tにガラス原料からガラス基板に供給される酸化錫の重量Rとに基づき、以下の式(7)に示すように、電極体208からガラス基板への酸化錫の溶出重量Zを求める。
 Z=W-R …(7)
(電極体の浸食長さ)
 次に、上記のように求めた電極体208からガラス基板への酸化錫の溶出重量Zに基づいて、電極体208の浸食長さLを求める。具体的には、以下の式(8)に示すように、溶出重量Zと、電極体208の断面積Aと、酸化錫の比重sgとに基づいて、電極体208の浸食長さLを求める。
 L=Z/sg/A …(8)
 以上説明したように、本実施形態によれば、操業中に実際に電極体208から溶出した酸化錫の重量である溶出重量Zを求め、その結果に基づいて電極体208の浸食長さLを求めている。したがって、操業中の溶解槽201における各種の条件の変動が反映された電極体208の浸食長さLを求めることができ、従来と比較してより正確に操業中の溶解槽201における電極体208の浸食長さLを推定することができる。
 従来は、溶融ガラスの清澄剤として、比較的低い温度で清澄機能を発揮するAs等が用いられていた。また、溶融ガラスの高温粘性が比較的低く、アルカリ成分を比較的多く含んだアルカリガラスが用いられていた。そのため、溶融ガラスの温度は比較的低く、溶融ガラスを通電加熱するための電極体の浸食は比較的緩やかで規則的であった。したがって、操業を停止したときの電極の浸食長さに基づいて一日あたりの浸食長さを求め、その一日あたりの浸食長さに基づいて、操業再開後の電極の浸食長さを比較的精度よく推定することが可能であった。
 しかし、本実施形態において、溶融ガラスMGは、以下の(A)~(C)の場合、従来に比べて高温に加熱される。従来に比べて溶融ガラスMGを高温に加熱する場合、従来よりも電極体208および溶解槽201の壁210の浸食の問題が顕著になる。したがって、本実施形態のように、電極体208の浸食長さLを正確に推定し、電極体208の先端面208fを溶解槽201の壁210の内表面の位置P0に正確に位置合わせすることによる、電極体208および溶解槽201の延命効果が顕著になる。
(A)従来から清澄剤として用いられてきたAs等に比べてSnOは毒性が少ないので、環境負荷低減の点から、清澄剤としてSnOを用いることが好ましい。しかし、清澄剤として用いられてきたAs等に比べて清澄機能が劣るSnOの清澄機能を効果的に機能させるために、溶融ガラスMGの温度は従来よりも高温にする。
(B)溶融ガラスMGの102.5ポアズにおける温度が1500℃以上である場合、溶融ガラスMGは高温粘性が高いため、清澄工程における脱泡処理において従来と同様の粘性を保つために、溶融ガラスMGを高温にする。
(C)本実施形態において作製されるガラス基板をフラットパネルディスプレイ用のガラス基板に用いる場合が挙げられる。フラットパネルディスプレイ(液晶ディスプレイや有機ELディスプレイ等)に用いるガラス基板には、その表面にTFT(Thin Film Transistor)を使用される。この場合、TFTの影響を抑制する観点から、無アルカリガラスを用いた無アルカリガラスガラス板、あるいは、アルカリ成分を微量含有させるアルカリ微量含有ガラスを用いたアルカリ微量含有ガラス板が好適に用いられる。しかし、アルカリ微量含有ガラス板あるいは無アルカリガラス板は、高温粘性が高い。高温粘性が高いガラス板を製造する場合、従来のアルカリガラスのガラス板を製造する場合よりも溶融ガラスMGの温度を高温にする。
 本実施形態で用いられるガラス基板のガラス組成は例えば以下のものを挙げることができる。以下に示す組成の含有率表示は、質量%である。
SiO:50~70%、
Al:0~25%、
:1~15%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~30%(ただし、RはMg、Ca、SrおよびBaから選ばれる少なくとも1種であり、ガラス基板が含有するものである)、
を含有する無アルカリガラスであることが、好ましい。
 なお、本実施形態では無アルカリガラスとしたが、ガラス基板はアルカリ金属を微量含んだアルカリ微量含有ガラスであってもよい。アルカリ金属を含有させる場合、R’Oの合計が0.10%以上0.5%以下、好ましくは0.20%以上0.5%以下(ただし、R’はLi、NaおよびKから選ばれる少なくとも1種であり、ガラス基板が含有するものである)含むことが好ましい。勿論、R’Oの合計が0.10%より低くてもよい。また、As、SbおよびPbOを実質的に含まないことが好ましい。
 また、本発明のガラス基板の製造方法を適用する場合は、ガラス組成物が、上記各成分に加えて、質量%で表示して、SnO:0.01~1%(好ましくは0.01~0.5%)、Fe:0~0.2%(好ましくは0.01~0.08%)を含有し、環境負荷を考慮して、As、SbおよびPbOを実質的に含有しないようにガラス原料を調製してもよい。
 さらに、上述した成分に加え、本実施形態のガラス基板に用いるガラスは、ガラスの様々な物理的、溶融、清澄、および、成形の特性を調節するために、様々な他の酸化物を含有しても差し支えない。そのような他の酸化物の例としては、以下に限られないが、TiO、MnO、ZnO、Nb、MoO、Ta、WO、Y、および、Laが挙げられる。
 次に、上記のように求めた電極体208の浸食長さLに基づいて、電極体208を所定の位置まで溶融ガラスMG方向へ押し出す工程について説明する。
 上記のように求めた電極体208の浸食長さLが、予め定められた上限値に達したら、図4(b)に示す押圧構造220のウォームジャッキ223を操作することにより、電極体208が浸食された長さLだけ、電極体208を溶融ガラスMG方向に押し出す。
 浸食長さLの上限値は、例えば、溶融ガラスMGを挟んで対向する電極体208,208間の電圧値、溶解槽201の壁210を構成する耐火レンガの浸食などを考慮して決定する。溶解槽201の内部空間はバーナー206が設けられた位置によって温度が異なるため、3対の電極体208で浸食された長さLが異なる場合がある。このため、各電極体208において、浸食長さLを推定してもよく、また、3対の電極体208の浸食長さLの平均値を、浸食長さLを推定してもよい。
 このように電極体208が浸食された長さLだけ、電極体208を溶融ガラスMG方向に押し出すことで、電極体208の先端面208fが、溶解槽201の壁210の内表面の位置P0に配置される。したがって、溶融ガラスMGを挟んで対抗する電極体208,208間の電圧が増大することを防止し、溶解槽201の壁210を構成する耐火レンガの浸食量の増加を抑制し、電極体208及び溶解槽201を長期間、安定して操業することができる。よって、溶解槽201の操業期間を従来よりも延長することができる。
 次に、本発明の第2の実施形態について説明する。
 本実施形態では、以下の式(9)に示すように、電極体208の浸食長さLと、ガラス基板が製造された所定の期間(時間)Tとに基づいて、電極体208の浸食速度Sを求める。
 S=L/T …(9)
 図4の(a)及び(b)に示す電極体208の後端面208bは、不図示の冷却装置により冷却されている。冷却装置は、電極体208の後端面208bに向けて冷却空気を吹き付ける複数の風冷管を備え、冷却空気の供給量を調節することで、電極体208の冷却量を調節可能に構成されている。すなわち、冷却装置は、冷却空気の供給量を増減させることで、電極体208の冷却量を増減させることができる。
 本実施形態では、上記の式(9)で求めた浸食速度Sを用い、冷却装置の冷却量が変化した場合の浸食速度Sと冷却量Uの複数のデータを取得して、図5に示すように、浸食速度Sと冷却量Uとの相関を求める。さらに、求めた相関に基づいて、浸食速度Sを低下させるように、電極体208の冷却量(冷却空気の供給量)Uを調節する。具体的には、図5に示す負の相関が得られた場合には、電極体208の冷却量をガラス原料の溶解に影響が出ない範囲でできるだけ多くすることで、浸食速度Sを低下させ、電極体208を延命することができる。したがって、本実施形態によれば、電極体208を溶融ガラスMG方向に押し出す周期を延長し、溶解槽201の操業期間をさらに延長することができる。
 なお、本発明は上記の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよい。
 本発明の方法は、溶融ガラスを成形することによるガラス基板の製造において、特にガラスの溶解工程を有利に行うことを可能とする。
201 溶解槽
208 電極体(電極)
208b 後端面
210a 貫通孔
MG 溶融ガラス
 

Claims (3)

  1.  少なくとも一対の貫通孔に酸化錫からなる電極を設けた溶解槽に導入したガラス原料を溶解してガラス基板を製造する方法において、
     前記ガラス基板に含まれる酸化錫の重量と、前記ガラス原料から前記ガラス基板に供給される酸化錫の重量との差に基づいて、前記電極から前記ガラス基板への酸化錫の溶出重量を求める工程と、
     前記溶出重量に基づいて前記電極の浸食長さを求める工程と、
     前記浸食長さに基づいて、前記電極を所定の位置まで溶融ガラス方向へ押し出す工程と、
     を有することを特徴とするガラス基板の製造方法。
  2.  前記浸食長さと、前記ガラス基板が製造された時間とに基づいて、前記電極の浸食速度を求める工程を有する、
     請求項1に記載のガラス基板の製造方法。
  3.  前記一対の電極により、前記ガラス原料が溶解されてできた溶融ガラスを通電加熱する工程を有し、
     前記溶融ガラスを通電加熱する工程は、前記電極の冷却量を調節可能な冷却装置を用いて前記電極を冷却する工程を有し、
     前記電極を冷却する工程において、
     前記浸食速度と前記冷却量との相関を求め、その相関に基づいて、前記浸食速度を低下させるように、前記冷却量を調節する、
     請求項2に記載のガラス基板の製造方法。
     
PCT/JP2013/075733 2012-09-27 2013-09-24 ガラス基板の製造方法 WO2014050825A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013553732A JP5735662B2 (ja) 2012-09-27 2013-09-24 ガラス基板の製造方法
CN201380003818.2A CN103930381B (zh) 2012-09-27 2013-09-24 玻璃基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-215287 2012-09-27
JP2012215287 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050825A1 true WO2014050825A1 (ja) 2014-04-03

Family

ID=50388222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075733 WO2014050825A1 (ja) 2012-09-27 2013-09-24 ガラス基板の製造方法

Country Status (3)

Country Link
JP (2) JP5735662B2 (ja)
CN (2) CN103930381B (ja)
WO (1) WO2014050825A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124755A (ja) * 2014-12-29 2016-07-11 AvanStrate株式会社 ガラス基板の製造方法
EP3197842B1 (fr) 2014-09-26 2018-11-21 Saint-Gobain Isover Laine minerale
WO2021050410A1 (en) * 2019-09-09 2021-03-18 Corning Incorporated Melting furnace electrode push assembly with torque limiter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722021B2 (ja) * 2016-03-31 2020-07-15 AvanStrate株式会社 ガラス基板の製造方法、およびガラス熔解装置
CN107129130B (zh) * 2017-04-26 2019-08-23 东旭(营口)光电显示有限公司 氧化锡电极推进量的获取方法和装置
CN108911480B (zh) * 2018-07-24 2021-11-09 彩虹显示器件股份有限公司 一种平板玻璃窑炉电极推进系统及推进方法
CN115196855A (zh) * 2022-09-16 2022-10-18 青岛融合光电科技有限公司 一种载板玻璃电助熔电极损耗量自动测量及自动推入系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692127A (en) * 1979-12-26 1981-07-25 Sasaki Glass Kk Electrode supporting structure
JPH0578727A (ja) * 1991-09-19 1993-03-30 Nippon Steel Corp 窯炉の操業方法ならびに耐火物の内張り方法
JP2003292323A (ja) * 2002-04-01 2003-10-15 Nippon Electric Glass Co Ltd ガラス溶融炉及びガラスの溶融方法
JP2007119299A (ja) * 2005-10-28 2007-05-17 Nippon Electric Glass Co Ltd ガラス溶融用電極
JP2012162422A (ja) * 2011-02-08 2012-08-30 Nippon Electric Glass Co Ltd ガラス物品の製造方法、及びガラス熔融炉

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053780A (ja) * 1983-09-05 1985-03-27 大同特殊鋼株式会社 直接通電式溶融処理炉の電極挿入制御装置
JP5263719B2 (ja) * 2003-10-10 2013-08-14 日本電気硝子株式会社 無アルカリガラスの製造方法
JP5580685B2 (ja) * 2009-08-18 2014-08-27 Hoya株式会社 ガラス製造方法、ガラス溶融炉、ガラス製造装置、ガラスブランク製造方法、情報記録媒体用基板製造方法、情報記録媒体製造方法、ディスプレイ用基板製造方法および光学部品製造方法
EP2530057B1 (en) * 2011-05-31 2019-04-10 Corning Incorporated Glass melt handling equipment and method
JP5902056B2 (ja) * 2012-06-29 2016-04-13 AvanStrate株式会社 ガラス基板の製造方法およびガラス基板の製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692127A (en) * 1979-12-26 1981-07-25 Sasaki Glass Kk Electrode supporting structure
JPH0578727A (ja) * 1991-09-19 1993-03-30 Nippon Steel Corp 窯炉の操業方法ならびに耐火物の内張り方法
JP2003292323A (ja) * 2002-04-01 2003-10-15 Nippon Electric Glass Co Ltd ガラス溶融炉及びガラスの溶融方法
JP2007119299A (ja) * 2005-10-28 2007-05-17 Nippon Electric Glass Co Ltd ガラス溶融用電極
JP2012162422A (ja) * 2011-02-08 2012-08-30 Nippon Electric Glass Co Ltd ガラス物品の製造方法、及びガラス熔融炉

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3197842B1 (fr) 2014-09-26 2018-11-21 Saint-Gobain Isover Laine minerale
JP2016124755A (ja) * 2014-12-29 2016-07-11 AvanStrate株式会社 ガラス基板の製造方法
WO2021050410A1 (en) * 2019-09-09 2021-03-18 Corning Incorporated Melting furnace electrode push assembly with torque limiter

Also Published As

Publication number Publication date
JPWO2014050825A1 (ja) 2016-08-22
JP2015157756A (ja) 2015-09-03
JP5890559B2 (ja) 2016-03-22
CN105985003B (zh) 2019-03-29
JP5735662B2 (ja) 2015-06-17
CN103930381B (zh) 2016-08-24
CN103930381A (zh) 2014-07-16
CN105985003A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5890559B2 (ja) ガラス基板の製造方法
TWI792998B (zh) 無鹼玻璃基板之製造方法及無鹼玻璃基板
TWI417256B (zh) Manufacture of glass plates
WO2012132474A1 (ja) ガラス基板の製造方法
CN107445450B (zh) 玻璃基板的制造方法及玻璃基板制造装置
WO2012132472A1 (ja) ガラス板の製造方法
KR101627484B1 (ko) 유리 기판의 제조 방법 및 유리 기판의 제조 장치
JP6722096B2 (ja) ガラス基板、及びガラス基板積層体
JP6665435B2 (ja) ガラス物品の製造方法
JP7197835B2 (ja) ガラス板の製造方法
JP5731437B2 (ja) ガラス板の製造方法
JP7421161B2 (ja) 無アルカリガラス基板の製造方法及び無アルカリガラス基板
JP7090844B2 (ja) ガラス物品の製造方法及びガラス基板群
KR20170003405A (ko) 유리 기판의 제조 방법
JP6577215B2 (ja) ガラス基板の製造方法
JP6498933B2 (ja) ディスプレイ用ガラス基板の製造方法および製造装置
JP2013216519A (ja) ガラス基板の製造方法、ガラス基板製造用の製造装置
JP5668066B2 (ja) ガラス基板の製造方法
TWI454435B (zh) Glass plate manufacturing method
KR101583114B1 (ko) 유리 기판의 제조 방법 및 제조 장치
WO2022255040A1 (ja) ガラス物品の製造方法
JP6333602B2 (ja) ガラス基板の製造方法
JP6043550B2 (ja) ガラス基板の製造方法、および、ガラス基板の製造装置
JP2017181446A (ja) ガラス基板の水分量測定方法、およびガラス基板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013553732

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841227

Country of ref document: EP

Kind code of ref document: A1