WO2014050444A1 - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
WO2014050444A1
WO2014050444A1 PCT/JP2013/073526 JP2013073526W WO2014050444A1 WO 2014050444 A1 WO2014050444 A1 WO 2014050444A1 JP 2013073526 W JP2013073526 W JP 2013073526W WO 2014050444 A1 WO2014050444 A1 WO 2014050444A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
protective film
positioning hole
optical module
positioning
Prior art date
Application number
PCT/JP2013/073526
Other languages
English (en)
French (fr)
Inventor
幸平 松丸
山本 敏
弘人 中里
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US14/430,620 priority Critical patent/US9606307B2/en
Priority to JP2014538313A priority patent/JP5869686B2/ja
Priority to CN201380049639.2A priority patent/CN104662460B/zh
Publication of WO2014050444A1 publication Critical patent/WO2014050444A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • G02B6/4259Details of housings having a supporting carrier or a mounting substrate or a mounting plate of the transparent type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4284Electrical aspects of optical modules with disconnectable electrical connectors

Definitions

  • the present invention relates to an optical module.
  • optical transceivers are used as components that convert electrical signals and optical signals to each other.
  • the specifications (shape, dimensions, pin assignment, etc.) of pluggable optical transceivers are standardized by MSA (Multi Source Agreement) agreed by an industry group that handles optical transceivers.
  • MSA Multi Source Agreement
  • a cage is installed on a main board on the communication device side (host side), and an optical module incorporating a photoelectric conversion element and a circuit board is detachably inserted into the cage.
  • the circuit board in the optical module is electrically and mechanically connected to the electrical interface connector in the cage.
  • the optical signal transmitted and received by the optical fiber and the electric signal processed by the main board on the communication device side can be converted into each other by the photoelectric conversion element and the circuit board in the optical module.
  • Patent Document 1 describes an optical module in which a positioning pin is inserted into a substrate in which a positioning hole is formed to align an optical axis.
  • Patent Document 1 polyimide resin is used for the substrate.
  • the substrate on which the photoelectric conversion element is mounted is made of a glass substrate, so that light can be transmitted and the alteration due to heat is suppressed.
  • a damage layer such as a minute unevenness (for example, a minute chip called “chipping”) or a crack is formed in the positioning hole.
  • a damage layer such as a minute unevenness (for example, a minute chip called “chipping”) or a crack is formed in the positioning hole.
  • the damaged layer receives stress from the pin, and the glass substrate may be damaged starting from minute irregularities and cracks.
  • the positioning pin may be deformed and the positioning accuracy may be reduced.
  • An object of the present invention is to suppress breakage of a glass substrate in which positioning holes are formed and deformation of positioning pins.
  • a main invention for achieving the above object is a glass in which a photoelectric conversion element is mounted, light emitted from the photoelectric conversion element or light received by the photoelectric conversion element can be transmitted, and a positioning hole is formed A substrate and an optical component on which a positioning pin is formed, and the positioning pin is fitted into the positioning hole through the protective film so that the protective film contacts the positioning hole and the positioning pin.
  • the optical module is characterized in that the glass substrate and the optical component are positioned.
  • FIG. 1 is an explanatory diagram of a pluggable optical transceiver.
  • FIG. 2A is a perspective view of the circuit board 10 and the like in the housing 1A of the optical module 1 as viewed obliquely from above.
  • FIG. 2B is a perspective view of the circuit board 10 and the like as viewed obliquely from below.
  • FIG. 3 is a schematic configuration diagram of the optical module 1 inserted into the cage 2.
  • FIG. 4A is an explanatory diagram of the positioning hole 23 of the first embodiment.
  • FIG. 4B is an explanatory diagram of the positioning hole 23 ′ of the reference example.
  • FIG. 5A is an explanatory diagram of the positioning pin 43 of the first embodiment.
  • FIG. 5B is an explanatory diagram of the positioning pin 43 ′ of the first reference example.
  • FIG. 5C is an explanatory diagram of the positioning pin 43 ′′ of the second reference example.
  • FIG. 6A is an enlarged view of the vicinity of the root of the positioning pin 43 of the first embodiment.
  • FIG. 6B is an enlarged view of the vicinity of the root of the positioning pin 43 of the reference example.
  • FIG. 7A is an enlarged photograph of the protective film formed in the non-through hole of FIG. 7B.
  • FIG. 7B is an enlarged photograph of a non-through hole formed in the glass substrate 20 by sandblasting.
  • FIG. 8A is a diagram obtained by binarizing FIG. 7A.
  • FIG. 8B is a diagram obtained by binarizing FIG. 7B.
  • FIG. 9 is an explanatory view of a positional shift due to plastic deformation of the positioning pin 43.
  • FIG. 9 is an explanatory view of a positional shift due to plastic deformation of the positioning pin 43.
  • FIG. 10 is an enlarged cross-sectional view of the periphery of the positioning hole 23 and the positioning pin 43 and the periphery of the glass substrate side electrode 22 of the first embodiment.
  • FIG. 11 is an explanatory diagram of the second embodiment.
  • FIG. 12 is an explanatory diagram of the third embodiment.
  • FIG. 13A is an explanatory diagram of the fourth embodiment.
  • FIG. 13B is an explanatory diagram of a modification of the fourth embodiment.
  • FIG. 14 is an explanatory diagram of the fifth embodiment, and shows the periphery of the positioning hole 23 as viewed from below.
  • FIG. 15 is an explanatory diagram of the sixth embodiment.
  • FIG. 16 is an explanatory diagram in which a cylindrical positioning pin 43 ′′ is fitted into a positioning hole 23 ′′ (through hole) having a constant diameter.
  • An optical module characterized by the above is clarified. According to such an optical module, breakage of the glass substrate in which the positioning hole is formed and deformation of the positioning pin can be suppressed.
  • the positioning pin is fitted into the positioning hole through the protective film in a state where the protective film is formed in advance on the edge of the positioning hole of the glass substrate. Thereby, it can be realized that the positioning pin is fitted into the positioning hole through the protective film so that the protective film comes into contact with the positioning hole and the positioning pin.
  • the unevenness of the glass substrate at the edge of the positioning hole is covered with the protective film, and the opening of the positioning hole is made of the protective film. Thereby, breakage of the glass substrate in which the positioning hole is formed and deformation of the positioning pin can be further suppressed.
  • the protective film is preferably a resin film.
  • region which receives a stress becomes wide and this can suppress the failure
  • the protective film is preferably a resin film formed together with the passivation film of the glass substrate. Thereby, the formation process of a protective film becomes easy.
  • a through via is formed in the glass substrate, and the protective film is formed through a process of vacuum laminating a film on the glass substrate. Thereby, the layer by a film can be formed along the shape of a positioning hole.
  • the protective film is preferably a metal film. Thereby, the thickness of the protective film at the edge of the positioning hole can be ensured.
  • the protective film is preferably a metal film formed together with the wiring of the glass substrate. Thereby, the formation process of a protective film becomes easy.
  • the positioning hole is a non-through hole and that the protective film is not formed on the bottom of the positioning hole. Thereby, the top part of the positioning pin becomes difficult to contact, and positioning accuracy improves.
  • the protective film is formed by forming a photosensitive resin layer on the surface of the glass substrate on which the positioning holes are formed, and subjecting the resin layer to exposure processing and development processing. This facilitates removal of the protective film at the bottom of the positioning hole.
  • the protective film is formed on the inner surface of the positioning hole. Thereby, damage to the glass substrate can be further suppressed.
  • the optical component has a recess formed around the root of the positioning pin, and the protective film formed on the surface of the glass substrate is disposed between the glass substrate and the recess of the optical component. It is desirable that Thereby, the gap between the glass substrate and the optical component is not affected by the thickness of the protective film.
  • the positioning hole is a non-through hole with a narrow back and the positioning pin has a truncated cone shape. Thereby, a glass substrate and an optical component can be positioned with high precision.
  • the positioning pin has a tapered surface, the edge of the positioning hole is chamfered, and the protective film is formed by chamfering the tapered surface of the positioning pin and the positioning hole. It is desirable to touch the surface. Thereby, the contact area of the said protective film and the edge of the said positioning hole becomes large, and damage to a glass substrate can be suppressed.
  • the linear expansion coefficient of the glass substrate is different from the linear expansion coefficient of the optical component. This is particularly effective in such a case.
  • FIG. 1 is an explanatory diagram of a pluggable optical transceiver.
  • An optical transceiver having both an optical transmitter and an optical receiver is sometimes referred to as an optical transceiver, but here, an optical transceiver having only one is also referred to as an optical transceiver.
  • the pluggable optical transceiver in the figure is of the QSFP type (QSFP: Quad Small Form Factor Pluggable) defined by MSA (Multi Source Agreement).
  • the pluggable optical transceiver has an optical module 1 and a cage 2.
  • optical module 1 two types are depicted. As shown in the drawing, an optical fiber (including a cord) may be fixed to the optical module 1 or may be detachable. One of the two cages 2 in the figure is drawn with the heat sink 3 removed and partially broken so that the inside can be seen.
  • an optical fiber including a cord
  • One of the two cages 2 in the figure is drawn with the heat sink 3 removed and partially broken so that the inside can be seen.
  • front and rear, top and bottom, and left and right are defined as shown in FIG. That is, the insertion port side of the cage 2 into which the optical module 1 is inserted is referred to as “front”, and the opposite side is referred to as “rear”.
  • the side from which the optical fiber (including the cord) extends is referred to as “front”, and the opposite side is referred to as “rear”.
  • the side of the surface on which the cage 2 is provided is “upper”, and the opposite side is “lower”.
  • the direction orthogonal to the front-rear direction and the up-down direction is defined as “left-right”.
  • the cage 2 is installed on the main board on the communication equipment side (host side).
  • the cage 2 is provided on a main board of a blade server in the data center, for example.
  • the optical module 1 is removably inserted into the cage 2.
  • the optical module 1 includes a photoelectric conversion element 31 and a circuit board 10 in a housing 1A, and mutually converts an optical signal transmitted / received by an optical fiber and an electric signal processed by a main board on a communication device side. To do.
  • the cage 2 accommodates the optical module 1 in a detachable manner.
  • the cage 2 is a box-shaped member having a rectangular section in the front-rear direction with an insertion slot for inserting the optical module 1 on the front side.
  • the cage 2 is formed by bending a metal plate so as to open the front side.
  • An accommodating portion for accommodating the optical module 1 is formed in the cage 2 by bending the metal plate into a rectangular cross section.
  • a connector 2 ⁇ / b> A is provided on the rear side inside the cage 2.
  • the upper surface of the cage 2 has an opening, and a heat sink 3 is attached so as to close the opening.
  • the heat sink 3 includes a large number of heat radiation fins (heat radiation pins) for radiating the heat of the optical module 1 inserted into the cage 2 to the outside.
  • FIG. 2A is a perspective view of the circuit board 10 and the like in the housing 1A of the optical module 1 as viewed obliquely from above.
  • FIG. 2B is a perspective view of the circuit board 10 and the like as viewed obliquely from below.
  • FIG. 3 is a schematic configuration diagram of the optical module 1 inserted into the cage 2.
  • the optical module 1 includes a circuit board 10, a glass substrate 20, and an optical path converter 40 in a housing 1A.
  • the circuit board 10 is a plate-like printed board constituting an electronic circuit.
  • a connection portion 11 card edge connector for connecting to a connector 2A (connector socket) in the cage 2 is formed at the rear end portion of the circuit board 10.
  • the connection portion 11 is formed on both upper and lower surfaces of the circuit board 10 and a large number of terminals are formed side by side in the left-right direction.
  • An accommodation window 12 for accommodating the optical path changer 40 is formed on the circuit board 10.
  • a circuit board side electrode 13 is formed on the upper surface of the circuit board 10 so as to surround the housing window 12.
  • a glass substrate 20 is mounted on the upper surface of the circuit board 10 so as to close the accommodation window 12.
  • the housing window 12 of the circuit board 10 is positioned below the glass substrate 20, and the housing window 12 of the circuit board 10 is closed by the lower surface of the glass substrate 20.
  • a glass substrate side electrode 22 is formed on the lower surface of the glass substrate 20, and the glass substrate 20 is connected to the circuit substrate side electrode 13 and the glass substrate side electrode 22 while closing the housing window 12 of the circuit substrate 10. It is mounted on the circuit board 10.
  • the accommodation window 12 is a through hole (opening) formed in the circuit board 10.
  • the upper portion of the optical path changer 40 is inserted into the accommodation window 12.
  • the lower part of the optical path changer 40 protrudes downward from the receiving window 12, and the optical fiber 50 extends forward from the protruding part.
  • the optical path changer 40 is thinner than the circuit board 10, the lower part of the optical path changer 40 does not protrude downward from the receiving window 12.
  • the reflecting portion 42 is configured to reflect light at an obtuse angle, the optical fiber 50 can be easily pulled out from the optical path converter 40.
  • the glass substrate 20 is a transparent glass substrate that can transmit light.
  • the glass substrate 20 is comprised from glass materials, such as quartz glass and borosilicate glass, for example, and the borosilicate glass is employ
  • a plurality of through vias 21 are formed in the glass substrate 20 along the shape of the receiving window 12 of the circuit board 10.
  • the glass substrate side electrode 22 is formed on the lower surface of the glass substrate 20 (the surface opposite to the mounting surface on which the light emitting unit 31 is mounted).
  • the glass substrate side electrode 22 is formed outside the through via 21. Further, the glass substrate side electrode 22 is formed along the outside of the accommodation window 12 of the circuit board 10.
  • the glass substrate side electrode 22 is electrically connected to the circuit substrate side electrode 13 on the upper surface of the circuit substrate 10.
  • the through via 21 is used for wiring between the glass substrate side electrode 22, the light emitting unit 31, and the driving element 32.
  • Two positioning holes 23 for positioning the optical path converter 40 are formed on the lower surface of the glass substrate 20.
  • the positioning hole 23 does not penetrate the glass substrate 20 and is formed to be a non-through hole.
  • By making the positioning hole 23 a non-through hole it becomes possible to mount a component (for example, the drive element 32) on the upper side of the positioning hole 23 and to arrange a wiring to the component.
  • the degree of freedom of component mounting and wiring on the upper surface is increased. As a result, the glass substrate 20 can be downsized.
  • a light emitting unit 31 is mounted on the upper surface of the glass substrate 20.
  • a driving element 32 for driving the light emitting unit 31 is also mounted on the upper surface of the glass substrate 20 (the mounting surface of the light emitting unit 31).
  • the light emitting unit 31 and the driving element 32 are disposed inside the through via 21. In other words, the light emitting unit 31 and the driving element 32 are mounted on the upper surface of the glass substrate 20 so as to be positioned above the receiving window 12 of the circuit board 10.
  • the light emitting unit 31 is a photoelectric conversion element that converts an optical signal and an electrical signal.
  • a VCSEL Vertical Cavity Surface Emitting Laser: vertical cavity surface emitting laser
  • a light receiving unit that converts an optical signal into an electrical signal may be mounted on the glass substrate 20 as a photoelectric conversion element. Further, both the light emitting unit and the light receiving unit may be mounted on the glass substrate 20.
  • the light emitting unit side electrode 31A and the light emitting surface 31B of the light emitting unit 31 are formed on the lower surface (the surface on the glass substrate 20 side).
  • the light emitting unit 31 is flip-chip mounted on the glass substrate 20 and irradiates light toward the glass substrate 20. Since the light emitting unit side electrode 31A and the light emitting surface 31B of the light emitting unit 31 are located on the same side (the lower surface on the side of the glass substrate 20), if the light emitting unit 31 is flip-chip mounted on the glass substrate 20, the light emitting surface 31B. Faces the glass substrate 20, and the light emitting surface 31B is not exposed to the outside.
  • the light emitting unit 31 includes a plurality of (for example, four) light emitting surfaces 31B arranged in a direction perpendicular to the paper surface.
  • the optical path converter 40 is an optical component that converts the optical path of the light emitted from the light emitting unit 31.
  • the optical path converter 40 also functions as a support member that supports one end of the optical fiber 50 and forms the optical path between the light emitting unit 31 and the optical fiber 50 together with the transparent substrate.
  • the optical path changer 40 is a member that is positioned and attached to the glass substrate 20. The optical path changer 40 is inserted into the receiving window 12 from the lower side of the circuit board 10.
  • the optical path changer 40 includes a lens part 41 and a reflection part 42.
  • the lens unit 41 is formed on the upper surface of the optical path changer 40.
  • the reflection part 42 is formed on the lower surface of the optical path changer 40.
  • the lens part 41 is a part formed in a convex lens shape so that light can be focused.
  • the lens portion 41 is formed in a concave portion recessed from the upper surface so as not to protrude from the upper surface of the optical path changer 40.
  • the lens unit 41 focuses the light emitted from the light emitting unit 31, guides the light to the reflecting unit 42, and causes the light to enter the optical fiber 50.
  • the lens unit 41 focuses the light reflected from the reflecting unit 42 on the light receiving unit.
  • the lens unit 41 faces the light emitting surface 31B of the light emitting unit 31 with the glass substrate 20 interposed therebetween.
  • the reflection part 42 is a part for reflecting light.
  • the optical axis of the light emitted from the light emitting unit 31 is the vertical direction (the direction perpendicular to the substrate such as the circuit board 10 or the glass substrate 20), but the optical axis of the light reflected by the reflecting unit 42 is the front-rear direction (circuit (Direction parallel to the substrate such as the substrate 10 or the glass substrate 20).
  • the light reflected by the reflection unit 42 enters the optical fiber 50 attached to the optical path changer 40.
  • the reflecting part 42 reflects the light emitted from the optical fiber 50, guides it to the lens part 41, and focuses it on the light receiving part.
  • the reflection part 42 in a figure is drawn so that the optical axis of reflected light may become the front-back direction (direction parallel to substrates, such as the circuit board 10 and the glass substrate 20).
  • the reflection part 42 is not restricted to what reflects light at 90 degree
  • the reflection unit 42 may be configured to reflect light at an obtuse angle (for example, about 100 degrees).
  • the light whose optical axis is in the vertical direction has a component in the front-rear direction (direction parallel to the substrate such as the circuit board 10 or the glass substrate 20). It only has to be reflected.
  • the optical fiber 50 is pulled out from the optical path converter 40.
  • the reflecting portion 42 be configured to reflect light at an obtuse angle.
  • the optical fiber 50 is aligned and attached so as to have a predetermined positional relationship with respect to the lens portion 41 and the reflecting portion 42 of the optical path changer 40.
  • a lens portion 41 is provided only at a site where light enters.
  • a lens part may be provided also in the part which emits light, and optical path changer 40 may be provided with two lens parts. If the two lens portions are collimator lenses, parallel light can be propagated in the optical path changer 40.
  • two positioning pins 43 for insertion into the positioning holes 23 of the glass substrate 20 are formed so as to protrude.
  • the positioning pin 43 of the optical path converter 40 is fitted into the positioning hole 23 of the glass substrate 20, whereby the optical axis of the lens unit 41 of the optical path converter 40 and the optical axis of the light emitting unit 31 mounted on the glass substrate 20. Alignment is performed.
  • the optical path converter 40 is integrally formed of resin. That is, the lens part 41, the reflection part 42, and the positioning pin 43 of the optical path changer 40 are integrally formed of resin. Moreover, the optical path changer 40 is shape
  • the optical path changer 40 is a thicker part than others in order to ensure the dimensions of the reflection part 42 and to ensure the dimensions for connecting the end of the optical fiber 50. And when the circuit board 10, the glass substrate 20, and the optical path changer 40 are simply stacked and arranged by arranging the thick upper part of the optical path changer 40 in the receiving window 12 (or via a relay board). Compared with the case where the glass substrate 20 and the optical path changer 40 are attached to the circuit board 10), the height of the optical module is reduced.
  • FIG. 4A is an explanatory diagram of the positioning hole 23 of the first embodiment.
  • FIG. 4B is an explanatory diagram of a positioning hole 23 ′ of a reference example.
  • a non-through hole is formed as a positioning hole 23 in the glass substrate 20. The reason for making the non-through hole is that by making the positioning hole 23 a non-through hole, the degree of freedom of component mounting and wiring on the upper surface of the glass substrate 20 is increased.
  • a processing method using a drill is conceivable as a method of forming a non-through hole in the glass substrate 20.
  • a hole having a constant diameter regardless of the depth is formed in the glass substrate 20 '.
  • machining with a drill may be costly. Therefore, in the first embodiment, sandblasting that can form non-through holes at low cost is employed.
  • the shape becomes deep (see FIG. 4A).
  • FIG. 5A is an explanatory diagram of the positioning pin 43 of the first embodiment.
  • FIG. 5B is an explanatory diagram of the positioning pin 43 ′ of the first reference example.
  • FIG. 5C is an explanatory diagram of the positioning pin 43 ′′ of the second reference example.
  • the positioning pin 43 ′′ of the second reference example shown in FIG. 5C has a cylindrical shape (dimension cylinder shape) with a constant pin diameter. In the case of such a cylindrical positioning pin 43 ′′, a deep constriction as shown in FIG. 4A is obtained. It cannot be positioned by being inserted into the remaining positioning hole 23. Further, if the positioning hole 23 has a shape as shown in FIG. 4B, it may be possible to perform positioning by inserting the positioning pin 43 ′′ of the second reference example shown in FIG. 5C. Due to the tolerance, a gap is required between the positioning hole 23 ′ and the positioning pin 43 ′′, and a positioning error is generated by this gap.
  • the positioning pin 43 ′ of the first reference example shown in FIG. 5B has a conical shape.
  • the tip of the positioning pin 43 ′ may come into contact with the bottom of the positioning hole 23. Cannot perform positioning. It is possible to reduce the height of the positioning pin 43 ′ of the first reference example so that the tip of the positioning pin 43 ′ does not contact the bottom of the positioning hole 23.
  • the angle of the tapered surface becomes small (because the positioning pin 43 ′ has a flat shape as a whole), it becomes difficult to insert into the positioning hole 23 or fit into the positioning hole 23. As a result, the optical axis may be shifted.
  • the positioning pin 43 of the first embodiment has a truncated cone shape as shown in FIG. 5A. Since the positioning pin 43 has a truncated cone shape, the tip of the positioning pin 43 is unlikely to contact the bottom of the positioning hole 23 even if the positioning pin 43 is inserted into the narrowed positioning hole 23 as shown in FIG. 4A. Even if the angle of the truncated cone-shaped tapered surface 43 ⁇ / b> A is increased, the tip of the positioning pin 43 is difficult to contact the bottom of the positioning hole 23.
  • the tapered surface 43A having a truncated cone shape can contact with the opening of the positioning hole 23 without any gap (because it can contact with the edge of the positioning hole 23 without any gap).
  • Positioning error in the direction perpendicular to the axial direction (the axial direction of the positioning hole 23) of the optical axis (optical axis of the light emitted from the light emitting unit 31 and the light on the optical path converter 40 side) can be suppressed. It is possible to suppress the positional deviation from the axis (the optical axis of the lens unit 41.)
  • the truncated cone-shaped positioning pin 43 or the conical positioning pin 43 ′ shown in FIG.
  • the positional deviation in the axial direction of the positioning pin 43 may occur due to the tolerance of the hole 23, the optical axis (light emitting part) on the glass substrate 20 side due to the positional deviation in this direction. 1 is not misaligned between the optical axis of the light emitted from the optical path 1 and the optical axis on the optical path changer 40 side (the optical axis of the lens unit 41), so that the loss of light is small. Is done.
  • the positioning hole 23 (non-through hole with a deep back) shown in FIG. 4A and the truncated conical positioning pin 43 shown in FIG. 5A are employed.
  • FIG. 6A is an enlarged view of the vicinity of the root of the positioning pin 43 of the first embodiment.
  • FIG. 6B is an enlarged view of the vicinity of the root of the positioning pin 43 of the reference example.
  • the surface shape of the resin molded product does not directly reflect the shape of the inner surface of the mold.
  • the corner of the molded product may be rounded.
  • the optical path changer 40 of the first embodiment is formed integrally with a transparent resin, and the positioning pins 43 are also formed integrally with other parts of the optical path changer 40. And the corner
  • an annular recess 43B is formed so as to surround the base of the positioning pin 43. Furthermore, the inner side wall surface of the recess 43 ⁇ / b> B is an extended surface of the tapered surface 43 ⁇ / b> A of the truncated conical positioning pin 43. That is, the taper surface 43 ⁇ / b> A of the positioning pin 43 is formed to the inner side (the side opposite to the side where the positioning pin 43 protrudes) from the upper surface of the optical path converter 40. Thereby, even if the corner portion of the base of the positioning pin 43 is rounded, the portion is positioned inside the upper surface of the optical path changer 40. In this way, the rounded corners of the positioning pins 43 are prevented from coming into contact with the positioning holes 23.
  • FIG. 7B is an enlarged photograph of a non-through hole formed in the glass substrate 20 by sandblasting.
  • FIG. 8B is a diagram obtained by binarizing FIG. 7B.
  • the lower figure is an enlargement of the frame in the upper figure and is an enlarged photograph of the edge of the hole.
  • minute irregularities called chipping are formed on the inner surface of the positioning hole 23.
  • a crack or the like may be formed in addition to the minute unevenness.
  • a region where minute irregularities or cracks are formed may be referred to as a “damage layer”.
  • the damaged layer is formed not only in the sandblasting process but also when the glass substrate 20 is subjected to other polishing process or cutting process (for example, drilling process).
  • the tapered surface 43A of the positioning pin 43 comes into contact with the edge of the positioning hole 23.
  • a damage layer is formed in the positioning hole 23, and minute irregularities are formed on the edge of the positioning hole 23. For this reason, when the positioning pin 43 comes into contact with the edge of the positioning hole 23, the damaged layer receives stress from the pin, and there is a possibility that the glass substrate 20 may be damaged starting from minute irregularities and cracks of the damaged layer.
  • the edge of the positioning hole 23 is detected when a temperature change occurs after the positioning pin 43 is inserted into the positioning hole 23. Receives a force from the positioning pin 43. Also at this time, the positioning hole 23 receives stress from the pin, and there is a possibility that the glass substrate 20 may be damaged starting from minute irregularities and cracks in the damaged layer. That is, the glass substrate 20 may be damaged not only when the positioning pins 43 are inserted into the positioning holes 23 but also in a fitted state after the insertion.
  • the positioning pin 43 is easily scraped by the edge of the positioning hole 23 as shown in FIG. .
  • the positioning pin 43 is plastically deformed, a positional shift corresponding to the plastic deformation occurs, and the positioning accuracy is lowered.
  • corrugation of the positioning hole 23 bites into the plastically deformed location of the positioning pin 43, and the positioning pin 43 is fixed with respect to the positioning hole 23 with insufficient insertion. As a result, the positioning accuracy decreases. There is a fear.
  • FIG. 7A is an enlarged photograph of the protective film formed in the non-through hole of FIG. 7B.
  • FIG. 8A is a diagram obtained by binarizing FIG. 7A.
  • a polyimide resin is employed as the protective film.
  • the opening of the positioning hole 23 in which the protective film is formed has a damage layer (unevenness of the glass substrate 20 at the edge of the positioning hole) covered with the protective film. It is smooth.
  • the protective film is formed thicker than the unevenness of the glass substrate 20 at the edge of the positioning hole 23. That is, the opening of the positioning hole 23 covered with the protective film is composed only of the protective film.
  • the unevenness of the glass substrate 20 does not protrude from the protective film at the opening of the positioning hole 23.
  • the protective film relieves the stress and suppresses the damage of the glass substrate 20 and the deformation of the positioning pin 43. Therefore, it is preferable that the protective film is a material softer than the material constituting the positioning pins 43 of the glass substrate 20 and the optical path changer 40 because it serves as a cushion for the protective film. Further, the protective film desirably relaxes the unevenness of the edge of the positioning hole 23, and more preferably covers all the unevenness of the glass substrate 20 at the edge of the positioning hole 23.
  • FIG. 10 is an enlarged cross-sectional view of the periphery of the positioning hole 23 and the positioning pin 43 and the periphery of the glass substrate side electrode 22 of the first embodiment.
  • a protective film 24 is formed on the edge of the positioning hole 23.
  • the protective film 24 is in contact with both the positioning hole 23 and the positioning pin 43 at the edge of the positioning hole 23, and the positioning pin 43 is fitted into the positioning hole 23 via the protective film 24.
  • the protective film 24 is sandwiched between the positioning hole 23 and the positioning pin 43.
  • the positioning hole 23 and the positioning pin 43 may be in direct contact with each other when a part of the protective film 24 is broken.
  • the protective film 24 is formed on the edge of the positioning hole 23, the stress received by the edge of the positioning hole 23 from the positioning pin 43 is relieved by the protective film 24 as compared with the case where the protective film 24 is not provided. Furthermore, the region where the edge of the positioning hole 23 receives stress becomes wider (the area receiving stress becomes wider). Thereby, breakage of the glass substrate 20 and deformation of the positioning pins 43 are suppressed.
  • a passivation film 25 is formed on the glass substrate 20.
  • the passivation film 25 is a film formed on the metal layer constituting the glass substrate side electrode 22 in order to protect the glass substrate side electrode 22.
  • the passivation film 25 is a material having excellent adhesion to the glass substrate side electrode 22.
  • the outermost surface of the glass substrate side electrode 22 is copper or gold, for example, polyimide resin, silicone resin, epoxy resin, acrylic resin, etc.
  • polyimide resin is adopted.
  • the protective film 24 is a resin film (here, polyimide resin) formed together with the passivation film 25. Thereby, the formation process of the protective film 24 is simplified. Hereinafter, the process of forming the protective film 24 will be described.
  • a photosensitive resin layer for forming a passivation film is formed on the glass substrate 20 in which the through via 21, the metal layer constituting the glass substrate side electrode 22 and the positioning hole 23 are formed. Since the through via 21 is formed in the glass substrate 20, the photosensitive resin layer is formed by vacuum laminating the film-like photoresist material instead of applying the liquid photoresist material to the glass substrate 20. Formed on the glass substrate 20. A photosensitive resin layer can also be formed on the inner surface of the positioning hole 23 by vacuum lamination. At this time, if the film is heated, a resin layer is formed along the shape of the positioning hole 23, and a gap is hardly formed between the film and the positioning hole 23.
  • the pattern is exposed on the photosensitive resin layer of the glass substrate 20.
  • the pattern is exposed so that a window exposing the glass substrate side electrode 22 is formed on the metal layer.
  • the annular pattern is exposed so that an annular film is formed along the edge of the positioning hole 23.
  • the outer diameter of the annular pattern is larger than the diameter of the positioning hole 23, and the inner diameter of the annular pattern is smaller than the diameter of the positioning hole 23. For example, when the opening diameter of the positioning hole 23 is 500 ⁇ m, an annular pattern having an outer diameter of 550 ⁇ m and an inner diameter of 450 ⁇ m is formed. If the glass substrate 20 is developed after the pattern exposure, a protective film 24 is formed on the glass substrate 20 together with the passivation film 25.
  • the passivation film 25 and the protective film 24 are formed of a photosensitive resin (polyimide resin).
  • the passivation film 25 and the protective film 24 may be formed from a non-photosensitive resin layer.
  • the protective film 24 may be formed of a resin different from the passivation film 25.
  • the protective film 24 is made of resin, but the protective film 24 may be a metal film.
  • the protective film 24 may be a metal film.
  • the protective film 24 may be peeled off from the glass substrate 20 due to a difference in thermal expansion coefficient between glass and metal.
  • the positioning pin 43 is inserted into the positioning hole 23 to position the positioning hole 23 and the positioning pin.
  • the protective film is sandwiched between the protective film 43 and the protective film 43, the protective film is allowed to peel from the glass substrate 20.
  • copper, gold, nickel, or the like is employed as a material for the metal film serving as the protective film.
  • the metal film is made of gold having excellent ductility, it is preferable from the viewpoint of protecting the positioning holes 23 and the positioning pins 43.
  • the metal film serving as a protective film may be a single layer or a multilayer.
  • the glass substrate side electrode 22 and its wiring are formed in the lower surface of the glass substrate 20 in which the positioning hole 23 is formed. Therefore, when a wiring is formed on the lower surface of the glass substrate 20, a protective film may be formed together with the wiring. Thereby, the formation process of a protective film can be simplified.
  • the metal film is made of a highly conductive metal.
  • the protective film 24 is formed along the edge of the positioning hole 23, and the protective film 24 is not formed on the bottom of the positioning hole 23. Since the protective film 24 is not formed on the bottom of the positioning hole 23, the top of the positioning pin 43 is difficult to contact, and the positioning accuracy is improved.
  • the protective film 24 is not formed on the bottom of the positioning hole 23 by exposing the glass substrate 20 to the annular pattern in the exposure process. For this reason, it is easy to remove the protective film 24 at the bottom of the positioning hole 23.
  • the passivation film 25 is thicker than the glass substrate side electrode 22.
  • the thickness of the metal layer constituting the glass substrate side electrode 22 is 20 ⁇ m, for example, the thickness of the passivation film 25 is set to 40 ⁇ m, for example.
  • the protective film 24 is formed together with the passivation film 25, the protective film 24 has the same thickness as that of the passivation film 25, for example, 40 ⁇ m.
  • the outer diameter of the protective film 24 is larger than the opening diameter of the positioning hole 23, a part of the protective film 24 is formed on the surface of the glass substrate 20.
  • a protective film 24 having a width of 50 ⁇ m is formed around the positioning hole 23 on the surface of the glass substrate 20. If the protective film 24 formed on the surface of the glass substrate 20 is sandwiched between the upper surfaces of the optical path changers 40, 40 ⁇ m (the thickness of the protective film 24) between the lower surface of the glass substrate 20 and the upper surface of the optical path changer 40. There is a gap. However, there are times when it is desirable to narrow this gap as much as possible.
  • the depth D (see FIG. 6A) of the recess 43B around the base of the positioning pin 43 is set larger than the thickness of the protective film 24 (D> 40 ⁇ m).
  • the width W (see FIG. 6A) of the recess 43B of the positioning pin 43 is set larger than the width of the protective film 24 formed on the surface of the glass substrate 20 (W> 50 ⁇ m).
  • the glass substrate 20 is borosilicate glass (linear expansion coefficient: 3.0 to 3.6 ⁇ 10 ⁇ 6 / ° C.), and the optical path converter 40 is a polyetherimide resin (linear expansion coefficient: 4). 7 to 5.6 ⁇ 10 ⁇ 5 / ° C.), the linear expansion coefficient of the optical path changer 40 is 10 times larger than the linear expansion coefficient of the glass substrate 20, so that positioning is performed when a temperature change occurs.
  • the edge of the hole 23 receives a large force from the positioning pin 43. Therefore, even if a temperature change occurs when the positioning hole 23 and the positioning pin 43 are fitted, the force that the edge of the positioning hole 23 receives from the positioning pin 43 by the protective film 24 formed on the edge of the positioning hole 23 is Alleviated. Furthermore, since the area where the edge of the positioning hole 23 receives force is wide (because the area receiving stress is large), the stress is dispersed, and the breakage of the glass substrate 20 and the deformation of the positioning pin 43 are suppressed.
  • FIG. 11 is an explanatory diagram of the second embodiment.
  • the protective film 24 is formed along the edge of the positioning hole 23, and the protective film 24 is not formed on the bottom of the positioning hole 23.
  • the protective film 24 is formed on the inner surface of the positioning hole 23, and the protective film 24 is also formed on the bottom of the positioning hole 23.
  • the protective film 24 is formed on the inner surface of the positioning hole 23. Damage to the glass substrate 20 can be further suppressed.
  • the protective film 24 is also formed at the bottom of the positioning hole 23 because the height of the positioning pin 43 and the thickness of the protective film 24 are set so that the top of the positioning pin 43 does not contact the protective film 24. It is necessary to set it. For this reason, the protective film 24 may be formed so that the thickness of the protective film 24 becomes thinner toward the back of the positioning hole 23.
  • FIG. 12 is an explanatory diagram of the third embodiment.
  • the protective film 24 is formed together with the passivation film 25.
  • the protective film 24 is made of the same material as the passivation film 25 and has the same thickness as the passivation film 25.
  • the protective film 26 of the third embodiment is made of a material different from that of the passivation film 25.
  • the protective film 26 can be formed independently of the passivation film 25, the material and film thickness can be freely set. For this reason, the material of the protective film 26 can be selected without considering the adhesiveness with the glass substrate side electrode 22.
  • FIG. 13A is an explanatory diagram of the fourth embodiment.
  • the edge of the positioning hole 23 is chamfered, and the tapered surface 23 ⁇ / b> A is formed on the edge of the positioning hole 23. It is desirable that the tapered surface 23 ⁇ / b> A has the same angle as the tapered surface 43 ⁇ / b> A of the positioning pin 43. Then, when the positioning pin 43 is fitted into the positioning hole 23 via the protective film 27 in a state where the protective film 27 is previously formed on the tapered surface 23A of the positioning hole 23 of the glass substrate 20, the configuration as shown in the figure is obtained. .
  • the protective film 27 is in contact with both sides of the tapered surface 43A of the positioning pin 43 and the tapered surface 23A of the positioning hole 23 (surface that has been chamfered). As a result, the protective film 27 is sandwiched between the positioning hole 23 and the positioning pin 43.
  • the region receiving the force from the positioning pin 43 is further widened (the area receiving the stress is increased). Thereby, the stress is dispersed, and the damage of the glass substrate 20 and the deformation of the positioning pins 43 are further suppressed.
  • FIG. 13B is an explanatory diagram of a modification of the fourth embodiment. Also in the modified example, the edge of the positioning hole 23 is chamfered. In the modification, the chamfered surface is not a tapered surface but a curved surface 23B.
  • the protective film 28 is in contact with both sides of the tapered surface 43A of the positioning pin 43 and the curved surface 23B (surface subjected to chamfering processing) of the positioning hole 23. As a result, the protective film 27 is sandwiched between the positioning hole 23 and the positioning pin 43.
  • the region receiving the force from the positioning pin 43 is further widened (the area receiving the stress is widened). Thereby, the stress is dispersed, and the damage of the glass substrate 20 and the deformation of the positioning pins 43 are further suppressed.
  • the protective film 24 at the portion that contacts both the positioning hole 23 and the positioning pin tends to be thin due to the influence of the edge of the positioning hole 23.
  • a protective film is formed in the surface where the chamfering process was performed, it can suppress that the protective film of the location which contacts both the positioning hole 23 and the positioning pin 43 becomes thin. Thereby, the stress is further relaxed, and the breakage of the glass substrate 20 and the deformation of the positioning pins 43 are further suppressed.
  • the protective film 24 is formed on the entire circumference along the edge of the positioning hole 23 (see FIG. 7A). However, the protective film may not be formed on the entire circumference of the positioning hole 23.
  • FIG. 14 is an explanatory diagram of the fifth embodiment, and shows the periphery of the positioning hole 23 as viewed from below.
  • the protective film 29 is formed along the edge of the positioning hole 23, but is not formed on a part of the edge of the positioning hole 23.
  • the protective film 29 comes into contact with both the positioning hole 23 and the positioning pin 43 at the edge of the positioning hole 23.
  • the positioning pin 43 is fitted into the positioning hole 23 via the protective film 29. Thereby, breakage of the glass substrate 20 and deformation of the positioning pins 43 can be suppressed.
  • the protective film 29 is not formed on a part of the edge of the positioning hole 23, the internal space of the positioning hole 23 is not sealed by the positioning pin 43.
  • the portion where the protective film 29 is not formed serves as a vent between the inside and the outside of the positioning hole 23, so that the internal pressure of the positioning hole 23 rises and a load is not applied to the glass substrate 20. .
  • This has a special effect in a high temperature environment.
  • the protective film 24 is formed in advance on the edge of the positioning hole 23 of the glass substrate 20.
  • a protective film may be formed in advance on the positioning pin 43 side.
  • FIG. 15 is an explanatory diagram of the sixth embodiment.
  • the sixth embodiment no protective film is formed in the positioning hole 23, and the protective film 44 is formed in advance on the tapered surface 43 ⁇ / b> A of the positioning pin 43. Even if such a positioning pin 43 is inserted into the positioning hole 23, the protective film 44 comes into contact with both the positioning hole 23 and the positioning pin 43 at the edge of the positioning hole 23. As a result, also in the sixth embodiment, the positioning pin 43 is fitted into the positioning hole 23 via the protective film 44. Thereby, breakage of the glass substrate 20 and deformation of the positioning pins 43 can be suppressed.
  • the sixth embodiment may be realized by applying an adhesive to be the protective film 44 to the tapered surface 43A of the positioning pin 43.
  • an adhesive to be the protective film 44 to the tapered surface 43A of the positioning pin 43.
  • the positioning hole 23 described above is a deep non-through hole formed by sandblasting, but may be a positioning hole formed by another processing method or a positioning hole of another shape.
  • a damage layer is formed in the positioning hole, which is effective in such a case.
  • the positioning hole may be a hole having a constant diameter as shown in FIG.
  • the positioning pin may have a conical shape as shown in FIG. 5B or a cylindrical shape as shown in FIG. 5C instead of the truncated cone shape.
  • the positioning hole may be a through hole instead of a non-through hole.
  • FIG. 16 is an explanatory view in which a positioning pin 43 ′′ having a cylindrical shape is fitted into a positioning hole 23 ′′ (through hole) having a constant diameter.
  • the positioning hole 23 ′′ is formed by drilling and has a damage layer on the inner surface.
  • the positioning pin 43 ′′ is arranged so that the protective film 24 ′′ contacts both the positioning hole 23 ′′ and the positioning pin 43 ′′. Is fitted in the positioning hole 23 "via the protective film 24". This makes the region receiving the force from the positioning pin 43 wider than the case without the protective film 24 "(area receiving the stress). Therefore, the stress is dispersed, and the breakage of the glass substrate 20 and the deformation of the positioning pin 43 ′′ are suppressed.
  • the positioning hole is a through hole
  • the degree of freedom of component mounting and wiring on the surface of the glass substrate 20 is reduced.
  • a gap is required between the positioning hole 23 ′′ and the positioning pin 43 ′′, so that a positioning error is generated by this gap.
  • the positioning pin 43 is formed in the optical path changer 40.
  • the optical component on which the positioning pin 43 is formed is not limited to a component that supports the optical fiber 50.
  • Other optical components may be used as long as they are optical components that align with a positioning pin with respect to a glass substrate having positioning holes.
  • the optical path converter (optical component) is made of resin.
  • the optical component having the positioning pin may not be made of resin.
  • the linear expansion coefficient of the optical path converter is different from the linear expansion coefficient of the glass substrate, but the linear expansion coefficients of both may be the same.
  • the protective film is particularly effective in this case.
  • the QSFP type optical module has been described.
  • the present invention is not limited to this type. It is also possible to apply to other types of optical modules (for example, CXP type and SFP type).

Abstract

【課題】位置決め穴の形成されたガラス基板の破損や位置決めピンの変形を抑制する。 【解決手段】本発明は、光電変換素子を搭載し、前記光電変換素子から発光された光又は前記光電変換素子に受光される光を透過可能であり、位置決め穴の形成されたガラス基板と、位置決めピンの形成された光学部品と、を備え、保護膜が前記位置決め穴及び前記位置決めピンに接触するように前記位置決めピンが前記保護膜を介して前記位置決め穴に嵌合することによって、前記ガラス基板と前記光学部品とが位置決めされていることを特徴とする光モジュールである。

Description

光モジュール
 本発明は、光モジュールに関する。
 光ファイバを用いた高速光通信の分野では、電気信号と光信号とを相互に変換する部品として光トランシーバが用いられている。光トランシーバを取り扱う業界団体で取り決められたMSA(Multi Source Agreement)により、プラガブル光トランシーバの仕様(形状・寸法・ピンアサインなど)が標準化されている。これらのプラガブル光トランシーバによれば、通信機器側(ホスト側)のメイン基板上にケージが設置され、光電変換素子や回路基板を内蔵した光モジュールがケージに着脱可能に挿入される。光モジュールがケージに挿入されると、ケージ内の電気インターフェースコネクタに対して光モジュール内の回路基板が電気的・機械的に接続される。これにより、光ファイバで送受される光信号と、通信機器側のメイン基板で処理される電気信号が、光モジュール内の光電変換素子や回路基板によって相互に変換可能になる。
 特許文献1には、位置決め穴の形成された基板に位置決めピンを挿入して光軸を位置合わせした光モジュールが記載されている。
特開2005-17684号公報
 特許文献1では、基板にポリイミド樹脂が用いられている。但し、光電変換素子を実装する基板をガラス基板にすることによって、光を透過可能にしつつ、熱による変質を抑制することが考えられる。
 ガラス基板に位置決め穴を加工した場合、位置決め穴に微小な凹凸(例えば「チッピング」と呼ばれる微小な欠け等)やクラックなどのダメージ層が形成される。このため、ガラス基板の位置決め穴のダメージ層に位置決めピンが接触すると、ダメージ層がピンからの応力を受け、微小な凹凸やクラックを起点にしてガラス基板が破損するおそれがある。若しくは、位置決め穴に微小な凹凸があると、位置決めピンを変形させ、位置決め精度が低下するおそれもある。
 本発明は、位置決め穴の形成されたガラス基板の破損や位置決めピンの変形を抑制することを目的とする。
 上記目的を達成するための主たる発明は、光電変換素子を搭載し、前記光電変換素子から発光された光又は前記光電変換素子に受光される光を透過可能であり、位置決め穴の形成されたガラス基板と、位置決めピンの形成された光学部品と、を備え、保護膜が前記位置決め穴及び前記位置決めピンに接触するように前記位置決めピンが前記保護膜を介して前記位置決め穴に嵌合することによって、前記ガラス基板と前記光学部品とが位置決めされていることを特徴とする光モジュールである。
 本発明の他の特徴については、後述する明細書及び図面の記載により明らかにする。
 本発明によれば、位置決め穴の形成されたガラス基板の破損や位置決めピンの変形を抑制することができる。
図1は、プラガブル光トランシーバの説明図である。 図2Aは、光モジュール1のハウジング1A内の回路基板10等を斜め上から見た斜視図である。図2Bは、回路基板10等を斜め下から見た斜視図である。 図3は、ケージ2に挿入された光モジュール1の概略構成図である。 図4Aは、第1実施形態の位置決め穴23の説明図である。図4Bは、参考例の位置決め穴23’の説明図である。 図5Aは、第1実施形態の位置決めピン43の説明図である。図5Bは第1参考例の位置決めピン43’の説明図である。図5Cは第2参考例の位置決めピン43”の説明図である。 図6Aは、第1実施形態の位置決めピン43の根元近傍の拡大図である。図6Bは、参考例の位置決めピン43の根元近傍の拡大図である。 図7Aは、図7Bの非貫通穴に形成した保護膜の拡大写真である。図7Bは、サンドブラスト加工でガラス基板20に形成した非貫通穴の拡大写真である。 図8Aは、図7Aを2値化処理した図である。図8Bは、図7Bを2値化処理した図である。 図9は、位置決めピン43の塑性変形による位置ズレの説明図である。 図10は、第1実施形態の位置決め穴23及び位置決めピン43の周辺と、ガラス基板側電極22の周辺の拡大断面図である。 図11は、第2実施形態の説明図である。 図12は、第3実施形態の説明図である。 図13Aは、第4実施形態の説明図である。図13Bは、第4実施形態の変形例の説明図である。 図14は、第5実施形態の説明図であり、位置決め穴23の周辺を下から見た図である。 図15は、第6実施形態の説明図である。 図16は、径が一定の位置決め穴23”(貫通穴)に寸胴形状の位置決めピン43”を嵌合した説明図である。
 後述する明細書及び図面の記載から、少なくとも以下の事項が明らかとなる。
 光電変換素子を搭載し、前記光電変換素子から発光された光又は前記光電変換素子に受光される光を透過可能であり、位置決め穴の形成されたガラス基板と、位置決めピンの形成された光学部品と、を備え、保護膜が前記位置決め穴及び前記位置決めピンに接触するように前記位置決めピンが前記保護膜を介して前記位置決め穴に嵌合することによって、前記ガラス基板と前記光学部品とが位置決めされていることを特徴とする光モジュールが明らかとなる。このような光モジュールによれば、位置決め穴の形成されたガラス基板の破損や位置決めピンの変形を抑制することができる。
 前記ガラス基板の前記位置決め穴の縁に予め前記保護膜が形成された状態で、前記位置決めピンが前記保護膜を介して前記位置決め穴に嵌合することが望ましい。これにより、保護膜が前記位置決め穴及び前記位置決めピンに接触するように前記位置決めピンが前記保護膜を介して前記位置決め穴に嵌合することを実現できる。
 前記位置決め穴の縁における前記ガラス基板の凹凸が前記保護膜によって被覆され、前記位置決め穴の開口が前記保護膜から構成されていることが望ましい。これにより、位置決め穴の形成されたガラス基板の破損や位置決めピンの変形を更に抑制できる。
 前記保護膜は、樹脂膜であることが望ましい。これにより、応力を受ける領域が広くなり、これによりガラス基板の破損や位置決めピンの変形を抑制できる。
 前記保護膜は、前記ガラス基板のパッシベーション膜とともに形成された樹脂膜であることが望ましい。これにより、保護膜の形成工程が容易になる。
 前記ガラス基板には貫通ビアが形成されており、前記保護膜は、前記ガラス基板にフィルムを真空ラミネートする工程を経て形成されることが望ましい。これにより、位置決め穴の形状に沿ってフィルムによる層を形成できる。
 前記保護膜は、金属膜であることが望ましい。これにより、位置決め穴の縁における保護膜の厚さを確保できる。
 前記保護膜は、前記ガラス基板の配線とともに形成された金属膜であることが望ましい。これにより、保護膜の形成工程が容易になる。
 前記位置決め穴は非貫通穴であり、前記位置決め穴の底には前記保護膜が形成されていないことが望ましい。これにより、位置決めピンの頂部が接触しにくくなり、位置決め精度が向上する。
 前記位置決め穴の形成された前記ガラス基板の面に感光性の樹脂層を形成し、前記樹脂層を露光処理および現像処理することによって、前記保護膜が形成されることが望ましい。これにより、位置決め穴の底の保護膜の除去が容易になる。
 前記位置決め穴の内面に前記保護膜が形成されていることが望ましい。これにより、ガラス基板の損傷をより抑制することができる。
 前記光学部品には、前記位置決めピンの根元の周りに凹部が形成されており、前記ガラス基板の表面に形成された前記保護膜は、前記ガラス基板と前記光学部品の前記凹部との間に配置されることが望ましい。これにより、ガラス基板と光学部品との隙間が保護膜の厚さの影響を受けずに済む。
 前記位置決め穴は、奥の窄まった非貫通穴であり、前記位置決めピンは、円錐台形状であることが望ましい。これにより、ガラス基板と光学部品とを高精度に位置決めできる。
 前記位置決めピンはテーパ面を有しており、前記位置決め穴の縁に面取り加工が施されており、前記保護膜が、前記位置決めピンの前記テーパ面と、前記位置決め穴の前記面取り加工が施された面に接触していることが望ましい。これにより、前記保護膜と前記位置決め穴の縁との接触面積が広くなり、ガラス基板の損傷を抑制できる。
 前記ガラス基板の線膨張率は、前記光学部品の線膨張率と異なることが望ましい。このような場合に特に有効である。
 ===第1実施形態===
 <全体構成>
 図1は、プラガブル光トランシーバの説明図である。なお、光送信器と光受信機の両方を備えるものを光トランシーバと呼ぶことがあるが、ここでは一方のみ備えるものも光トランシーバと呼ぶ。図中のプラガブル光トランシーバは、MSA(Multi Source Agreement)で規定されたQSFPタイプ(QSFP:Quad Small Form Factor Pluggable)のものである。プラガブル光トランシーバは、光モジュール1と、ケージ2とを有する。
 図中には、2種類の光モジュール1が描かれている。図に示すように、光モジュール1には、光ファイバ(コードを含む)が固定されていても良いし、着脱可能でも良い。図中の2つのケージ2のうちの一方は、ヒートシンク3が取り外されるとともに、内部が見えるように一部破断されて、描かれている。
 以下の説明では、図1に示すように、前後、上下及び左右を定義する。すなわち、光モジュール1を挿入するケージ2の挿入口側を「前」とし、逆側を「後」とする。光モジュール1においては、光ファイバ(コードを含む)が延び出る側を「前」とし、逆側を「後」とする。また、ケージ2が設けられるメイン基板から見て、ケージ2が設けられる面の側を「上」とし、逆側を「下」とする。また、前後方向と上下方向と直交する方向を「左右」とする。
 通信機器側(ホスト側)のメイン基板上にはケージ2が設置されている。ケージ2は、例えばデータセンター内のブレードサーバのメイン基板上に設けられる。
 光モジュール1は、ケージ2に着脱可能に挿入される。光モジュール1は、ハウジング1A内に光電変換素子31や回路基板10を内蔵しており、光ファイバで送受される光信号と、通信機器側のメイン基板で処理される電気信号とを相互に変換する。
 ケージ2は、光モジュール1を着脱可能に収容する。ケージ2は、光モジュール1を挿入するための挿入口を前側に備え、前後方向に長い断面矩形の箱形部材である。このケージ2は、前側を開放するように金属板を折り曲げ加工して形成される。金属板が断面矩形状に折り曲げ加工されることにより、光モジュール1を収容するための収容部がケージ2内に形成されている。ケージ2の内部の後側には、コネクタ2Aが設けられている。光モジュール1がケージ2に挿入されると、ケージ2内のコネクタ2Aに対して光モジュール1内の回路基板が電気的・機械的に接続される。これにより、光モジュール1とメイン基板との間で電気信号が伝送される。
 ケージ2の上面には開口部があり、その開口部を塞ぐようにヒートシンク3が取り付けられている。ヒートシンク3は、ケージ2に挿入された光モジュール1の熱を外部に放熱するための多数の放熱フィン(放熱ピン)を備えている。
 <光モジュール1の内部構成>
 図2Aは、光モジュール1のハウジング1A内の回路基板10等を斜め上から見た斜視図である。図2Bは、回路基板10等を斜め下から見た斜視図である。図3は、ケージ2に挿入された光モジュール1の概略構成図である。
 図に示すように、光モジュール1は、ハウジング1A内に、回路基板10と、ガラス基板20と、光路変換器40とを備えている。
 回路基板10は、電子回路を構成する板状のプリント基板である。回路基板10の後側端部には、ケージ2内のコネクタ2A(コネクタソケット)と接続するための接続部11(カードエッジコネクタ)が形成されている。接続部11は回路基板10の上下両面に形成されており、多数の端子が左右方向に並んで形成されている。
 回路基板10には、光路変換器40を収容するための収容窓12が形成されている。また、この収容窓12を囲むように、回路基板10の上面には回路基板側電極13が形成されている。回路基板10の上面には、収容窓12を塞ぐように、ガラス基板20が搭載されている。言い換えると、ガラス基板20の下側に回路基板10の収容窓12が位置しており、ガラス基板20の下面で回路基板10の収容窓12が塞がれている。ガラス基板20の下面にはガラス基板側電極22が形成されており、回路基板側電極13とガラス基板側電極22とを接続しつつ、回路基板10の収容窓12を塞ぐようにガラス基板20を回路基板10に搭載している。
 収容窓12は、回路基板10に形成された貫通穴(開口)である。この収容窓12に光路変換器40の上部が挿入されている。光路変換器40の下部は収容窓12から下側に突出しており、この突出した部分から前側に光ファイバ50が延び出ている。但し、光路変換器40が回路基板10より薄い場合、光路変換器40の下部は収容窓12から下側に突出しない。この場合、反射部42が光を鈍角に反射するように構成されると、光路変換器40から光ファイバ50を引き出しやすくなる。
 ガラス基板20は、光を透過可能な透明なガラス製基板である。ガラス基板20は、例えば石英ガラスやホウ珪酸ガラス等のガラス材料から構成され、ここではホウ珪酸ガラスが採用されている。ガラス基板20には、回路基板10の収容窓12の形状に沿って、複数の貫通ビア21が形成されている。
 ガラス基板20の下面(発光部31を搭載する搭載面とは反対側の面)には、ガラス基板側電極22が形成されている。ガラス基板側電極22は、貫通ビア21の外側に形成されている。また、ガラス基板側電極22は、回路基板10の収容窓12の外側に沿うように、形成されている。ガラス基板側電極22は、回路基板10の上面の回路基板側電極13と電気的に接続されることになる。貫通ビア21は、ガラス基板側電極22と発光部31及び駆動素子32との間の配線に用いられている。
 ガラス基板20の下面には、光路変換器40を位置決めするための2つの位置決め穴23が形成されている。この位置決め穴23は、ガラス基板20を貫通しておらず、非貫通穴となるように形成されている。位置決め穴23を非貫通穴にすることによって、位置決め穴23の上側に部品(例えば駆動素子32)を搭載したり、その部品への配線を配置したりすることが可能になり、ガラス基板20の上面における部品搭載や配線の自由度が高くなる。また、この結果、ガラス基板20の小型化も可能となる。
 ガラス基板20の上面には、発光部31が実装されている。また、発光部31を駆動するための駆動素子32も、ガラス基板20の上面(発光部31の搭載面)に実装されている。発光部31と駆動素子32は、貫通ビア21の内側に配置されている。言い換えると、発光部31と駆動素子32は、回路基板10の収容窓12の上側に位置するように、ガラス基板20の上面に実装されている。
 発光部31は、光信号と電気信号とを変換する光電変換素子である。ここでは、発光部31として、基板に垂直な光を出射するVCSEL(Vertical Cavity Surface Emitting Laser:垂直共振器面発光レーザ)が採用されている。なお、光電変換素子として、光信号を電気信号に変換する受光部がガラス基板20に実装されても良い。また、発光部と受光部の両方がガラス基板20に実装されても良い。
 発光部31の発光部側電極31Aと発光面31Bは、下面(ガラス基板20の側の面)に形成されている。発光部31は、ガラス基板20にフリップチップ実装されており、ガラス基板20に向かって光を照射する。発光部31の発光部側電極31Aと発光面31Bが同じ側(ガラス基板20の側となる下面)に位置しているため、発光部31をガラス基板20にフリップチップ実装すれば、発光面31Bがガラス基板20の側を向き、発光面31Bが外部に露出しないことになる。
 なお、図3には発光部31の発光面31Bが1つ描かれているが、発光部31は、紙面と垂直な方向に並ぶ複数(例えば4つ)の発光面31Bを備えている。
 光路変換器40は、発光部31から照射された光の光路を変換する光学部品である。また、光路変換器40は、光ファイバ50の一端を支持し、発光部31と光ファイバ50との間の光路を透明基板と共に形成する支持部材としても機能する。光路変換器40は、ガラス基板20に対して位置決めされて取り付けられる部材である。光路変換器40は、回路基板10の下側から収容窓12に挿入されている。
 光路変換器40は、レンズ部41と、反射部42とを備えている。レンズ部41は、光路変換器40の上面に形成されている。反射部42は、光路変換器40の下面に形成されている。
 レンズ部41は、光を集束させられるように凸レンズ状に形成された部位である。但し、レンズ部41は、光路変換器40の上面から突出しないように、上面から窪んだ凹部に形成されている。レンズ部41を光路変換器40の上面から窪ませて形成することによって、光路変換器40の上面とガラス基板20の下面とを面接触させることが可能になる。レンズ部41は、発光部31の照射した光を集束させて反射部42に導き、光を光ファイバ50に入射させる。ガラス基板20に受光部が実装されている場合には、レンズ部41は、反射部42から反射された光を受光部に集束させることになる。レンズ部41は、ガラス基板20を挟んで発光部31の発光面31Bと対向している。
 反射部42は、光を反射させるための部位である。発光部31から照射された光の光軸は上下方向(回路基板10やガラス基板20などの基板に垂直な方向)であるが、反射部42で反射された光の光軸は前後方向(回路基板10やガラス基板20などの基板に平行な方向)になる。反射部42で反射された光は、光路変換器40に取り付けられた光ファイバ50に入射する。ガラス基板20に受光部が実装されている場合には、反射部42は、光ファイバ50から出射した光を反射してレンズ部41に導き、受光部に集束させることになる。
 なお、図中の反射部42は、反射光の光軸が前後方向(回路基板10やガラス基板20などの基板に平行な方向)になるように描かれている。但し、反射部42は、90度に光を反射するものに限られない。反射部42が光を鈍角(例えば100度程度)に反射するように構成されていても良い。光軸が上下方向(回路基板10やガラス基板20などの基板に垂直な方向)であった光が前後方向(回路基板10やガラス基板20などの基板に平行な方向)の成分を持つように反射されれば良い。例えば、光ファイバ50の根元が光路変換器40の比較的上部にある場合や、光路変換器40の厚さが回路基板10の厚さよりも薄い場合に、光路変換器40から光ファイバ50を引き出しやすくするため、反射部42が光を鈍角に反射するように構成すると良い。
 光ファイバ50は、光路変換器40のレンズ部41及び反射部42に対して所定の位置関係になるように位置合わせされて取り付けられている。
 図中の光路変換器40には、光が入射する部位だけにレンズ部41が設けられている。但し、光が出射する部位にもレンズ部を設け、光路変換器40が2つのレンズ部を備えても良い。そして、2つのレンズ部をコリメータレンズとすれば、光路変換器40の中で平行光を伝搬させることができる。
 光路変換器40の上面には、ガラス基板20の位置決め穴23に挿入するための2つの位置決めピン43が突出して形成されている。光路変換器40の位置決めピン43がガラス基板20の位置決め穴23に嵌合することによって、光路変換器40のレンズ部41の光軸とガラス基板20に実装された発光部31の光軸との位置合わせが行われる。
 光路変換器40は、樹脂により一体成形されている。つまり、光路変換器40のレンズ部41、反射部42及び位置決めピン43は、樹脂により一体的に形成されている。また、光路変換器40は、光を透過可能な樹脂により成型され、ここではポリエーテルイミド樹脂が用いられている。
 なお、光路変換器40は、反射部42の寸法を確保するため、また、光ファイバ50の端部を接続するための寸法を確保するため、他と比べると厚い部品になっている。そして、厚みのある光路変換器40の上部を収容窓12の中に配置させることによって、回路基板10、ガラス基板20及び光路変換器40を単に積み重ねて配置した場合(若しくは、中継基板を介してガラス基板20及び光路変換器40を回路基板10に取り付けた場合)と比べて、光モジュールの低背化が実現されている。
 <位置決め穴23と位置決めピン43の形状について>
 図4Aは、第1実施形態の位置決め穴23の説明図である。図4Bは、参考例の位置決め穴23’の説明図である。第1実施形態では、ガラス基板20に位置決め穴23として非貫通穴を形成している。非貫通穴にする理由は、位置決め穴23を非貫通穴にすることによって、ガラス基板20の上面における部品搭載や配線の自由度が高くなるからである。
 ガラス基板20に非貫通穴を形成する方法として、ドリルによる加工方法が考えられる。ドリルによって非貫通穴を形成した場合には、図4Bに示すように、深さによらず径が一定の穴がガラス基板20’に形成される。但し、ドリルによる加工は、コストがかかることがある。そこで、第1実施形態では、低コストに非貫通穴を形成できるサンドブラスト加工を採用している。但し、サンドブラスト加工によって非貫通穴を形成した場合、奥の窄まった形状になる(図4A参照)。
 図5Aは、第1実施形態の位置決めピン43の説明図である。図5Bは第1参考例の位置決めピン43’の説明図である。図5Cは第2参考例の位置決めピン43”の説明図である。
 図5Cに示す第2参考例の位置決めピン43”は、ピン径が一定の円柱形状(寸胴形状)である。このような円柱形状の位置決めピン43”の場合、図4Aのような奥の窄まった位置決め穴23に挿入して位置決めを行うことができない。また、仮に位置決め穴23が図4Bのような形状の場合には、図5Cに示す第2参考例の位置決めピン43”を挿入して位置決めを行うことは可能かもしれないが、この場合、はめあい公差により、位置決め穴23’と位置決めピン43”との間に隙間が必要であるため、この隙間の分だけ位置決め誤差が生じてしまう。
 図5Bに示す第1参考例の位置決めピン43’は、円錐形状になっている。このような形状の位置決めピン43’を図4Aのような奥の窄まった位置決め穴23に挿入すると、位置決めピン43’の先端が位置決め穴23の底に接触する可能性があり、この場合には位置決めを行うことができない。なお、第1参考例の位置決めピン43’の高さを低くして、位置決めピン43’の先端が位置決め穴23の底に接触しないように構成することは可能である。但し、この場合、テーパ面の角度が小さくなってしまうため(位置決めピン43’が全体的に平坦な形状になってしまうため)、位置決め穴23へ挿入し難くなったり、位置決め穴23への嵌入性が悪くなったりする等の結果、光軸がずれるおそれが生じてしまう。
 これに対し、第1実施形態の位置決めピン43は、図5Aに示すように、円錐台形状になっている。位置決めピン43が円錐台形状であるため、図4Aのような奥の窄まった位置決め穴23に挿入しても、位置決めピン43の先端が位置決め穴23の底に接触し難い。また、円錐台形状のテーパ面43Aの角度を大きくしても、位置決めピン43の先端が位置決め穴23の底に接触し難い。
 また、第1実施形態の位置決めピン43によれば、円錐台形状のテーパ面43Aが位置決め穴23の開口と隙間無く接触できるので(位置決め穴23の縁と隙間無く接触できるので)、位置決めピン43の軸方向(位置決め穴23の軸方向)に垂直な方向の位置決め誤差を抑制でき、ガラス基板20側の光軸(発光部31から照射される光の光軸と、光路変換器40側の光軸(レンズ部41の光軸)との位置ずれを抑制できる。なお、図5Aに示す円錐台形状の位置決めピン43(若しくは円錐形状の位置決めピン43’)を採用した場合、位置決めピン43及び位置決め穴23の公差によって位置決めピン43の軸方向(位置決め穴23の軸方向)の位置ずれは生じ得るが、この方向の位置ずれによってガラス基板20側の光軸(発光部31から照射される光の光軸と、光路変換器40側の光軸(レンズ部41の光軸)との位置ずれは生じないため、光の損失は小さいので、この方向の位置ずれは許容される。
 上記の理由から、第1実施形態では、図4Aに示す位置決め穴23(奥の窄まった非貫通穴)と、図5Aに示す円錐台形状の位置決めピン43が採用されている。
 図6Aは、第1実施形態の位置決めピン43の根元近傍の拡大図である。図6Bは、参考例の位置決めピン43の根元近傍の拡大図である。
 一般的に、樹脂を成型する際に樹脂が収縮するため、樹脂成型品の表面形状は、金型の内面の形状をそのまま反映するわけではない。例えば、成型品の角部が丸みを帯びることがある。既に説明したように、第1実施形態の光路変換器40は透明樹脂によって一体的に成形されており、位置決めピン43も光路変換器40の他の部位と一体的に成形されている。そして、図6Bに示す参考例のように、位置決めピン43の根元の角部(図中の矢印で示す部分)が丸みを帯びてしまうことがある。この丸みは、位置決めピン43の周囲に均等に形成されるわけではないため(位置決めピン43の根元の丸みは制御できないため)、この部分が位置決め穴23に接触すると、位置決め穴23や位置決めピン43の軸方向に垂直な方向の位置ずれの要因になり、ガラス基板20側の光軸(発光部31から照射される光の光軸と、光路変換器40側の光軸(レンズ部41の光軸)との位置ずれの要因になり得る。
 そこで、図6Aに示すように、第1実施形態では、位置決めピン43の根元の回りを囲むように環状に凹部43Bが形成されている。更に、凹部43Bの内側の側壁面は、円錐台形状の位置決めピン43のテーパ面43Aの延長面になっている。つまり、位置決めピン43のテーパ面43Aが光路変換器40の上面よりも内側(位置決めピン43の突出する側と反対側)まで形成されている。これにより、位置決めピン43の根元の角部が丸みを帯びても、その部分は光路変換器40の上面よりも内側に位置することになる。このようにして、位置決めピン43の根元の丸みを帯びた角部が位置決め穴23に接触することを防いでいる。
 <位置決め穴23のダメージ層と保護膜について>
 図7Bは、サンドブラスト加工でガラス基板20に形成した非貫通穴の拡大写真である。また、図8Bは、図7Bを2値化処理した図である。下図は、上図の枠内を拡大したものであり、穴の縁の拡大写真である。図に示すように、ガラス基板20にサンドブラスト加工で位置決め穴23を形成した場合、位置決め穴23の内面にチッピングと呼ばれる微小な凹凸が形成される。なお、図示されていないが、ガラス基板20に位置決め穴23を加工した場合、微小な凹凸の他にクラックなどが形成されることもある。以下の説明では、微小な凹凸やクラックなどの形成されている領域を「ダメージ層」と呼ぶことがある。ダメージ層は、サンドブラスト加工に限らず、他の研磨加工や切削加工(例えばドリル加工)をガラス基板20に施した場合にも形成される。
 円錐台形状の位置決めピン43が位置決め穴23に挿入されると、位置決めピン43のテーパ面43Aが位置決め穴23の縁に接触することになる。一方、図7Bの下図に示すように、位置決め穴23にはダメージ層が形成されており、位置決め穴23の縁には微小な凹凸が形成されている。このため、位置決め穴23の縁に位置決めピン43が接触すると、ダメージ層がピンからの応力を受け、ダメージ層の微小な凹凸やクラックを起点としてガラス基板20が破損するおそれがある。
 更に、ガラス基板20の線膨張率と光路変換器40の線膨張率が異なる場合には、位置決めピン43が位置決め穴23に挿入された後、温度変化が生じたときに、位置決め穴23の縁が位置決めピン43から力を受けることになる。このときにも、位置決め穴23がピンからの応力を受け、ダメージ層の微小な凹凸やクラックを起点としてガラス基板20が破損するおそれがある。つまり、位置決め穴23に位置決めピン43を挿入するときだけでなく、挿入した後の嵌合された状態においてガラス基板20が破損するおそれがある。
 また、図7Bや図8Bに示すように位置決め穴23の縁に微小な凹凸があると、図9に示すように、位置決め穴23の縁によって位置決めピン43が削れやすくなり、塑性変形しやすくなる。位置決めピン43が塑性変形すると、塑性変形分の位置ズレが発生し、位置決め精度が低下する。若しくは、位置決めピン43の塑性変形した箇所に位置決め穴23の凹凸が食い込むことによって、挿入が不十分のまま位置決め穴23に対して位置決めピン43が固定されてしまい、この結果、位置決め精度が低下するおそれがある。
 そこで、第1実施形態では、位置決め穴23の縁に保護膜を形成している。図7Aは、図7Bの非貫通穴に形成した保護膜の拡大写真である。図8Aは、図7Aを2値化処理した図である。ここでは、保護膜としてポリイミド樹脂が採用されている。図7A及び図8Aに示すように、保護膜の形成された位置決め穴23の開口は、ダメージ層(位置決め穴の縁におけるガラス基板20の凹凸)が保護膜により被覆されているので図7Bよりも滑らかである。また、位置決め穴23の縁におけるガラス基板20の凹凸よりも保護膜が厚く形成されている。つまり、保護膜で被覆された位置決め穴23の開口は保護膜のみから構成されている。言い換えると、位置決め穴23の開口では、ガラス基板20の凹凸が保護膜から突出していない。これにより、位置決めピン43からの応力が加わったとしても、保護膜がその応力を緩和し、ガラス基板20の破損や位置決めピン43の変形を抑制している。したがって、保護膜は、ガラス基板20や光路変換器40の位置決めピン43を構成する材料よりも柔らかい材料であれば、保護膜のクッション役割を果たすため、好ましい。また、保護膜は、位置決め穴23の縁の凹凸を緩和することが望ましく、位置決め穴23の縁におけるガラス基板20の凹凸を全て被覆することが更に好ましい。
 図10は、第1実施形態の位置決め穴23及び位置決めピン43の周辺と、ガラス基板側電極22の周辺の拡大断面図である。ガラス基板20の位置決め穴23の縁に予め保護膜24が形成された状態で、位置決めピン43が保護膜24を介して位置決め穴23に嵌合されると、図のような構成になる。
 位置決め穴23の縁には保護膜24が形成されている。保護膜24は、位置決め穴23の縁で位置決め穴23及び位置決めピン43の両方に接触しており、位置決めピン43は、保護膜24を介して位置決め穴23に嵌合されている。言い換えると、保護膜24が位置決め穴23と位置決めピン43との間に挟み込まれている。保護膜24は、位置決め穴23と位置決めピン43の間に配置されるが、保護膜24の一部が破れることによって位置決め穴23と位置決めピン43とが直接接触することもある。
 保護膜24が位置決め穴23の縁に形成されることによって、保護膜24が無い場合と比べると、位置決め穴23の縁が位置決めピン43から受ける応力は、保護膜24によって緩和される。さらに、位置決め穴23の縁が応力を受ける領域が広くなる(応力を受ける面積が広くなる)。これにより、ガラス基板20の破損や位置決めピン43の変形が抑制される。
 ガラス基板20には、パッシベーション膜25が形成されている。パッシベーション膜25は、ガラス基板側電極22の保護のために、ガラス基板側電極22を構成するメタル層の上に形成される膜である。パッシベーション膜25はガラス基板側電極22との密着性に優れた材料であり、ガラス基板側電極22の最表面が銅又は金の場合には、例えばポリイミド樹脂、シリコーン樹脂、エポキシ樹脂、アクリル樹脂などが採用され、ここではポリイミド樹脂が採用されている。
 保護膜24は、パッシベーション膜25とともに形成された樹脂膜(ここではポリイミド樹脂)である。これにより、保護膜24の形成工程を簡略化している。以下、保護膜24の形成工程について説明する。
 まず、貫通ビア21、ガラス基板側電極22を構成するメタル層及び位置決め穴23の形成されたガラス基板20に、パッシベーション膜を形成するための感光性の樹脂層を形成する。ガラス基板20には貫通ビア21が形成されているため、液状のフォトレジスト材料をガラス基板20に塗布するのではなく、フィルム状のフォトレジスト材料を真空ラミネートすることによって、感光性の樹脂層をガラス基板20に形成する。真空ラミネートにより、位置決め穴23の内面上にも感光性の樹脂層を形成できる。このとき、フィルムを加熱すれば、位置決め穴23の形状に沿って樹脂層が形成され、フィルムと位置決め穴23との間に空隙が形成されにくくなる。
 次に、ガラス基板20の感光性の樹脂層にパターンを露光する。このとき、パッシベーション膜25が形成される領域では、メタル層の上にガラス基板側電極22を露出させる窓が形成されるように、パターンが露光される。また、保護膜24が形成される領域では、位置決め穴23の縁に沿った環状の膜が形成されるように、環状パターンが露光される。この環状パターンの外径は位置決め穴23の径よりも大きく、環状パターンの内径は位置決め穴23の径よりも小さい。例えば位置決め穴23の開口径が500μmの場合、外径550μm、内径450μmとする環状パターンが形成される。パターンの露光後、ガラス基板20を現像すれば、パッシベーション膜25とともに保護膜24がガラス基板20に形成される。
 なお、上記の説明では、感光性の樹脂(ポリイミド樹脂)によってパッシベーション膜25及び保護膜24が形成されているが、非感光性の樹脂層からパッシベーション膜25及び保護膜24を形成しても良い。また、保護膜24をパッシベーション膜25とは別の樹脂で形成しても良い。
 上記の説明では、保護膜24が樹脂から構成されているが、保護膜24が金属膜であっても良い。この場合、金属メッキ処理によって金属膜を形成すれば、位置決め穴23の縁においても保護膜24の厚さを均一にしやすく、また、保護膜24が薄くならずに済む(一方、保護膜24を樹脂で構成する場合、位置決め穴23の凹部に樹脂が引き込まれてしまうため、位置決め穴23の縁(エッジ)で樹脂が薄くなりやすく、また、厚さが不均一になりやすい)。保護膜が金属膜の場合、ガラスと金属との熱膨張率の違いによりガラス基板20から保護膜が剥離するおそれもあるが、位置決め穴23に位置決めピン43が挿入されて位置決め穴23と位置決めピン43との間に保護膜が挟まれていれば、保護膜がガラス基板20から剥離することは許容される。保護膜となる金属膜の材料として、例えば、銅、金、ニッケルなどが採用される。金属膜が延性に優れた金で構成されれば、位置決め穴23及び位置決めピン43の保護の観点から好ましい。保護膜となる金属膜は、1層でも良いし、多層でも良い。
 なお、図2に示すように、位置決め穴23が形成されるガラス基板20の下面には、ガラス基板側電極22やその配線が形成される。そこで、ガラス基板20の下面に配線を形成するときに、その配線とともに保護膜を形成すると良い。これにより、保護膜の形成工程を簡略化できる。この場合、金属膜は、導電性の高い金属から構成されることになる。配線とともに保護膜(金属膜)を形成する場合、配線や電極での半田付けの都合上、例えば下から順に銅、ニッケル、金を積層することによって保護膜を形成すると良い。
 第1実施形態では、位置決め穴23の縁に沿って保護膜24が形成されており、位置決め穴23の底には保護膜24が形成されていない。位置決め穴23の底に保護膜24が形成されないため、位置決めピン43の頂部が接触しにくくなり、位置決め精度が向上する。
 第1実施形態では、露光工程で環状パターンをガラス基板20に露光することによって、位置決め穴23の底に保護膜24が形成されないようにしている。このため、位置決め穴23の底の保護膜24の除去が容易である。
 パッシベーション膜25は、ガラス基板側電極22よりも厚いことが望ましい。ガラス基板側電極22を構成するメタル層の厚さが例えば20μmの場合、パッシベーション膜25の厚さは例えば40μmに設定される。パッシベーション膜25とともに保護膜24を形成すると、保護膜24はパッシベーション膜25と同程度の厚さになり、例えば40μmになる。
 保護膜24の外径は位置決め穴23の開口径よりも大きいため、ガラス基板20の表面に保護膜24の一部が形成されている。例えば位置決め穴23の開口径が500μm、保護膜24の外径が550μmの場合、ガラス基板20の表面には、位置決め穴23の周囲に幅50μmの保護膜24が形成されている。仮にガラス基板20の表面に形成された保護膜24が光路変換器40の上面に挟まれると、ガラス基板20の下面と光路変換器40の上面との間に40μm(保護膜24の厚さ)の隙間ができる。但し、この隙間をできるだけ狭めたいことがある。
 そこで、第1実施形態では、位置決めピン43の根元の周りの凹部43Bの深さD(図6A参照)は、保護膜24の厚さよりも大きく設定されている(D>40μm)。また、位置決めピン43の凹部43Bの幅W(図6A参照)は、ガラス基板20の表面に形成された保護膜24の幅よりも大きく設定されている(W>50μm)。これにより、第1実施形態では、ガラス基板の表面に形成された保護膜24は、ガラス基板20と光路変換器40の凹部43Bとの間に配置される(図10参照)。この結果、ガラス基板20の下面と光路変換器40の上面との間の隙間は、保護膜24の厚さの影響を受けずに済み、保護膜24の厚さよりも狭くすることが可能になる。
 第1実施形態では、ガラス基板20がホウ珪酸ガラス(線膨張率:3.0~3.6×10-6/℃)であり、光路変換器40がポリエーテルイミド樹脂(線膨張率:4.7~5.6×10-5/℃)であるため、光路変換器40の線膨張率がガラス基板20の線膨張率よりも10倍も大きいので、温度変化が生じたときに、位置決め穴23の縁が位置決めピン43から大きな力を受けることになる。したがって、位置決め穴23と位置決めピン43とが嵌合された状態において温度変化が生じても、位置決め穴23の縁に形成された保護膜24によって位置決め穴23の縁が位置決めピン43から受ける力は緩和される。さらに、位置決め穴23の縁が力を受ける領域が広いため(応力を受ける面積が広いため)、応力が分散され、ガラス基板20の破損や位置決めピン43の変形が抑制される。
 ===第2実施形態===
 図11は、第2実施形態の説明図である。
 前述の第1実施形態では、位置決め穴23の縁に沿って保護膜24が形成されており、位置決め穴23の底には保護膜24が形成されていなかった。これに対し、第2実施形態では、保護膜24が位置決め穴23の内面に形成されており、保護膜24が位置決め穴23の底にも形成されている。
 位置決め穴23を形成したときのダメージ層は、位置決め穴23の縁だけでなく、位置決め穴23の内面に広く形成されているため、保護膜24が位置決め穴23の内面に形成されることによって、ガラス基板20の破損をより抑制することができる。
 但し、第2実施形態では、保護膜24が位置決め穴23の底にも形成されるため、位置決めピン43の頂部が保護膜24に接触しないように、位置決めピン43の高さや保護膜24の厚さを設定する必要がある。このため、保護膜24の厚さが、位置決め穴23の奥ほど薄くなるように、保護膜24を形成しても良い。
 ===第3実施形態===
 図12は、第3実施形態の説明図である。
 前述の第1実施形態では、保護膜24がパッシベーション膜25とともに形成されていた。このため、保護膜24は、パッシベーション膜25と同じ材質であり、パッシベーション膜25と同じ厚さであった。これに対し、第3実施形態の保護膜26は、パッシベーション膜25とは別々の材質である。
 第3実施形態によれば、保護膜26をパッシベーション膜25と独立して形成できるので、材質や膜厚を自由に設定できる。このため、ガラス基板側電極22との密着性を考慮せずに、保護膜26の材質を選択できる。
 ===第4実施形態===
 図13Aは、第4実施形態の説明図である。
 第4実施形態では、位置決め穴23の縁に面取り加工が施されており、位置決め穴23の縁にテーパ面23Aが形成されている。テーパ面23Aは、位置決めピン43のテーパ面43Aと同じ角度であることが望ましい。そして、ガラス基板20の位置決め穴23のテーパ面23Aに予め保護膜27が形成された状態で、位置決めピン43が保護膜27を介して位置決め穴23に嵌合すると、図のような構成になる。
 保護膜27は、位置決めピン43のテーパ面43Aと、位置決め穴23のテーパ面23A(面取り加工が施された面)の両側に接触している。これにより、保護膜27が位置決め穴23と位置決めピン43との間に挟み込まれている。
 第1実施形態と比べると、第4実施形態では、位置決めピン43から力を受ける領域が更に広くなっている(応力を受ける面積が広くなる)。これにより、応力が分散され、ガラス基板20の破損や位置決めピン43の変形が更に抑制される。
 図13Bは、第4実施形態の変形例の説明図である。変形例においても、位置決め穴23の縁に面取り加工が施されている。変形例では、面取り加工が施された面は、テーパ面ではなく、曲面23Bになっている。
 変形例においても、保護膜28は、位置決めピン43のテーパ面43Aと、位置決め穴23の曲面23B(面取り加工が施された面)の両側に接触している。これにより、保護膜27が位置決め穴23と位置決めピン43との間に挟み込まれている。
 変形例においても、第1実施形態と比べると、位置決めピン43から力を受ける領域が更に広くなっている(応力を受ける面積が広くなる)。これにより、応力が分散され、ガラス基板20の破損や位置決めピン43の変形が更に抑制される。
 なお、第1実施形態では、位置決め穴23と位置決めピンの両方に接触する箇所の保護膜24は、位置決め穴23の縁(エッジ)の影響で薄くなりやすい。これに対し、第4実施形態では、面取り加工が施された面に保護膜が形成されるため、位置決め穴23と位置決めピン43の両方に接触する箇所の保護膜が薄くなることを抑制できる。これにより、応力が更に緩和され、ガラス基板20の破損や位置決めピン43の変形が更に抑制される。
 ===第5実施形態===
 前述の実施形態では、位置決め穴23の縁に沿って全周に保護膜24が形成されていた(図7A参照)。但し、保護膜は、位置決め穴23の全周に形成しなくても良い。
 図14は、第5実施形態の説明図であり、位置決め穴23の周辺を下から見た図である。
 第5実施形態では、保護膜29は、位置決め穴23の縁に沿って形成されているが、位置決め穴23の縁の一部には形成されていない。但し、このような位置決め穴23に位置決めピン43を挿入しても、保護膜29が位置決め穴23の縁で位置決め穴23と位置決めピン43の両方に接触することになる。この結果、第5実施形態においても、位置決めピン43が保護膜29を介して位置決め穴23に嵌合することになる。これにより、ガラス基板20の破損や位置決めピン43の変形を抑制することができる。また、保護膜29を位置決め穴23の縁の一部には形成されていない状態とすることにより、位置決め穴23の内部空間が位置決めピン43によって密閉されない状態となる。つまり、保護膜29が形成されていない箇所が、位置決め穴23内部と外部との間の通気口となるので、位置決め穴23の内部圧力が上昇してガラス基板20に負荷が加わることを抑制する。これは、高温環境下において特別な効果をもたらす。
 ===第6実施形態===
 前述の実施形態では、ガラス基板20の位置決め穴23の縁に予め保護膜24が形成されていた。但し、位置決めピン43側に予め保護膜を形成しても良い。
 図15は、第6実施形態の説明図である。第6実施形態では、位置決め穴23には保護膜は形成されておらず、位置決めピン43のテーパ面43Aに予め保護膜44が形成されている。このような位置決めピン43を位置決め穴23に挿入しても、保護膜44が位置決め穴23の縁で位置決め穴23と位置決めピン43の両方に接触することになる。この結果、第6実施形態においても、位置決めピン43が保護膜44を介して位置決め穴23に嵌合することになる。これにより、ガラス基板20の破損や位置決めピン43の変形を抑制することができる。
 なお、保護膜44となる接着剤を位置決めピン43のテーパ面43Aに塗布することによって、第6実施形態を実現しても良い。これにより、ガラス基板20の破損や位置決めピン43の変形を抑制するだけでなく、ガラス基板20に対する光路変換器40の接着固定も実現できる。
 ===その他===
 上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更・改良され得ると共に、本発明には、その等価物が含まれることは言うまでもない。特に、以下に述べる形態であっても、本発明に含まれる。
<位置決め穴と位置決めピン>
 前述の位置決め穴23は、サンドブラスト加工により形成された奥の窄まった非貫通穴であったが、他の加工方法によって形成された位置決め穴でも良く、他の形状の位置決め穴でも良い。ガラス基板20に切削加工や研磨加工などで位置決め穴を形成した場合には、位置決め穴にダメージ層が形成されるので、このような場合に有効である。
 例えば、位置決め穴は、奥の窄まった形状ではなく、例えば図4Bに示すような径が一定の穴であっても良い。また、位置決めピンが、円錐台形状でなく、図5Bに示すような円錐形状や、図5Cに示すような寸胴形状であっても良い。また、位置決め穴が非貫通穴でなく、貫通穴であっても良い。
 図16は、径が一定の位置決め穴23”(貫通穴)に寸胴形状の位置決めピン43”を嵌合した説明図である。位置決め穴23”は、ドリル加工で形成されており、内面にはダメージ層がある。但し、保護膜24”が位置決め穴23”及び位置決めピン43”の両方に接触するように、位置決めピン43”が保護膜24”を介して位置決め穴23”に嵌合されている。これにより、保護膜24”が無い場合と比べると、位置決めピン43から力を受ける領域が広くなるため(応力を受ける面積が広くなるため)、応力が分散され、ガラス基板20の破損や位置決めピン43”の変形が抑制される。
 但し、位置決め穴が貫通穴の場合、ガラス基板20の表面における部品搭載や配線の自由度が低くなる。また、はめあい公差により、位置決め穴23”と位置決めピン43”との間に隙間が必要であるため、この隙間の分だけ位置決め誤差が生じてしまう。
<光路変換器について>
 前述の実施形態では、光路変換器40に位置決めピン43が形成されていた。但し、位置決めピン43が形成される光学部品は、光ファイバ50を支持するような部品に限られるものではない。位置決め穴を有するガラス基板に対して位置決めピンによって位置合わせを行う光学部品であれば、他の光学部品でも良い。
 また、前述の実施形態では、光路変換器(光学部品)は樹脂製であった。但し、位置決めピンを有する光学部品は、樹脂製でなくても良い。
 また、前述の実施形態では、光路変換器の線膨張率はガラス基板の線膨張率と異なっていたが、両者の線膨張率は同じでも良い。但し、両者の線膨張率が異なる場合に温度変化が生じたときにガラス基板が損傷しやすくなるので、この場合に保護膜が特に有効になる。
<光モジュールについて>
 前述の実施形態では、QSFPタイプの光モジュールを用いて説明したが、このタイプに限定されるものではない。他のタイプ(例えばCXPタイプやSFPタイプなど)の光モジュールに適用することも可能である。
1 光モジュール、1A ハウジング、
2 ケージ、2A コネクタ、3 ヒートシンク、
10 回路基板、11 接続部、
12 収容窓、13 回路基板側電極、
20 ガラス基板、21 貫通ビア、
22 ガラス基板側電極、23 位置決め穴23A 凹部、
24 保護膜、25、パッシベーション膜、26~29 保護膜、
31 発光部、31A 発光部側電極、31B 発光面、32 駆動素子、
40 光路変換器、41 レンズ部、42 反射部、
43 位置決めピン43A テーパ面、43B 凹部、44 保護膜、
50 光ファイバ

Claims (15)

  1.  光電変換素子を搭載し、前記光電変換素子から発光された光又は前記光電変換素子に受光される光を透過可能であり、位置決め穴の形成されたガラス基板と、
     位置決めピンの形成された光学部品と、
    を備え、
     保護膜が前記位置決め穴及び前記位置決めピンに接触するように前記位置決めピンが前記保護膜を介して前記位置決め穴に嵌合することによって、前記ガラス基板と前記光学部品とが位置決めされている
    ことを特徴とする光モジュール。
  2.  請求項1に記載の光モジュールであって、
     前記ガラス基板の前記位置決め穴の縁に予め前記保護膜が形成された状態で、前記位置決めピンが前記保護膜を介して前記位置決め穴に嵌合する
    ことを特徴とする光モジュール。
  3.  請求項2に記載の光モジュールであって、
     前記位置決め穴の縁における前記ガラス基板の凹凸が前記保護膜によって被覆され、前記位置決め穴の開口が前記保護膜から構成されている
    ことを特徴とする光モジュール。
  4.  請求項2に記載の光モジュールであって、
     前記保護膜は、樹脂膜である
    ことを特徴とする光モジュール。
  5.  請求項2に記載の光モジュールであって、
     前記保護膜は、前記ガラス基板のパッシベーション膜とともに形成された樹脂膜である
    ことを特徴とする光モジュール。
  6.  請求項2又は3に記載の光モジュールであって、
     前記ガラス基板には貫通ビアが形成されており、
     前記保護膜は、前記ガラス基板にフィルムを真空ラミネートする工程を経て形成される
    ことを特徴とする光モジュール。
  7.  請求項2に記載の光モジュールであって、
     前記保護膜は、金属膜である
    ことを特徴とする光モジュール。
  8.  請求項7に記載の光モジュールであって、
     前記保護膜は、前記ガラス基板の配線とともに形成された金属膜である
    ことを特徴とする光モジュール。
  9.  請求項2~6のいずれかに記載の光モジュールであって、
     前記位置決め穴は非貫通穴であり、
     前記位置決め穴の底には前記保護膜が形成されていない
    ことを特徴とする光モジュール。
  10.  請求項9に記載の光モジュールであって、
     前記位置決め穴の形成された前記ガラス基板の面に感光性の樹脂層を形成し、前記樹脂層を露光処理および現像処理することによって、前記保護膜が形成される
    ことを特徴とする光モジュール。
  11.  請求項2~6のいずれかに記載の光モジュールであって、
     前記位置決め穴の内面に前記保護膜が形成されている
    ことを特徴とする光モジュール。
  12.  請求項2~11のいずれかに記載の光モジュールであって、
     前記光学部品には、前記位置決めピンの根元の周りに凹部が形成されており、
     前記ガラス基板の表面に形成された前記保護膜は、前記ガラス基板と前記光学部品の前記凹部との間に配置される
    ことを特徴とする光モジュール。
  13.  請求項1~12のいずれかに記載の光モジュールであって、
     前記位置決め穴は、奥の窄まった非貫通穴であり、
     前記位置決めピンは、円錐台形状である
    ことを特徴とする光モジュール。
  14.  請求項1~13のいずれかに記載の光モジュールであって、
     前記位置決めピンはテーパ面を有しており、
     前記位置決め穴の縁に面取り加工が施されており、
     前記保護膜が、前記位置決めピンの前記テーパ面と、前記位置決め穴の前記面取り加工が施された面に接触している
    ことを特徴とする光モジュール。
  15.  請求項1~14のいずれかに記載の光モジュールであって、
     前記ガラス基板の線膨張率は、前記光学部品の線膨張率と異なる
    ことを特徴とする光モジュール。
PCT/JP2013/073526 2012-09-27 2013-09-02 光モジュール WO2014050444A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/430,620 US9606307B2 (en) 2012-09-27 2013-09-02 Optical module
JP2014538313A JP5869686B2 (ja) 2012-09-27 2013-09-02 光モジュール
CN201380049639.2A CN104662460B (zh) 2012-09-27 2013-09-02 光模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012214838 2012-09-27
JP2012-214838 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050444A1 true WO2014050444A1 (ja) 2014-04-03

Family

ID=50387853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073526 WO2014050444A1 (ja) 2012-09-27 2013-09-02 光モジュール

Country Status (4)

Country Link
US (1) US9606307B2 (ja)
JP (1) JP5869686B2 (ja)
CN (1) CN104662460B (ja)
WO (1) WO2014050444A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009824A (ja) * 2018-07-04 2020-01-16 沖電気工業株式会社 光通信装置、及び光通信装置の製造方法
JP2022097918A (ja) * 2020-12-21 2022-07-01 プライムプラネットエナジー&ソリューションズ株式会社 蓄電モジュール

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614820B (zh) * 2011-12-26 2016-06-01 株式会社藤仓 光模块
KR20140120884A (ko) * 2012-01-31 2014-10-14 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 광전자에 사용하기 위한 장치
JP5869686B2 (ja) * 2012-09-27 2016-02-24 株式会社フジクラ 光モジュール
US11264337B2 (en) 2017-03-14 2022-03-01 Mediatek Inc. Semiconductor package structure
US10784211B2 (en) * 2017-03-14 2020-09-22 Mediatek Inc. Semiconductor package structure
US11387176B2 (en) 2017-03-14 2022-07-12 Mediatek Inc. Semiconductor package structure
US11171113B2 (en) 2017-03-14 2021-11-09 Mediatek Inc. Semiconductor package structure having an annular frame with truncated corners
US11362044B2 (en) 2017-03-14 2022-06-14 Mediatek Inc. Semiconductor package structure
CN114447646A (zh) 2017-11-14 2022-05-06 申泰公司 数据通信系统
US10690868B1 (en) * 2018-05-29 2020-06-23 Cisco Technology, Inc. Thermal protection for modular components in a network device
CN208569108U (zh) * 2018-06-27 2019-03-01 东莞市蓝光塑胶模具有限公司 一种易于固定的光纤连接器
CN108845393A (zh) * 2018-06-27 2018-11-20 东莞市蓝光塑胶模具有限公司 一种光纤连接器
WO2020003189A1 (en) * 2018-06-29 2020-01-02 3M Innovative Properties Company Apparatus and method for maintaining optical ferrule alignment during thermal expansion or contraction
CN110927901A (zh) * 2019-12-30 2020-03-27 广东蓝光智能科技有限公司 一种光信号传输装置
CN115390201B (zh) * 2022-09-22 2024-02-23 希烽光电科技(南京)有限公司 低变形高可靠性光发射组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031138A (ja) * 1996-07-18 1998-02-03 Nec Corp 光素子のアライメント方法及び光素子モジュール
JP2002174742A (ja) * 2000-12-06 2002-06-21 Toppan Printing Co Ltd 光部品搭載用基板及び実装基板、並びにプリント基板
JP2003131080A (ja) * 2001-10-23 2003-05-08 Seiko Epson Corp 光モジュール及びその製造方法並びに光伝達装置
JP2004240220A (ja) * 2003-02-06 2004-08-26 Seiko Epson Corp 光モジュール及びその製造方法、混成集積回路、混成回路基板、電子機器、光電気混載デバイス及びその製造方法
JP2004333692A (ja) * 2003-05-02 2004-11-25 Yamaha Corp ガイドピン挿通孔付き部品とその製法
JP2005084165A (ja) * 2003-09-05 2005-03-31 Ngk Spark Plug Co Ltd 光電気複合配線構造体、光学素子搭載基板と光導波路層と光路変換部品とからなる構造体、光学素子搭載基板と光路変換部品とからなる構造体、光路変換部品と光導波路層とからなる構造体、位置合わせ構造を有する光路変換部品、位置合わせ構造を有するマイクロレンズアレイ
JP2006098608A (ja) * 2004-09-29 2006-04-13 Yamaha Corp ガイドピン挿通孔付き部品とその製法
WO2013099415A1 (ja) * 2011-12-26 2013-07-04 株式会社フジクラ 光モジュール

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277248A (ja) 1989-04-18 1990-11-13 Toshiba Corp 微小部品の位置合せ方法
AU645283B2 (en) * 1990-01-23 1994-01-13 Sumitomo Electric Industries, Ltd. Substrate for packaging a semiconductor device
DE19644758A1 (de) * 1996-10-29 1998-04-30 Sel Alcatel Ag Zentrieranordnung zum Positionieren von mikrostrukturierten Körpern
SE9604678L (sv) 1996-12-19 1998-06-20 Ericsson Telefon Ab L M Bulor i spår för elastisk lokalisering
JP3457823B2 (ja) 1997-01-20 2003-10-20 京セラ株式会社 光伝送モジュール用基板およびその製造方法ならびに光伝送モジュール
US6114221A (en) * 1998-03-16 2000-09-05 International Business Machines Corporation Method and apparatus for interconnecting multiple circuit chips
JP3608426B2 (ja) 1999-04-09 2005-01-12 松下電器産業株式会社 プリント基板の切断装置とその切断方法
EP1122567A1 (en) 2000-02-02 2001-08-08 Corning Incorporated Passive alignement using slanted wall pedestal
EP1178340A1 (en) 2000-08-02 2002-02-06 Corning Incorporated Vertically-tolerant alignment using slanted wall pedestal
US6533391B1 (en) * 2000-10-24 2003-03-18 Hewlett-Packard Development Company, Llp Self-aligned modules for a page wide printhead
DE10120694A1 (de) * 2001-04-27 2003-01-09 Siemens Ag Koppler für optische Signale und Verfahren zum Setzen mechanischer Führungselemente von Kopplern
CN2731475Y (zh) 2002-10-04 2005-10-05 雅马哈株式会社 微透镜阵列和具有导销插入孔的装置
US7221829B2 (en) * 2003-02-24 2007-05-22 Ngk Spark Plug Co., Ltd. Substrate assembly for supporting optical component and method of producing the same
US7150569B2 (en) * 2003-02-24 2006-12-19 Nor Spark Plug Co., Ltd. Optical device mounted substrate assembly
JP4304717B2 (ja) 2003-06-26 2009-07-29 日本電気株式会社 光モジュールおよびその製造方法
US7618844B2 (en) * 2005-08-18 2009-11-17 Intelleflex Corporation Method of packaging and interconnection of integrated circuits
US7745301B2 (en) * 2005-08-22 2010-06-29 Terapede, Llc Methods and apparatus for high-density chip connectivity
US8957511B2 (en) * 2005-08-22 2015-02-17 Madhukar B. Vora Apparatus and methods for high-density chip connectivity
JP2008241495A (ja) 2007-03-28 2008-10-09 Seiko Epson Corp 検査装置
JP5271141B2 (ja) * 2009-04-06 2013-08-21 日東電工株式会社 光電気混載モジュールの製造方法およびそれによって得られた光電気混載モジュール
CN102792202A (zh) * 2010-03-19 2012-11-21 康宁公司 具有可平移套管的光纤接口装置
US8265436B2 (en) * 2010-05-12 2012-09-11 Industrial Technology Research Institute Bonding system for optical alignment
JP2012214838A (ja) * 2011-03-31 2012-11-08 Sumitomo Metal Mining Co Ltd 線材の表面処理装置
JP5315408B2 (ja) 2011-12-26 2013-10-16 株式会社フジクラ 位置決め方法及び光モジュール
JP5314119B2 (ja) 2011-12-26 2013-10-16 株式会社フジクラ 光モジュール
JP5869686B2 (ja) * 2012-09-27 2016-02-24 株式会社フジクラ 光モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031138A (ja) * 1996-07-18 1998-02-03 Nec Corp 光素子のアライメント方法及び光素子モジュール
JP2002174742A (ja) * 2000-12-06 2002-06-21 Toppan Printing Co Ltd 光部品搭載用基板及び実装基板、並びにプリント基板
JP2003131080A (ja) * 2001-10-23 2003-05-08 Seiko Epson Corp 光モジュール及びその製造方法並びに光伝達装置
JP2004240220A (ja) * 2003-02-06 2004-08-26 Seiko Epson Corp 光モジュール及びその製造方法、混成集積回路、混成回路基板、電子機器、光電気混載デバイス及びその製造方法
JP2004333692A (ja) * 2003-05-02 2004-11-25 Yamaha Corp ガイドピン挿通孔付き部品とその製法
JP2005084165A (ja) * 2003-09-05 2005-03-31 Ngk Spark Plug Co Ltd 光電気複合配線構造体、光学素子搭載基板と光導波路層と光路変換部品とからなる構造体、光学素子搭載基板と光路変換部品とからなる構造体、光路変換部品と光導波路層とからなる構造体、位置合わせ構造を有する光路変換部品、位置合わせ構造を有するマイクロレンズアレイ
JP2006098608A (ja) * 2004-09-29 2006-04-13 Yamaha Corp ガイドピン挿通孔付き部品とその製法
WO2013099415A1 (ja) * 2011-12-26 2013-07-04 株式会社フジクラ 光モジュール

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009824A (ja) * 2018-07-04 2020-01-16 沖電気工業株式会社 光通信装置、及び光通信装置の製造方法
JP7087738B2 (ja) 2018-07-04 2022-06-21 沖電気工業株式会社 光通信装置、及び光通信装置の製造方法
JP2022097918A (ja) * 2020-12-21 2022-07-01 プライムプラネットエナジー&ソリューションズ株式会社 蓄電モジュール
JP7273783B2 (ja) 2020-12-21 2023-05-15 プライムプラネットエナジー&ソリューションズ株式会社 蓄電モジュール

Also Published As

Publication number Publication date
JPWO2014050444A1 (ja) 2016-08-22
CN104662460A (zh) 2015-05-27
CN104662460B (zh) 2016-11-09
US9606307B2 (en) 2017-03-28
JP5869686B2 (ja) 2016-02-24
US20150260929A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5869686B2 (ja) 光モジュール
US9453978B2 (en) Optical module
JP5314119B2 (ja) 光モジュール
JP5625138B1 (ja) 光モジュール、光モジュールの実装方法、光モジュール搭載回路基板、光モジュール評価キットシステム、回路基板および通信システム
JP6264832B2 (ja) 光コネクタ、これを用いた電子機器、及び光コネクタの実装方法
JP2007271998A (ja) 光コネクタ及び光モジュール
WO2013053708A1 (en) Optical connector with alignment element, optical unit and assembly method
TWI499819B (zh) 光機總成及使用該光機總成之收發器
JP5718514B2 (ja) 光モジュール、光モジュールの実装方法、光モジュール搭載回路基板、光モジュール評価キットシステム、回路基板および通信システム
JP2010028006A (ja) 光学装置
JP2016057186A (ja) アクティブ光ケーブルの検査方法、及びアクティブ光ケーブルの製造方法
JP2014228585A (ja) 光モジュールの製造方法及び光モジュール
JP2005345560A (ja) 光モジュール、光モジュール用セラミック基板、光モジュールと光ファイバコネクタのプラグとの結合構造
JP6085218B2 (ja) 光モジュール
JP6085215B2 (ja) 光モジュール
JP5653983B2 (ja) モジュール製造方法及びモジュール
JP5391356B2 (ja) 光モジュール
JP5315408B2 (ja) 位置決め方法及び光モジュール
JP7482230B2 (ja) 光ファイバコネクタ
JP5391355B2 (ja) 光モジュール
JP2005284167A (ja) 光通信モジュール
JP2016200622A (ja) 光配線基板、光モジュール、及び光アクティブケーブル
JP5090261B2 (ja) 光モジュール
KR20220116283A (ko) 광섬유 커넥터
JP2015014808A (ja) 光モジュールの保護方法および光モジュールの実装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538313

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14430620

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841011

Country of ref document: EP

Kind code of ref document: A1