WO2014050362A1 - 排気ガス浄化システム及び排気ガス浄化方法 - Google Patents
排気ガス浄化システム及び排気ガス浄化方法 Download PDFInfo
- Publication number
- WO2014050362A1 WO2014050362A1 PCT/JP2013/072144 JP2013072144W WO2014050362A1 WO 2014050362 A1 WO2014050362 A1 WO 2014050362A1 JP 2013072144 W JP2013072144 W JP 2013072144W WO 2014050362 A1 WO2014050362 A1 WO 2014050362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- nox
- catalyst
- exhaust gas
- low
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9477—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9495—Controlling the catalytic process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
- F01N3/0253—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0821—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
- F01N3/0885—Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/103—Oxidation catalysts for HC and CO only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/202—Alkali metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/202—Alkali metals
- B01D2255/2022—Potassium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/202—Alkali metals
- B01D2255/2025—Lithium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/202—Alkali metals
- B01D2255/2027—Sodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20707—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
- F01N2370/04—Zeolitic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/14—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2825—Ceramics
- F01N3/2828—Ceramic multi-channel monoliths, e.g. honeycombs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an exhaust gas purification system and an exhaust gas purification method capable of effectively performing desulfurization of NOx occlusion reduction type catalyst which is one of lean NOx trap catalysts and NOx reduction in exhaust gas.
- NOx catalysts for reducing and removing NOx (nitrogen oxides) from exhaust gases of internal combustion engines such as diesel engines and some gasoline engines, and various combustion devices.
- NOx reduction catalysts include a lean NOx trap catalyst (LNT catalyst) and a selective reduction catalyst (SCR catalyst), and one of these lean NOx trap catalysts is a NOx occlusion reduction catalyst.
- This NOx occlusion reduction type catalyst is a NOx occlusion material that occludes NOx and a catalyst carrying a catalyst metal, and its basic structure has a function of occlusion / release NOx on a catalyst carrier such as alumina. It is formed by supporting a NOx occlusion material (NOx occlusion material) and a catalyst metal that promotes oxidation / reduction reactions.
- NOx occlusion material NOx occlusion material
- the NOx storage material include alkaline earth metals such as barium (Ba), alkali metals such as potassium (K), and the like, and platinum (Pt), rhodium (Rh), palladium (Pd) as catalyst metals. ) And other precious metals.
- This NOx occlusion reduction type catalyst has a nitrogen (NO) concentration in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean (oxygen-rich) and oxygen (O 2 ) is present in the atmosphere. Is oxidized on the metal catalyst to form nitrogen dioxide (NO 2 ), which is combined with the NOx storage material to become nitrate (Ba 2 NO 4 ) or the like and stored.
- NO nitrogen
- Ba 2 NO 4 nitrate
- the NOx storage material such as barium is oxidized. Combines with carbon (CO) to decompose and release nitrogen dioxide from nitrate. The released nitrogen dioxide is reduced by unburned hydrocarbons (HC) and carbon monoxide contained in the exhaust gas by the three-way function of the catalytic metal to become nitrogen (N 2 ). The components are released into the atmosphere as harmless substances such as carbon dioxide (CO 2 ), water (H 2 O), and nitrogen.
- the NOx occlusion reduction type catalyst is divided into a low temperature NOx occlusion reduction type catalyst having a high low temperature activity and a high temperature NOx occlusion reduction type catalyst having a high temperature activity, depending on the characteristics of the NOx occlusion material.
- this NOx occlusion reduction catalyst for low temperature uses a NOx occlusion material mainly composed of alkaline earth metal such as barium which does not inhibit the activity of the catalyst metal, the activity of the catalyst metal is not hindered. Although it is excellent in NOx reduction performance, when this alkaline earth metal is used, there is a problem that the NOx occlusion ability decreases at high temperatures.
- the NOx occlusion reduction catalyst for high temperature uses an alkali metal such as potassium having a property opposite to that of an alkaline earth metal such as barium as the occlusion material, and this alkali metal has a NOx occlusion capability at a high temperature.
- an alkali metal such as potassium having a property opposite to that of an alkaline earth metal such as barium as the occlusion material
- this alkali metal has a NOx occlusion capability at a high temperature.
- the activity of the noble metal (oxidation catalyst) is inhibited at a low temperature, there is a problem that the NOx reduction performance in a low temperature range is lowered.
- this NOx occlusion reduction type catalyst also has a problem of a reduction in NOx purification rate due to thermal degradation (mainly sintering).
- thermal degradation mainly sintering
- a low temperature NOx occlusion reduction type catalyst a low temperature region (around 200 ° C.) due to thermal degradation.
- the NOx purification rate gradually decreases at high temperatures (around 500 ° C.). This is probably because the NOx adsorption performance is effectively used in the low temperature range, and is not easily affected by the decrease in the storage efficiency due to the decrease in the activity of “NO ⁇ NO 2 ” due to the deterioration of the noble metal.
- the NOx purification rate in the high temperature range (around 500 ° C.) is extremely small due to thermal degradation, but the NOx purification rate in the low temperature range (around 200 ° C.) is abrupt. It has dropped to.
- attempts to widen the temperature window of the NOx storage reduction catalyst include, for example, Japanese Unexamined Patent Publication No. 10-47042, Japanese Unexamined Patent Publication No. 2000-167356, Japanese Unexamined Patent Publication No. 10-205326.
- an exhaust gas purification system and an exhaust gas purification device in which an upstream high-temperature NOx occlusion reduction type catalyst and a downstream low-temperature NOx occlusion reduction type catalyst are arranged in an exhaust passage are proposed, A plurality of catalysts having different NOx activation temperature ranges in a lean atmosphere are arranged close to each other in series. The higher the NOx activation temperature range, the larger the catalyst capacity distribution is set, and the exhaust gas purification of the internal combustion engine arranged on the upstream side Catalytic devices have been proposed.
- a NOx occlusion material made of an alkali metal is supported on the upstream side for the purpose of providing a NOx purification system having a wide NOx activation temperature window.
- a high-temperature NOx storage-reduction catalyst is arranged in series with a low-temperature NOx storage-reduction catalyst carrying an NOx occlusion material made of alkaline earth metal on the downstream side, and the NOx adsorbent carried by the high-temperature NOx occlusion-reduction catalyst
- a NOx purification system in which the molar ratio of platinum to rhodium is in the range of 2: 1 to 1: 2 has also been proposed.
- the NOx occlusion material occludes SOx (sulfur oxide) as well as NOx. Therefore, when the SOx occlusion amount increases, the ability to occlude NOx decreases and the NOx purification performance. There is a problem that decreases. Since this SOx has a stronger binding force with the NOx occlusion material than NOx, desulfurization cannot be performed easily. At this desulfurization, the exhaust gas around the catalyst needs to have a high temperature and a rich atmosphere. This atmospheric condition is a condition that is difficult to realize under normal operating conditions of a diesel engine that uses lean fuel.
- hydrocarbon (HC) is supplied in exhaust gas, and exhaust gas amount is adjusted so that the air fuel ratio of exhaust gas may become stoichiometric. Controls the amount of hydrocarbons supplied.
- the hydrocarbons in the exhaust gas are combusted by the upstream high-temperature NOx storage reduction catalyst and the exhaust gas. Since the oxygen contained therein is consumed, the downstream low-temperature NOx occlusion reduction type catalyst becomes a rich atmosphere capable of desulfurization as a whole, and desulfurization is promoted.
- hydrocarbons and carbon monoxide are supplied as a reducing agent during the rich reduction, and part of the hydrocarbons and carbon monoxide pass through the NOx occlusion reduction type catalyst, There is also a problem that HC slip that is released into the atmosphere may occur.
- Japanese Unexamined Patent Publication No. 10-47042 Japanese Unexamined Patent Publication No. 2000-167356 Japanese Unexamined Patent Publication No. 10-205326 Japanese Unexamined Patent Publication No. 2006-150258
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a NOx occlusion reduction type catalyst in an exhaust gas purification system using a NOx occlusion reduction type catalyst for purifying NOx in exhaust gas.
- NOx occlusion reduction catalyst By devising the composition and layout (layout) of the catalyst, NOx occlusion reduction catalyst can be easily desulfurized while having a wide NOx activation temperature window, and NOx can be reduced by partial oxidation of hydrocarbons in the exhaust gas.
- An object of the present invention is to provide an exhaust gas purification system and an exhaust gas purification method capable of improving the reduction efficiency.
- An exhaust gas purification system for achieving the above object is a NOx occlusion system that occludes NOx when the air-fuel ratio of the exhaust gas is lean and releases NOx that has been occluded when it is rich.
- the high temperature NOx occlusion reduction type catalyst carrying the NOx occlusion material made of alkali metal on the upstream side is provided on the downstream side.
- a low temperature NOx occlusion reduction type catalyst carrying a NOx occlusion material made of an alkaline earth metal is arranged in series, and an oxidation catalyst is arranged upstream of the high temperature NOx occlusion reduction type catalyst.
- This oxidation catalyst may be arranged by placing an oxidation catalyst inverter upstream of the high-temperature NOx storage reduction catalyst, applying a zone coat that coats the catalyst layer for each part, It may be arranged upstream of the high temperature NOx storage reduction catalyst.
- this DPF with catalyst (CSF: catalyzed soot filter) has an HC oxidation function by a noble metal.
- hydrocarbons in exhaust gas can be purified by HC adsorption function by HC storage materials such as zeolite and ceria. Because of this function, it is possible to prevent HC slips in which hydrocarbons are released into the atmosphere when the air-fuel ratio of the exhaust gas is made rich, and PM (particulate matter) collected in the DPF with the catalyst. ) Can be sufficiently heated by the oxidation heat of hydrocarbons during PM regeneration.
- the oxidation catalyst has sufficient HC oxidation performance for increasing the temperature of PM regeneration of the DPF with catalyst.
- the reducing agent is consumed by the oxidation catalyst during the rich reduction, so that the NOx reduction performance deteriorates.
- an upstream-side hydrocarbon addition means is disposed upstream of the high-temperature NOx storage reduction catalyst, and a downstream NOx sensor downstream of the low-temperature coal NOx storage reduction catalyst.
- this upstream hydrocarbon addition means supplies a hydrocarbon reducing agent at the time of rich control to improve NOx reduction efficiency in each NOx storage reduction catalyst, or supplies hydrocarbons at the time of PM regeneration.
- the combustion heat of the PM can be promoted by increasing the temperature of the catalyst supported by the DPF with the catalyst by the oxidation heat of the hydrocarbon.
- decomposition of hydrocarbons can be promoted at a low temperature range, and NOx reduction efficiency can be improved.
- the upstream hydrocarbon addition means can be constituted by a hydrocarbon injection nozzle, a hydrocarbon addition valve, a post injection in a cylinder fuel injection of an internal combustion engine, or the like.
- NOx can be efficiently reduced even at relatively low temperatures (about 200 ° C. to 230 ° C.), so that there is an advantage that the NOx purification rate can be improved. Further, since the NOx concentration in the exhaust gas after passing through the catalyst can be measured by the NOx sensor, this NOx concentration can be used for rich control and diagnosis of an in-vehicle diagnosis system (OBD).
- OBD in-vehicle diagnosis system
- a high temperature hydrocarbon addition means is provided upstream of the high temperature NOx storage reduction catalyst between the high temperature NOx storage reduction catalyst and the low temperature NOx storage reduction catalyst.
- a low-temperature hydrocarbon addition means a first NOx sensor is provided immediately after the high-temperature NOx storage reduction catalyst, a second NOx sensor is provided immediately after the low-temperature NOx storage reduction catalyst,
- a hydrocarbon supply control means for controlling the hydrocarbon addition means and the low temperature hydrocarbon addition means is provided, and the hydrocarbon supply control means is configured such that the temperature of the exhaust gas flowing into the oxidation catalyst is lower than the first determination temperature.
- hydrocarbons are supplied only from the low temperature hydrocarbon addition means, and the amount of the hydrocarbons supplied is fed back using the detected value of the second NOx sensor.
- the temperature of the exhaust gas flowing into the oxidation catalyst is equal to or higher than the first determination temperature and lower than the second determination temperature
- hydrocarbons are supplied from the high-temperature hydrocarbon addition means, and the supply amount of the hydrocarbons Is feedback-controlled using the detection value of the first NOx sensor, and hydrocarbons are supplied from the low-temperature hydrocarbon addition means, and the supply amount of this hydrocarbon is feedback-controlled using the detection value of the second NOx sensor.
- optimum control is possible for each NOx storage reduction catalyst, and NOx reduction can be performed independently in a temperature range suitable for each NOx storage reduction catalyst, which improves the NOx purification rate.
- HC slip can be reduced.
- the upstream side hydrocarbon addition means may be substituted for the high temperature hydrocarbon addition means, and the downstream side NOx sensor may be substituted for the second NOx sensor.
- the exhaust gas purifying method for achieving the above object stores NOx when the air-fuel ratio of the exhaust gas is lean, and releases the stored NOx when it is rich.
- a NOx purification method for purifying exhaust gas with a NOx purification system comprising a NOx storage reduction catalyst comprising a NOx storage material and a catalyst metal, after passing the exhaust gas through an oxidation catalyst, The exhaust gas is purified by passing through a high-temperature NOx storage-reduction catalyst carrying a NOx storage material, and then passing through a low-temperature NOx storage-reduction catalyst carrying a NOx storage material made of an alkaline earth metal. It is the method characterized by doing.
- the exhaust gas since the exhaust gas is allowed to pass through the oxidation catalyst before passing through the high-temperature NOx storage reduction catalyst, oxygen in the exhaust gas can be consumed by the oxidation catalyst, so the high-temperature NOx storage reduction
- the exhaust gas flowing into the type catalyst and the low-temperature NOx occlusion reduction type catalyst can be made a rich atmosphere capable of desulfurization as a whole. Therefore, desulfurization in the high-temperature NOx storage reduction catalyst and the low-temperature NOx storage reduction catalyst can be promoted. As a result, it is easy to desulfurize both the high-temperature NOx storage reduction catalyst and the low-temperature NOx storage reduction catalyst, and the reduction efficiency can be improved by partial oxidation of hydrocarbons in the exhaust gas.
- the DPF with catalyst contains the exhaust gas in the exhaust gas. Since it has a function of purifying hydrocarbons, it is possible to prevent HC slips that release hydrocarbons into the atmosphere when the air-fuel ratio of the exhaust gas is rich.
- the exhaust gas heated through the oxidation catalyst, the high-temperature NOx storage reduction catalyst and the low-temperature NOx storage reduction catalyst can sufficiently raise the temperature of the catalyst-attached DPF. , PM can be efficiently removed by combustion.
- the temperature of the supported catalyst by supplying hydrocarbons at the time of PM regeneration from the upstream side hydrocarbon addition means such as HC addition valve or post injection in in-cylinder fuel injection of an internal combustion engine.
- the reduction efficiency can be improved by promoting the decomposition of hydrocarbons at low temperatures.
- the hydrocarbon passes through the oxidation catalyst and the high temperature NOx occlusion reduction type catalyst before reaching the low temperature NOx occlusion reduction type catalyst, the exhaust gas will be in contact with the catalyst for a relatively long period of time. Sufficient time can be secured for gasification of the hydrocarbon added to.
- NOx can be reduced even at a relatively low temperature (about 200 ° C. to 230 ° C.), and there is an advantage that the NOx purification rate is improved. Further, since the NOx sensor can measure the NOx concentration after the catalyst system, the NOx concentration can be used for rich control and OBD (vehicle mounted diagnostic system) diagnosis.
- OBD vehicle mounted diagnostic system
- the exhaust gas purification catalyst when the temperature of the exhaust gas flowing into the oxidation catalyst is lower than the first determination temperature, the exhaust gas purification catalyst is disposed between the high-temperature NOx storage reduction catalyst and the low-temperature NOx storage reduction catalyst.
- Exhaust gas that feeds hydrocarbons only from the low temperature hydrocarbon addition means feedback-controls the amount of hydrocarbons supplied using the NOx concentration downstream of the low temperature NOx storage reduction catalyst, and flows into the oxidation catalyst
- hydrocarbons are supplied from the high-temperature hydrocarbon addition means provided upstream of the high-temperature NOx storage reduction catalyst, The feed amount is feedback controlled using the NOx concentration downstream of the high temperature NOx occlusion reduction catalyst, and hydrocarbons are supplied from the low temperature hydrocarbon addition means.
- the supply amount of hydrogen fluoride is feedback controlled using the NOx concentration downstream of the low-temperature NOx storage reduction catalyst, and when the temperature of the exhaust gas flowing into the oxidation catalyst is equal to or higher than the second determination temperature, the high-temperature carbonization
- the hydrocarbon is supplied only from the hydrogen addition means, and the feed amount of the hydrocarbon is feedback controlled using the NOx concentration downstream of the high-temperature NOx storage reduction catalyst, the following effects can be obtained.
- optimal control is possible for each NOx storage reduction catalyst, and NOx reduction can be performed independently in a temperature range suitable for each NOx storage reduction catalyst, thus improving the NOx purification rate and reducing HC slip.
- the upstream side hydrocarbon addition means may be substituted for the high temperature hydrocarbon addition means, and the downstream side NOx sensor may be substituted for the second NOx sensor.
- the downstream (downstream) low-temperature NOx occlusion reduction type catalyst is increased by increasing the exhaust gas temperature in the upstream (upstream) high-temperature NOx occlusion reduction type catalyst.
- the NOx occlusion reduction catalyst can be easily desulfurized while having a wide NOx activation temperature window, and the NOx reduction efficiency can be achieved by partial oxidation of hydrocarbons in the exhaust gas. As a result, high NOx purification performance can be obtained.
- the DPF with a catalyst on the downstream side of the low-temperature NOx storage reduction catalyst, when the air-fuel ratio of the exhaust gas is made rich, it is possible to prevent HC slip in which hydrocarbons are released into the atmosphere, Further, the exhaust gas and the DPF with catalyst can be sufficiently heated during the regeneration of PM, and the combustion removal of PM can be promoted.
- the upstream side hydrocarbon supply means it is possible to promote the decomposition of hydrocarbons particularly in the low temperature region of the exhaust gas and improve the NOx reduction efficiency.
- FIG. 1 is a diagram showing a configuration of an exhaust gas purification system according to a first embodiment of the present invention.
- FIG. 2 is a diagram showing a configuration of an exhaust gas purification system according to a second embodiment of the present invention.
- FIG. 3 is a diagram showing another configuration of the exhaust gas purification system according to the second embodiment of the present invention.
- FIG. 4 is a graph of experimental results showing the relationship between the ratio of rhodium loading to the total amount of platinum loading and rhodium loading of the high-temperature catalyst and the NOx purification rate (%).
- the air-fuel ratio state of the exhaust gas here does not necessarily mean the state of the air-fuel ratio in the cylinder (inside the cylinder), but the amount of air supplied to the exhaust gas flowing into the NOx storage reduction catalyst This is the ratio to the amount of fuel (including the amount burned in the cylinder).
- FIG. 1 shows a configuration of an exhaust gas purification system 1 according to a first embodiment of the present invention.
- the exhaust gas purification system 1 includes an exhaust gas purification device 20 in an exhaust passage 16 of an engine (internal combustion engine) 10.
- the exhaust gas purification device 20 includes, in order from the upstream side, an oxidation catalyst unit (DOC) 21 that supports an oxidation catalyst, and a high-temperature catalyst unit 22 that supports a high-temperature NOx occlusion reduction type catalyst having a NOx occlusion material made of an alkali metal.
- DOC oxidation catalyst unit
- high-temperature catalyst unit 22 that supports a high-temperature NOx occlusion reduction type catalyst having a NOx occlusion material made of an alkali metal.
- a low-temperature catalyst unit 23 carrying a low-temperature NOx occlusion reduction type catalyst having a NOx occlusion material made of an alkaline earth metal, and a catalyst-attached DPF (catalyst diesel particulate filter) unit 24 carrying the catalyst are arranged in series. Configured.
- the oxidation catalyst may be arranged such that the oxidation catalyst unit 21 is installed on the upstream side of the high-temperature catalyst unit 22.
- the oxidation catalyst may be arranged on the upstream side of the high-temperature NOx occlusion reduction type catalyst.
- the high-temperature catalyst unit 22 and the low-temperature catalyst unit 23 may be arranged in contact with each other or may be arranged in a state in which an interval is provided between them. Is not preferable because it is cooled. On the other hand, it is preferable to leave a slight gap in terms of the uniform inflow of exhaust gas to the low-temperature catalyst unit 23.
- the high-temperature catalyst unit 22 is formed of a monolith catalyst (honeycomb catalyst), and the high-temperature NOx occlusion reduction catalyst is provided with a catalyst coat layer on a carrier such as aluminum oxide (alumina), titanium oxide (titania), or zeolite.
- the catalyst coat layer is loaded with a catalyst metal that occludes NOx when the air-fuel ratio of the exhaust gas is lean and releases NOx that is occluded when the exhaust gas is rich.
- NOx occlusion material As this NOx occlusion material (NOx occlusion substance), NOx occlusion ability does not decrease at high temperatures, potassium (K), sodium (Na), lithium (Li), rubidium (Rb), cesium (Cs), francium (Fr) An alkali metal such as is used.
- K sodium
- Li lithium
- Rb rubidium
- Cs cesium
- An alkali metal such as is used.
- the amount of NOx adsorbed increases as the molecular weight increases per mole, but increases in weight and decreases in terms of weight. Considering the balance per mole and weight, it is preferable to use potassium having a molecular weight that is medium among alkali metals.
- platinum group elements including oxides thereof
- platinum Pt
- rhodium Rh
- palladium Pd
- iridium Ir
- platinum and rhodium the amount of potassium is in the range of 4 to 12 times the amount of platinum in units of “g / L”, and the molar ratio of the supported platinum and rhodium is 20: 1 or more. The range is 1: 2 or less.
- FIG. 4 is a diagram of experimental results (exhaust gas temperature: 200 ° C.) showing changes in the NOx purification rate when the platinum and rhodium loading ratio for the high temperature catalyst unit 22 is changed.
- the amount of potassium is 6 times that of platinum in units of “g / L”.
- the supported ratio of platinum and rhodium is set to an optimum range R1 (molar ratio is 1/20 to 2) with a high NOx purification rate. / 1). Accordingly, the amount of platinum supported for suppressing NOx purification by potassium or other alkali metal used in the occlusion material is set in accordance with the amount of potassium supported on the side to be suppressed. Adjust and set the amount and rhodium loading. With this catalyst composition, it is possible to obtain high NOx purification performance while reducing the amount of rhodium that increases the cost.
- the region R2 (molar ratio is 1/20) where the rhodium loading ratio is small and the platinum occupying ratio is large. Less), the high-temperature NOx occlusion reduction catalyst has a low NOx activity due to the influence of platinum poisoning of platinum. Further, in the region R3 (molar ratio is greater than 2/1) in which the rhodium loading ratio is large and the platinum occupying ratio is small (rhodium is larger than 2/1), rhodium has low low-temperature activity.
- the sum of the supported amount of platinum and the supported amount of rhodium in the high-temperature catalyst 2 is set to 0.05 g / L or more and 5.0 g / L or less, and the supported amount of platinum is set to 3 or more when 0.1 g / L or more. 0.0 g / L or less.
- the purification activity is insufficient, and if it is larger than 5.0 g / L, the effect is saturated, and the cost is increased for the effect. Further, if the amount of platinum supported is less than 0.1 g / L, the purification activity is insufficient, and if it exceeds 3.0 g / L, the cost becomes high for the effect.
- cerium (Ce) is supported on the high-temperature catalyst 2, and the supported amount of cerium is set to 0.1 g / L or more and 2.0 g / L or less. This is because if the cerium loading is less than 0.1 g / L, the effect of occlusion / release of oxygen is small, and if it exceeds 2.0 g / L, the rich depth is inhibited.
- This cerium-supporting structure allows oxygen to be stored and released, so that the difference in oxygen concentration between the lean state and the stoichiometric or rich state is reduced, ternary activity is easily developed, and purification performance is improved. .
- the NOx purification rate is higher than when cerium is not supported.
- the low-temperature catalyst unit 23 is formed of a catalyst monolith catalyst, like the high-temperature catalyst 2, and carries a low-temperature NOx occlusion reduction type catalyst.
- This low-temperature NOx occlusion reduction catalyst is formed by providing a catalyst coat layer on a carrier such as aluminum oxide or titanium oxide, and carrying the NOx occlusion material and catalyst metal on this catalyst coat layer.
- NOx storage material unlike NOx storage reduction catalyst for high temperature, barium (Ba), beryllium (Be), magnesium (Mg), calcium (Ca) whose NOx storage capacity does not decrease at low temperatures.
- An alkaline earth metal such as strontium (Sr) is used.
- Ru strontium
- platinum platinum
- Rh rhodium
- Pr palladium
- Ir iridium
- the engine 10 includes an engine body 11, an intake passage 12 connected to the intake manifold 11a of the engine body 11, an exhaust passage 16 connected to the exhaust manifold 11b, and an EGR passage 18.
- an intake air amount sensor (MAF) 13 In the intake passage 12 through which the intake air A passes, an intake air amount sensor (MAF) 13, a compressor 17 a of a turbo-type supercharger 17, an intercooler 14, an intake valve 15, and the like are disposed in order from the upstream side.
- the exhaust passage 16 through which the exhaust gas G passes is provided with a turbine 17b of the turbocharger 17, an HC injection nozzle (upstream hydrocarbon addition means) 25a, and an exhaust gas purification device 20. Further, an EGR cooler 18a and an EGR valve 18b are disposed in the EGR passage 18 through which the EGR gas Ge passes.
- a hydrocarbon injection nozzle (upstream hydrocarbon addition means) 25 a is provided on the upstream side of the high temperature catalyst unit 22, and downstream of the exhaust gas purification device 20 on the downstream side.
- the NOx sensor 31a is provided and configured.
- the first temperature sensor 32a is disposed upstream of the oxidation catalyst unit 21
- the second temperature sensor 32b is disposed between the oxidation catalyst unit 21 and the high temperature catalyst unit 22, and the high temperature catalyst unit 22 and the low temperature catalyst unit 23.
- hydrocarbon supply control device 40a for controlling the supply amount of hydrocarbons.
- the hydrocarbon supply control device 40a is incorporated in a control device 40 called an engine control unit (ECU) that controls the entire engine.
- the alkali metal is used as the occlusion material to improve the high-temperature activity, and the supported amount of platinum whose NOx purification activity is suppressed by the alkali metal is reduced. Since the supported ratio of platinum and rhodium is in the optimum range, high NOx purification performance can be obtained.
- rhodium having high oxidation activity promotes activity for the reaction from nitric oxide to nitrogen dioxide at low temperatures, and improves the storage capacity.
- rhodium which has high oxidation activity, promotes partial oxidation of hydrocarbons even at extremely low temperatures, and the partial oxide that is a good reducing agent for NOx purification generated by this partial oxidation reduces the downstream (downstream) low temperature.
- the cryogenic performance of the catalyst unit 23 is greatly improved. Furthermore, since the temperature of the downstream low-temperature catalyst unit 23 rises due to the rise in the exhaust gas temperature in the upstream high-temperature catalyst unit 22, the purification performance is improved.
- the exhaust gas purification system 1 in which the high temperature NOx occlusion reduction type catalyst (high temperature catalyst unit 22) of the present invention is arranged in the front stage and the low temperature NOx occlusion reduction type catalyst (low temperature catalyst unit 23) in the rear stage is 150.
- the purification rate is improved even in a low temperature region of ° C., and the exhaust gas purification system has a wide NOx activation temperature window.
- the reason for the improvement in purification performance at low temperatures is that the high-temperature NOx occlusion reduction type catalyst in the previous stage improves the storage capacity by promoting the activity of the “NO ⁇ NO 2 ” reaction at low temperature, and the high-temperature NOx occlusion reduction type in the previous stage.
- NOx occlusion reduction type catalyst for low temperature in the latter stage by improving the reduction performance by the partial oxidation effect of the reducing agent by the "HC ⁇ CO" reaction at a low temperature by the catalyst, and by raising the exhaust gas temperature in the NOx occlusion reduction type catalyst for the high temperature in the first stage
- the improvement of the performance of the low-temperature NOx occlusion reduction type catalyst at the later stage can be considered by improving the purification performance by increasing the temperature of the catalyst.
- the oxidation catalyst (DOC) unit 21 is disposed upstream of the high-temperature catalyst unit 22 of the high-temperature NOx storage reduction catalyst, whereby the exhaust gas G is converted to the oxidation catalyst.
- the oxidation catalyst of the unit 21 After passing the oxidation catalyst of the unit 21, it passes through the high temperature NOx occlusion reduction type catalyst carrying the NOx occlusion material made of alkali metal of the high temperature catalyst unit 22, and then the alkaline earth of the low temperature catalyst unit 23.
- Exhaust gas G can be purified by passing through a low-temperature NOx occlusion reduction catalyst carrying a NOx occlusion material made of a similar metal.
- the oxygen in the exhaust gas G can be consumed by the oxidation catalyst unit 21, so that the exhaust gas G flowing into the high temperature catalyst unit 22 and the low temperature catalyst unit 23 is discharged.
- a rich atmosphere capable of desulfurization as a whole can be obtained. Therefore, desulfurization is promoted in the high-temperature catalyst unit 22 and the low-temperature catalyst unit 23.
- both the high-temperature catalyst unit 22 medium and the low-temperature catalyst unit 23 are easily desulfurized, and the hydrocarbon is partially oxidized. , NOx reduction efficiency can be improved.
- the HC oxidation performance of the oxidation catalyst of the oxidation catalyst unit 21 is not so much. It is preferable that it is not high.
- the arrangement shown in FIG. 1 is advantageous in terms of cost because less precious metal is supported on the oxidation catalyst unit 21. Furthermore, by making the composition of the oxidation catalyst supported on the oxidation catalyst unit 21 special to partial oxidation of hydrocarbons and making it more suitable for rich reduction, it is possible to improve the reduction efficiency particularly at low temperatures.
- the DPF unit 24 with catalyst is arranged downstream of the low temperature catalyst unit 23
- the low temperature NOx occlusion reduction type of the low temperature catalyst unit 23 is configured. Since the exhaust gas G after passing the catalyst can pass through the DPF unit 24 with catalyst, the exhaust gas purification system 1 and the exhaust gas purification method can provide the following effects. .
- the DPF unit with catalyst 24 has a function of purifying hydrocarbons in the exhaust gas G by an HC oxidation function by a noble metal and an HC adsorption function by an HC storage material such as zeolite or ceria.
- HC storage material such as zeolite or ceria.
- HC slips that release hydrocarbons into the atmosphere can be prevented.
- the total temperature can be sufficiently increased with respect to G. As a result, it is possible to raise the temperature sufficiently by the oxidation heat of hydrocarbons during PM regeneration in which PM (particulate matter) collected by the DPF unit 24 with catalyst is burned and removed.
- a hydrocarbon injection nozzle (upstream hydrocarbon addition means) 25a is provided on the upstream side of the high temperature catalyst unit 22, and further on the downstream side of the low temperature catalyst unit 23. Since the downstream side NOx sensor 31a is arranged, when the hydrocarbon is supplied from the hydrocarbon injection nozzle 25a provided upstream of the high temperature catalyst unit 22, the downstream side of the low temperature catalyst unit 23 is downstream. If the detection value of the downstream side NOx sensor 31a disposed in is used to control the supply amount of hydrocarbons, the following effects can be obtained.
- the upstream hydrocarbon injection nozzle 25a supplies a hydrocarbon reducing agent during rich control to improve the NOx reduction efficiency in each of the high temperature catalyst unit 22 and the low temperature catalyst unit 23, It is possible to supply hydrocarbons at the time of PM regeneration, and to raise the temperature of the catalyst supported by the DPF unit with catalyst 24 by the oxidation heat of the hydrocarbons to promote the combustion of PM. In particular, it becomes possible to improve the reduction efficiency by promoting the decomposition of hydrocarbons at low temperatures.
- NOx can be reduced even at relatively low temperatures (about 200 ° C. to 230 ° C.), so that there is an advantage that a certain degree of purification rate can be easily secured.
- the downstream side NOx sensor 31a can measure the NOx concentration after the exhaust gas purification device (catalyst system) 20, it is possible to use this NOx concentration for rich control and diagnosis of an in-vehicle diagnostic system (OBD). it can.
- OBD in-vehicle diagnostic system
- FIGS. 2 and 3 an exhaust gas purification system 1A and an exhaust gas purification method according to the second embodiment of the present invention shown in FIGS. 2 and 3 will be described.
- a case storing the oxidation catalyst unit 21, a case storing the high temperature catalyst unit 22, and a case storing the low temperature catalyst unit 23 and the DPF unit 24 with catalyst are separately provided.
- all four units 21, 22, 23, and 24 are housed in the same case.
- a high temperature hydrocarbon injection nozzle (high temperature hydrocarbon addition means) is provided upstream of the high temperature catalyst unit 22 carrying the high temperature NOx occlusion reduction type catalyst.
- 25b is disposed, and
- a first NOx sensor 31 b is provided immediately after the high temperature catalyst unit 22, and a second NOx sensor 31 c is provided immediately after the low temperature catalyst unit 23.
- a hydrocarbon supply control device (hydrocarbon supply control means) 40a for controlling the high temperature hydrocarbon injection nozzle 25b and the low temperature hydrocarbon injection nozzle 25c is provided.
- the hydrocarbon supply control device 40a is incorporated in a control device 40 called an engine control unit (ECU) that controls the entire engine.
- the hydrocarbon supply control device 40a is configured to perform the following hydrocarbon supply control.
- the hydrocarbon F is supplied only from the low temperature hydrocarbon injection nozzle 25c, and the supply amount of this hydrocarbon F is set to the detection value of the second NOx sensor 31c. Feedback control.
- hydrocarbon F is supplied from the high-temperature hydrocarbon injection nozzle 25b, and the supply amount of the hydrocarbon F is set to the first amount.
- the feedback control is performed using the detection value of the 1NOx sensor 31b, the hydrocarbon F is supplied from the low-temperature hydrocarbon injection nozzle 25c, and the supply amount of the hydrocarbon F is feedback-controlled using the detection value of the second NOx sensor 31c. .
- hydrocarbon F is supplied only from the high-temperature hydrocarbon injection nozzle 25b, and the supply amount of this hydrocarbon F is determined by the detected value of the first NOx sensor 31b. Feedback control.
- each NOx occlusion reduction in addition to the effects of the exhaust gas purification system 1 and the exhaust gas purification method of the first embodiment, each NOx occlusion reduction.
- Optimum control is possible for the type catalyst, and NOx reduction can be performed independently in a temperature range suitable for each NOx storage reduction type catalyst, so that the purification rate can be further improved and the HC slip can be further reduced.
- the high temperature hydrocarbon injection nozzle 25b shown in FIGS. 2 and 3 may be substituted with the upstream hydrocarbon injection nozzle 25a shown in FIG. 1, and the second NOx sensor 31c shown in FIGS.
- the side NOx sensor 31a may be substituted.
- the composition and arrangement (layout) of the catalyst for NOx storage reduction catalyst are devised, so that the NOx storage reduction catalyst has a wide NOx activation temperature window. Since it is easy to desulfurize and the NOx reduction efficiency can be improved by partial oxidation of hydrocarbons in exhaust gas, it can be used as an exhaust gas purification system and exhaust gas purification method for internal combustion engines such as diesel engines mounted on automobiles. it can.
- Exhaust gas purification system 10 Engine (internal combustion engine) 16 Exhaust passage 20 Exhaust gas purification device 21 Oxidation catalyst unit (oxidation catalyst: DOC) 22 Catalyst unit for high temperature (NOx occlusion reduction type catalyst for high temperature) 23 Low temperature catalyst unit (NOx storage reduction catalyst for low temperature) 24 DPF unit with catalyst (DPF with catalyst) 25a HC injection nozzle (upstream hydrocarbon addition means) 25b HC injection nozzle for high temperature (hydrocarbon addition means for high temperature) 25c HC injection nozzle for low temperature (hydrocarbon addition means for low temperature) 31a Downstream NOx sensor 31b First NOx sensor 31c Second NOx sensors 32a to 32e Temperature sensor 40 Control device (ECU) 40a Hydrocarbon supply control device (hydrocarbon supply control means) F Hydrocarbon (light oil: fuel) G Exhaust gas Tg Exhaust gas temperature Tg1 First determination temperature Tg2 Second determination temperature
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
NOx吸蔵還元型触媒を備えた排気ガス浄化システムにおいて、上流側にアルカリ金属からなるNOx吸蔵材を担持した高温用NOx吸蔵還元型触媒22を、下流側にアルカリ土類金属からなるNOx吸蔵材を担持した低温用NOx吸蔵還元型触媒23を直列に配置すると共に、前記高温用NOx吸蔵還元型触媒22の上流側に酸化触媒21を配置する。このNOx吸蔵還元型触の触媒の組成及び配置の工夫により、幅広いNOx活性温度ウィンドウを持ちながらも、NOx吸蔵還元型触媒の脱硫を容易とし、かつ、排気ガス中の炭化水素の部分酸化によりNOxの還元効率を向上させる。
Description
本発明は、リーンNOxトラップ触媒のひとつであるNOx吸蔵還元型触媒の脱硫と排気ガス中のNOx還元を効果的に行うことができる排気ガス浄化システム及び排気ガス浄化方法に関する。
ディーゼルエンジンや一部のガソリンエンジン等の内燃機関や様々な燃焼装置の排気ガスからNOx(窒素酸化物)を還元除去するためのNOx触媒について種々の研究や提案がなされてきている。これらのNOx減少触媒(deNOx触媒)には、リーンNOxトラップ触媒(LNT触媒)と選択還元型触媒(SCR触媒)等があり、このリーンNOxトラップ触媒のひとつにNOx吸蔵還元型触媒がある。
このNOx吸蔵還元型触媒は、NOxを吸蔵するNOx吸蔵材と、触媒金属を担持した触媒であり、その基本的な構造は、アルミナ等の触媒担体上に、NOxを吸蔵・放出する機能を有するNOx吸蔵材(NOx吸蔵物質)と酸化・還元反応を促進する触媒金属を担持して形成されている。このNOx吸蔵材としては、バリウム(Ba)等のアルカリ土類金属やカリウム(K)等のアルカリ金属等があり、また、触媒金属としては、白金(Pt),ロジウム(Rh),パラジウム(Pd)等の貴金属類がある。
このNOx吸蔵還元型触媒は、流入する排気ガスの空燃比がリーン(酸素過多)状態であって雰囲気中に酸素(O2)が存在する場合には、排気ガス中の一酸化窒素(NO)が金属触媒上で酸化されて二酸化窒素(NO2)となり、この二酸化窒素はNOx吸蔵材と結合して硝酸塩(Ba2NO4)等になり吸蔵される。
また、このNOx吸蔵還元型触媒に流入する排気ガスの空燃比が理論空燃比やリッチ(低酸素濃度)状態になって、雰囲気中の酸素濃度が低下すると、バリウム等のNOx吸蔵材は一酸化炭素(CO)と結合して、硝酸塩から二酸化窒素を分解放出する。この放出された二酸化窒素は触媒金属の三元機能により排気ガス中に含まれている未燃炭化水素(HC)や一酸化炭素等で還元されて窒素(N2)となり、排気ガス中の諸成分は、二酸化炭素(CO2),水(H2O),窒素等の無害な物質として大気中に放出される。
このNOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵能力が飽和に近くなると、NOx吸蔵能力回復用のリッチ制御(NOx再生操作)を行っている。このリッチ制御では、排気ガスの空燃比をリッチにして流入する排気ガスの酸素濃度を低下させることにより、吸蔵したNOxを放出させて、この放出されたNOxを触媒金属により還元している。
しかしながら、このNOx吸蔵還元型触媒においては、NOx吸蔵材の特性により、低温活性が高い低温用NOx吸蔵還元型触媒と、高温活性が高い高温用NOx吸蔵還元型触媒に分かれる。
この低温用NOx吸蔵還元型触媒は、触媒金属の活性を阻害しないバリウム等のアルカリ土類金属を主体にしたNOx吸蔵材を使用しているため、触媒金属の活性が阻害されないので、低温時のNOx還元性能に優れているが、このアルカリ土類金属を用いた場合には、高温時にNOx吸蔵能力が低下するという問題がある。
一方、高温用NOx吸蔵還元型触媒は、吸蔵材にバリウム等のアルカリ土類金属とは逆の特性を持つカリウム等のアルカリ金属を使用しており、このアルカリ金属は、高温時のNOx吸蔵能力は高いが、低温時に貴金属(酸化触媒)の活性を阻害するため、低温域のNOx還元性能が低下するという問題がある。
また、このNOx吸蔵還元型触媒においては、熱劣化(主に、シンタリング)によるNOx浄化率の低下という問題もあり、低温用NOx吸蔵還元型触媒においては、熱劣化による低温域(200℃付近)におけるNOx浄化率の低下は非常に少ないが、高温域(500℃付近)においてはNOx浄化率は徐々に低下している。この理由は、低温域ではNOx吸着性能を有効に利用しているので、貴金属劣化による「NO→NO2」の活性の低下に伴う吸蔵効率の低下の影響を受け難いためと考えられる。
また、高温用NOx吸蔵還元型触媒においては、反対に、熱劣化による高温域(500℃付近)のNOx浄化率の低下は非常に少ないが、低温域(200℃付近)のNOx浄化率は急激に低下している。
これらの熱劣化の特性を考慮しながら、システム全体として、低温域から高温域まで熱劣化の影響が少ない状態でNOxの浄化を効果的に行うことができる排気ガス浄化システムとする必要がある。
これらのことを考慮して、NOx吸蔵還元型触媒の温度ウィンドウを広げる試みとして、例えば、日本の特開平10-47042号公報、日本の特開2000-167356号公報、日本の特開平10-205326号公報に記載されているように、上流側の高温用NOx吸蔵還元型触媒と下流側の低温用NOx吸蔵還元型触媒を排気通路に配置した排気ガス浄化システムや排ガス浄化装置が提案されたり、リーン雰囲気でのNOx活性温度範囲の異なる複数の触媒を直列に近接配置し、NOx活性温度範囲の高いものほど、触媒容量の配分を大きく設定し、また、上流側に配置する内燃機関の排気浄化用触媒装置が提案されたりしている。
更に、例えば、日本の特開2006-150258号公報に記載されているように、幅広いNOx活性温度ウィンドウを持つNOx浄化システムを提供する目的で、上流側にアルカリ金属からなるNOx吸蔵材を担持した高温型NOx吸蔵還元触媒を、下流側にアルカリ土類金属からなるNOx吸蔵材を担持した低温型NOx吸蔵還元触媒を直列に配置すると共に、前記高温型NOx吸蔵還元触媒が担持するNOx吸着材の白金とロジウムのモル比を2:1以上で1:2以下の範囲とするNOx浄化システムも提案されている。
また、NOx吸蔵還元型触媒には、NOx吸蔵材はNOxと同様にSOx(硫黄酸化物)も吸蔵してしまうので、SOx吸蔵量が多くなると、NOxを吸蔵する能力が低減してNOx浄化性能が低下するという問題がある。このSOxはNOxよりもNOx吸蔵材との結合力が強いので、脱硫は容易にはできず、この脱硫時には、触媒周囲の排気ガスを高温かつリッチ雰囲気にする必要がある。この雰囲気の条件は、通常時はリーン燃料を行うディーゼルエンジンの運転条件では実現するのが難しい条件となっている。
そして、単独で配置されたNOx吸蔵還元型触媒の脱硫制御を行う場合には、排気ガス中に炭化水素(HC)を供給して、排気ガスの空燃比がストイキとなるように排気ガス量と炭化水素の供給量を制御している。しかし、この高温用と低温用の両方のNOx吸蔵還元型触媒を設けている排気ガス浄化システムの場合では、上流の高温用NOx吸蔵還元型触媒で排気ガス中の炭化水素が燃焼して排気ガス中の酸素を消費するので、下流の低温用NOx吸蔵還元型触媒は全体的に脱硫可能なリッチ雰囲気となり、脱硫が促進される。
しかしながら、上流の高温用NOx吸蔵還元型触媒に流入する排気ガス中には未だ酸素が残っているので、高温用NOx吸蔵還元型触媒、特にその前部においては脱硫が困難であり、NOx浄化性能が低下するという問題がある。
また、NOx吸蔵還元型触媒においては、リッチ還元の際に、炭化水素や一酸化炭素を還元剤として供給するが、この炭化水素や一酸化炭素の一部がNOx吸蔵還元型触媒を通過し、大気中に放出されてしまうHCスリップが発生することがあるという問題もある。
本発明は、上記の問題を解決するためになされたものであり、その目的は、排気ガス中のNOxの浄化のためにNOx吸蔵還元型触媒を用いる排気ガス浄化システムにおいて、NOx吸蔵還元型触の触媒の組成及び配置(レイアウト)を工夫することにより、幅広いNOx活性温度ウィンドウを持ちながらも、NOx吸蔵還元型触媒の脱硫を容易とし、かつ、排気ガス中の炭化水素の部分酸化によりNOxの還元効率を向上させることができる排気ガス浄化システム及び排気ガス浄化方法を提供することにある。
上記のような目的を達成するための排気ガス浄化システムは、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出するNOx吸蔵材と、触媒金属とを有してなるNOx吸蔵還元型触媒を備えた排気ガス浄化システムにおいて、上流側にアルカリ金属からなるNOx吸蔵材を担持した高温用NOx吸蔵還元型触媒を、下流側にアルカリ土類金属からなるNOx吸蔵材を担持した低温用NOx吸蔵還元型触媒を直列に配置すると共に、前記高温用NOx吸蔵還元型触媒の上流側に酸化触媒を配置して構成される。なお、この酸化触媒(DOC)の配置は、酸化触媒インバータを高温用NOx吸蔵還元型触媒の上流側に設置してもよく、触媒層を部位ごとに塗り分けるゾーンコートを施して、酸化触媒を高温用NOx吸蔵還元型触媒の上流側に配置してもよい。
この構成によれば、高温用NOx吸蔵還元型触媒の上流側に酸化触媒を配置することで、この酸化触媒で排気ガス中の酸素を消費できるので、高温用NOx吸蔵還元型触媒及び低温用NOx吸蔵還元型触媒に流入する排気ガスを全体的に脱硫可能なリッチ雰囲気にすることができる。そのため、高温用NOx吸蔵還元型触媒及び低温用NOx吸蔵還元型触媒における脱硫を促進することができる。その結果、高温用NOx吸蔵還元型触媒と低温用NOx吸蔵還元型触媒の両方の脱硫が容易となり、また、炭化水素の部分酸化、即ち、完全燃焼に必要な理論酸素量よりも低い酸素濃度で不完全燃焼させることにより、還元効率を向上させることができる。
なお、リッチ還元時のことを考えると、炭化水素等の還元剤をNOx吸蔵還元型触媒に到達させる必要があるので、酸化触媒のHC酸化性能はあまり高くない方が好ましい。上記の構成にすると、酸化触媒に担持させる貴金属も少なくて済むのでコスト的なメリットが生じる。更に、酸化触媒の組成を炭化水素の部分分解に特化させて、よりリッチ還元に適したものとすることにより、特に低温時の還元効率を向上させることができる。
上記の排気ガス浄化システムにおいて、前記低温用NOx吸蔵還元型触媒の下流側に触媒付きDPFを配置して構成すると、この触媒付きDPF(CSF:キャタライズド・スート・フィルタ)は、貴金属によるHC酸化機能とゼオライトやセリア等のHC吸蔵材によるHC吸着機能により、排気ガス中の炭化水素を浄化できる。この機能があるので、排気ガスの空燃比をリッチ状態にした時に大気中に炭化水素が放出されるHCスリップを防止することができると共に、この触媒付きDPFに捕集されたPM(微粒子状物質)を燃焼除去するPM再生の時に、炭化水素の酸化熱により十分な昇温を行うことができる。
なお、NOx吸蔵還元型触媒の上流に酸化触媒と触媒付きDPFを上流側から順に配置した場合には、触媒付きDPFのPM再生の昇温のために、酸化触媒に十分なHC酸化性能を持たせる必要が生じるが、この構成にすると、NOx吸蔵還元型触媒にとっては、リッチ還元時に還元剤が酸化触媒で消費されてしまうので、NOx還元性能が低下してしまう。
従って、NOx浄化性能を高性能に維持するためには、触媒付きDPFをNOx吸蔵還元型触媒の下流側に配置することが好ましい。この場合は、触媒付きDPFの上流には、酸化触媒とNOx吸蔵還元型触媒があるので、排気ガスに対してトータルで十分な昇温を行うことができる。
上記の排気ガス浄化システムにおいて、前記高温用NOx吸蔵還元型触媒よりも上流側に上流側炭化水素添加手段を配置すると共に、前記低温用炭NOx吸蔵還元型触媒よりも下流側に下流側NOxセンサを配置して構成すると、次のような効果を奏することができる。
この構成によれば、この上流側炭化水素添加手段で、リッチ制御時に炭化水素の還元剤を供給して、各NOx吸蔵還元型触媒におけるNOx還元効率を向上させたり、PM再生時に炭化水素を供給したりして、この炭化水素の酸化熱により、触媒付きDPFが担持した触媒の温度を昇温してPMの燃焼を促進したりすることができる。特に低温域で炭化水素の分解を促進してNOx還元効率を向上させることが可能となる。なお、この上流側炭化水素添加手段は、炭化水素噴射ノズルや炭化水素添加弁や内燃機関のシリンダ内燃料噴射におけるポスト噴射等で構成することができる。
この炭化水素の添加に際して、炭化水素としての軽油(燃料)を直接排気ガス中に噴射しても、特に低温域(約230℃以下)では、軽油の液滴がガス化して、触媒で還元剤として利用され易いHC種に相変化するまでに時間を要する。よって、この二段構えのNOx吸蔵還元型触媒の配置とすることで、炭化水素が低温用NOx吸蔵還元型触媒に到達する前に、酸化触媒と高温用NOx吸蔵還元型触媒を通過させることができるので、軽油を含んだ排気ガスが比較的長い時間触媒と接触することになり、軽油がガス化するのに十分な時間を確保できるようになる。
その結果、比較的低温時(約200℃~230℃)でもNOxを効率よく還元できるようになるので、NOx浄化率を向上できるというメリットがある。また、NOxセンサにより触媒通過後の排気ガス中のNOx濃度を計測することができるので、このNOx濃度をリッチ制御や車載診断システム(OBD)の診断に利用することができる。
上記の排気ガス浄化システムにおいて、前記高温用NOx吸蔵還元型触媒の上流側に、高温用炭化水素添加手段を、前記高温用NOx吸蔵還元型触媒と前記低温用NOx吸蔵還元型触媒との間に、低温用炭化水素添加手段をそれぞれ配置し、前記高温用NOx吸蔵還元型触媒の直後に第1NOxセンサを、前記低温用NOx吸蔵還元型触媒の直後に第2NOxセンサをそれぞれ設けると共に、前記高温用炭化水素添加手段と前記低温用炭化水素添加手段を制御する炭化水素供給制御手段を備えて構成し、該炭化水素供給制御手段を、前記酸化触媒に流入する排気ガスの温度が第1判定温度未満の時には、前記低温用炭化水素添加手段のみから炭化水素を供給し、この炭化水素の供給量を前記第2NOxセンサの検出値を用いてフィードバック制御し、前記酸化触媒に流入する排気ガスの温度が前記第1判定温度以上でかつ第2判定温度未満の時には、前記高温用炭化水素添加手段から炭化水素を供給し、この炭化水素の供給量を前記第1NOxセンサの検出値を用いてフィードバック制御すると共に、前記低温用炭化水素添加手段から炭化水素を供給し、この炭化水素の供給量を前記第2NOxセンサの検出値を用いてフィードバック制御し、前記酸化触媒に流入する排気ガスの温度が前記第2判定温度以上の時には、前記高温用炭化水素添加手段のみから炭化水素を供給し、この炭化水素の供給量を前記第1NOxセンサの検出値を用いてフィードバック制御するように構成すると、次のような効果を奏することができる。
この構成によれば、各々のNOx吸蔵還元型触媒にとって最適の制御が可能となり、各々のNOx吸蔵還元型触媒に適した温度域で、独立してNOx還元が行えるので、NOx浄化率の向上とHCスリップの低減を図ることができる。なお、上流側炭化水素添加手段を高温用炭化水素添加手段の代用としてもよく、また、下流側NOxセンサを第2NOxセンサの代用としてもよい。
そして、上記のような目的を達成するための排気ガス浄化方法は、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出するNOx吸蔵材と、触媒金属とを有して成るNOx吸蔵還元型触媒を備えたNOx浄化システムで排気ガスを浄化する排気ガス浄化方法において、排気ガスを酸化触媒を通過させた後に、アルカリ金属からなるNOx吸蔵材を担持した高温用NOx吸蔵還元型触媒を通過させて、その後に、アルカリ土類金属からなるNOx吸蔵材を担持した低温用NOx吸蔵還元型触媒を通過させて、排気ガスを浄化することを特徴とする方法である。
この方法によれば、排気ガスを高温用NOx吸蔵還元型触媒を通過させる前に酸化触媒を通過させることで、酸化触媒で排気ガス中の酸素を消費させることができるので、高温用NOx吸蔵還元型触媒及び低温用NOx吸蔵還元型触媒に流入する排気ガスを全体的に脱硫可能なリッチ雰囲気とすることができる。そのため、高温用NOx吸蔵還元型触媒及び低温用NOx吸蔵還元型触媒における脱硫を促進することができる。その結果、高温用NOx吸蔵還元型触媒と低温用NOx吸蔵還元型触媒の両方の脱硫が容易となり、排気ガス中の炭化水素の部分酸化により還元効率を向上させることができる。
上記の排気ガス浄化方法において、前記低温用NOx吸蔵還元型触媒を通過させた後の排気ガスを、触媒付きDPFを通過させて、排気ガスを浄化すると、この触媒付きDPFには排気ガス中の炭化水素を浄化する機能があるので、排気ガスの空燃比がリッチの時に大気中に炭化水素が放出されるHCスリップを防止できる。また、この触媒付きDPFのPM再生時に、酸化触媒、高温用NOx吸蔵還元型触媒と低温用NOx吸蔵還元型触媒を通過して昇温した排気ガスにより、触媒付きDPFを十分に昇温できるので、PMの燃焼除去を効率よく行うことができる。
上記の排気ガス浄化方法において、前記高温用NOx吸蔵還元型触媒よりも上流側に配置した上流側炭化水素添加手段から炭化水素を供給する際に、前記低温用NOx吸蔵還元型触媒よりも下流側に配置した下流側NOxセンサの検出値を用いて、炭化水素の供給量を制御しながら供給すると、次のような効果を奏することができる。
この方法によれば、HC添加弁や内燃機関のシリンダ内燃料噴射におけるポスト噴射等の上流側炭化水素添加手段から、PM再生時に炭化水素を供給して、担持した触媒の温度を昇温できるので、特に低温域で炭化水素の分解を促進して還元効率を向上できる。また炭化水素が低温用NOx吸蔵還元型触媒に到達する前に、酸化触媒と高温用NOx吸蔵還元型触媒を通過するので、排気ガスが比較的長い時間触媒と接触することになり、排気ガス中に添加された炭化水素がガス化するのに十分な時間を確保できる。
その結果、比較的低温時(約200℃~230℃)でもNOxを還元できるようになるので、NOx浄化率が向上するというメリットがある。また、NOxセンサは触媒システムの後のNOx濃度を計測することができるので、このNOx濃度をリッチ制御やOBD(車搭載診断システム)の診断に利用することができる。
上記の排気ガス浄化方法において、前記酸化触媒に流入する排気ガスの温度が第1判定温度未満の時には、前記高温用NOx吸蔵還元型触媒と前記低温用NOx吸蔵還元型触媒との間に配置された低温用炭化水素添加手段からのみ炭化水素を供給し、この炭化水素の供給量を前記低温用NOx吸蔵還元型触媒の下流のNOx濃度を用いてフィードバック制御し、前記酸化触媒に流入する排気ガスの温度が前記第1判定温度以上でかつ第2判定温度未満の時には、前記高温用NOx吸蔵還元型触媒の上流側に設けた高温用炭化水素添加手段から炭化水素を供給し、この炭化水素の供給量を前記高温用NOx吸蔵還元型触媒の下流のNOx濃度を用いてフィードバック制御すると共に、前記低温用炭化水素添加手段から炭化水素を供給し、この炭化水素の供給量を前記低温用NOx吸蔵還元型触媒の下流のNOx濃度を用いてフィードバック制御し、前記酸化触媒に流入する排気ガスの温度が前記第2判定温度以上の時には、前記高温用炭化水素添加手段からのみに炭化水素を供給し、この炭化水素の供給量を前記高温用NOx吸蔵還元型触媒の下流のNOx濃度を用いてフィードバック制御すると、次のような効果を奏することができる。
つまり、各々のNOx吸蔵還元型触媒にとって最適の制御が可能となり、各々のNOx吸蔵還元型触媒に適した温度域で独立してNOx還元が行えるので、NOx浄化率の向上とHCスリップの低減を図ることができる。なお、上流側炭化水素添加手段を高温用炭化水素添加手段の代用としてもよく、また、下流側NOxセンサを第2NOxセンサの代用としてもよい。
本発明に係る排気ガス浄化システム及び排気ガス浄化方法によれば、前段(上流)の高温用NOx吸蔵還元型触媒における排気ガス温度の昇温により、後段(下流)の低温用NOx吸蔵還元型触媒の温度が昇温して浄化性能が向上するので、幅広いNOx活性温度ウィンドウを持ちながらも、NOx吸蔵還元型触媒の脱硫が容易となると共に、排気ガス中の炭化水素の部分酸化によりNOx還元効率が向上して、高いNOx浄化性能を得ることができる。
更に、低温用NOx吸蔵還元型触媒の下流側に触媒付きDPFを配置することで、排気ガスの空燃比をリッチ状態にした場合に、炭化水素が大気中に放出されるHCスリップを防止でき、また、PM再生時に排気ガス及び触媒付きDPFの十分な昇温を行うことができ、PMの燃焼除去を促進できる。
また、上流側炭化水素供給手段を設けることで、特に排気ガスの低温域における炭化水素の分解を促進してNOx還元効率を向上させることができる。
以下、本発明に係る実施の形態の排気ガス浄化システムと排気ガス浄化方法について、図面を参照しながら説明する。なお、ここでいう排気ガスの空燃比状態とは、必ずしも筒内(シリンダ内)における空燃比の状態を意味するものではなく、NOx吸蔵還元型触媒に流入する排気ガス中に供給した空気量と燃料量(シリンダ内で燃焼した分も含めて)との比のことをいう。
図1に、本発明に係る第1の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、エンジン(内燃機関)10の排気通路16に排気ガス浄化装置20を備えて構成される。
この排気ガス浄化装置20は、上流側から順に、酸化触媒を担持した酸化触媒ユニット(DOC)21、アルカリ金属からなるNOx吸蔵材を有する高温用NOx吸蔵還元型触媒を担持した高温用触媒ユニット22、アルカリ土類金属からなるNOx吸蔵材を有する低温用NOx吸蔵還元型触媒を担持した低温用触媒ユニット23、触媒を担持した触媒付きDPF(触媒付きディーゼルパティキュレートフィルタ)ユニット24を直列に配置して構成されている。
なお、この酸化触媒の配置は、図1に示すように、酸化触媒ユニット21を高温用触媒ユニット22の上流側に設置する構成にしてもよく、高温用触媒ユニット22において、触媒層を部位ごとに塗り分けるゾーンコートを施して、酸化触媒を高温用NOx吸蔵還元型触媒の上流側に配置する構成にしてもよい。
また、高温用触媒ユニット22と低温用触媒ユニット23は、当接した状態で配置しても、間に間隔を設けた状態で配置してもよいが、間隔が大きすぎると、この間で排気ガスが冷却されるので好ましくない。一方、低温用触媒ユニット23への排気ガスの均等流入という面からは多少間隔を開けることが好ましい。
この高温用触媒ユニット22は、モノリス触媒(ハニカム触媒)で形成され、高温用NOx吸蔵還元型触媒は、酸化アルミニウム(アルミナ)、酸化チタン(チタニア)、ゼオライト等の担持体に触媒コート層を設け、この触媒コート層に、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出する吸蔵材と、触媒金属とを担持させて形成する。
このNOx吸蔵材(NOx吸蔵物質)としては、高温時にNOx吸蔵能力が低下しない、カリウム(K)、ナトリウム(Na)、リチウム(Li)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)等のアルカリ金属を用いる。NOxの吸着量は、モル当たりで分子量の多い方が多くなるが、重量が大きくなるので、重量当たりに換算すると少なくなる。モル当たり、重量当たりのバランスを勘案すると、分子量がアルカリ金属の中で中位であるカリウムを用いるのが好ましい。
また、触媒金属としては、通常は、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)等の白金族元素(その酸化物を含む)を使用するが、本発明では、白金とロジウムを使用し、「g/L」単位で、カリウムの量を白金の量に対して4倍から12倍の範囲とし、かつ、この担持する白金とロジウムのモル比を20:1以上で1:2以下の範囲とする。
図4は、高温用触媒ユニット22に関しての白金とロジウムの担持割合を変化させた時のNOx浄化率の変化を示す実験結果(排気ガス温度200℃)の図である。なお、この実験では「g/L」単位で、カリウム量を白金の6倍としている。
即ち、カリウムの量と白金の量のバランスを取った上で、図4に示すように、白金とロジウムの担持割合を、NOx浄化率が高い最適な範囲R1(モル比が1/20~2/1)とする。これにより、吸蔵材に使用されているカリウムあるいは他のアルカリ金属によって、NOx浄化活性が抑制される白金の担持量を、抑制する側のカリウムの担持量に合わせて設定し、更に、白金の担持量とロジウムの担持量を調整して設定する。この触媒の組成により、コストが高くなるロジウムの量を減少しつつ、高いNOx浄化性能を得ることができる。
なお、白金とロジウムの担持割合を変化させた時のNOx浄化率の変化を示す図4の実験結果から、ロジウムの担持割合が小さく、白金の占める割合が大きい領域R2(モル比が1/20未満)では、白金のカリウム被毒の影響により高温用NOx吸蔵還元型触媒はNOx活性が低くなる。また、ロジウムの担持割合が大きく、白金の占める割合が小さい領域R3(モル比が2/1より大)では、ロジウムは低温活性が低いので、白金が少ないとNOx活性が低くなる。
更に、この高温用触媒2の白金の担持量とロジウムの担持量の和を0.05g/L以上で5.0g/L以下とすると共に、白金の担持量を0.1g/L以上で3.0g/L以下とする。
白金の担持量とロジウムの担持量の和が、0.05g/Lより小さいと浄化活性が不足し、5.0g/Lより大きいと効果が飽和し、効果の割にコスト高となる。また、白金の担持量が、0.1g/Lより小さいと浄化活性が不足し、3.0g/Lを超えると効果の割にコスト高となる。
更に、高温用触媒2にセリウム(Ce)を担持させると共に、このセリウムの担持量を0.1g/L以上で2.0g/L以下とする。これは、セリウムの担持量が、0.1g/Lより小さいと、酸素の吸蔵・放出効果が少なく、2.0g/Lを超えると、リッチ深さが阻害されるからである。
このセリウムを担持する構成により、酸素を吸蔵及び放出できるようになるので、リーン状態とストイキ又はリッチ状態との間の酸素濃度差が縮小し、三元活性が発現し易くなり浄化性能が向上する。なお、実験で、セリウムを担持した場合は、担持しない場合よりも、NOx浄化率が高くなることが分かっている。
次に、低温用触媒ユニット23について説明する。この低温用触媒ユニット23は、高温用触媒2と同様に、触媒モノリス触媒で形成され、低温用NOx吸蔵還元型触媒を担持する。この低温用NOx吸蔵還元型触媒は、酸化アルミニウム、酸化チタン等の担持体に触媒コート層を設け、この触媒コート層に、NOx吸蔵材と、触媒金属を担持させて形成する。
このNOx吸蔵材(NOx吸蔵物質)としては、高温用NOx吸蔵還元型触媒とは異なり、低温時にNOx吸蔵能力が低下しないバリウム(Ba)、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属を用いる。また、触媒金属としても、高温用NOx吸蔵還元型触媒と異なり、アルカリ金属によって、NOx浄化活性が抑制されることが無いので、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)等の白金族元素(その酸化物を含む)を使用する。
そして、このエンジン10は、エンジン本体11とこのエンジン本体11の吸気マニホールド11aに接続される吸気通路12と排気マニホールド11bに接続される排気通路16とEGR通路18を有して構成されている。
この吸気Aが通過する吸気通路12には、上流側から順に、吸気量センサ(MAF)13、ターボ式過給器17のコンプレッサ17a、インタークーラ14、吸気弁15等が配設されており、また、排気ガスGが通過する排気通路16には、ターボ式過給器17のタービン17b、HC噴射ノズル(上流側炭化水素添加手段)25a、排気ガス浄化装置20が配設されている。更に、EGRガスGeが通過するEGR通路18には、EGRクーラー18aとEGR弁18bが配設されている。
更に、図1の排気ガス浄化システム1においては、高温用触媒ユニット22よりも上流側に炭化水素噴射ノズル(上流側炭化水素添加手段)25aを備えると共に、排気ガス浄化装置20の後部に下流側NOxセンサ31aを設けて構成する。
また、酸化触媒ユニット21の上流に第1温度センサ32aを、酸化触媒ユニット21と高温用触媒ユニット22との間に、第2温度センサ32bを、高温用触媒ユニット22と低温用触媒ユニット23との間に、第3温度センサ32cを、低温用触媒ユニット23と触媒付きDPFユニット24との間に、第4温度センサ32dを、触媒付きDPFユニット24の下流に第5温度センサ32eを、それぞれ配置する。
そして、高温用触媒ユニット22よりも上流側に備えた炭化水素噴射ノズル25aから炭化水素を供給する際に、低温用触媒ユニット23よりも下流側に配置した下流側NOxセンサ31aの検出値を用いて、炭化水素の供給量を制御する炭化水素供給制御装置(炭化水素供給制御手段)40aを備えて構成する。通常、この炭化水素供給制御装置40aはエンジン全般の制御を行うエンジンコントロールユニット(ECU)と呼ばれる制御装置40に組み込まれる。
上記の構成により、高温用触媒ユニット22において、吸蔵材にアルカリ金属を使用して、高温活性を向上させると共に、このアルカリ金属によってNOx浄化活性が抑制される白金の担持量を減らして、ロジウムを担持し、白金とロジウムの担持割合を最適な範囲としたので、高いNOx浄化性能を得ることができる。
更に、この前段(上流側)の高温用触媒ユニット22では、酸化活性が高いロジウムのため、低温での一酸化窒素から二酸化窒素への反応に対する活性が促進され、吸蔵能力が向上する。また、酸化活性が高いロジウムのため、極低温時でも炭化水素の部分酸化が促進され、この部分酸化で発生した良好なNOx浄化用還元剤となる部分酸化物により、後段(下流側)の低温用触媒ユニット23の極低温性能が大きく向上する。更に、前段の高温用触媒ユニット22における排気ガス温度の昇温により後段の低温用触媒ユニット23の温度が昇温するので、浄化性能が向上する。
従って、本発明の高温用NOx吸蔵還元型触媒(高温用触媒ユニット22)を前段に、低温用NOx吸蔵還元型触媒(低温用触媒ユニット23)を後段に配置した排気ガス浄化システム1は、150℃の低温域でも浄化率が向上していて、幅広いNOx活性温度ウィンドウを持つ排気ガス浄化システムとなる。
この低温時における浄化性能向上の理由としては、前段の高温用NOx吸蔵還元型触媒による低温での「NO→NO2」反応の活性の促進による吸蔵能力の向上、前段の高温用NOx吸蔵還元型触媒による低温での「HC→CO」反応による還元剤の部分酸化効果による還元性能の向上、前段の高温用NOx吸蔵還元型触媒における排気ガス温度の昇温により後段の低温用NOx吸蔵還元型触媒の温度が昇温することによる浄化性能の向上等による、後段の低温用NOx吸蔵還元型触媒の性能向上の促進が考えられる。
また、実験で、高温域では、略前段の高温型触媒2の機能だけで排気ガスが浄化されることが、この高温型触媒2の後のNOxセンサの検出値で確認されている。そのため、高温域では、特に、前段の高温型触媒2の特性が重要となる。
ちなみに、本発明の配置を入れ替えて、前段に低温用NOx吸蔵還元型触媒、後段に高温用NOx吸蔵還元型触媒を配置すると、低高温における性能が低下する。その理由は、低温域では、上記した低温用NOx吸蔵還元型触媒の上流側の効果が無くなり、高温域では、前段の低温用NOx吸蔵還元型触媒により還元剤が消費されてしまうため、後段の高温用NOx吸蔵還元型触媒の還元機能が低下し、また、排気ガス温度が上昇して後段の高温用NOx吸蔵還元型触媒の吸蔵機能が低下するためと推測される。
図1の排気ガス浄化システム1の構成によれば、高温用NOx吸蔵還元型触媒の高温用触媒ユニット22の上流側に酸化触媒(DOC)ユニット21を配置することで、排気ガスGを酸化触媒ユニット21の酸化触媒を通過させた後に、高温用触媒ユニット22のアルカリ金属からなるNOx吸蔵材を担持した高温用NOx吸蔵還元型触媒と通過させて、その後に、低温用触媒ユニット23のアルカリ土類金属からなるNOx吸蔵材を担持した低温用NOx吸蔵還元型触媒を通過させて、排気ガスGを浄化することができる。
この排気ガス浄化システム1及び排気ガス浄化方法によれば、この酸化触媒ユニット21で排気ガスG中の酸素を消費できるので、高温用触媒ユニット22及び低温用触媒ユニット23に流入する排気ガスGを全体的に脱硫可能なリッチ雰囲気にすることができる。そのため、高温用触媒ユニット22及び低温用触媒ユニット23において脱硫が促進され、その結果、高温用触媒ユニット22媒と低温用触媒ユニット23の両方の脱硫が容易となり、また、炭化水素の部分酸化により、NOx還元効率を向上させることができる。
なお、リッチ還元時のことを考えると、炭化水素等の還元剤を高温用触媒ユニット22と低温用触媒ユニット23に到達させる必要があるので、酸化触媒ユニット21の酸化触媒のHC酸化性能はあまり高くない方が好ましい。この図1の配置の構成にすると、酸化触媒ユニット21に担持させる貴金属も少なくて済むのでコスト的なメリットが生じる。更に、酸化触媒ユニット21に担持させる酸化触媒の組成を炭化水素の部分酸化に特化させて、よりリッチ還元に適したものとすることにより、特に低温時の還元効率を向上させることができる。
また、図1の排気ガス浄化システム1の構成では、低温用触媒ユニット23の下流側に触媒付きDPFユニット24を配置して構成しているので、低温用触媒ユニット23の低温用NOx吸蔵還元型触媒を通過させた後の排気ガスGを、触媒付きDPFユニット24を通過させることができるので、この排気ガス浄化システム1及び排気ガス浄化方法によれば、次のような効果を奏することができる。
この触媒付きDPFユニット24は、貴金属によるHC酸化機能とゼオライトやセリア等のHC吸蔵材によるHC吸着機能により、排気ガスG中の炭化水素を浄化する機能があるので、排気ガスGの空燃比をリッチ状態にした時に、大気中に炭化水素が放出されるHCスリップを防止することができる。それと共に、触媒付きDPFユニット24の上流には、酸化触媒ユニット22とNOx吸蔵還元型触媒の高温用触媒ユニット22と低温用触媒ユニット23があるので、これらの触媒で発生する熱により、排気ガスGに対してトータルで十分な昇温を行うことができる。その結果、この触媒付きDPFユニット24に捕集されたPM(微粒子状物質)を燃焼除去するPM再生の時に炭化水素の酸化熱により十分な昇温を行うことができる。
更に、この図1の排気ガス浄化システム1において、高温用触媒ユニット22よりも上流側に炭化水素噴射ノズル(上流側炭化水素添加手段)25aを備えると共に、低温用触媒ユニット23よりも下流側に下流側NOxセンサ31aを配置して構成しているので、高温用触媒ユニット22よりも上流側に備えた炭化水素噴射ノズル25aから炭化水素を供給する際に、低温用触媒ユニット23よりも下流側に配置した下流側NOxセンサ31aの検出値を用いて、炭化水素の供給量を制御しながら供給すると、次のような効果を奏することができる。
上流側炭化水素噴射ノズル25aで、リッチ制御時に炭化水素の還元剤を供給して、高温用触媒ユニット22と低温用触媒ユニット23の各々におけるNOx還元効率を向上させたり、触媒付きDPFユニット24のPM再生時に炭化水素を供給したりして、この炭化水素の酸化熱により、触媒付きDPFユニット24で担持している触媒の温度を昇温してPMの燃焼を促進したりすることができる。特に低温域で炭化水素の分解を促進して還元効率を向上させることが可能となる。
また、上流側炭化水素噴射ノズル25aから炭化水素(軽油:燃料)Fの添加に際して、炭化水素Fを直接排気ガスG中に噴射しても、特に低温域(約230℃以下)では炭化水素Fの液滴がガス化して触媒で還元剤として利用され易いHC種に相変化するまでに時間を要する。よって、この高温用触媒ユニット22と低温用触媒ユニット23の二段構えの配置にすることで、炭化水素Fが低温用触媒ユニット23に到達する前に、酸化触媒ユニット21と高温用触媒ユニット22を通過するので、比較的長い時間触媒と接触することになり、炭化水素Fがガス化するのに十分な時間を確保できる。
その結果、比較的低温時(約200℃~230℃)でもNOxを還元できるようになるので、ある程度の浄化率を確保し易いというメリットがある。また、下流側NOxセンサ31aは排気ガス浄化装置(触媒システム)20の後のNOx濃度を計測することができるので、このNOx濃度をリッチ制御や車載診断システム(OBD)の診断に利用することができる。
次に、図2及び図3に示す本発明に係る第2実施の形態の排気ガス浄化システム1A及び排気ガス浄化方法について説明する。なお、図2の構成では、酸化触媒ユニット21を収納するケースと、高温用触媒ユニット22を収納するケースと、低温用触媒ユニット23と触媒付きDPFユニット24を収納するケースとが、それぞれ別体に形成されているのに対して、図3の構成では、4つのユニット21,22,23,24の全部が同じケースに収納されている。
この第2の実施の形態の排気ガス浄化システム1Aにおいては、高温用NOx吸蔵還元型触媒を担持する高温用触媒ユニット22の上流側に、高温用炭化水素噴射ノズル(高温用炭化水素添加手段)25bを配置し、高温用触媒ユニット22と低温用NOx吸蔵還元型触媒を担持する低温用触媒ユニット23との間に、低温用炭化水素噴射ノズル(低温用炭化水素添加手段)25cを配置する。
更に、高温用触媒ユニット22の直後に第1NOxセンサ31bを、低温用触媒ユニット23の直後に第2NOxセンサ31cを設ける。それと共に、高温用炭化水素噴射ノズル25bと低温用炭化水素噴射ノズル25cを制御する炭化水素供給制御装置(炭化水素供給制御手段)40aを備えて構成する。通常この炭化水素供給制御装置40aはエンジン全般の制御を行うエンジンコントロールユニット(ECU)と呼ばれる制御装置40に組み込まれる。この炭化水素供給制御装置40aを、次のような炭化水素供給制御を行うように構成する。
つまり、排気ガスGの温度Tgが第1判定温度Tg1未満の時には、低温用炭化水素噴射ノズル25cのみから炭化水素Fを供給し、この炭化水素Fの供給量を第2NOxセンサ31cの検出値を用いてフィードバック制御する。
また、排気ガスGの温度Tgが第1判定温度Tg1以上でかつ第2判定温度Tg2未満の時には、高温用炭化水素噴射ノズル25bから炭化水素Fを供給し、この炭化水素Fの供給量を第1NOxセンサ31bの検出値を用いてフィードバック制御すると共に、低温用炭化水素噴射ノズル25cから炭化水素Fを供給し、この炭化水素Fの供給量を第2NOxセンサ31cの検出値を用いてフィードバック制御する。
また、排気ガスGの温度Tgが第2判定温度Tg2以上の時には、高温用炭化水素噴射ノズル25bのみから炭化水素Fを供給し、この炭化水素Fの供給量を第1NOxセンサ31bの検出値を用いてフィードバック制御する。
この第2の実施の形態の排気ガス浄化システム1Aと排気ガス浄化方法によれば、第1の実施の形態の排気ガス浄化システム1及び排気ガス浄化方法の効果に加えて、各々のNOx吸蔵還元型触媒にとって最適の制御が可能となり、各NOx吸蔵還元型触媒に適した温度域で、独立してNOx還元が行えるので、浄化率の更なる向上とHCスリップのさらなる低減を図ることができる。
なお、図2及び図3の高温用炭化水素噴射ノズル25bを図1の上流側炭化水素噴射ノズル25aで代用してもよく、また、図2及び図3の第2NOxセンサ31cを図1の下流側NOxセンサ31aで代用してもよい。
本発明の排気ガス浄化システム及び排気ガス浄化方法は、NOx吸蔵還元型触の触媒の組成及び配置(レイアウト)を工夫することにより、幅広いNOx活性温度ウィンドウを持ちながらも、NOx吸蔵還元型触媒の脱硫を容易とし、かつ、排気ガス中の炭化水素の部分酸化によりNOxの還元効率を向上させることができるので、自動車搭載のディーゼルエンジン等の内燃機関の排気ガス浄化システム及び排気ガス浄化方法として利用できる。
1、1A 排気ガス浄化システム
10 エンジン(内燃機関)
16 排気通路
20 排気ガス浄化装置
21 酸化触媒ユニット(酸化触媒:DOC)
22 高温用触媒ユニット(高温用NOx吸蔵還元型触媒)
23 低温用触媒ユニット(低温用NOx吸蔵還元型触媒)
24 触媒付きDPFユニット(触媒付きDPF)
25a HC噴射ノズル(上流側炭化水素添加手段)
25b 高温用HC噴射ノズル(高温用炭化水素添加手段)
25c 低温用HC噴射ノズル(低温用炭化水素添加手段)
31a 下流側NOxセンサ
31b 第1NOxセンサ
31c 第2NOxセンサ
32a~32e 温度センサ
40 制御装置(ECU)
40a 炭化水素供給制御装置(炭化水素供給制御手段)
F 炭化水素(軽油:燃料)
G 排気ガス
Tg 排気ガスの温度
Tg1 第1判定温度
Tg2 第2判定温度
10 エンジン(内燃機関)
16 排気通路
20 排気ガス浄化装置
21 酸化触媒ユニット(酸化触媒:DOC)
22 高温用触媒ユニット(高温用NOx吸蔵還元型触媒)
23 低温用触媒ユニット(低温用NOx吸蔵還元型触媒)
24 触媒付きDPFユニット(触媒付きDPF)
25a HC噴射ノズル(上流側炭化水素添加手段)
25b 高温用HC噴射ノズル(高温用炭化水素添加手段)
25c 低温用HC噴射ノズル(低温用炭化水素添加手段)
31a 下流側NOxセンサ
31b 第1NOxセンサ
31c 第2NOxセンサ
32a~32e 温度センサ
40 制御装置(ECU)
40a 炭化水素供給制御装置(炭化水素供給制御手段)
F 炭化水素(軽油:燃料)
G 排気ガス
Tg 排気ガスの温度
Tg1 第1判定温度
Tg2 第2判定温度
Claims (8)
- 排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出するNOx吸蔵材と、触媒金属とを有してなるNOx吸蔵還元型触媒を備えた排気ガス浄化システムにおいて、
上流側にアルカリ金属からなるNOx吸蔵材を担持した高温用NOx吸蔵還元型触媒を、下流側にアルカリ土類金属からなるNOx吸蔵材を担持した低温用NOx吸蔵還元型触媒を直列に配置すると共に、
前記高温用NOx吸蔵還元型触媒の上流側に酸化触媒を配置することを特徴とする排気ガス浄化システム。 - 前記低温用NOx吸蔵還元型触媒の下流側に触媒付きDPFを配置することを特徴とする請求項1に記載の排気ガス浄化システム。
- 前記高温用NOx吸蔵還元型触媒よりも上流側に上流側炭化水素添加手段を配置すると共に、前記低温用NOx吸蔵還元型触媒よりも下流側に下流側NOxセンサを配置することを特徴とする請求項1又は2に記載の排気ガス浄化システム。
- 前記高温用NOx吸蔵還元型触媒の上流側に、高温用炭化水素添加手段を、前記高温用NOx吸蔵還元型触媒と前記低温用NOx吸蔵還元型触媒との間に、低温用炭化水素添加手段をそれぞれ配置し、前記高温用NOx吸蔵還元型触媒の直後に第1NOxセンサを、前記低温用NOx吸蔵還元型触媒の直後に第2NOxセンサをそれぞれ設けると共に、前記高温用炭化水素添加手段と前記低温用炭化水素添加手段を制御する炭化水素供給制御手段を備えて構成し、
該炭化水素供給制御手段を、
前記酸化触媒に流入する排気ガスの温度が第1判定温度未満の時には、前記低温用炭化水素添加手段のみから炭化水素を供給し、この炭化水素の供給量を前記第2NOxセンサの検出値を用いてフィードバック制御し、
前記酸化触媒に流入する排気ガスの温度が前記第1判定温度以上でかつ第2判定温度未満の時には、前記高温用炭化水素添加手段から炭化水素を供給し、この炭化水素の供給量を前記第1NOxセンサの検出値を用いてフィードバック制御すると共に、前記低温用炭化水素添加手段から炭化水素を供給し、この炭化水素の供給量を前記第2NOxセンサの検出値を用いてフィードバック制御し、
前記酸化触媒に流入する排気ガスの温度が前記第2判定温度以上の時には、前記高温用炭化水素添加手段のみから炭化水素を供給し、この炭化水素の供給量を前記第1NOxセンサの検出値を用いてフィードバック制御するように構成したことを特徴とする請求項1~3のいずれか1項に記載の排気ガス浄化システム。 - 排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出するNOx吸蔵材と、触媒金属とを有してなるNOx吸蔵還元型触媒を備えたNOx浄化システムで排気ガスを浄化する排気ガス浄化方法において、
排気ガスを酸化触媒を通過させた後に、アルカリ金属からなるNOx吸蔵材を担持した高温用NOx吸蔵還元型触媒を通過させて、その後に、アルカリ土類金属からなるNOx吸蔵材を担持した低温用NOx吸蔵還元型触媒を通過させて、排気ガスを浄化することを特徴とする排気ガス浄化方法。 - 前記低温用NOx吸蔵還元型触媒を通過させた後の排気ガスを、触媒付きDPFを通過させて、排気ガスを浄化することを特徴とする請求項5に記載の排気ガス浄化方法。
- 前記高温用NOx吸蔵還元型触媒よりも上流側に配置した上流側炭化水素添加手段から炭化水素を供給する際に、前記低温用NOx吸蔵還元型触媒よりも下流側に配置した下流側NOxセンサの検出値を用いて、炭化水素の供給量を制御しながら供給することを特徴とする請求項5又は6に記載の排気ガス浄化方法。
- 前記酸化触媒に流入する排気ガスの温度が第1判定温度未満の時には、前記高温用NOx吸蔵還元型触媒と前記低温用NOx吸蔵還元型触媒との間に配置された低温用炭化水素添加手段からのみ炭化水素を供給し、この炭化水素の供給量を前記低温用NOx吸蔵還元型触媒の下流のNOx濃度を用いてフィードバック制御し、
前記酸化触媒に流入する排気ガスの温度が前記第1判定温度以上でかつ第2判定温度未満の時には、前記高温用NOx吸蔵還元型触媒の上流側に設けた高温用炭化水素添加手段から炭化水素を供給し、この炭化水素の供給量を前記高温用NOx吸蔵還元型触媒の下流のNOx濃度を用いてフィードバック制御すると共に、前記低温用炭化水素添加手段から炭化水素を供給し、この炭化水素の供給量を前記低温用NOx吸蔵還元型触媒の下流のNOx濃度を用いてフィードバック制御し、
前記酸化触媒に流入する排気ガスの温度が前記第2判定温度以上の時には、前記高温用炭化水素添加手段からのみに炭化水素を供給し、この炭化水素の供給量を前記高温用NOx吸蔵還元型触媒の下流のNOx濃度を用いてフィードバック制御することを特徴とする請求項5~7のいずれか1項に記載の排気ガス浄化方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13842248.0A EP2918804B1 (en) | 2012-09-28 | 2013-08-20 | Exhaust gas purification system and exhaust gas purification method |
US14/432,090 US9604176B2 (en) | 2012-09-28 | 2013-08-20 | Exhaust gas purification system and exhaust gas purification method |
CN201380050312.7A CN104704213B (zh) | 2012-09-28 | 2013-08-20 | 废气净化系统以及废气净化方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-215547 | 2012-09-28 | ||
JP2012215547A JP6098092B2 (ja) | 2012-09-28 | 2012-09-28 | 排気ガス浄化システム及び排気ガス浄化方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014050362A1 true WO2014050362A1 (ja) | 2014-04-03 |
Family
ID=50387773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072144 WO2014050362A1 (ja) | 2012-09-28 | 2013-08-20 | 排気ガス浄化システム及び排気ガス浄化方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9604176B2 (ja) |
EP (1) | EP2918804B1 (ja) |
JP (1) | JP6098092B2 (ja) |
CN (1) | CN104704213B (ja) |
WO (1) | WO2014050362A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3461263B1 (en) * | 2016-04-26 | 2024-06-12 | BASF Corporation | Zoned configuration for oxidation catalyst combinations |
IT202100024809A1 (it) * | 2021-09-28 | 2023-03-28 | Fpt Ind Spa | Un dispositivo di post-trattamento di gas esausto ed un sistema di propulsione comprendente il dispositivo |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1047042A (ja) | 1996-08-02 | 1998-02-17 | Mitsubishi Motors Corp | 排ガス浄化システム |
JPH10205326A (ja) | 1997-01-23 | 1998-08-04 | Nissan Motor Co Ltd | 内燃機関の排気浄化用触媒装置 |
JP2000167356A (ja) | 1998-12-10 | 2000-06-20 | Toyota Motor Corp | 排ガス浄化装置 |
JP2003245523A (ja) * | 2002-02-25 | 2003-09-02 | Nissan Motor Co Ltd | 排気ガス浄化システム |
JP2006150258A (ja) | 2004-11-30 | 2006-06-15 | Isuzu Motors Ltd | NOx浄化システム |
JP2009221913A (ja) * | 2008-03-14 | 2009-10-01 | Honda Motor Co Ltd | 排ガス浄化装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3659028B2 (ja) | 1998-10-29 | 2005-06-15 | 日産自動車株式会社 | 排気ガス浄化装置及びその使用方法 |
JP3733834B2 (ja) * | 2000-05-02 | 2006-01-11 | 日産自動車株式会社 | 内燃機関の排気浄化装置 |
US7900441B2 (en) * | 2004-02-12 | 2011-03-08 | Fleetguard, Inc. | Precat-NOx adsorber exhaust aftertreatment system for internal combustion engines |
JP2007125524A (ja) * | 2005-11-07 | 2007-05-24 | Toyota Motor Corp | 排ガス浄化装置 |
US7802420B2 (en) * | 2007-07-26 | 2010-09-28 | Eaton Corporation | Catalyst composition and structure for a diesel-fueled autothermal reformer placed in and exhaust stream |
DE102009029257B3 (de) * | 2009-09-08 | 2010-10-28 | Ford Global Technologies, LLC, Dearborn | Identifikation einer Luft- und/oder Kraftstoffdosierungsabweichung |
DE102010014468B4 (de) * | 2010-04-09 | 2013-10-31 | Umicore Ag & Co. Kg | Verfahren zur Verminderung von Lachgas bei der Abgasnachbehandlung von Magermotoren |
-
2012
- 2012-09-28 JP JP2012215547A patent/JP6098092B2/ja not_active Expired - Fee Related
-
2013
- 2013-08-20 WO PCT/JP2013/072144 patent/WO2014050362A1/ja active Application Filing
- 2013-08-20 US US14/432,090 patent/US9604176B2/en active Active
- 2013-08-20 CN CN201380050312.7A patent/CN104704213B/zh active Active
- 2013-08-20 EP EP13842248.0A patent/EP2918804B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1047042A (ja) | 1996-08-02 | 1998-02-17 | Mitsubishi Motors Corp | 排ガス浄化システム |
JPH10205326A (ja) | 1997-01-23 | 1998-08-04 | Nissan Motor Co Ltd | 内燃機関の排気浄化用触媒装置 |
JP2000167356A (ja) | 1998-12-10 | 2000-06-20 | Toyota Motor Corp | 排ガス浄化装置 |
JP2003245523A (ja) * | 2002-02-25 | 2003-09-02 | Nissan Motor Co Ltd | 排気ガス浄化システム |
JP2006150258A (ja) | 2004-11-30 | 2006-06-15 | Isuzu Motors Ltd | NOx浄化システム |
JP2009221913A (ja) * | 2008-03-14 | 2009-10-01 | Honda Motor Co Ltd | 排ガス浄化装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2918804B1 (en) | 2019-03-06 |
US9604176B2 (en) | 2017-03-28 |
JP6098092B2 (ja) | 2017-03-22 |
EP2918804A1 (en) | 2015-09-16 |
CN104704213A (zh) | 2015-06-10 |
JP2014070520A (ja) | 2014-04-21 |
CN104704213B (zh) | 2017-03-01 |
US20150238902A1 (en) | 2015-08-27 |
EP2918804A4 (en) | 2016-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8006485B2 (en) | Compression ignition engine and exhaust system therefor | |
US6732507B1 (en) | NOx aftertreatment system and method for internal combustion engines | |
JP4417878B2 (ja) | 排気ガス浄化方法及び排気ガス浄化システム | |
US8327625B2 (en) | Method for regenerating soot filters in the exhaust gas system of a lean mix engine, and exhaust gas system therefor | |
EP2544796B2 (en) | Exhaust system comprising a nox storage catalyst and catalysed soot filter | |
US20070277507A1 (en) | Enhanced hybrid de-NOx system | |
US8671661B2 (en) | Exhaust gas purification method and exhaust gas purification system | |
JP2006519331A (ja) | リーン燃焼内燃機関の排ガスから窒素酸化物を除去する方法およびこのための排ガス浄化装置 | |
JP2007291980A (ja) | 排気浄化装置 | |
WO2006059471A1 (ja) | NOx浄化システム | |
WO2013014788A1 (ja) | 内燃機関の排気浄化装置 | |
JP6098092B2 (ja) | 排気ガス浄化システム及び排気ガス浄化方法 | |
JP2006207549A (ja) | 排気ガス浄化装置の昇温方法及び排気ガス浄化システム | |
JP5608962B2 (ja) | 排気ガス浄化システム | |
JP2007009810A (ja) | NOx浄化システムの硫黄パージ制御方法及びNOx浄化システム | |
WO2014050361A1 (ja) | NOx浄化システム | |
WO2017104668A1 (ja) | 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法 | |
JP6565997B2 (ja) | 排気ガス浄化方法 | |
KR20110062625A (ko) | 질소 산화물 저감 촉매 및 이를 이용한 배기 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13842248 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14432090 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013842248 Country of ref document: EP |