WO2014048805A1 - Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements - Google Patents
Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements Download PDFInfo
- Publication number
- WO2014048805A1 WO2014048805A1 PCT/EP2013/069356 EP2013069356W WO2014048805A1 WO 2014048805 A1 WO2014048805 A1 WO 2014048805A1 EP 2013069356 W EP2013069356 W EP 2013069356W WO 2014048805 A1 WO2014048805 A1 WO 2014048805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- lateral
- mask
- optoelectronic component
- growth
- Prior art date
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 54
- 239000004065 semiconductor Substances 0.000 claims abstract description 45
- 150000004767 nitrides Chemical class 0.000 claims abstract description 41
- 230000006911 nucleation Effects 0.000 claims abstract description 31
- 238000010899 nucleation Methods 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000010410 layer Substances 0.000 claims description 223
- 230000007547 defect Effects 0.000 claims description 60
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- 239000002346 layers by function Substances 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 239000002800 charge carrier Substances 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 208000012868 Overgrowth Diseases 0.000 claims description 3
- 238000004581 coalescence Methods 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 9
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 8
- 229910002601 GaN Inorganic materials 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02647—Lateral overgrowth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/025—Physical imperfections, e.g. particular concentration or distribution of impurities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
Definitions
- the present invention relates to a method for
- Droop Phenomenon
- the barriers typically have a thickness between 3 nm and 5 nm. As thin as possible barriers are desirable, as they form smaller piezobarriers for vertically moving charge carriers and thus improved vertical charge carrier transport
- Dislocation density is typically in the range between 20 x 10 7 cm 2 to 100 x 10 7 cm. 2
- An object of the present invention is to provide an improved method for producing a
- Object of the present invention is a
- Component includes steps for providing a
- Nitride semiconductor in a second growth step to
- this method allows the production of an optoelectronic component with laterally varying defect density. Defective lateral sections of the
- Optoelectronic device can then advantageously carry an increased vertical current flow.
- Charge carriers from the defect-rich lateral sections can be provided.
- the free spaces between the webs are formed in the shape of a truncated pyramid.
- the lateral overgrowth of the webs in the second growth step causes a kinking of
- defect density has a suitable size to be supplied by charge carriers diffusing from adjacent defect-rich portions.
- the second growth step is performed at growth parameters that promote coalescence.
- this takes place in the first growth step essentially a growth in the vertical direction, while during the second growth step primarily takes place a growth in the lateral direction.
- a functional layer sequence after the second growth step, a functional layer sequence
- V defects are formed in regions of the luminescent layer which are arranged above the defect-rich lateral sections than in the regions above the defect-poorer lateral sections.
- the higher density of V defects allows increased current flow in vertical
- apertures of the mask layer enter before the first growth step
- Nitride semiconductor deposited followed by a
- an epitaxial growth can be carried out on an aluminum-containing nucleation layer.
- Mask layer two layers comprising silicon dioxide (Si0 2 ).
- Si0 2 silicon dioxide
- the silicon dioxide-containing layers of this mask layer may then be coated at a later stage of the process
- Silicon nitride-containing layer are separated.
- the layer structure arranged on the nucleation layer is detached, wherein parts of the mask layer arranged on the detached layer structure are used as a hard mask for producing structured coupling-out structures.
- no additional mask structures must be created to generate the structured coupling-out structures.
- An optoelectronic component has a layer structure which has a higher dislocation density in a lattice-shaped lateral region than in other lateral regions.
- Optoelectronic device in the lateral regions with higher dislocation density flow an increased vertical current. This can be flowing charge carriers
- a gas inclusion is arranged in an other lateral area bounded by the latticed, lateral area.
- the gas inclusion indicates an otherwise complete increase of the lateral region with a lower dislocation density.
- the layer structure has a light-active layer.
- the luminescent layer has a higher density of V defects in the latticed lateral area than in the other lateral areas.
- the V defects in the latticed lateral cause
- a region with a higher dislocation density a reduction of the current flowing through vertical charge carriers to be overcome piezobarriers, which in the lattice lateral area can flow an increased current in the vertical direction through the light-active layer of the layer structure. Consequently, charge carriers can move from the lattice-shaped lateral area into the other lateral areas
- the lattice-shaped lateral area forms a hexagonal grid.
- a hexagonal grid represents a favorable lateral tiling, whereby the other lateral
- the layer structure has a light-active layer.
- the lattice-shaped lateral area is formed, a higher number of charge carriers per area in the
- FIG. 1 shows a section through a layer structure in a first processing state.
- FIG. 2 shows a section through the layer structure in a second processing state
- 3 shows a section through the layer structure in a third processing state
- 4 is a plan view of a mask layer of
- Fig. 5 is a perspective view of a
- Nitride semiconductor layer of the layer structure in the second processing state
- FIG. 7 shows a plan view of a functional layer sequence of the layer structure
- FIG. 8 shows a flowchart of a method for producing an optoelectronic component.
- Fig. 1 shows a highly schematic representation of a
- the layer structure 100 is part of an optoelectronic component, in particular of an LED chip of a light emitting diode.
- the layer structure 100 comprises a structured one
- Mask layer 200 having lateral mask areas 210 separated by mask openings 220.
- Mask layer 200 may include, for example, silicon dioxide (Si0 2 ).
- the layer structure 100 also includes a
- Nitride semiconductor layer 300 has a first layer part 310, which is arranged in the region of the mask opening 220 between the lateral mask regions 210 of the mask layer 200.
- the first layer portion 310 may include gallium nitride (GaN), for example.
- the first layer part 310 could also be omitted.
- the nitride semiconductor layer 300 further includes a second layer portion 320.
- the second layer portion 320 is not yet fully available.
- the first processing stage 10 shown in FIG. 1 shows the layer structure 100 during a performance of a first growth step 15 for growing the second layer part 320.
- Layer part 320 is grown epitaxially during the first growth step 15.
- the second growth step 15 Preferably, the second
- Layer portion 320 also gallium nitride.
- the growth conditions during the first growth step 15 are chosen so that a growth of the second
- Nitride semiconductor layer 300 only a small growth takes place. As a result, the resulting second tapers
- Layer part 320 with increasing vertical direction in the lateral direction.
- Fig. 2 shows a schematic sectional view of
- the second processing state 20 is reached after the first growth step 15 shown in FIG. 1 has been performed for a limited time.
- Nitride semiconductor layer 300 has in the sectional view of Fig. 2 at least partially a trapezoidal
- the growth of the second layer part 320 in the vertical growth direction 12 would continue until the side surfaces 302 of the nitride semiconductor layer 300 touch each other and the c-face 301 of the nitride semiconductor layer 300 disappears. Then, the resulting second layer portion 320 in the sectional view of Fig. 2 would have a triangular Cross-sectional area exhibited. However, the first growth step 15 has already been discontinued earlier.
- Fig. 3 shows a schematic sectional view of
- the second growth step 25 is also a
- epitaxial growth step but is performed under different growth conditions than the first one
- the second growth step 25 is performed under growth conditions that promote coalescence. During the second growth step 25, a third layer portion 330 of the nitride semiconductor layer 300 is grown. The third layer part 330 of the
- Nitride semiconductor layer 300 preferably also has
- Gallium nitride During the second growth step 25, mainly growth in the lateral growth direction 11 takes place due to the coalescent growth conditions.
- the third layer part 330 thus deposits mainly on the side surfaces 302 of the
- Nitride semiconductor layer 300 from. In vertical
- Growth direction 12 takes place only a small growth. Thus, only a small part of the third layer part 330 is deposited on the c surface 301 of the nitride semiconductor layer 300.
- the mask layer 200 is arranged on a nucleation layer 400, which is visible in the regions of the mask openings 220.
- the nucleation layer 400 comprises aluminum (Al).
- Al aluminum
- Nucleation layer 400 aluminum nitride (A1N) on.
- the lateral mask regions 210 of the mask layer 200 are formed as disks.
- the lateral mask regions 210 of the mask layer 200 are formed as disks.
- Each disc-shaped lateral Mask area 210 has a disk diameter 211.
- the disk diameter 211 is preferably in the range between 0.5 ym and 3 ym. For example, the
- the disc-shaped lateral mask regions 210 are spaced apart from each other by the mask openings 220.
- each adjacent lateral mask areas 210 each have a disc spacing 221 from each other.
- Disk spacing 221 is preferably between 0.5 ym and 2 ym.
- the disc spacing 221 may be 1 ym.
- the lateral mask areas 210 are arranged in a regular hexagonal grid 230.
- the hexagonal grid 230 forms a honeycomb pattern.
- Each lateral mask area 210 is in the center of a hexagon of the hexagonal grid 230
- each lateral disk-shaped mask region 210 (except for lateral edge-shaped mask regions 210) has (as shown in FIG.
- hexagonal grid 230 could also be
- Rectangular grid or a triangular grid may be provided, in which the lateral mask areas 210 are arranged.
- Fig. 5 shows a perspective view of
- Nitride semiconductor layer 300 of the layer structure 100 in the second processing stage 20 has webs 340 which are arranged above the mask openings 220 of the mask layer 200.
- the webs 340 form a lateral grid 360, which reproduces the hexagonal grid 230 of the mask openings 220.
- Each web 340 has at its upper (from the
- the web width 341 is preferably smaller than that Disk spacing 221 of the mask layer 200 and may be, for example, 500 nm.
- the webs 340 of the second layer part 320 enclose truncated pyramid-shaped free spaces 350, which are located above the lateral disk-shaped mask areas 210 of FIG
- Mask layer 200 are arranged. The
- Truncated pyramid-shaped free spaces 350 expand with increasing distance from the mask layer 200
- each truncated pyramid-shaped space 350 has an approximately hexagonal base.
- Fig. 6 shows a schematic sectional view of
- the fourth processing state 40 is reached after the completion of the second growth step 25.
- Processing state 40 are the truncated pyramidal
- Free spaces 350 are completely closed by the third layer part 330.
- FIG. 6 also shows a substrate 500 (not shown in FIGS. 1, 2 and 3) and the nucleation layer 400 (not shown in FIGS. 1, 2 and 3)
- the substrate 500 forms a support of the layer structure 100 and preferably comprises sapphire (Al 2 O 3 ).
- the substrate 500 may include silicon (Si), silicon carbide (SiC), or gallium nitride (GaN).
- the substrate 500 is preferably in the form of a wafer.
- FIG. 6 further shows a plurality of defects 110 in the nucleation layer 400 and the nitride semiconductor layer 300.
- the defects 110 may be, for example, dislocation defects due to a
- defects 110 continue in the vertical direction through sections of the layer structure 100. Defects 110 formed below the lateral mask regions 210 of the mask layer 200 in the nucleation layer 400 terminate at the lateral mask regions 210. However, defects 110 formed below the mask openings 220 of the mask layer 200 in the nucleation layer 400 settle through the first layer part 310 and the second layer part 320 of FIG
- Nitride semiconductor layer 300 in the vertical direction away.
- Defects 110 which in the vertical direction abut one of the side surfaces 302 of the second layer part 320, buckle there and continue horizontally in the third layer part 330 as bent defects 111.
- kinked defects 111 can cancel each other out and then do not reach the top of the layer structure 100.
- defects 110 that continue in the vertical direction up to a c-surface 301 of the second layer part 320 do not buckle but settle as
- Nitride semiconductor layer 300 two adjacent webs 340 of the second layer part 320 have a web distance 351 from each other.
- the web distance 351 may be, for example, about 1 ym.
- the luminescent layer of the functional layer sequence 600 comprises one or more quantum wells.
- V defects V pits
- side facets of such V defects have reduced piezoelectricity over c-facets.
- fewer facets of such V defects are incorporated into indium and growth rates are reduced in these areas. It follows that V-defects have a lower vertical electrical resistance than defect-free c-surfaces of light-active layers.
- FIG. 7 shows a top view of the top side of the functional layer sequence 600 of the layer structure 100, as they are
- the functional layer sequence 600 can be recorded for example with a PL microscope. Crystal defects appear dark. It can be seen that the upper side of the functional layer sequence 600 has high defect density lateral regions 120 and low defect density lateral regions 130.
- High defect density lateral regions 120 are located above the hexagonal lattice 230 of the mask openings 220 of the mask layer 200 and the lateral lattice 360 of the ridges 340 of the second layer portion 320 of the nitride semiconductor layer 300. Forming the low defect density lateral regions 130 the remaining portions of the top of the functional layer 600 of the layer structure 100.
- Defect density 130 has a gas enclosure 131.
- This gas enclosure 131 is referred to as void in technical terms.
- Each gas enclosure 131 is in the middle of a
- Gas inclusion 131 was the truncated pyramidal space 350 during the second growth step 25 last closed by the third layer portion 330.
- the luminescent active layer of the functional layer sequence 600 has a higher density of V defects than in the low defect density lateral regions 130. Since the lateral regions 120 with high defect density due to
- Droop can be one of the
- Reduce layer structure 100 produced light-emitting diode. Because of the smaller bandgap of the quantum wells in the low defect density lateral regions 130, carriers from the lateral regions 120 can be high
- the relative lateral dimensions of the high defect density lateral regions 120 and the low defect density lateral regions 130 are selected to allow sufficient vertical flow of current to achieve favorable high current linearity without involving non-radiative recombinations in the lateral regions 120 high defect density dominate.
- FIG. 8 shows a summary of a schematic flow diagram of a method 700 for producing an optoelectronic component.
- the substrate 500 is provided.
- the substrate 500 is provided as a wafer.
- a plurality of optoelectronic devices can be simultaneously produced in parallel on the wafer.
- the substrate may be a sapphire substrate
- Silicon substrate a silicon carbide substrate or a
- Gallium nitride substrate Gallium nitride substrate.
- a second method step 720 the nucleation layer 400 is applied to a surface of the substrate 500
- the nucleation layer 400 may include, for example, aluminum nitride (A1N).
- the nucleation layer 400 may, for example, have a thickness of 50 nm.
- the nucleation layer 400 may be applied by sputtering, for example.
- the mask layer 200 is applied and patterned.
- the mask layer 200 may, for example, comprise a layer sequence of silicon dioxide (SiO 2 ), silicon nitride (SiN) and another layer
- the layers of silicon dioxide for example, a thickness of about 100 nm and the layer of silicon nitride, a thickness of about 50 nm exhibit.
- the mask layer 200 may be sputtered onto the nucleation layer 400.
- the mask layer 200 is patterned, for example by a photolithographic process.
- the lateral mask regions 210 spaced apart by the mask openings 220 are applied.
- Mask areas 210 are preferably applied in the form of circular disks or approximately circular disks (for example octagonal).
- Mask areas 210 may be, for example, between 0.5 ym and 3 ym, preferably about 2 ym.
- the slice spacings 221 between adjacent lateral mask regions 210 may be, for example, between 0.5 ym and 2 ym, preferably about 1 ym.
- the lateral mask regions 210 are arranged in a hexagonal grid.
- Nitride semiconductor layer 300 may include, for example, gallium nitride (GaN) and having a thickness of about 90 nm
- the deposition of the first layer part 310 can take place, for example, in an installation for metal-organic vapor deposition (MOVPE plant).
- MOVPE plant metal-organic vapor deposition
- the material of the first layer portion 310 is nominally undoped.
- the first layer part 310 is etched back. This can be done, for example, by closing a TMGa source of the MOVPE plant and passing silane (SiH 4 ) into the reactor. Then there is an N 2 / H 2 / NH 3 environment in which gallium nitride is desorbed and silicon nitride (SiN) is grown. Both are processes
- the fourth method step 740 can be dispensed with in a simplified variant of the method.
- a fifth method step 750 is in the first
- Nitride semiconductor layer 300 grown. The second
- Layer portion 320 preferably comprises gallium nitride (GaN).
- the growth conditions are selected so that the growth takes place predominantly in the vertical growth direction 12 and the webs 340 with trapezoidal
- Ratio of less than 1000 of the group V semiconductor to the group III semiconductor prevail.
- the temperature can be less than 1000 ° C.
- the supply of silane (SiH 4 ) can be completed again.
- the second method step 760 the second
- Growth step 25 is performed to grow the third layer portion 330 of the nitride semiconductor layer 300.
- the third layer part 330 preferably also has gallium nitride (GaN).
- the second growth step 25 is under
- the truncated pyramid-shaped free spaces 350 between the webs 340 applied in the preceding method step 750 are closed and coalesced.
- the growth conditions during the second growth step 25 may include, for example, a high ratio between the Group V semiconductor and the Group III semiconductor and a high temperature of more than 1000 ° C.
- a seventh method step 770 the functional layer sequence 600 on the surface of the
- the functional layer sequence 600 comprises a light-active layer.
- the functional layer sequence 600 is preferably an LED structure.
- the method steps 780 to 810 show such a possibility by way of example.
- the layer structure 100 is bonded against a carrier substrate.
- the bonding takes place in such a way that the functional layer sequence 600 of the
- the carrier substrate may be, for example, a
- nucleation layer 400 for example, take place with a designated as a laser lift-off process. Indicates the nucleation layer 400
- A1N Aluminum nitride (A1N), so the separation takes place because of the band edge of the aluminum nitride (A1N) only in the example Galliumnitrid (GaN) having
- Nitride semiconductor layer 300 In the lateral mask regions 210 of the mask layer 200, the middle layer of silicon nitride (SiN) serves as the separation region. Thus, a part of silicon dioxide (SiO 2) of the lateral mask regions 210 of the mask layer 200 remains on the detached one
- Nitride semiconductor layer 300 another part
- the layer of silicon dioxide (SiO 2) remaining on the nitride semiconductor layer 300 may be formed in one tenth
- Method step 800 as a hard mask for the production of
- the layer of silicon dioxide (SiO 2 ) remaining on the nucleation layer 400 and the substrate 500 can be removed in an eleventh method step 810.
- Nucleation layer 400 remains on substrate 500. Substrate 500 may then be reused to perform method 700.
- the invention was based on the preferred embodiment
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/430,538 US9466759B2 (en) | 2012-09-27 | 2013-09-18 | Optoelectronic device and method for producing an optoelectronic device |
CN201380050756.0A CN104685642B (zh) | 2012-09-27 | 2013-09-18 | 用于制造光电子器件的方法 |
KR1020157010774A KR20150058502A (ko) | 2012-09-27 | 2013-09-18 | 광전자 소자 및 광전자 소자를 제조하기 위한 방법 |
JP2015533534A JP6207616B2 (ja) | 2012-09-27 | 2013-09-18 | オプトエレクトロニクス素子の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012217644.6A DE102012217644A1 (de) | 2012-09-27 | 2012-09-27 | Optoelektronisches Bauelement |
DE102012217644.6 | 2012-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014048805A1 true WO2014048805A1 (de) | 2014-04-03 |
Family
ID=49261502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/069356 WO2014048805A1 (de) | 2012-09-27 | 2013-09-18 | Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements |
Country Status (6)
Country | Link |
---|---|
US (1) | US9466759B2 (de) |
JP (1) | JP6207616B2 (de) |
KR (1) | KR20150058502A (de) |
CN (1) | CN104685642B (de) |
DE (1) | DE102012217644A1 (de) |
WO (1) | WO2014048805A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014116999A1 (de) | 2014-11-20 | 2016-05-25 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015107661B4 (de) | 2015-05-15 | 2021-03-18 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines Nitridverbindungshalbleiter-Bauelements |
DE102016103346A1 (de) * | 2016-02-25 | 2017-08-31 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips und strahlungsemittierender Halbleiterchip |
US20180277713A1 (en) * | 2017-03-21 | 2018-09-27 | Glo Ab | Red light emitting diodes having an indium gallium nitride template layer and method of making thereof |
US12046695B2 (en) * | 2017-05-05 | 2024-07-23 | The Regents Of The University Of California | Method of removing a substrate |
US10804429B2 (en) | 2017-12-22 | 2020-10-13 | Lumileds Llc | III-nitride multi-wavelength LED for visible light communication |
US11264530B2 (en) | 2019-12-19 | 2022-03-01 | Lumileds Llc | Light emitting diode (LED) devices with nucleation layer |
US11211527B2 (en) | 2019-12-19 | 2021-12-28 | Lumileds Llc | Light emitting diode (LED) devices with high density textures |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328549A (en) * | 1980-04-10 | 1994-07-12 | Massachusetts Institute Of Technology | Method of producing sheets of crystalline material and devices made therefrom |
EP1041610A1 (de) * | 1997-10-30 | 2000-10-04 | Sumitomo Electric Industries, Ltd. | Gan einkristall-substrat und herstellungsmethode |
EP1071143A1 (de) * | 1997-12-08 | 2001-01-24 | Mitsubishi Cable Industries, Ltd. | LICHTEMITTIERENDE VORRICHTUNG AUF GaN BASIS UND VERFAHREN ZUR HERSTELLUNG EINES GaN KRISTALLS |
US20060266281A1 (en) * | 2004-05-18 | 2006-11-30 | Bernard Beaumont | Manufacturing gallium nitride substrates by lateral overgrowth through masks and devices fabricated thereof |
EP1806790A2 (de) * | 2006-01-06 | 2007-07-11 | Sony Corporation | Leuchtdiode mit einer Silber-basierten Elektrode und Verfahren zu deren Herstellung |
WO2009146583A1 (en) * | 2008-06-02 | 2009-12-10 | Hong Kong Applied Science and Technology Research Institute Co. Ltd | Semiconductor wafer, semiconductor device and methods for manufacturing semiconductor wafer and device |
EP2390928A2 (de) * | 2010-05-25 | 2011-11-30 | LG Innotek Co., Ltd | Lichtemittierende Vorrichtung, Gehäuse für lichtemittierende Vorrichtung und Beleuchtungssystem |
US20120080660A1 (en) * | 2011-09-05 | 2012-04-05 | Jung Myung Hoon | Light emitting diode and light emitting device package including the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3557441B2 (ja) * | 2000-03-13 | 2004-08-25 | 日本電信電話株式会社 | 窒化物半導体基板およびその製造方法 |
JP2002338396A (ja) * | 2001-05-14 | 2002-11-27 | Nippon Telegr & Teleph Corp <Ntt> | 窒化物半導体基板およびその製造方法 |
US7420218B2 (en) * | 2004-03-18 | 2008-09-02 | Matsushita Electric Industrial Co., Ltd. | Nitride based LED with a p-type injection region |
JP2010521810A (ja) * | 2007-03-16 | 2010-06-24 | セバスチャン ローデュドス、 | 半導体ヘテロ構造及びその製造 |
US7759689B2 (en) * | 2007-05-07 | 2010-07-20 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Photonic crystal structures and methods of making and using photonic crystal structures |
JP2010537408A (ja) * | 2007-08-14 | 2010-12-02 | ナイテック インコーポレイテッド | マイクロピクセル紫外発光ダイオード |
US7888270B2 (en) * | 2007-09-04 | 2011-02-15 | National Chiao Tung University | Etching method for nitride semiconductor |
TWI405257B (zh) * | 2009-04-08 | 2013-08-11 | Advanced Optoelectronic Tech | 分離基板與半導體層的方法 |
DE102012101211A1 (de) | 2012-02-15 | 2013-08-22 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterbauelements |
DE102012107001A1 (de) | 2012-07-31 | 2014-02-06 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
JP6280005B2 (ja) | 2014-08-28 | 2018-02-14 | 株式会社東芝 | 情報処理装置、画像投影装置および情報処理方法 |
-
2012
- 2012-09-27 DE DE102012217644.6A patent/DE102012217644A1/de not_active Withdrawn
-
2013
- 2013-09-18 CN CN201380050756.0A patent/CN104685642B/zh not_active Expired - Fee Related
- 2013-09-18 KR KR1020157010774A patent/KR20150058502A/ko not_active Application Discontinuation
- 2013-09-18 JP JP2015533534A patent/JP6207616B2/ja not_active Expired - Fee Related
- 2013-09-18 WO PCT/EP2013/069356 patent/WO2014048805A1/de active Application Filing
- 2013-09-18 US US14/430,538 patent/US9466759B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328549A (en) * | 1980-04-10 | 1994-07-12 | Massachusetts Institute Of Technology | Method of producing sheets of crystalline material and devices made therefrom |
EP1041610A1 (de) * | 1997-10-30 | 2000-10-04 | Sumitomo Electric Industries, Ltd. | Gan einkristall-substrat und herstellungsmethode |
EP1071143A1 (de) * | 1997-12-08 | 2001-01-24 | Mitsubishi Cable Industries, Ltd. | LICHTEMITTIERENDE VORRICHTUNG AUF GaN BASIS UND VERFAHREN ZUR HERSTELLUNG EINES GaN KRISTALLS |
US20060266281A1 (en) * | 2004-05-18 | 2006-11-30 | Bernard Beaumont | Manufacturing gallium nitride substrates by lateral overgrowth through masks and devices fabricated thereof |
EP1806790A2 (de) * | 2006-01-06 | 2007-07-11 | Sony Corporation | Leuchtdiode mit einer Silber-basierten Elektrode und Verfahren zu deren Herstellung |
WO2009146583A1 (en) * | 2008-06-02 | 2009-12-10 | Hong Kong Applied Science and Technology Research Institute Co. Ltd | Semiconductor wafer, semiconductor device and methods for manufacturing semiconductor wafer and device |
EP2390928A2 (de) * | 2010-05-25 | 2011-11-30 | LG Innotek Co., Ltd | Lichtemittierende Vorrichtung, Gehäuse für lichtemittierende Vorrichtung und Beleuchtungssystem |
US20120080660A1 (en) * | 2011-09-05 | 2012-04-05 | Jung Myung Hoon | Light emitting diode and light emitting device package including the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014116999A1 (de) | 2014-11-20 | 2016-05-25 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
WO2016078986A1 (de) | 2014-11-20 | 2016-05-26 | Osram Opto Semiconductors Gmbh | Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip |
US10535515B2 (en) | 2014-11-20 | 2020-01-14 | Osram Opto Semiconductors Gmbh | Method of producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip |
Also Published As
Publication number | Publication date |
---|---|
DE102012217644A1 (de) | 2014-03-27 |
JP6207616B2 (ja) | 2017-10-04 |
CN104685642B (zh) | 2017-08-04 |
JP2016500915A (ja) | 2016-01-14 |
KR20150058502A (ko) | 2015-05-28 |
CN104685642A (zh) | 2015-06-03 |
US20150270434A1 (en) | 2015-09-24 |
US9466759B2 (en) | 2016-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014048805A1 (de) | Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements | |
DE102012217640B4 (de) | Optoelektronisches Bauelement und Verfahren zu seiner Herstellung | |
DE102008004448B4 (de) | Epitaxie-Struktur sowie lichtemittierende Einrichtung mit einer Schichtabfolge von Quantentöpfen mit ungleichmäßigen und unebenen Oberflächen | |
DE10213358A1 (de) | Indiumgalliumnitrid-Glättungsstrukturen für III-Nitrid-Anordnungen | |
DE10213395A1 (de) | Indiumgalliumnitrid-Glättungsstrukturen für III-Nitried-Anordnungen | |
DE112015000824B4 (de) | Verfahren zur Herstellung eines elektronischen Halbleiterchips | |
DE102011012925A1 (de) | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips | |
EP1630915A2 (de) | Strahlungsemittierendes optoelektronisches Bauelement mit einer Quantentopfstruktur und Verfahren zu dessen Herstellung | |
WO2007025930A1 (de) | Halbleitersubstrat sowie verfahren und maskenschicht zur herstellung eines freistehenden halbleitersubstrats mittels der hydrid-gasphasenepitaxie | |
WO2014019752A1 (de) | Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip | |
DE112020006856T5 (de) | Epitaktische Struktur für Micro-LED und Verfahren zum Herstellen | |
DE112014001385T5 (de) | Halbleiterlichtemitterstruktur mit einem aktiven Gebiet, das InGaN enthält, und Verfahren für seine Herstellung | |
DE102012217631A1 (de) | Optoelektronisches Bauelement mit einer Schichtstruktur | |
WO2004057680A1 (de) | Strahlungsemittierender halbleiterkörper und verfahren zu dessen herstellung | |
EP1770767B1 (de) | Halbleitersubstrat aus GaAs und Halbleiterbauelement | |
EP2245657B1 (de) | Optoelektronischer halbleiterkörper und verfahren zur herstellung eines optoelektronischen halbleiterkörpers | |
DE10218498B4 (de) | Verfahren zur Herstellung einer Halbleiterschicht und elektronisches Bauelement | |
DE102014102461A1 (de) | Verfahren zur Herstellung einer Halbleiterschichtenfolge und optoelektronisches Halbleiterbauteil | |
DE10102315B4 (de) | Verfahren zum Herstellen von Halbleiterbauelementen und Zwischenprodukt bei diesen Verfahren | |
DE102019100799A1 (de) | Optoelektronisches halbleiterbauelement mit einem schichtstapel mit anisotroper leitfähigkeit und verfahren zur herstellung des optoelektronischen halbleiterbauelements | |
DE10327612B4 (de) | Verfahren zur Herstellung einer Mehrzahl von Halbleiterchips | |
DE102018133123A1 (de) | Optoelektronisches Halbleiterbauelement mit einem zentralen Bereich und einem Randbereich und Verfahren zur Herstellung des optoelektronischen Halbleiterbauelements | |
DE19819259A1 (de) | Verfahren zur epitaktischen Herstellung von Halbleiter-Wachstumsinseln | |
WO2015155268A1 (de) | Verfahren zur ablösung eines aufwachssubstrats eines halbleiterbauteils | |
EP1649497B1 (de) | Verfahren zur herstellung einer vielzahl von optoelektronischen halbleiterchips und optoelektronischer halbleiterchip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13770420 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14430538 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015533534 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157010774 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13770420 Country of ref document: EP Kind code of ref document: A1 |