WO2014050462A1 - 自動変速機のクラッチ制御装置 - Google Patents

自動変速機のクラッチ制御装置 Download PDF

Info

Publication number
WO2014050462A1
WO2014050462A1 PCT/JP2013/073734 JP2013073734W WO2014050462A1 WO 2014050462 A1 WO2014050462 A1 WO 2014050462A1 JP 2013073734 W JP2013073734 W JP 2013073734W WO 2014050462 A1 WO2014050462 A1 WO 2014050462A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
pressure
piston
release
forward clutch
Prior art date
Application number
PCT/JP2013/073734
Other languages
English (en)
French (fr)
Inventor
裕介 中野
小林 克也
哲史 勝又
昌夫 三宅
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to CN201380049619.5A priority Critical patent/CN104736874A/zh
Priority to US14/431,110 priority patent/US20150276057A1/en
Priority to EP13841995.7A priority patent/EP2902650A1/en
Priority to JP2014538325A priority patent/JP5839753B2/ja
Priority to KR1020157007261A priority patent/KR20150047557A/ko
Publication of WO2014050462A1 publication Critical patent/WO2014050462A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D48/0206Control by fluid pressure in a system with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/3023Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by fluid pressure
    • F16H63/3026Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by fluid pressure comprising friction clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0212Details of pistons for master or slave cylinders especially adapted for fluid control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0221Valves for clutch control systems; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0278Two valves in series arrangement for controlling supply to actuation cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/3023Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by fluid pressure
    • F16H63/3026Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by fluid pressure comprising friction clutches or brakes
    • F16H2063/303Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by fluid pressure comprising friction clutches or brakes the friction member is actuated and released by applying pressure to different fluid chambers

Definitions

  • the present invention relates to a clutch control device for an automatic transmission which is mounted on an automobile or the like and can perform engagement and retention after engagement of a clutch without a clutch engagement pressure.
  • a multi-plate hydraulic clutch is well known, and for example, one described in Patent Document 1 is known.
  • the clutch includes a friction plate spline-fitted to the inner peripheral surface of the clutch drum, a friction plate spline-fitted to the outer peripheral surface of the clutch hub disposed inside the clutch drum, and a hydraulically operated clutch A piston and a return spring that pushes the clutch and the piston back to the clutch release position.
  • To engage the clutch supply clutch engagement pressure oil to move the clutch and piston in this axial direction against the elastic force of the return spring, and press the friction plates to push the clutch drum and clutch.
  • the clutch is engaged so that torque can be transmitted to and from the hub.
  • the clutch engaging pressure oil is discharged, the clutch and piston are pushed back by the return spring, and the above-mentioned torque is not transmitted by releasing the pressing force on the friction plate.
  • the above-described conventional clutch has the following problems. That is, in the conventional clutch device, it is necessary to continuously apply high clutch engagement hydraulic pressure to the clutch and piston in order to secure the necessary pressing force on the friction plate while overcoming the return force of the return spring while the clutch is engaged. In addition, it can not be avoided that the oil pump is loaded and the fuel efficiency is deteriorated. Further, in the clutch, during the engagement of the clutch, the seal ring provided at the portion for delivering oil between the members rotating relative to each other prevents oil leakage from the oil passage for clutch engagement. However, while the clutch is engaged, a high pressure clutch engagement pressure acts on the seal ring to rotate the seal ring while pressing the seal ring against one of the above-mentioned relative rotation side members. A loss will occur, and the fuel efficiency will deteriorate accordingly.
  • the present invention was made in view of the above problems, and an object of the present invention is to provide a clutch device capable of reducing energy loss generated during clutch engagement caused by the clutch engagement hydraulic pressure. It is to provide.
  • the clutch control device for an automatic transmission comprises a manual valve, a clutch, a clutch release valve, and a lock mechanism.
  • the manual valve outputs the clutch engagement pressure when selecting the travel position by the operation of the selector.
  • the clutch moves the clutch and the piston by supplying the clutch engagement pressure to bring the clutch into the engaged state.
  • the clutch release valve can output a clutch release hydraulic pressure by bypassing the manual valve.
  • the lock mechanism is capable of mechanically locking the position of the clutch and piston when the clutch is in the clutch engagement state by the supply of the clutch engagement pressure, with the clutch engagement pressure being reduced, while being output from the clutch release valve Release the lock with the clutch release pressure.
  • the clutch control device for an automatic transmission it is not necessary to hold the clutch engagement hydraulic pressure while clutch engagement is continued, and at this time, friction is applied to the seal ring disposed between members rotating relative to each other by the clutch engagement pressure.
  • the energy loss due to the clutch engagement hydraulic pressure can be reduced while the clutch is engaged, by preventing the high pressure clutch hydraulic pressure that causes the loss from acting.
  • the lock mechanism can be unlocked regardless of the selection position of the manual valve. Therefore, it becomes possible to make transmission torque substantially zero at the time of a select position change, or to prevent interlock.
  • FIG. 1 is a cross-sectional view of a belt type continuously variable transmission including a clutch device controlled by a clutch control device of an automatic transmission according to an embodiment of the present invention, around a forward / reverse switching device. It is an expanded sectional view of the lock mechanism used with the clutch apparatus of FIG. It is a schematic diagram showing the force relation when a forward clutch piston presses a sub piston in the said clutch apparatus. It is a schematic diagram showing the force relation when a sub piston presses a forward clutch piston in the above-mentioned clutch device. It is a figure which shows the half clutch state which the said clutch apparatus is slipping. It is a figure which shows the state which the said clutch apparatus has fastened.
  • FIG. 2 is a hydraulic circuit diagram of a clutch control device of an automatic transmission according to an embodiment for executing control for supplying and discharging oil to a clutch device and the lock mechanism or the like.
  • the clutch device is used to switch the forward and reverse switching device of the belt-type continuously variable transmission for a vehicle.
  • FIG. 1 depicts only the upper half of the input shaft 24.
  • the forward / reverse switching device 1 is configured by a single pinion type planetary gear set.
  • This planetary gear set includes a pinion carrier rotatably supporting a plurality of pinions 4 always meshing with the sun gear 2, the ring gear 3 disposed on the outer periphery, and the sun gear 2 and the ring gear 3. 5 and.
  • the sun gear 2 functions as an output member of the forward / backward switching device 1 by spline-engaging the inner peripheral end of the cylindrical portion projecting in the axial direction of the stationary sheave 6 of the primary pulley.
  • the side surface of the gear 2 opposite to the sheave 6 is connected to the inner peripheral portion of the forward clutch hub 15 and can function as an input member for driving force.
  • the ring gear 3 is engaged with a spline formed on the inner peripheral surface of the outer cylindrical portion 7 a of the forward clutch drum 7 and functions as an input member of the forward / reverse switching device 1.
  • the pinion carrier 5 can function as a fixing member of the forward / reverse switching device 1 with the brake drum 8 connected to the outer peripheral portion.
  • both The plurality of friction plates 10a and 10b are separately disposed and engaged with each other, and the brake piston 12 advances and retracts according to the supply and discharge of the brake pressure oil to the brake oil chamber 11.
  • a reverse brake 13 for fastening and releasing the brake drum 8 and the case side member 9A.
  • a return spring 14 is disposed between the tip of the brake piston 12 and the friction plate 10. Therefore, when the reverse brake 13 is engaged, the pinion carrier 5 is fixed to the case side and becomes stationary.
  • a forward clutch 16 is provided between the forward clutch drum 7 connected to the ring gear 3 and the forward clutch hub 15 connected to the sun gear 2.
  • the detailed structure of the forward clutch 16 will be described later.
  • the forward clutch 16 When driving force is input to the forward clutch drum 7 from an engine or the like (not shown) via the input shaft 24 as described later, the forward clutch 16 is engaged with the reverse brake 13 released. When it is in the forward / reverse switching device 1, the respective rotating elements of this planetary gear set rotate together. As a result, since the sun gear 2 is directly connected (gear ratio 1) and rotationally driven, the sheave 6 connected to the sun gear 2 also rotates at the same rotational speed and torque as the drive input. At this time, the vehicle is driven forward at a transmission gear ratio corresponding to the pulley ratio.
  • the forward clutch 16 includes a plurality of drive plates 17 that can be moved in the axial direction by being fitted with splines on the inner peripheral surface side of the forward clutch drum 7 and the forward clutch hub 15.
  • a plurality of driven plates 18 fitted in splines on the outer peripheral surface and movable in the axial direction are alternately arranged in the axial direction, and their friction surfaces are superimposed in a pressable manner.
  • a diaphragm spring 20 is provided between the drive plate 17 (on the left end side in FIG. 1) closest to the forward / reverse switching device 1 among the drive plates 17 and the snap ring 19 fixed to the forward clutch drum 7, A diaphragm spring 20 is provided.
  • the diaphragm spring 20 here is set to be fully compressed when the clutch is engaged.
  • the diaphragm spring 20 corresponds to the elastic member of the present invention.
  • the snap ring 19 is configured to be able to receive an axial load by abutting on the side end face of the ring gear 3.
  • the forward clutch piston 21 is inserted into the cylindrical space between the outer cylindrical portion 7a and the inner cylindrical portion 7b of the forward clutch drum 7 and is movable in the axial direction.
  • the outer cylindrical portion 21a of the forward clutch piston 21 can be bent radially outward to abut the drive plate 17 at the right end in FIG.
  • the tip end portion of the inner cylindrical portion 21 b is supported on the outer peripheral surface of the inner cylindrical portion 7 b of the forward clutch drum 7.
  • a seal member 28 is provided between the inner cylindrical portion 21 b and the inner cylindrical portion 7 b.
  • the right portion in FIG. 1 of the inner cylindrical portion 7b of the forward clutch drum 7 is a portion of the cylindrical portion 23a of the forward support drum 23 rotatably supported by the inner boss portion 9a of the case side member 9B. It is connected to the outer peripheral end of the outer flange portion 23b which rises radially outward from the inner right end portion.
  • the case side member 9B corresponds to the stationary portion of the present invention.
  • a boss portion 23d formed on the inner end portion of the radially inward bent inner flange portion 23c is spline-fitted to the input shaft 24.
  • the cylindrical portion 23a of the forward support drum 23 is rotatably supported on the outer peripheral surface of the cylindrical boss 9a of the case side member 9B.
  • Three seal members 25a, 25b and 25c are disposed between the cylindrical portion 23a and the boss 9a.
  • a partition plate 26 is mounted on the outer peripheral surface of the left end side portion of the cylindrical portion 23a of the forward support drum 23 in FIG.
  • the partition plate 26 is restricted in movement to the left in the axial direction in FIG. 1 by the snap ring 27 at the inner peripheral end portion, and the seal member 44 attached to the outer peripheral end portion is a forward clutch piston
  • the inner circumferential surface of the outer cylindrical portion 21a of 21 is brought into contact.
  • An annular return spring 29 is provided between the partition plate 26 and the forward clutch piston 21. With this elastic force, the forward clutch piston 21 is released to the release position (position shown in FIG. 1), that is, forward.
  • the side wall 7c of the clutch drum 7 is urged and pressed so that the forward clutch piston 21 does not press the drive plate 17 and the driven plate 18 when the clutch is released.
  • a clutch engagement pressure chamber 30 is defined between the side wall 7c of the forward clutch drum 7 and the forward clutch piston 21, the space between the partition plate 26 and the forward clutch piston 21 is defined.
  • the clutch release pressure chamber 31 is defined.
  • a lock mechanism configured to include a part of the forward clutch piston 21 between the inner cylindrical portion 21b and the cylindrical portion 23a of the forward support drum 23. 32 are provided.
  • the lock mechanism 32 mechanically holds the engagement position of the forward clutch piston 21 and maintains the forward clutch clutch 16 in the engaged state, even if the clutch engagement pressure is reduced or not.
  • the lock mechanism 32 includes the sub-piston 33, the ball 34, the pressure spring 35, and the seal members 22, 28, 39, including the inner cylindrical portion 21b of the forward clutch piston 21 and the cylindrical portion 23a of the forward support drum 23. And is configured as described below.
  • the inner cylindrical portion 21b of the forward clutch piston 21 is directed to the side wall 7c of the forward clutch drum 7. Therefore, the first tapered surface 21c is formed to expand in diameter.
  • the inner cylindrical portion 7b of the forward clutch drum 7 supporting the inner cylindrical portion 21b of the forward clutch piston 21 is provided with a plurality of ball holding holes 36 arranged in the circumferential direction and capable of inserting the balls 34 respectively. From these, a clutch engagement pressure hole 7d for passing the clutch engagement pressure oil is formed at a position on the right side in FIG. 2 and an annular seal groove 7e for inserting the seal member 28 on the tip end opposite to these.
  • the ball holding hole 36 corresponds to the through hole of the present invention.
  • the ball 34 is always in the ball holding hole 36, and moves radially in the ball holding hole 36 according to the positions of the forward clutch piston 21 and the sub piston 33. However, regardless of the position of the sub piston 33, the ball 34 always protrudes radially inward and outward from the ball holding hole 36, and the first tapered surface 21c of the forward clutch piston 21 and the below described It is configured to be in contact with the second tapered surface 33 d of the sub piston 33.
  • the number of ball holding holes 36 into which the balls 34 are inserted may be determined by the maximum transfer torque transmittable by the forward clutch 16.
  • the sub-piston 33 is an annular member and is provided movably in the axial direction of the clutch between the inner cylindrical portion 7b of the forward clutch drum 7 and the cylindrical portion 23a of the forward support drum 23.
  • the sub-piston 33 contacts the radially inner portion of the ball 34 on the outer peripheral surface side, and forms a ball advancing / retreating inclined portion 33 b capable of moving the ball 34 along the radial direction according to the position of the sub-piston 33 It is done.
  • the ball advancing / retreating inclined portion 33 b is formed by recessing a part of the outer periphery of the sub piston 33.
  • the bottom of the ball advancing / retreating inclined portion 33b has a second tapered surface 33d whose depth becomes shallow toward the right in FIG.
  • An angle ⁇ ⁇ formed by the second tapered surface 33 d and the central axis of the sub piston 33 is set to be larger than an angle ⁇ formed by the first tapered surface 21 c of the inner cylindrical portion 21 b of the forward clutch piston 21.
  • 25 °.
  • the seal member 22 inserted in the annular seal groove 33c in the portion on the left side in FIG. 2 from the ball advancing / retreating inclined portion 33b on the outer peripheral surface of the sub piston 33 is on the inner peripheral surface of the inner cylindrical portion 7b of the forward clutch drum 7.
  • the clutch engagement pressure chamber 30 and the clutch release pressure chamber 31 are prevented from communicating with each other.
  • a plurality of communication grooves 33e are formed on the left end of the sub piston 33 in FIG. 2 so as to secure a communication passage even when the sub piston 33 is in contact with the partition plate 26, and the clutch release pressure
  • the clutch release pressure oil can be supplied into the chamber 31.
  • a pressing spring 35 is disposed between the right end side surface of the sub piston 33 in FIG. 2 and the outer flange 23 b of the forward support drum 23 to bias the sub piston 33 to the left in FIG. 2.
  • the second tapered surface 33d of the ball advancing / retreating inclined portion 33b serves the ball 34 of the inner cylindrical portion 7b of the forward clutch drum 7.
  • the side wall forming the ball holding hole 36 and the first tapered surface 21 c of the inner cylindrical portion 21 b of the forward clutch piston 21 are pressed.
  • the return force of the return spring 29 is strong and the forward clutch piston 21 does not move, so the ball 34 also does not move.
  • the sub-piston 33 is restricted by the position of the forward clutch piston 21 and its movement in the axial direction is restricted via the ball 33 so as not to move excessively to the left in FIG.
  • a communication hole 37 is formed, and a clutch release pressure communication hole 38 capable of supplying and discharging the clutch release pressure oil to the clutch release pressure oil chamber 31 is formed.
  • the clutch engagement pressure communication hole 37 and the clutch release pressure communication hole 38 are configured not to communicate with each other by the seal member 39 provided between the cylindrical portion 23 a of the forward support drum 23 and the sub piston 33.
  • the clutch fastening pressure communicating hole 37 formed in the cylindrical portion 23a of the forward support drum 23 and the clutch releasing pressure communicating hole 38 can be communicated respectively.
  • a passage 40 and a clutch release pressure communication passage 41 are formed.
  • the clutch engagement pressure communication passage 40 and the clutch release pressure communication passage 41 are connected to the control and valve device 42.
  • the clutch engagement pressure and the clutch release pressure are set to optimum values, and the timing of their supply and discharge are determined. Therefore, after the lock mechanism 32 is locked by the engagement of the forward clutch 16, the function of removing the clutch engagement pressure oil of the clutch engagement pressure chamber 30 is also performed here.
  • the forward clutch piston 21 biased by the elastic force (return force) F from the fully compressed diaphragm spring 20 in the clutch engaged state is connected to the sub piston 33 via the ball 34.
  • the case of pressing in the axial direction is schematically shown.
  • the return spring 29 is provided, the load of the return spring 29 may be added to the elastic force of the diaphragm spring 20.
  • FIG. 3B shows the relationship of component forces when the first tapered surface 21 c of the forward clutch piston 21 at that time presses the ball 34. Since the angle of the first tapered surface 21c is ⁇ , the component force in the direction along the first tapered surface 21c of the return force F is Fcos ⁇ , and the component force in the direction perpendicular to the first tapered surface 21c is Fsin ⁇ .
  • FIG. 3C shows the relationship of component forces acting on the ball 34.
  • a component force of F sin ⁇ acts on the ball 34 perpendicularly from the first tapered surface 21 c. Therefore, if this is divided into an axial component force of the clutch and a radial component force, F sin 2 ⁇ is obtained respectively. , F sin ⁇ cos ⁇ .
  • FIG. 3D shows the relationship of component forces that press the second tapered surface 33 d of the sub piston 33.
  • the force acting on the second tapered surface 33d radially inward from the ball 34 is Fsin ⁇ cos ⁇ , so the component force in the direction along the second tapered surface 33d and the component force in the direction perpendicular to the second tapered surface 33d are the second By using the angle ⁇ of the tapered surface 33d, F sin ⁇ cos ⁇ sin ⁇ and F sin ⁇ cos ⁇ cos ⁇ , respectively.
  • FIG. 3E shows the relationship between the radial and axial component forces of the clutch acting on the second tapered surface 33 d of the sub piston 33.
  • the force acting in the vertical direction from the ball 34 to the second tapered surface 33 d of the sub-piston 33 is Fsin ⁇ cos ⁇ cos ⁇ , so the radial component of this force and the axial component are F sin ⁇ cos ⁇ cos 2 ⁇ and F sin ⁇ sin ⁇ cos ⁇ ⁇ ⁇ ⁇ respectively. .
  • the force by which the forward clutch piston 21 pushes the sub-piston 33 in the axial direction via the ball 34 by the return force F of the diaphragm spring 20 becomes the above-mentioned axial component force F sin ⁇ sin ⁇ cos ⁇ . Therefore, in the case of the present embodiment in which ⁇ is set to 10 ° and ⁇ to 25 °, it can be seen that the sub-piston 33 can be held with a force of about 15% of the return force F of the diaphragm spring 20.
  • FIG. 4A schematically shows the relationship of the forces when the sub piston 33 presses the forward clutch piston 21 in the axial direction by the biasing force P of the pressing spring 35, contrary to the above case. Represent.
  • FIG. 4B shows the relationship of component forces at the second tapered surface 33 d when the second tapered surface 33 d of the sub-piston 33 pushes the ball 34 with the biasing force P in the axial direction.
  • the component force in the direction along the second tapered surface 33 d and the component force in the direction perpendicular to the second tapered surface 33 d are P cos ⁇ and P sin ⁇ ⁇ ⁇ ⁇ , respectively.
  • FIG. 4C shows the relationship of component forces acting on the ball 34 from the second tapered surface 33 d.
  • the axial component force and radial component force of the clutch become P sin 2 ⁇ and P sin ⁇ cos ⁇ ⁇ ⁇ ⁇ , respectively.
  • FIG. 4D shows the relationship of component forces of the force P sin ⁇ cos ⁇ in which the ball 34 pushes the first tapered surface 21 c of the forward clutch piston 21 in the vertical direction.
  • the component force in the direction along the first tapered surface 21c and the component force in the direction perpendicular to the first tapered surface 21c are Psin ⁇ sin ⁇ cos ⁇ and Pcos ⁇ sin ⁇ cos ⁇ , respectively.
  • FIG. 4 (e) shows the relationship of component forces acting on the ball 34 to act perpendicularly to the first tapered surface 21c of the forward clutch piston 21.
  • the component forces in the radial direction and in the axial direction in this case are P cos 2 ⁇ sin ⁇ cos ⁇ and P sin ⁇ cos ⁇ sin ⁇ cos ⁇ respectively. Therefore, the force by which the pressing spring 35 pushes the forward clutch piston 21 in the axial direction is P sin ⁇ cos ⁇ sin ⁇ cos ⁇ .
  • is set to 10 ° and ⁇ to 25 °
  • the forward clutch piston 21 is axially pressed at about 6.55% of the pressing force P. Therefore, the pressing force corresponds to about 1% of the biasing force of the diaphragm spring 20 and about 7% of the load of the return spring 29.
  • FIG. 1 shows a neutral state without power transmission.
  • neither the clutch engagement pressure nor the clutch release pressure is supplied to the clutch engagement pressure chamber 30 and the clutch release pressure chamber 31. Therefore, since the diaphragm spring 20 is in the free state and the drive plate 17 and the driven plate 18 are not pressed, the torque that can be transmitted therebetween is substantially zero.
  • the forward clutch piston 21 is reliably returned to the clutch release position where it is pressed against the inner side wall 7 c of the forward clutch drum 7 by the return spring 29 and maintains its position.
  • the forward clutch piston 21 is at the clutch release position, that is, in the rightmost position in FIGS. 1 and 2, so the leftmost portion in FIG. 1 of the first tapered surface 21c.
  • the ball 34 is radially innermost, and the radially inner portion of the ball 34 protrudes radially inward from the ball holding hole 36 of the forward clutch drum 7 to hold the ball of the sub piston 33 It is in contact with the second tapered surface 33 d of the portion 33 b.
  • the ball 34 of the lock mechanism 32 always receives a pressing force from the pressing spring 35 toward the left side in FIG. 1 through the second tapered surface 33 d of the sub piston 33, but this time the back surface of the sub piston 33 (figure Since the sub-piston 33 is also pressed to the left in FIG. 1 from the clutch engagement pressure acting on the surface on the right end side in 1), it is attempted to push the ball 34 radially outward with a stronger force than when releasing the clutch. Do.
  • the radially outward movement of the ball 34 causes the sub-piston 33 pressed by the pressure spring 35 to always contact the ball 34 with the second tapered surface 33d, and also starts moving toward the left in FIG.
  • This state is a clutch completely engaged state capable of transmitting the entire torque input without the occurrence of the slip.
  • the forward clutch piston 21 can no longer move forward, so that the position at which the sub piston 33 and the ball 34 move forward is determined, and this position becomes the lock position.
  • the control device 42 removes the clutch engagement pressure oil from the clutch engagement chamber 30.
  • the oil pressure for pressing the forward clutch piston 21 in the clutch fastening direction disappears, but since the lock mechanism 32 maintains the mechanically locked state at the above lock position, the forward clutch piston 21 also has its position maintain. Therefore, the forward clutch 16 is kept in the engaged state, and the forward clutch drum 7 and the forward clutch hub 15 rotate together while transmitting the total torque input.
  • the diaphragm spring 20 In this completely tightened state, the diaphragm spring 20 is in a completely compressed state, and the elastic force generated at that time is the total torque input between the drive plate 17 and the driven plate 18. It should just be the size necessary to convey. Further, since the lock position of the lock mechanism 32 is automatically determined in the state where the diaphragm spring 20 is fully compressed when the above-mentioned complete fastening state is made, the live plate 17 with the variation of the diaphragm spring 20 Regardless of the wear of the driven plate 18, an optimum locking position is always ensured.
  • clutch release pressure oil is supplied from the control device 42 to the clutch release pressure chamber 31 through the clutch release pressure communication passage 41, the clutch release pressure communication hole 38 and the like.
  • the clutch release pressure chamber 31 is filled with the clutch release pressure oil and the release pressure increases, the pressure that directly pushes the forward clutch piston 21 to the right in FIG. 1 also increases, and the left end of the sub piston 33 in FIG. The part is also pushed to the right in FIG. 1 by the release pressure.
  • the sub-piston 33 is pushed to the right in FIG. 1 to move by the release pressure, and the forward clutch piston 21 is also moved by the release hydraulic pressure and the elastic force of the diaphragm spring 20 and the return spring 29 in FIG. Move to the right Therefore, the ball 34 is pushed radially inward by the first tapered surface 21 c as the forward clutch piston 21 retreats while in contact with the second tapered surface 33 d of the sub-piston 33 to be retracted, and the locking mechanism 32 Is unlocked.
  • the clutch control device includes the control device 42 described above.
  • the control device 42 includes a microcomputer, control valves and the like, and a portion of the hydraulic circuit is shown in FIG.
  • the pressure regulator valve 50 reduces the oil supplied from a pump (not shown) to a predetermined pressure and outputs the line pressure to the first pilot valve 51.
  • the first pilot valve 51 reduces the line pressure supplied from the pressure regulator valve 50 to create a first pilot pressure, and the first pilot pressure is converted to a three-way linear solenoid valve 52 and a second pilot valve. It supplies to valve 53, respectively.
  • the second pilot valve 53 reduces the first pilot pressure supplied from the first pilot valve 51 to create a second pilot pressure, and the second pilot pressure is switched on and off by the solenoid valve 54 and the third pilot pressure.
  • the pilot valves 55 are respectively supplied.
  • the third pilot valve 54 reduces the second pilot pressure supplied from the second pilot valve 53 to create a third pilot pressure, and supplies the third pilot pressure to the two-way linear solenoid valve 56 .
  • the pressure is sequentially reduced by each pilot valve, the magnitude of the pressure obtained by these valves is in the order of line pressure> first pilot pressure> second pilot pressure> third pilot pressure.
  • the three-way linear solenoid valve 52 can reduce the pressure of the first pilot supplied from the first pilot valve 51 according to the driving situation of the vehicle, and the forward clutch 16 or the like corresponding to the driving situation The pressure is adjusted to an engagement / release pressure which is an optimum size for engaging the reverse brake 13 and supplied to the manual valve 57.
  • the three-way linear solenoid valve 52 is controlled by a microcomputer.
  • the manual valve 57 changes its position by the operation of the select lever 58 by the driver, and switches the oil flow according to this position.
  • the manual valve 57 has a P position for vehicle park, an R position for reverse drive, an N position for creating a neutral state that is not transmitting power, a D position for forward drive, an engine brake with forward drive.
  • the driver can switch to the L position where it is possible to apply the The detailed configuration of the manual valve 57 will be described later.
  • the on-off switching solenoid valve 54 is configured such that when the forward clutch 16 needs to be released, the clutch release hydraulic pressure (shown as OFF pressure in FIG. The pressure is supplied to the sub pistons 33 and, conversely, the clutch release hydraulic pressure is removed from these.
  • the on / off switching solenoid valve 54 corresponds to the clutch release valve of the present invention.
  • the two-way linear solenoid valve 56 variably adjusts the magnitude of the third pilot pressure supplied from the third pilot valve 54 in accordance with the operating conditions to lock up the adjusted third pilot pressure. ⁇ Output to the control valve 59.
  • the lock-up control valve 59 distributes the third pilot pressure adjusted by the two-way linear solenoid valve 56 to the apply chamber and release chamber of the torque converter lock-up mechanism (not shown) according to the operating conditions and locks it. Do up and lock up. In this case, depending on the magnitude of the adjusted third pilot pressure, it is possible to set the slip lock-up state.
  • the clutch engagement pressure is prevented from being supplied to the forward clutch 16 and the reverse clutch 13, and the oil from the clutch engagement pressure chamber 30 and the brake pressure chamber 11 is the manual valve 57. It has been pulled through. Therefore, the forward clutch 16 and the reverse clutch 13 are in a neutral state in which power transmission is not possible.
  • the on / off switching solenoid valve 54 also blocks the supply of the second pilot pressure to the clutch release pressure chamber 31 of the forward clutch 16 and the sub piston 33 of the lock mechanism 32.
  • the lock mechanism 32 is forcibly unlocked as well as the release of the forward clutch 16 .
  • the three-way linear solenoid valve 52 is controlled to generate a pressure sufficient for unlocking.
  • the manual valve 57 is switched to supply the brake engagement pressure to the brake pressure chamber 11 of the reverse brake 13 and the pinion carrier 8 is closed. It fixes to side member 9A.
  • the three-way linear solenoid valve 52 adjusts the brake engagement pressure to a pressure that does not cause the reverse brake 13 to slip.
  • the clutch release hydraulic pressure is supplied from the manual valve 57 to the clutch release pressure chamber 31 and the sub piston 33 as in the P and N positions, the lock of the lock mechanism 32 is forcibly released. , And the forward clutch 16 is also released.
  • the oil in the clutch engagement pressure chamber 30 of the forward clutch 16 is removed via the manual valve 57, and the on / off switching solenoid valve 54 detects the release of the forward clutch 16 or the release of the lock mechanism 32.
  • the release pressure is set to be released from the clutch release pressure chamber 31 after a predetermined time (time for which the release of the forward clutch 16 or the release of the lock mechanism 32 can be achieved) elapses from the start of release pressure supply.
  • the three-way linear solenoid valve 52 releases the clutch engagement pressure from the clutch engagement pressure chamber 30.
  • the manual valve 57 blocks the output of the clutch release pressure, so that the clutch release pressure is not supplied to the clutch release pressure chamber 31.
  • the reverse brake 13 is in the free released state.
  • the forward clutch 16 is interlocked with the forward clutch piston 21 and locked at the clutch engagement position, and the forward clutch 16 is continued during the clutch engagement continued after the lock. Since the lock mechanism 32 for discharging the clutch engagement pressure oil from the clutch engagement pressure chamber 30 is provided, a seal disposed between members that rotate relative to each other due to the clutch engagement pressure is unnecessary. Since the high pressure clutch hydraulic pressure causing the friction loss does not act on the members 25a to 25c and the like, energy loss can be reduced and fuel consumption can be improved. In particular, since the clutch device is the forward clutch 16 and is kept engaged for a long time during traveling, the above effect is large.
  • the lock release valve 54 capable of outputting the clutch release pressure by bypassing the manual valve 57
  • the lock mechanism 32 can be forcibly unlocked independently of the position of the manual valve 57. it can.
  • the valve release pressure (second pilot pressure) is supplied to the clutch release pressure chamber 31 of the forward clutch 16 and the sub piston 33 of the lock mechanism 32 at the valve 54 to forcibly release the forward clutch 16.
  • the clutch release pressure (second pilot pressure) is controlled by the on / off switching solenoid valve 54 to the clutch release pressure chamber 31 of the forward clutch 16 and the sub piston 33 of the lock mechanism 32.
  • the present invention has been described above based on the above embodiments, the present invention is not limited to the above embodiments, and is included in the present invention even if there is a design change or the like without departing from the scope of the present invention.
  • the selector of the present invention is not limited to the select lever of the embodiment, and may be of a type that selectively presses the select button.
  • the locking mechanism 32 may be different from that of the embodiment.
  • the configuration described in Japanese Patent Application No. 2012-123864 filed by the present applicant may be used.
  • the clutch device of the present invention is not limited to the continuously variable transmission, and may be used for other devices, and may be applied to other clutch devices other than the forward clutch.
  • Forward-reverse switching device 7 Forward clutch drum (first member; second member) 9B Case side member (stationary part) 15 Forward clutch hub (second member; first member) 16 forward clutch 17 drive plate (first friction plate; second friction plate) 18 driven plate (second friction plate; first friction plate) 20 diaphragm spring (elastic member) 21 Forward clutch piston (clutch piston) 26 partition plate 30 clutch engagement pressure chamber (clutch engagement pressure portion) 31 clutch release pressure chamber 32 lock mechanism 33 sub piston 34 ball 35 pressure spring 36 ball holding hole (through hole) 42 Control device 54 ON / OFF switching solenoid valve (clutch release valve) 57 Manual Valve

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

 クラッチ締結圧に起因したエネルギ・ロスを低減可能なクラッチ装置を提供する。 自動変速機のクラッチ制御装置は、走行ポジション選択時にクラッチ締結圧を出力するマニュアル・バルブ57と、クラッチ締結圧の供給によりクラッチ・ピストン21を移動させてクラッチ締結状態にすることが可能なクラッチ16と、クラッチ解放油圧を、マニュアル・バルブ57をバイパスして出力可能なクラッチ解放バルブ54と、クラッチがクラッチ締結圧の供給によりクラッチ締結状態になったときのクラッチ・ピストン21の位置を、クラッチ締結圧を低減した状態で機械的にロック可能とする一方、クラッチ解放バルブ54のクラッチ解放圧でロックを解除するロック機構32と、を備える。

Description

自動変速機のクラッチ制御装置
 本発明は、自動車等に搭載され、クラッチの締結後の締結保持をクラッチ締結圧なしで行うことができるようにした自動変速機のクラッチ制御装置に関する。
 多板式油圧クラッチは、周知であり、たとえば特許文献1に記載のものが知られている。
 このクラッチは、クラッチ・ドラムの内周面にスプライン嵌合された摩擦プレートとクラッチ・ドラムの内側に配置されたクラッチ・ハブの外周面にスプライン嵌合した摩擦プレートと、油圧で作動するクラッチ・ピストンと、クラッチ・ピストンをクラッチ解放位置に押し戻すリターン・スプリングと、を備えている。
 クラッチを締結するには、クラッチ締結圧油を供給してクラッチ・ピストンをこの軸方向へリターン・スプリングの弾性力に対抗しながら移動させ、上記摩擦プレート同士を押圧することでクラッチ・ドラムとクラッチ・ハブとの間でトルクを伝達可能なクラッチ締結状態とする。クラッチを解放するには、クラッチ締結圧油を排出してクラッチ・ピストンをリターン・スプリングで押し戻し、摩擦プレートへの押圧力をなくすことで上記トルクを伝えないクラッチ解放状態にする。
特開平7-12221号公報
 しかしながら、上記従来のクラッチにあっては、以下の問題がある。
 すなわち、従来のクラッチ装置では、クラッチ締結中は、リターン・スプリングのリターン力に打ち勝ちながら摩擦プレートに必要な押圧力を確保するため、クラッチ・ピストンに絶えず高圧のクラッチ締結油圧を付与し続けなければならず、その分、オイル・ポンプに負荷がかかり燃費が悪化するのを避けることができない。
 また、クラッチにあっては、このクラッチの締結中には、相対回転する部材間の油の受け渡しを行う部位に設けられたシール・リングによりクラッチ締結用油の通路からの油漏れを防ぐようにしているが、クラッチ締結中は、シール・リングに高圧のクラッチ締結圧が作用してシール・リングを上記相対回転側部材の一方に押し付けながら回転するので、これらの間にシール・リングによるフリクション・ロスが発生し、その分、燃費が悪化してしまう。
 本発明は、上記問題に着目してなされたもので、その目的とするところは、クラッチ締結油圧に起因した、クラッチ締結中に発生するエネルギ・ロスを低減することができるようにしたクラッチ装置を提供することにある。
 この目的のため、本発明による自動変速機のクラッチ制御装置は、マニュアル・バルブと、クラッチと、クラッチ解放バルブと、ロック機構と、を備える。
 マニュアル・バルブは、セレクタの操作による走行ポジション選択時にクラッチ締結圧を出力する。クラッチは、クラッチ締結圧の供給によりクラッチ・ピストンを移動させてクラッチ締結状態にする。
 クラッチ解放バルブは、マニュアル・バルブをバイパスしてクラッチ解放油圧を出力可能である。
 ロック機構は、クラッチがクラッチ締結圧の供給によりクラッチ締結状態になったときのクラッチ・ピストンの位置を、クラッチ締結圧を低減した状態で機械的にロック可能とする一方、クラッチ解放バルブから出力されたクラッチ解放圧でロックを解除する。
 本発明による自動変速機のクラッチ制御装置にあっては、クラッチ締結継続中におけるクラッチ締結油圧の保持を不要とし、またこのときクラッチ締結圧で相対回転する部材間に配置されたシール・リングにフリクション・ロスの原因となる高圧のクラッチ油圧が作用しないようにして、クラッチ締結中にクラッチ締結油圧に起因したエネルギ・ロスを低減することができる。
 この場合、マニュアル・バルブのセレクト位置に関係なくロック機構のロックを解除できる。したがって、セレクト・ポジション変更時に伝達トルクを実質ゼロにしたり、インターロックを防止したりすることが可能となる。
本発明の実施形態の自動変速機のクラッチ制御装置で制御するクラッチ装置を備えたベルト式無段変速機の前後進切り替え装置周りの断面図である。 図1のクラッチ装置で用いるロック機構の拡大断面図である。 上記クラッチ装置においてフォワード・クラッチ・ピストンがサブピストンを押圧するときの力関係を表した模式図である。 上記クラッチ装置においてサブピストンがフォワード・クラッチ・ピストンを押圧するときの力関係を表した模式図である。 上記クラッチ装置がスリップしている半クラッチ状態を示す図である。 上記クラッチ装置が締結している状態を示す図である。 クラッチ装置およびこのロック機構等への油の供給・排出を行う制御を実行するための、実施形態の自動変速機のクラッチ制御装置の油圧回路図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
実施形態
 まず、実施形態の自動変速機のクラッチ制御装置で用いるクラッチ装置の全体構成を説明する。このクラッチ装置は、車両用ベルト式無段変速機の前後進切り替え装置を切り替えるのに用いられる。
 まず、前後進切り替え装置について説明する。
 図1は、入力軸24の上半部のみを描いてある。同図示すように、前後進切り替え装置1は、シングル・ピニオン式遊星歯車組で構成される。
 この遊星歯車組は、サン・ギヤ2と、この外周に配置したリング・ギヤ3と、サン・ギヤ2とリング・ギヤ3とにそれぞれ常時噛み合う複数のピニオン4を回転自在に支持するピニオン・キャリヤ5と、を備えている。
 サン・ギヤ2は、この内周側端部がプライマリ・プーリーの固定側シーブ6の軸方向に突出した円筒部分にスプライン係合されて前後進切り替え装置1の出力部材として機能するとともに、サン・ギヤ2のシーブ6とは反対側の側面がフォワード・クラッチ・ハブ15の内周側部分に連結されて駆動力の入力部材として機能可能である。
 リング・ギヤ3はフォワード・クラッチ・ドラム7の外側円筒部分7aの内周面に形成されたスプラインに噛み合わされて前後進切り替え装置1の入力部材として機能する。ピニオン・キャリヤ5は、この外周部分にブレーキ・ドラム8が連結されて前後進切り替え装置1の固定部材として機能可能である。
 すなわち、ピニオン・キャリヤ5に連結されたブレーキ・ドラム8の外側円筒部分8aの外周面側と変速機ケースに固定された円筒状のケース側部材9Aの内周面との間には、それら両者の一方、他方にそれぞれ分けられて係合された複数の摩擦プレート10a.10bが配置されて、ブレーキ油室11へのブレーキ圧油の供給・排出に応じてブレーキ・ピストン12が進退することで、ブレーキ・ドラム8とケース側部材9Aとを締結・解放するリバース・ブレーキ13が設けられる。なお、ブレーキ・ピストン12の先端部分と摩擦プレート10との間には、リターン・スプリング14が配設される。
 したがって、リバース・ブレーキ13が締結すると、ピニオン・キャリヤ5はケース側に固定されて静止する。
 一方、リング・ギヤ3に連結されたフォワード・クラッチ・ドラム7とサン・ギヤ2に連結されたフォワード・クラッチ・ハブ15との間には、フォワード・クラッチ16が設けられる。このフォワード・クラッチ16の詳細な構造については、後で説明する。
 フォワード・クラッチ・ドラム7に後述するように図外のエンジン等から駆動力が入力軸24等を介して入力されると、リバース・ブレーキ13が解放された状態でフォワード・クラッチ16が締結されているときは、前後進切り替え装置1は、この遊星歯車組の各回転要素が一体となって回転する。この結果、サン・ギヤ2は、直結(変速比1)となって回転駆動するので、このサン・ギヤ2に連結されたシーブ6も駆動入力と同じ回転速度、同じトルクで回転する。このとき、車両は、プーリ比に応じた変速比で前進駆動される。
 一方、フォワード・クラッチ・ドラム7に駆動力が入力されている場合、上記とは逆に、フォワード・クラッチ16が解放された状態でリバース・ブレーキ13が締結されているときは、サン・ギヤ2は逆方向に減速回転する。このとき、車両は、プーリ比に応じた変速比で後進駆動される。
 なお、フォワード・クラッチ16およびリバース・ブレーキ13の両方が解放されているときは、前後進切り替え装置1は中立状態となり、フォワード・クラッチ・ドラム7に駆動力が入力されていても、プーリのシーブ6には駆動力が伝わらない。
 次に、フォワード・クラッチ16の詳細構造について以下に説明する。
 フォワード・クラッチ16は、上述したように、フォワード・クラッチ・ドラム7の内周面側のスプラインに嵌合されて軸方向へ移動可能な複数のドライブ・プレート17と、フォワード・クラッチ・ハブ15の外周面のスプラインに嵌合されて軸方向へ移動可能な複数のドリブン・プレート18とが、軸方向に互い違いに配設されて、それらの摩擦面同士が押圧可能に重ね合わされている。
 上記ドライブ・プレート17のうち最も前後進切り替え装置1に近い(図1中の最左端側の)ドライブ・プレート17とフォワード・クラッチ・ドラム7に固定されたスナップ・リング19との間には、ダイヤフラム・スプリング20が配設される。ダイヤフラム・スプリング20は、ここでは、クラッチ締結時には、完全に圧縮されるように設定してある。
 なお、ダイヤフラム・スプリング20は、本発明の弾性部材に相当する。スナップ・リング19は、リング・ギヤ3の側端面に当接することで軸方向の荷重を受けることができるように構成している。
 フォワード・クラッチ・ピストン21は、フォワード・クラッチ・ドラム7の外側円筒部分7aと内側円筒部分7bとの間の筒状の空間内に挿入され、その軸方向に移動可能とされている。フォワード・クラッチ・ピストン21の外側円筒部分21aは、半径方向外側に向けて折り曲げられて図1中の右端のドライブ・プレート17に当接可能である。また、その内側円筒部分21bはこの先端部分がフォワード・クラッチ・ドラム7の内側円筒部分7bの外周面に支持される。また、内側円筒部分21bと内側円筒部分7bと間にはシール部材28が設けられる。
 フォワード・クラッチ・ドラム7の内側円筒部分7bの図1中の右側部分は、ケース側部材9Bの内側のボス部分9aに回転可能に支持されたフォワード・サポート・ドラム23の円筒部分23aの図1中の右側端部分から半径方向外側へ立ち上がった外側フランジ部分23bの外周端に連結される。なお、ケース側部材9Bは、本発明の静止部に相当する。フォワード・サポート・ドラム23の図1中の左端側は、半径方向内側へ折り曲げられた内側フランジ部分23cの内側端部分に形成されたボス部分23dが入力軸24にスプライン嵌合される。
 フォワード・サポート・ドラム23の円筒部分23aは、ケース側部材9Bの円筒状のボス部9aの外周面上に回転自在に支持される。なお、円筒部分23aとボス部9aの間に3個のシール部材25a、25b、25cが配設される。
 フォワード・サポート・ドラム23の円筒部分23aの図1中の左端側部分の外周面上には、仕切りプレート26が取り付けられる。
 仕切りプレート26は、内周端部分がスナップ・リング27により図1中で軸方向左側への移動が規制されるとともに、その外周側端部分に取り付けられたシール部材44が、フォワード・クラッチ・ピストン21の外側円筒部分21aの内周面に接触させられる。
 仕切りプレート26とフォワード・クラッチ・ピストン21との間には、環状のリターン・スプリング29が設けられ、この弾性力でフォワード・クラッチ・ピストン21を解放位置(図1の位置)、すなわち、フォワード・クラッチ・ドラム7の側壁7cへ付勢して押し付け、クラッチ解放時にフォワード・クラッチ・ピストン21がドライブ・プレート17とドリブン・プレート18とを圧接することがないようにしている。
 ここで、フォワード・クラッチ・ドラム7の側壁7cとフォワード・クラッチ・ピストン21との間には、クラッチ締結圧室30が画成される一方、仕切りプレート26とフォワード・クラッチ・ピストン21との間には、クラッチ解放圧室31が画成される。
 以上のような構成にあって、フォワード・クラッチ・ピストン21の内側円筒状部分21bとフォワード・サポート・ドラム23の円筒部分23aとの間には、これらの一部を含んで構成されるロック機構32が設けられる。
 このロック機構32は、クラッチ締結圧を低減あるいはなくしても、フォワード・クラッチ・ピストン21の締結位置を機械的に保持してフォワード・クラッチ・クラッチ16を締結状態に維持するものである。
 ロック機構32は、フォワード・クラッチ・ピストン21の内側円筒部分21bやフォワード・サポート・ドラム23の円筒部分23aを含め、サブピストン33、ボール34、押圧スプリング35、およびシール部材22、28、39を備えており、以下に説明するように構成される。
 すなわち、図1および図1中のロック機構32周辺を拡大した図2に示すように、フォワード・クラッチ・ピストン21の内側円筒状部分21bには、フォワード・クラッチ・ドラム7の側壁7cへ向かうにしたがって拡径する第1テーパ面21cが形成される。この第1テーパ面21cは、その中心軸に対し角度θ(図3、を参照)で傾斜する。本実施形態では、たとえばθ=10°に設定する。後述するように、第1テーパ面21cは、クラッチ解放位置からクラッチ締結位置まで伸びており、常にボール34に接触する。
一方、フォワード・クラッチ・ピストン21の内側円筒状部分21bを支持するフォワード・クラッチ・ドラム7の内側円筒部分7bには、周方向に配置されそれぞれボール34を挿通可能な複数のボール保持孔36と、これらより図2中右側の位置にクラッチ締結圧油を通すクラッチ締結圧用孔7dと、これらとは逆の先端側にシール部材28を挿入する環状のシール溝7eがそれぞれ形成してある。
 ボール保持孔36は、本発明の貫通孔に相当する。
 ここで、ボール34は、常にボール保持孔36内にあって、フォワード・クラッチ・ピストン21およびサブピストン33の位置に応じてボール保持孔36 内を半径方向に沿って移動する。ただし、サブピストン33がどの位置にあっても、ボール34は、常にボール保持孔36から半径方向内側と外側へ突出した状態にあって、フォワード・クラッチ・ピストン21の第1テーパ面21cと後述するサブピストン33の第2テーパ面33dに接触するように構成されている。
 なお、ボール34を挿入したボール保持孔36の個数は、フォワード・クラッチ16での伝達可能な最大伝達トルクによって決定すればよい。
 サブピストン33は、環状の部材であり、フォワード・クラッチ・ドラム7の内側円筒部分7bとフォワード・サポート・ドラム23の円筒部分23aとの間にクラッチの軸方向に移動可能に設けられる。
 サブピストン33は、この外周面側にボール34の半径方向内側部分に接触し、サブピストン33の位置に応じてボール34を半径方向に沿って移動させることが可能なボール進退傾斜部33bが形成されている。このボール進退傾斜部33bは、サブピストン33の外周の一部を窪ませて形成されている。
 ボール進退傾斜部33bの底部は、図2中右側に行くにしたがって深さが浅くなって行く第2テーパ面33dを有する。この第2テーパ面33dが、サブピストン33の中心軸となす角度ψは、フォワード・クラッチ・ピストン21の内側円筒状部分21bの第1テーパ面21cがなす角度θより大きい角度に設定される。本実施形態では、たとえばψ=25°に設定される。
 サブピストン33の外周面でボール進退傾斜部33bより図2中左側の部分の環状のシール溝33cに挿入されたシール部材22は、フォワード・クラッチ・ドラム7の内側円筒部分7bの内周面に接触してクラッチ締結圧室30とクラッチ解放圧室31とが連通しないようにしている。
 また、サブピストン33の図2中の左側先端部には複数の連通溝33eが形成されて、サブピストン33が仕切りプレート26に当接した状態にあっても連通路を確保し、クラッチ解放圧室31内にクラッチ解放圧油を供給可能としている。
 サブピストン33の図2中の右側端側面とフォワード・サポート・ドラム23の外側フランジ部23bとの間には、押圧スプリング35が配設されてサブピストン33を図2中左側へ付勢する。
 このとき、サブピストン33は、押圧スプリング35に図2中左側へ付勢されると、ボール進退傾斜部33bの第2テーパ面33dがボール34をフォワード・クラッチ・ドラム7の内側円筒部分7bのボール保持孔36を形成する側壁およびフォワード・クラッチ・ピストン21の内側円筒状部分21bの第1テーパ面21cに押し付ける。しかしながら、リターン・スプリング29のリターン力は強く、フォワード・クラッチ・ピストン21は動かず、したがってボール34も動かない。
 この結果、サブピストン33は、フォワード・クラッチ・ピストン21の位置より規制されて、図2中左側へ過度に移動しないように、ボール33を介してその軸方向への移動が規制されている。
 環状のサブピストン33の内側に配置されたフォワード・サポート・ドラム23の円筒部分23aには、押圧スプリング35を配置した空間を通じてクラッチ締結圧室30へクラッチ締結圧油を供給・排出するクラッチ締結圧用連通孔37が形成されるとともに、クラッチ解放圧油室31へクラッチ解放圧油を供給・排出可能なクラッチ解放圧用連通孔38が形成される。クラッチ締結圧用連通孔37とクラッチ解放圧用連通孔38とは、フォワード・サポート・ドラム23の円筒部分23aとサブピストン33との間に設けたシール部材39により互いに連通しないように構成される。
 また、ケース側部材9Bのボス部分9aには、フォワード・サポート・ドラム23の円筒部分23aに形成したクラッチ締結圧用連通孔37、クラッチ解放圧用連通孔38にそれぞれ連通可能にされたクラッチ締結圧用連通路40、クラッチ解放圧用連通路41が形成される。
 なお、クラッチ締結圧用連通路40、クラッチ解放圧用連通路41は、コントロール・バルブ装置42に接続される。コントロール・バルブ装置42では、クラッチ締結圧、クラッチ解放圧を最適値に設定するとともに、それらの供給・排出のタイミングを決める。したがって、フォワード・クラッチ16の締結によりロック機構32がロックした後、クラッチ締結圧室30のクラッチ締結圧油を抜く機能もここで行われる。
 ここで、上記ロック機構32の原理について以下に詳しく説明する。
 図3(a)は、クラッチ締結状態にあって完全圧縮されたダイヤフラム・スプリング20から弾性力(リターン力)Fで付勢されたフォワード・クラッチ・ピストン21が、ボール34を介してサブピストン33を軸方向に押圧する場合を模式的に表す。なお、リターン・スプリング29が設けられている場合には、ダイヤフラム・スプリング20の弾性力にリターン・スプリング29の荷重をさらに加味すればよい。
 図3(b)は、そのときのフォワード・クラッチ・ピストン21の第1テーパ面21cがボール34を押圧するときの分力の関係を示す。第1テーパ面21cの角度はθであるから、リターン力Fの第1テーパ面21cに沿う方向の分力は、Fcosθ、第1テーパ面21cに垂直な方向の分力はFsinθとなる。
 図3(c)は、ボール34に作用する分力の関係を示す。ボール34には、第1テーパ面21cからこれに垂直にFsinθの分力が作用するので、これをクラッチの軸方向の分力とその半径方向の分力ととに分けると、それぞれFsin2θ、Fsinθcosθとなる。
 図3(d)には、サブピストン33の第2テーパ面33dを押圧する分力の関係を示す。ボール34から半径方向内側に第2テーパ面33dへ作用する力はFsinθcosθであるから、第2テーパ面33dに沿う方向の分力、第2テーパ面33dに垂直な方向の分力は、第2テーパ面33dの角度ψを用いて、それぞれFsinθcosθsinψ、Fsinθcosθcosψとなる。
 図3(e)は、サブピストン33の第2テーパ面33dに作用するクラッチの半径方向および軸方向の分力の関係を示す。ボール34からサブピストン33の第2テーパ面33dの垂直方向に作用する力は、Fsinθcosθcosψであるから、この力の半径方向の分力、軸方向の分力は、それぞれFsinθcosθcos2ψ、Fsinθsinψcosψとなる。
 以上から、ダイヤフラム・スプリング20のリターン力Fによりフォワード・クラッチ・ピストン21がボール34を介してサブピストン33を軸方向へ押す力は、上記軸方向の分力Fsinθsinψcosψとなる。したがって、θを10°、ψを25°に設定した本実施形態の場合では、ダイヤフラム・スプリング20のリターン力Fの約15%の力でサブピストン33を保持可能であることが分かる。
 次に、図4(a)は、上記の場合とは逆に押圧スプリング35の付勢力Pによりサブピストン33がフォワード・クラッチ・ピストン21を軸方向に押圧する場合の力の関係を模式的に表す。
 図4(b)は、サブピストン33の第2テーパ面33dがボール34を軸方向に押す付勢力Pで押すときの第2テーパ面33dでの分力の関係を示す。第2テーパ面33dに沿う方向の分力、第2のテーパ面33dに垂直な方向の分力は、それぞれPcosψ、Psinψとなる。
 図4(c)は、第2テーパ面33dからボール34に作用する分力の関係を示す。そのクラッチの軸方向の分力、径方向の分力は、それぞれPsin2ψ、Psinψcosψとなる。
 図4(d)は、ボール34がフォワード・クラッチ・ピストン21の第1テーパ面21cを垂直方向に押す力Psinψcosψの分力の関係を示す。第1のテーパ面21cに沿う方向の分力、第1テーパ面21cに垂直な方向の分力は、それぞれPsinθsinψcosψ、Pcosθsinψcosψとなる。
 図4(e)は、ボール34からフォワード・クラッチ・ピストン21の第1テーパ面21cに垂直に作用するに作用する分力の関係を示す。この場合の径方向の分力、軸方向の分力は、それぞれPcos2θsinψcosψ、Psinθcosθsinψcosψとなる。したがって、押圧スプリング35がフォワード・クラッチ・ピストン21を軸方向に押す力は、Psinθcosθsinψcosψである。θを10°、ψを25°に設定した本実施形態の場合では、押圧力Pの約6.55%でフォワード・クラッチ・ピストン21を軸方向に押圧することになる。したがって、その押圧力は、ダイヤフラム・スプリング20の付勢力の約1%、リターン・スプリング29の荷重の約7%に相当する。
 次に上記クラッチ装置の作用につき説明する。
 図1は、動力伝達がない中立状態を示す。このとき、クラッチ締結圧、クラッチ解放圧のいずれも、クラッチ締結圧室30、クラッチ解放圧室31に供給されていない。したがって、ダイヤフラム・スプリング20はフリーの状態となっており、ドライブ・プレート17とドリブン・プレート18とが押し付けられることもないので、これらの間で伝達可能なトルクは実質的にゼロである。
 フォワード・クラッチ・ピストン21は、リターン・スプリング29でフォワード・クラッチ・ドラム7の内側の側壁7cに押し付けられるクラッチ解放位置に確実に戻されその位置を維持している。
 ロック機構32では、フォワード・クラッチ・ピストン21がクラッチ解放位置、すなわち、図1、図2中で最も右寄りの位置にあるので、その第1テーパ面21cの中で図1中最も左側にある部分がボール34に接触して、これを図1中、右下方向に向けて押圧している。
 この結果、ボール34は、半径方向の最も内側にあって、そのボール34の半径方向内側部分がフォワード・クラッチ・ドラム7のボール保持孔36から半径方向内側へ突出して、サブピストン33のボール保持部33bの第2テーパ面33dに接触している。
 したがって、サブピストン33は、押圧スプリング35でクラッチ締結方向(図1中の左方向)へ付勢されているにもかかわらず、サブピストン33が上記ボール34を介して図1において右向きの軸方向へ付勢する力(ロック力)の方が押圧スプリング35の逆方向の押圧力より強い。この結果、サブピストン33は、図1の位置に保持される。
 今、ドライバがエンジンを稼働させた状態で、セレクト・レバーを前進ポジションへ入れると、コントロール装置42からクラッチ締結圧油がクラッチ締結圧用連通路40、クラッチ締結圧用孔37、押圧スプリング35が挿入されている空間等を通ってクラッチ締結室30へ向かう。
 クラッチ締結室30がクラッチ締結圧油で満たされると、その内部の圧が高まって行き、フォワード・クラッチ・ピストン21はリターン・スプリング29のリターン力に抗して図1中左側へ移動し始め、次いでドライブ・プレート17、ドリブン・プレート18を押し付けながらダイヤフラム・スプリング20を圧縮し始める。
 ロック機構32のボール34は、サブピストン33の第2テーパ面33dを介して押圧スプリング35から図1中左側に向けて押圧力を常に受けているが、今回はさらにサブピストン33の後面(図1中の右端側の面)に作用するクラッチ締結圧からもサブピストン33が図1中左側へ押圧されるので、クラッチ解放時よりもさらに強い力でボール34を半径方向外側へ押し出そうとする。
 一方、このときフォワード・クラッチ・ピストン21の上記前進移動に伴い、ボール34の半径方向外側への移動を抑えていたフォワード・クラッチ・ピストン21の第1テーパ面21cも前進する結果、第1テーパ面21cとボール34との接触点も半径方向外側へ移動することとなる。すなわち、ボール34は、半径方向外側へ移動し始める。
 このボール34の半径方向外側への移動により、ボール34に第2テーパ面33dが常に接触するように押圧スプリング35で押圧されていたサブピストン33も図1中左側へ向けて移動し始める。
 このように、クラッチ圧の高まりに応じてダイヤフラム・スプリング20が圧縮されて行き、この圧縮による弾性力でドライブ・プレート17とドリブン・プレート18を押圧する。この結果、これら間に摩擦トルクが発生し、ドライブ・プレート17とドリブン・プレート18、したがってフォワード・クラッチ・ドラム7とフォワード・クラッチ・ハブ15とはスリップしながら入力されたトルクの一部を伝える、図5に示す半クラッチ状態となる。
 クラッチ締結圧がさらに高まって行くと、ダイヤフラム・スプリング20が完全に圧縮され図6の状態(最大弾性変形位置にある状態)になる。この状態は、上記スリップが発せず入力された全トルクを伝達可能なクラッチ完全締結状態である。この状態では、フォワード・クラッチ・ピストン21はもはや前進できず、したがって、この時の位置でサブピストン33やボール34の最前進位置が決まり、この位置がロック位置となる。
 この後、所定時間後に、コントロール装置42にてクラッチ締結室30からクラッチ締結圧油を抜く。
 このときフォワード・クラッチ・ピストン21をクラッチ締結方向に押圧する油圧は無くなるが、ロック機構32が上記ロック位置で機械的にロックした状態を維持するので、フォワード・クラッチ・ピストン21も、その位置を維持する。したがって、フォワード・クラッチ16は締結状態を保ち、フォワード・クラッチ・ドラム7とフォワード・クラッチ・ハブ15とは一体となって入力された全トルクを伝えながら回転する。
 なお、この完全締結状態にあっては、ダイヤフラム・スプリング20は完全圧縮された状態になり、そのとき発生する弾性力はドライブ・プレート17とドリブン・プレート18との間で入力された全トルクを伝えるのに必要な大きさであればよい。
 また、上記完全締結状態にするにあたっては、ダイヤフラム・スプリング20を完全圧縮した状態でロック機構32のロック位置が自動的に決まるので、ダイヤフラム・スプリング20のばらつきやド経時変化によるライブ・プレート17とドリブン・プレート18の摩耗にも関わらず、常に最適なロック位置が確保される。
 上記締結状態にあるフォワード・クラッチ16を解放するには、コントロール装置42からクラッチ解放圧油をクラッチ解放圧用連通路41、クラッチ解放圧用連通孔38等を通ってクラッチ解放圧室31に供給する。
 クラッチ解放圧室31がクラッチ解放圧油で充満され、解放圧が高まって行くと、フォワード・クラッチ・ピストン21を図1中右側に直接押す圧力も高まるとともに、サブピストン33の図1中の左端部も解放圧で図1中右側へ押圧されるようになる。
 この結果、上記解放圧によりサブピストン33は、図1中右側へ押圧されて移動し、フォワード・クラッチ・ピストン21も上記解放油圧とダイヤフラム・スプリング20およびリターン・スプリング29の弾性力により図1中右側へ移動する。したがって、ボール34は、後退するサブピストン33の第2テーパ面33dに接触しながら、フォワード・クラッチ・ピストン21の後退にしたがって第1テーパ面21cにより半径方向内側へ押し込まれて行き、ロック機構32のロックが解除される。
 ダイヤフラム・スプリング20は、圧縮弾性変形状態から元の状態に戻る結果、ドライブ・プレート17とドリブン・プレート18への押圧力はなくなり、フォワード・クラッチ・ハブ15はフォワード・クラッチ・ドラム7からフリーとなる。また、フォワード・クラッチ・ピストン21は、リターン・スプリング29によりフォワード・クラッチ・ドラム7の側壁7cに押し付けられ、その位置を維持する。フォワード・クラッチ16の解放が確実に終えた時間が経ったら、コントロール装置42がクラッチ解放圧室31からクラッチ解放圧油を抜いて、図1に示す状態になる。
 次に、上記クラッチ装置の作動を制御するクラッチ制御装置について説明する。
 クラッチ制御装置は、上記のコントロール装置42と、を備えている。コントロール装置42は、マイクロ・コンピュータやコントロール・バルブ等を備えており、油圧回路の一部を図7に示す。プレッシャ・レギュレータ・バルブ50は、図示しないポンプから供給された油を所定の圧に減圧してライン圧を第1パイロット・バルブ51に出力する。
 第1パイロット・バルブ51は、プレッシャ・レギュレータ・バルブ50から供給されたライン圧を減圧して第1パイロット圧を作り出し、この第1パイロット圧を3方向リニア・ソレノイド・バルブ52および第2パイロット・バルブ53にそれぞれ供給する。
 第2パイロット・バルブ53は、第1パイロット・バルブ51から供給された第1パイロット圧を減圧して第2パイロット圧を作りだし、この第2パイロット圧をオン・オフ切り替えソレノイド・バルブ54および第3パイロット・バルブ55にそれぞれ供給する。
 第3パイロット・バルブ54は、第2パイロット・バルブ53から供給された第2パイロット圧を減圧して第3パイロット圧を作り出し、この第3パイロット圧を2方向リニア・ソレノイド・バルブ56に供給する。
 なお、各パイロット・バルブで順に減圧していくことから、これらのバルブで得られる圧の大きさは、ライン圧>第1パイロット圧>第2パイロット圧>第3パイロット圧の順になる。
 ここで、3方向リニア・ソレノイド・バルブ52は、第1パイロット・バルブ51から供給された第1パイロットを車両の運転状況に応じて減圧可能であり、上記運転状況に応じたフォワード・クラッチ16やリバース・ブレーキ13の締結に最適な大きさの締結/解放圧に調整して、マニュアル・バルブ57に供給する。3方向リニア・ソレノイド・バルブ52は、マイクロ・コンピュータにより制御される。
 マニュアル・バルブ57は、ドライバによるセレクト・レバー58の操作によりそのバルブ・スプールが位置を変え、この位置に応じて油の流れを切り替える。マニュアル・バルブ57は、車両パークのためのPポジション、後進駆動のためのRポジション、動力非伝達である中立状態を作り出すためのNポジション、前進駆動のためのDポジション、前進駆動でエンジン・ブレーキを効かせることが可能なLポジションに、それぞれドライバが切り替えることが可能である。なお、マニュアル・バルブ57の詳細な構成は後で説明する。
 オン・オフ切り替えソレノイド・バルブ54は、フォワード・クラッチ16の解放が必要なときに、クラッチ解放油圧(図7ではOFF圧と表示)をフォワード・クラッチ16のクラッチ解放圧室31およびロック機構32のサブピストン33に供給したり、逆にこれらからクラッチ解放油圧を抜いたりする。なお、オン・オフ切り替えソレノイド・バルブ54は、本発明のクラッチ解放バルブに相当する。
 2方向リニア・ソレノイド・バルブ56は、第3パイロット・バルブ54から供給された第3パイロット圧の大きさを運転状況に応じて可変に調整して、この調整した第3パイロット圧をロック・アップ・コントロール・バルブ59へ出力する。
 ロック・アップ・コントロール・バルブ59は、2方向リニア・ソレノイド・バルブ56で調整した第3パイロット圧を運転状況に応じて図示しないトルク・コンバータのロックアップ機構のアプライ室とリリース室へ振り分け、ロックアップ、ロックアップ解除を行う。
 なお、この場合、調整した第3パイロット圧の大きさによっては、スリップ・ロックアップ状態にすることが可能である。
 ここで、マニュアル・バルブ57について説明する。セレクト・レバー58がフォワード・クラッチ16を解放しているセレクト・ポジション、すなわち、P、R、Nの各ポジションにあっては、3方向リニア・ソレノイド・バルブ52で調整した締結/解放圧をクラッチ解放圧としてフォワード・クラッチ16およびロック機構32に供給可能なように、ポートとスプールの関係が設定されている。この点が通常のマニュアル・バルブとは異なる。
 まず、PおよびNでのポジションにあっては、クラッチ締結圧のフォワード・クラッチ16およびリバース・クラッチ13への供給は阻止され、クラッチ締結圧室30、ブレーキ圧室11から油はマニュアル・バルブ57を介して抜かれている。したがって、フォワード・クラッチ16およびリバース・クラッチ13は、動力伝達不可の中立状態にある。
 また、オン・オフ切り替えソレノイド・バルブ54も、フォワード・クラッチ16のクラッチ解放圧室31およびロック機構32のサブピストン33への第2パイロット圧の供給を阻止している。
 これらに対し、マニュアル・バルブ57からは、クラッチ解放圧がクラッチ解放圧室31およびサブピストン33に供給されるので、フォワード・クラッチ16の解放はもちろん、ロック機構32は強制的にロック解除される。なお、このとき3方向リニア・ソレノイド・バルブ52は、ロック解除に十分な圧力を作り出すよう制御される。
 次に、セレクト・レバー58をRポジションにセレクトすると、マニュアル・バルブ57が切り替わり、リバース・ブレーキ13のブレーキ圧室11にブレーキ締結圧を供給し、これを締結することでピニオン・キャリヤ8をケース側部材9Aに固定する。この場合、3方向リニア・ソレノイド・バルブ52は、ブレーキ締結圧をリバース・ブレーキ13がスリップすることのない大きさの圧力に調整する。
 また、マニュアル・バルブ57からは、クラッチ解放油圧が、P、Nポジションの場合と同様に、クラッチ解放圧室31およびサブピストン33に供給されるので、ロック機構32のロックは強制的に解除され、フォワード・クラッチ16も解放されている。
 なお、フォワード・クラッチ16のクラッチ締結圧室30内の油はマニュアル・バルブ57を介して抜かれ、オン・オフ切り替えソレノイド・バルブ54は、フォワード・クラッチ16の解放またはロック機構32のロック解除を検出するか、解放圧の供給開始から所定時間(フォワード・クラッチ16の解放またはロック機構32のロック解除を達成できる時間)経過後に、解放圧をクラッチ解放圧室31から抜くように構成されている。
 次に、セレクト・レバー58を前進駆動となるDポジションにセレクトすると、マニュアル・バルブ57からクラッチ締結圧がフォワード・クラッチ16のクラッチ締結圧室30に流入し、フォワード・クラッチ・ピストン21を移動させる。この移動に応じてロック機構32のサブピストン33が移動する。フォワード・クラッチ16が完全に締結してフォワード・クラッチ・ピストン21が最大限移動して停止すると、これに対応したロック位置にサブピストン33がロックされる。
 このロックが終わったことが確実となる時間が経過すると、3方向リニア・ソレノイド・バルブ52がクラッチ締結圧室30からクラッチ締結圧を抜く。これにより、フォワード・クラッチ16の締結継続中であっても、クラッチ締結圧の供給は不要となる。
 このDポジション・セレクト時にあっては、マニュアル・バルブ57では、クラッチ解放圧の出力は阻止される結果、クラッチ解放圧室31へのクラッチ解放圧の供給は行われない。
 なお、このとき、リバース・ブレーキ13のブレーキ圧室11の油は、マニュアル・バルブ57を介して抜かれているので、リバース・ブレーキ13はフリーの解放状態となっている。
 以上に説明した実施形態の自動変速機のクラッチ制御装置の効果について以下に説明する。
 実施形態の自動変速機のクラッチ制御装置では、フォワード・クラッチ16を、フォワード・クラッチ・ピストン21に連動してこれをクラッチ締結位置でロックし、このロック後のクラッチ締結継続中はフォワード・クラッチ16のクラッチ締結圧室30からクラッチ締結圧油を排出するロック機構32を設けたので、このクラッチ油圧の保持が不要になる分、またこのときクラッチ締結圧で相対回転する部材間に配置されたシール部材25a~25c等にフリクション・ロスの原因となる高圧のクラッチ油圧が作用しない分、エネルギ・ロスを低減して燃費を向上することができる。
 特に、クラッチ装置がフォワード・クラッチ16であり、走行中長時間締結状態を保つので、上記効果は大きい。
 また、マニュアル・バルブ57をバイパスしてクラッチ解放圧を出力可能なロック解放バルブ54を設けたので、マニュアル・バルブ57の位置から独立してロック機構32のロックを、強制的に解除することができる。
 たとえば、前進ポジション、後進ポジションの一方から他方に急セレクトした場合などに、リバース・ブレーキ13とフォワード・クラッチ16が同時締結するようなインターロック状態になるような場合には、オン・オフ切り替えソレノイド・バルブ54でクラッチ解放圧(第2パイロット圧)をフォワード・クラッチ16のクラッチ解放圧室31およびロック機構32のサブピストン33へ供給してフォワード・クラッチ16を強制的に解放する。
 また、走行ポジションから非走行ポジションにセレクトした場合、オン・オフ切り替えソレノイド・バルブ54でクラッチ解放圧(第2パイロット圧)をフォワード・クラッチ16のクラッチ解放圧室31およびロック機構32のサブピストン33へ供給してフォワード・クラッチ16を強制的に解放することで、上記セレクト操作にも関わらず非走行ポジションで駆動が続くのを防止して違和感や不安感が発生しないようにすることができる。
 以上、本発明を上記各実施形態に基づき説明してきたが、本発明は上記実施形態に限られず、本発明の要旨を逸脱しない範囲で設計変更等があった場合でも、本発明に含まれる。
 たとえば、本発明のセレクタは、実施形態のセレクト・レバーに限られず、セレクト・ボタンを選択的に押圧するタイプのものであってもよい。
 また、ロック機構32も実施形態のものと異なるものでもよい。例えば、本出願人が出願した特願2012―123864号に記載の構成を用いてもよい。
 また、本発明のクラッチ装置は、無段変速機に限られず、他の装置に用いてもよく、またフォワード・クラッチ以外の他のクラッチ装置に適用するようにしてもよい。
  1    前後進切り替え装置
  7    フォワード・クラッチ・ドラム(第1部材;第2部材)
  9B   ケース側部材(静止部)
  15    フォワード・クラッチ・ハブ(第2部材;第1部材)
  16    フォワード・クラッチ
  17    ドライブ・プレート(第1摩擦プレート;第2摩擦プレート)
  18    ドリブン・プレート(第2摩擦プレート;第1摩擦プレート)
  20    ダイヤフラム・スプリング(弾性部材)
  21    フォワード・クラッチ・ピストン(クラッチ・ピストン)
  26    仕切りプレート
  30    クラッチ締結圧室(クラッチ締結圧部)
  31    クラッチ解放圧室
  32    ロック機構
  33    サブピストン
  34    ボール
  35    押圧スプリング
  36    ボール保持孔(貫通孔)
  42    コントロール装置
  54    オン・オフ切り替えソレノイド・バルブ(クラッチ解放バルブ)
  57    マニュアル・バルブ

Claims (2)

  1.  セレクタの操作による走行ポジション選択時にクラッチ締結圧を出力するマニュアル・バルブと、
     前記クラッチ締結圧の供給によりクラッチ・ピストンを移動させてクラッチ締結状態にすることが可能なクラッチと、
     クラッチ解放油圧を、前記マニュアル・バルブをバイパスして出力可能なクラッチ解放バルブと、
     前記クラッチが前記クラッチ締結圧の供給によりクラッチ締結状態になったときの前記クラッチ・ピストンの位置を、前記クラッチ締結圧を低減した状態で機械的にロック可能とする一方、前記クラッチ解放バルブが出力したクラッチ解放圧で前記ロックを解除するロック機構と、
     を備えた、
     ことを特徴とする自動変速機のクラッチ制御装置。
  2.  請求項1に記載の自動変速機のクラッチ制御装置において、
     前記マニュアル・バルブは、前記クラッチを解放するセレクト・ポジションで前記ロック機構へ前記クラッチ締結圧を供給して該ロック機構を強制解除するように構成した、
     ことを特徴とする自動変速機のクラッチ制御装置。
PCT/JP2013/073734 2012-09-26 2013-09-04 自動変速機のクラッチ制御装置 WO2014050462A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380049619.5A CN104736874A (zh) 2012-09-26 2013-09-04 自动变速器的离合器控制装置
US14/431,110 US20150276057A1 (en) 2012-09-26 2013-09-04 Clutch control device for automatic transmission
EP13841995.7A EP2902650A1 (en) 2012-09-26 2013-09-04 Clutch control device for automatic transmission
JP2014538325A JP5839753B2 (ja) 2012-09-26 2013-09-04 自動変速機のクラッチ制御装置
KR1020157007261A KR20150047557A (ko) 2012-09-26 2013-09-04 자동 변속기의 클러치 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-212215 2012-09-26
JP2012212215 2012-09-26

Publications (1)

Publication Number Publication Date
WO2014050462A1 true WO2014050462A1 (ja) 2014-04-03

Family

ID=50387871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073734 WO2014050462A1 (ja) 2012-09-26 2013-09-04 自動変速機のクラッチ制御装置

Country Status (6)

Country Link
US (1) US20150276057A1 (ja)
EP (1) EP2902650A1 (ja)
JP (1) JP5839753B2 (ja)
KR (1) KR20150047557A (ja)
CN (1) CN104736874A (ja)
WO (1) WO2014050462A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104326961A (zh) * 2014-11-20 2015-02-04 海南中和药业有限公司 一种维格列汀的合成工艺
JP2016148397A (ja) * 2015-02-12 2016-08-18 株式会社デンソー 油圧制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017004293A1 (de) * 2017-05-04 2018-11-08 Daimler Ag Kupplungsvorrichtung
US11162542B2 (en) * 2020-03-09 2021-11-02 Schaeffler Technologies AG & Co. KG Clutch piston that applies through compensation dam

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2540191A1 (de) * 1975-09-10 1977-03-17 Zahnradfabrik Friedrichshafen Druckbetaetigte lamellenkupplung mit stehendem ringzylinder
JPS5939326U (ja) * 1982-09-07 1984-03-13 三菱農機株式会社 油圧式多板クラツチ装置
JPS6111028U (ja) * 1984-06-25 1986-01-22 日産自動車株式会社 クラツチ装置
JPH0712221A (ja) 1993-06-29 1995-01-17 Matsuda Sangyo Kk 自動変速機の締結力調整装置
US20080314711A1 (en) * 2007-06-20 2008-12-25 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Clutch and brake latch mechanism
US20100179026A1 (en) * 2009-01-12 2010-07-15 Gm Global Technology Operations, Inc. Latching clutch assembly and method of operating the same
JP2010216501A (ja) * 2009-03-13 2010-09-30 Toyota Motor Corp 自動変速機のピストン構造
JP2010242852A (ja) * 2009-04-06 2010-10-28 Honda Motor Co Ltd 摩擦係合装置
JP2012123864A (ja) 2010-12-07 2012-06-28 Dainippon Printing Co Ltd サスペンション用フレキシャー基板、サスペンション、ヘッド付サスペンションおよびハードディスクドライブ
JP2012197851A (ja) * 2011-03-22 2012-10-18 Jatco Ltd 多板式摩擦係合機構

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354994A (en) * 1966-02-01 1967-11-28 Caterpillar Tractor Co Transmission locking means
JP3104565B2 (ja) * 1995-03-24 2000-10-30 トヨタ自動車株式会社 クラッチ装置
JP5461262B2 (ja) * 2010-03-23 2014-04-02 富士重工業株式会社 油圧制御弁の制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2540191A1 (de) * 1975-09-10 1977-03-17 Zahnradfabrik Friedrichshafen Druckbetaetigte lamellenkupplung mit stehendem ringzylinder
JPS5939326U (ja) * 1982-09-07 1984-03-13 三菱農機株式会社 油圧式多板クラツチ装置
JPS6111028U (ja) * 1984-06-25 1986-01-22 日産自動車株式会社 クラツチ装置
JPH0712221A (ja) 1993-06-29 1995-01-17 Matsuda Sangyo Kk 自動変速機の締結力調整装置
US20080314711A1 (en) * 2007-06-20 2008-12-25 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Clutch and brake latch mechanism
US20100179026A1 (en) * 2009-01-12 2010-07-15 Gm Global Technology Operations, Inc. Latching clutch assembly and method of operating the same
JP2010216501A (ja) * 2009-03-13 2010-09-30 Toyota Motor Corp 自動変速機のピストン構造
JP2010242852A (ja) * 2009-04-06 2010-10-28 Honda Motor Co Ltd 摩擦係合装置
JP2012123864A (ja) 2010-12-07 2012-06-28 Dainippon Printing Co Ltd サスペンション用フレキシャー基板、サスペンション、ヘッド付サスペンションおよびハードディスクドライブ
JP2012197851A (ja) * 2011-03-22 2012-10-18 Jatco Ltd 多板式摩擦係合機構

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104326961A (zh) * 2014-11-20 2015-02-04 海南中和药业有限公司 一种维格列汀的合成工艺
JP2016148397A (ja) * 2015-02-12 2016-08-18 株式会社デンソー 油圧制御装置

Also Published As

Publication number Publication date
KR20150047557A (ko) 2015-05-04
CN104736874A (zh) 2015-06-24
US20150276057A1 (en) 2015-10-01
JP5839753B2 (ja) 2016-01-06
JPWO2014050462A1 (ja) 2016-08-22
EP2902650A1 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
US9624986B2 (en) Friction engagement device
US8409053B2 (en) Transmission with selectable one-way clutch and dual-piston clutch
US10473166B2 (en) Frictional engagement element and automatic transmission
WO2014050462A1 (ja) 自動変速機のクラッチ制御装置
US20170314672A1 (en) Control apparatus for power transmission system
JP5844916B2 (ja) 自動変速機及びその制御方法
JP2009185928A (ja) 摩擦係合装置
US20190293129A1 (en) Frictional coupling device of vehicular power transmitting system
JP5890913B2 (ja) 自動変速機のクラッチ制御装置
JP5887427B2 (ja) 自動変速機のクラッチ制御装置
JP6436940B2 (ja) 自動変速機の油圧回路
JP5683548B2 (ja) クラッチ装置
JP6112068B2 (ja) 噛合式クラッチ
JP7040396B2 (ja) 車両用動力伝達装置
US20200248783A1 (en) Vehicle power transmission device
JP6436941B2 (ja) 自動変速機の油圧回路
JP5945602B2 (ja) ロック機構付き摩擦要素を備えた自動変速機及びその制御方法
JPWO2014050799A1 (ja) 自動変速機及びその制御方法
JP6229644B2 (ja) 流体伝動装置
US20150252896A1 (en) Automatic transmission with friction element having lock mechanism, and control method thereof
WO2014050727A1 (ja) 自動変速機及びその制御方法
JP6311580B2 (ja) 流体伝動装置
WO2014050522A1 (ja) ロック機構付き摩擦要素を備えた自動変速機及びその制御方法
JP6356185B2 (ja) 自動変速機の油圧回路
JPH1122751A (ja) 変速機におけるクラッチの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538325

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157007261

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013841995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013841995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14431110

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE