WO2014048081A1 - 一种自由曲面渐进多焦点镜片及其设计方法年 - Google Patents
一种自由曲面渐进多焦点镜片及其设计方法年 Download PDFInfo
- Publication number
- WO2014048081A1 WO2014048081A1 PCT/CN2013/071259 CN2013071259W WO2014048081A1 WO 2014048081 A1 WO2014048081 A1 WO 2014048081A1 CN 2013071259 W CN2013071259 W CN 2013071259W WO 2014048081 A1 WO2014048081 A1 WO 2014048081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- point
- free
- astigmatism
- value
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/024—Methods of designing ophthalmic lenses
- G02C7/028—Special mathematical design techniques
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
- G02C7/061—Spectacle lenses with progressively varying focal power
Definitions
- the present invention relates to a lens and a design method thereof, and in particular to a free-form progressive multifocal lens and a design method thereof.
- Presbyopia is the main visual impairment of the elderly population. Presbyopic wearers need different distance vision corrections such as far, medium and near, so it is required to integrate different refractive correction functions onto the same lens to form multiple focal glasses. Traditional double-mirror and three-mirror can only achieve visual correction for several discrete distances in several discrete visual regions, unable to obtain continuous vision throughout the whole process, and there are obvious image jumps at the boundary of different visual regions. Affect the comfort of wearing.
- Progressive multifocal lenses based on free-form surface technology overcome the above problems, providing the wearer with a clear vision from the far point to the near point.
- the radius of curvature of the posterior surface of the progressive multifocal lens gradually and continuously increases to a fixed value from the far point to the near point, and the wearer only needs to approach the natural physiological state.
- the vertical rotation of the eye can make the vision at any distance clear.
- the progressive multifocal lens surface is divided into four regions: a far vision zone, a near vision zone, an intermediate transition zone, and an aberration zone.
- the far-field area is located in the wide area of the upper part of the lens and contains a prescription for correcting refractory vision, providing a clear, wide field of view.
- the near-field is located about 10 to 18 mm below the center of the far-sighted reference circle and about 2 to 3 mm from the nasal side. The specific values vary depending on the amount of addition and the preparation style.
- the intermediate transition zone is also called the gradual channel.
- the length can be set according to actual needs. The width depends on factors such as the rate of change of the degree and the size of the aberration zone.
- the length, width and amount of light in the intermediate transition zone define the range of motion of the wearer's eyes, which directly determines the suitability of the human eye for progressive multifocal lenses.
- the aberration zone is a peripheral region of the lens that cannot meet the normal visual requirements of the human eye except for the far vision zone, the near vision zone and the intermediate transition zone, mainly for astigmatic aberration and prism aberration, which affects the wearer's lens. adapt.
- the actual available far-field, near-field, and intermediate transition zones are generally referred to as progressive multifocal lenses.
- Effective visual area or effective field of view It actually includes areas with no aberrations and areas where the aberrations are within the tolerance of the individual.
- the main factor affecting the range of medium/near vision is the distribution and variation of astigmatic aberrations.
- the ideal progressive multifocal lens is aberration free, but this preparation is currently not achievable.
- the purpose of surface-optimized preparation is simply to distribute the aberrations on the surface of the lens reasonably, and to completely eliminate the aberration.
- the basic requirements that progressive multifocal lenses need to meet include having as large an effective visual area as possible, a shorter gradient channel, and a smaller aberration variation gradient.
- the preparer often sets the weighting factors of each preparation parameter according to the specific needs of the wearer, and optimizes the shape and function of the progressive multifocal lens by the balance and compromise of the preparation parameters.
- the progressiveness of the progressive multifocal lens increases along the gradual path in the intermediate transition zone, and in the astigmatic zone near the intermediate transition zone, the astigmatic aberration is gradually increased along the direction perpendicular to the gradual channel. And the increasing speed of the astigmatic aberration is about twice the speed of the ball diameter. This means that a shorter gradient channel will produce larger astigmatic aberrations while reducing the effective visual area of the lens. This results in two types of preparation modes: high gradient, high astigmatic aberration, hard preparation of short channels, low gradation, low astigmatic aberration, and soft preparation of long channels.
- the short channel and low astigmatic aberration of the lens designed by the invention, and the gradation degree of the astigmatism value in the phase difference region is smaller than the gradation degree of the surface ball diameter in the intermediate transition region, thereby effectively improving the comfort of the wearer.
- a method for designing a free-form progressive multifocal lens of the present invention includes the following steps:
- the surface structure of the free-form progressive multifocal lens is constructed using an extended axisymmetric quadric equation, which is: k u X p + 2d u X p y p + h y p
- Construct the meridian umbilical line Connect the far point, the adaptation point, and the near point to obtain the meridian umbilical line.
- the meridian umbilical line is a curve;
- the meridian umbilical line is the longitudinal center line of the lens;
- n is the refractive index of the lens material
- the surface optimization is divided into two stages.
- the points obtained by the astigmatism value obtained in the step (a) are selected to be optimized for the surface type: the 3 ⁇ 4 sum of the quadratic curve coefficients in the step (a) is set to The variable, 3 ⁇ 4 and the range of variation is -0.5 ⁇ +0.5, the discretization takes the value, the remaining parameters remain unchanged, and the combination of 3 ⁇ 4 and value is traversed.
- the equation of step (b) For each set of data, it is calculated by the equation of step (b).
- a free-form progressive multifocal lens designed according to the above lens design method the lens comprises two front and back working faces, wherein: at least one of the front and rear working faces of the lens is complex non-rotational symmetry
- the free-form surface, the lens provides clear vision throughout the entire process including distance, center and view.
- the upper half of the lens is an effective visual area comprising a distance zone in the middle and a sidelighting zone on both sides.
- the working range of the remote area can reach 130 degrees, and the astigmatism value is less than 0.05D.
- the degree of addition of the side-view light-incident zone can reach 50% of the total light-increasing degree of the lens, and the astigmatism value of the area is less than 0.25D.
- the narrow region near the horizontal central axis of the lens is an astigmatism region, and the astigmatism curve is approximately horizontally distributed, and the horizontal position is exactly the starting position of the lens along the meridian umbilical line.
- the lower half of the lens is adjacent to the left and right sides of the meridian umbilical line as an astigmatism area, and the astigmatism curve is approximately vertically distributed.
- the astigmatism value is 1.30D.
- the gradient channel width of the intermediate transition region can reach 8 mm, and the smaller the addition degree, the wider the channel.
- the gradation degree of the astigmatism value in the aberration area is smaller than the gradation degree of the surface ball diameter in the intermediate transition area.
- the beneficial effects of the present invention are:
- the free-form progressive multifocal lens provided by the present invention constructs an initial surface shape by using an extended axisymmetric quadric surface formula, and iteratively optimizes the quadratic curve coefficient and the curvature parameter of each point on the surface, An optimized free-form progressive multifocal lens is obtained.
- Freeform surface in the invention Progressive multifocal lenses have a clearer and wider far-reaching area than conventional progressive multifocal lenses, providing ideal side-peripheral vision on both sides of the far-reaching area.
- the free-form progressive multifocal lens of the present invention has a wide gradual passage, which allows the wearer to clearly see a medium-distance object of 70 cm to 90 cm, and the lens also has a range of near-fields.
- the free-form progressive multifocal lens of the present invention has the advantages of soft astigmatism distribution, small astigmatism value, short channel, and large effective visual area.
- 1 is a surface curve of a free-form progressive multifocal lens along a meridian umbilical line according to an embodiment of the present invention
- FIG. 2 is a contour contour view of an inner surface of a free-form progressive addition multifocal lens according to an embodiment of the present invention
- FIG. 3 is a surface astigmatism distribution diagram of a free-form surface progressive multifocal lens according to an embodiment of the present invention
- FIG. 4 is a surface spherical diameter distribution diagram of a free-form progressive in-focus lens according to an embodiment of the present invention
- a free-form progressive multifocal lens comprising two front and rear working faces, the inner surface of the lens being a complex non-rotationally symmetrical free-form surface, the outer surface being a spherical surface, and the lens having a diameter of 60 mm.
- the lens provides clear vision throughout the journey, including distance, center of view and near view.
- the spherical diameter of the surface of the far-reaching zone is substantially maintained at -6.50D, from the far-reaching zone to the lens.
- the surface sphere diameter varies by less than 0.05D.
- the change in surface ball diameter is less than 0.02D. That is to say, the upper half of the free-form progressive multifocal lens has the same function as the single-lens lens, and the light-increasing effect is mainly realized by the lower half of the lens.
- the mid-range visual functional area of the lens begins at 4 mm above the geometric center of the lens, ie the initial position of the addition, referred to as the adaptation point.
- Surface ball diameter gradually increases from 4 mm to -15 mm To -4.50D and stable within the range of -15 mm to -20 mm, the variation is less than
- the addition degree of the free-form progressive multifocal lens is defined as the difference between the surface spherical diameter of the near reference point and the far reference point, or the difference between the maximum surface sphere diameter of the near-use zone and the far-use zone.
- the lens shown in 1 has a 2.00D addition.
- the optical path from the optical center of the lens to the 85% surface spherical diameter along the meridian umbilical line is defined as the channel length.
- the 85% addition is 1.70D and the corresponding channel length is 10mm.
- Ordinary progressive multifocal lenses generally have a channel length of 13 mm or more, and it is difficult to achieve the channel length requirement in this embodiment.
- 2 is a contour contour view of the inner surface of a free-form progressive addition multifocal lens, including five contour lines of 0.2 mm, 1 mm, 2 mm, 4 mm, and 6 mm.
- the contour lines are irregular closed curves, and the vector height of the upper half of the lens is larger than the vector height of the lower half of the lens.
- the vector height of the upper edge of the lens is 1 mm lower than the lower edge vector height. Big.
- 3 is a surface spherical diameter distribution diagram of a free-form progressive addition multifocal lens, the curve is formed by connecting points of the same surface spherical diameter, including -60.10D, -5.80D, -6.20D, -6.60D.
- the center of the closed curve of the ball diameter in the near region is not on the same vertical line as the center of the closed curve of the ball diameter in the far field.
- the near reference point has a 2 mm translation amount to the right side in the horizontal direction with respect to the far vision reference point, that is, the set meridian umbilical line is a curved three-section line segment, and the two connection points of the line segment are respectively set at The optical center of the lens and the near reference point position.
- the meridian umbilical line can also be a coherent curved curve. Therefore, the surface spherical diameter distribution of the free-form surface progressive multifocal lens does not have left-right symmetry. According to the offset direction of the near point, it can be judged that the lens shown in this example is designed for the left eye.
- the 4 is a surface astigmatism distribution diagram of a free-form progressive in-focus lens, the curve is formed by connecting the points of the same astigmatism value, including 0.20D, 0.50D, 0.80D, 1.00D, and 1.20D.
- the astigmatism value distribution curve is also asymmetrically distributed on the left and right sides of the lens due to the lateral offset of the near reference point.
- the upper half of the lens is an effective visual area, including a distance zone in the middle and a sidelighting zone on both sides.
- the working range of the remote area is 130 degrees, and the astigmatism value is less than 0.05D.
- the addition degree of the addition light-incident area reaches 50% of the total addition degree of the lens, and the astigmatism value of the area is also less than 0.05D, which is beneficial to Improve peripheral vision and dynamic vision when looking far away.
- the narrow region near the horizontal central axis of the lens is an astigmatic region, and the astigmatism curve is approximately horizontally distributed, which is exactly the starting position of the lens along the meridian umbilical line.
- the lower part of the lens is adjacent to the left and right sides of the meridian umbilical line and is the astigmatic area.
- the astigmatism curve is approximately vertical, parallel to the meridian umbilical line, and the gradient channel width of the intermediate transition zone formed by two 0.20D astigmatism curves. It is 10mm.
- the maximum astigmatism value of the vertically distributed astigmatism curve area is 1.20D, and the astigmatism value in the near area below the gradation channel is less than 0.05D.
- the gradation degree of the astigmatism value in the aberration area is smaller than the gradation degree of the inner surface ball diameter of the intermediate transition area.
- the free-form progressive multifocal lens designed in the first embodiment is obtained by optimizing the inner surface profile of the lens.
- the surface structure of the inner surface of the progressively multifocal lens of the free-form surface is constructed using the extended axisymmetric second-order surface formula, which is: k u X p + 2d u X p y p + h y p
- the meridian umbilical line Connect the far point, the adaptation point, and the near point to obtain the meridian umbilical line. There is a lateral displacement between the near point and the far point, and the meridian umbilical line is a curve.
- n is the refractive index of the lens material
- the surface shape optimization is divided into two stages.
- each point obtained in the step (a) is selected to have an astigmatism value greater than 0.05D for surface optimization: in step (a)
- the 3 ⁇ 4 sum of the quadratic coefficient is set as the variable, the range of 3 ⁇ 4 and the range is -0.5 ⁇ +0.5, the discretization takes the value, the remaining parameters remain unchanged, and the combination of 3 ⁇ 4 and value is traversed.
- the second stage is based on the optimization of the first stage, keep 3 ⁇ 4 and unchanged, and the curvature tensor of each point Set to variable, the range of variation is -0.01 ⁇ +0.01, discretize the value, the remaining parameters remain unchanged, traverse the value, each time a data is selected, the astigmatism value of the point is recalculated, and finally find out The value of the minimum astigmatism value; after 2 rounds of iterative optimization, the surface shape of the final free-form progressive multifocal lens is obtained.
- the present invention is not limited by the requirement of the degree of addition of the free-form surface progressive addition lens. In contrast, the lower the degree of addition, the better the optical characteristics of the optimized lens.
- the present invention is equally applicable to a progressive multifocal lens of a symmetrical type.
- the outer surface of the lens is not limited to a spherical surface, but may be an aspherical surface or a toroidal surface.
- the outer surface of the progressive addition lens can also be optimized to be a free-form surface, and the inner surface is a spherical surface, an aspheric surface or a toroidal surface.
- the inner and outer surfaces can also be free-form surfaces at the same time (
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Eyeglasses (AREA)
Abstract
一种自由曲面渐进多焦点镜片及其设计方法。采用扩展的轴对称二次曲面公式构建初始面型,通过对表面各点的二次曲线系数和曲率参数的迭代优化,得到最终镜片面型和光学特性。对像散区域进行了大幅度压缩,降低了最大像散值,像散分布更加柔和,通道宽度得以增大,镜片的有效视觉区域明显增加,可以有效提高配戴者的舒适度,加光度数较高。该镜片尤其适合对像差较为敏感的老视屈光不正患者。
Description
一种自由曲面渐进多焦点镜片及其设计方法年 技术领域
[0001] 本发明涉及一种镜片及其设计方法, 具体涉及一种自由曲面渐进多焦点 镜片及其设计方法。
背景技术
[0002] 老视是老年人群的主要视力缺陷。 老视配戴者需要远、 中、 近等不同距 离的视觉矫正, 因此要求将不同的屈光矫正功能集成到同一片镜片上, 形成多 个焦点的眼镜。 传统的双光镜和三光镜只能在几个离散的视觉区域内对几个离 散的距离实现视觉矫正, 无法获得全程的连续视觉, 并且在不同视觉区域的分 界线处存在明显的像跳, 影响配戴的舒适度。
[0003] 基于自由曲面技术的渐进多焦点镜片克服了上述问题, 为佩戴者提供自 远点到近点全程、 连续的清晰视觉。 与双光镜不同的是, 渐进多焦点镜片的后 表面曲率半径从视远点开始至视近点按一定的变化规律逐渐、 连续地增加至一 固定值, 佩戴者只需以接近自然生理状态的眼球垂直转动即可使任意距离的视 力都达到清晰。
[0004] 渐进多焦点镜片表面分为四个区域: 视远区、 视近区、 中间过渡区和像 差区。 视远区位于镜片上半部分的宽阔区域, 含有矫正视远屈光不正的处方, 提供清晰、 宽阔的视野。 视近区位于视远参考圈中心下方约 10〜18 mm, 鼻侧 约 2〜3 mm, 具体数值视近附加量和制备样式而异。 中间过渡区也叫渐变通 道, 其长度可根据实际需要进行设定, 其宽度则取决于度数变化速率和像差区 域的大小等因素。 中间过渡区的长度、 宽度和加光量限定了配戴者眼睛的活动 范围, 直接决定了人眼对渐进多焦点镜片的适应性。 像差区是除了视远区、 视 近区和中间过渡区之外, 像差无法满足人眼正常视觉要求的镜片周边区域, 主 要为像散像差和棱镜像差, 影响佩戴者对镜片的适应。
[0005] 通常把实际可用的视远区、 视近区和中间过渡区统称为渐进多焦点镜片
的有效视觉区域或有效视野。 它实际上包括无像差的区域和像差在个体可耐受 范围内的区域。 客观上, 影响中 /近视野范围的主要因素是像散像差的分布与变 化情况。
[0006] 理想的渐进多焦点镜片是没有像差的, 但是这种制备目前还无法实现。 面型优化制备的目的只是将像差在镜片表面进行合理分布, 而无法完全消除像 差。 渐进多焦点镜片需要满足的基本要求包括拥有尽可能大的有效视觉区域、 较短的渐变通道和较小的像差变化梯度。 制备者往往根据佩戴者的具体需求, 设定各个制备参数的权重因子, 通过制备参数的平衡和折中, 来对渐进多焦点 镜片进行面型和功能的优化。
[0007] 通常情况下, 渐进多焦点镜片在中间过渡区的球径度沿渐变通道递增, 同时在中间过渡区附近的像散区内, 沿垂直于渐变通道方向, 像散像差也是逐 渐递增, 且像散像差的递增速度是球径度递增速度的 2倍左右。 这就意味着较 短的渐变通道将会产生更大的像散像差同时会缩小镜片的有效视觉区域。 由此 产生了高渐变度、 高像散像差、 短通道的硬性制备和低渐变度、 低像散像差、 长通道的软性制备两类制备模式。
发明内容
[0008] 本发明的目的是提供一种自由曲面渐进多焦点镜片及其设计方法。 本发 明设计的镜片短通道、 低像散像差, 且相差区域内像散值的渐变度小于中间过 渡区域内表面球径度的渐变度, 有效提高了配戴者的舒适度。
[0009] 本发明一种自由曲面渐进多焦点镜片的设计方法, 包括以下歩骤:
(a) 初始面型构造:
自由曲面渐进多焦点镜片的面型构造, 采用扩展的轴对称二次曲面公式进行构 造, 公式为: 一 k u X p + 2d u X p y p + h y p
(¾, , )为二次曲线系数张量;
构造子午脐线: 先后连接视远点、 适配点、 视近点得到子午脐线, 当视近 点与视远点存在侧向位移时, 子午脐线为曲线; 当视近点与视远点不存在侧向 位移时, 子午脐线即为镜片的纵向中心线;
构造初始面型: 设定镜片视远点与视近点的球径度, 利用高阶的非线性插 值方法计算子午脐线上各点的球径度, 同时已知镜片折射率, 即可计算子午脐 线上每一点沿 X方向和 y方向的初始曲率 和 , 而曲率 均设为零; 同时将 各点的二次曲线系数张量 也设为零, 由扩展的轴对称二次曲面公 式计算得到镜片上各点的初始矢高。 此时, 扩展的轴对称二次曲面公式就退化 为普通的二次曲面公式, 得到的就是传统渐进多焦点镜片的面型。
[0010] ( b ) 表面光学特性计算
然后利用微分几何的基本公式计算出相应点的最大和最小曲率半径 和 , 从 而获得镜片表面光学特性, 即各点的表面球径度和像散值: n - l丄 丄
球面度 D = 像散 C = (W - 1) J 1_
2 R、 R R、 Rn
n为镜片材料的折射率;
(c) 面型优化:
面型优化分两个阶段, 第一阶段选取歩骤 (a) 中得到的像散值大于 0.05D的各 个点进行面型优化: 将歩骤 (a) 中二次曲线系数的 ¾和 设为变量, ¾和 的变化范围为 -0.5〜+0.5, 离散化取值, 其余参数保持不变, 对¾、 取值 组合进行遍历, 每选择一组数据, 就用歩骤 (b ) 的方程计算出该点的像散 值, 最后找出拥有最小像散值的 ¾、 取值, 并保留; 第二阶段在第一阶段
优化的基础上, 保持 ¾和 不变, 将各点曲率张量中的 设为变量, 的变 化范围为 -0.01〜+0.01, 离散化取值, 其余参数保持不变, 对 取值进行遍 历, 每选择一个数据, 就用歩骤 (b ) 的方程计算出该点的像散值, 最后找出 拥有最小像散值的 取值, 得到最终的自由曲面渐进多焦点镜片的表面面型。
[0011] 一种按照上述的镜片的设计方法设计的自由曲面渐进多焦点镜片, 镜片 包含前后两个工作面, 其特征在于: 镜片的前后两个工作面中至少有一个为复 杂的非回转对称的自由曲面, 镜片可以提供包括视远、 视中和视近在内的全程 清晰视觉。
[0012] 所述镜片的上半部分为有效视觉区域, 其中包括位于中间的远用区和两 侧的旁视加光区。
[0013] 所述远用区工作范围能够达到 130度, 像散值小于 0.05D。
[0014] 所述旁视加光区的加光度数能够到达镜片整体加光度数的 50%, 该区域 像散值小于 0.25D。
[0015] 所述镜片水平中心轴附近的狭长区域为像散区, 等像散曲线近似呈水平 方向分布, 该水平位置恰好是镜片沿子午脐线加光的起始位置。
[0016] 所述镜片下半部分靠近子午脐线左右两侧为像散区, 等像散曲线近似呈 垂直方向分布, 当表面球径度加光 2.00D时, 像散值 1.30D。
[0017] 所述沿子午脐线从镜片光学中心到 85%表面球径度加光位置的通道长度
= 11 mm。
[0018] 所述表面球径度加光 2.00D时, 中间过渡区的渐变通道宽度能够达到 8 mm, 加光度越小, 通道越宽。
[0019] 所述像差区域内像散值的渐变度小于中间过渡区域内表面球径度的渐变 度。
[0020] 本发明有益效果是: 本发明提供的自由曲面渐进多焦点镜片采用扩展的 轴对称二次曲面公式构建初始面型, 通过对表面各点的二次曲线系数和曲率参 数的迭代优化, 得到优化后的自由曲面渐进多焦点镜片。 本发明中的自由曲面
渐进多焦点镜片较普通的渐进多焦点镜片具有更加清晰和开阔的远用区域, 在 远用区域的两侧还可以提供理想的旁周边视力。 本发明中的自由曲面渐进多焦 点镜片具有较宽的渐变通道, 可以让佩戴者清晰地看到 70 cm〜90 cm 的中距 离物体, 镜片同时还拥有一定范围的近用区域。 本发明的自由曲面渐进多焦点 镜片具有像散分布柔和、 像散值小、 通道短、 有效视觉区域大的优点。
附图说明
[0021] 附图 1为本发明实施例一自由曲面渐进多焦点镜片沿子午脐线的表面球 径度变化曲线;
[0022] 附图 2为本发明实施例一自由曲面渐进多焦点镜片内表面的等高线轮廓 图;
[0023] 附图 3为本发明实施例一自由曲面渐进多焦点镜片的表面像散分布图;
[0024] 附图 4 为本发明实施例一自由曲面渐进多焦点镜片的表面球径度分布 图;
具体实施方式
[0025] 实施例一
一种自由曲面渐进多焦点镜片, 镜片包含前后两个工作面, 镜片内表面为复杂 的非回转对称的自由曲面, 外表面为球面, 镜片直径为 60 mm。 镜片可以提供 包括视远、 视中和视近在内的全程清晰视觉。
[0026] 下面结合附图对本实施例作进一歩说明。
[0027] 附图 1是自由曲面渐进多焦点镜片内表面沿子午脐线的表面球径度的变 化曲线, 在远用区表面球径度基本保持 -6.50D 不变, 从远用区到镜片光学中 心, 表面球径度的变化范围小于 0.05D。 在远用区内, 表面球径度的变化小于 0.02D。 也就是说自由曲面渐进多焦点镜片的上半部分功能与单光镜片相近, 加光作用主要是由镜片的下半部分来实现。
[0028] 镜片的中距离视觉功能区域起始于镜片几何中心上方 4 mm处, 也就是 加光起始位置, 称为适配点。 从 4 mm到 -15 mm范围内, 表面球径度逐渐增大
到 -4.50D , 并在 -15 mm 到 -20 mm 的近用区范围内保持稳定, 变化幅度小于
0.02D , 由此产生镜片的度数渐变效果。 自由曲面渐进多焦点镜片的加光度数 定义为近用参考点和远用参考点的表面球径度之差, 或者是近用区和远用区的 最大表面球径度之差, 因此, 图 1中所示镜片具有 2.00D的加光。
[0029] 沿子午脐线从镜片光学中心到 85%表面球径度加光位置定义为通道长 度。 在图 1 中, 85%加光度数为 1.70D, 对应的通道长度为 10 mm。 普通渐进 多焦点镜片的通道长度一般在 13 mm或以上, 很难达到本实施例中的通道长度 要求。
[0030] 图 2 为自由曲面渐进多焦点镜片内表面的等高线轮廓图, 包含了 0.2 mm、 1 mm、 2 mm、 4 mm和 6 mm共 5条等高线。 由于是自由曲面, 等高线 都是非规则的封闭曲线, 并且镜片上半区域的矢高要大于镜片下半区域的矢 高, 镜片上边缘的矢高与下边缘矢高像差 1 mm, 左右边缘矢高相差不大。
[0031] 图 3为自由曲面渐进多焦点镜片的表面球径度分布图, 曲线是由相同表 面球径度的各点连接形成, 包括 -4.60D、 -5.80D、 -6.20D、 -6.60D 共 4 个等球 径度分布曲线。 视近区内等球径度闭合曲线的中心与视远区内等球径度闭合曲 线的中心不在同一条垂直直线上。 原因是视近参考点相对于视远参考点在水平 方向上往右侧有 2 mm的平移量, 即所设定的子午脐线为弯曲的三段线段, 线 段的两个连接点分别设在镜片的光学中心和近用参考点位置。 子午脐线也可以 是连贯的弯曲曲线。 因此, 自由曲面渐进多焦点镜片的表面球径度分布不具有 左右对称性。 根据视近点的偏移方向可以判断本例所示镜片是针对左眼设计。
[0032] 图 4为自由曲面渐进多焦点镜片的表面像散分布图, 曲线是由相同像散 值的各点连接形成, 包括 0.20D、 0.50D、 0.80D、 1.00D和 1.20D共 5个等像散 值分布曲线, 由于视近参考点的侧向偏移, 等像散值曲线在镜片左右两侧也是 非对称分布。 镜片的上半部分为有效视觉区域, 包括位于中间的远用区和两侧 的旁视加光区。 远用区工作范围为 130度, 像散值小于 0.05D。 旁视加光区的 加光度数到达镜片整体加光度数的 50%, 该区域像散值也小于 0.05D, 有利于
在视远时增进周边视力与动态视觉。
[0033] 镜片水平中心轴附近的狭长区域为像散区, 等像散曲线近似呈水平方向 分布, 该水平位置恰好是镜片沿子午脐线加光的起始位置。 镜片下半部分靠近 子午脐线左右两侧同为像散区, 等像散曲线近似呈垂直方向分布, 平行于子午 脐线, 两条 0.20D像散值曲线形成的中间过渡区的渐变通道宽度为 10mm。 垂 直分布的像散曲线区域的最大像散值为 1.20D, 渐变通道下方近用区域内的像 散值均小于 0.05D。
[0034] 从图 3和图 4, 可以看出像差区域内像散值的渐变度小于中间过渡区域 内表面球径度的渐变度。
[0035] 实施例一所设计的自由曲面渐进多焦点镜片是通过镜片的内表面面型优 化得到的。 自由曲面渐进多焦点镜片内表面的面型构造, 采用扩展的轴对称二 次曲面公式进行构造, 公式为: 一 k u X p + 2d u X p y p + h y p
( , , )为各点的曲率张量,
, , )为二次曲线系数张量;
首先构造子午脐线: 先后连接视远点、 适配点、 视近点便得到子午脐线, 视近 点与视远点存在侧向位移, 子午脐线为曲线。
[0036] 再构造初始面型: 设定镜片视远点与视近点的球径度, 利用高阶的非线 性插值方法计算子午脐线上各点的球径度, 同时已知镜片折射率, 计算出子午 脐线上每一点沿 X方向和 y方向的初始曲率 和 , 而曲率 均设为零; 同时 将各点的二次曲线系数张量 也设为零, 由扩展的轴对称二次曲面 公式计算得到镜片上各点的初始矢高。
[0037] 然后利用微分几何的基本公式计算出相应点的最大和最小曲率半径 和
R2, 从而获得镜片表面光学特性, 即各点的表面球径度和像散值: n - l丄 丄 J 1_
表面球面度 D = 像散值 C = ("-l)
R、 R «2 ) R、 Rn
n为镜片材料的折射率;
在该面型基础上进行优化, 面型优化分两个阶段, 第一阶段选取歩骤 (a) 中 得到的像散值大于 0.05D的各个点进行面型优化: 将歩骤 (a) 中二次曲线系数 的 ¾和 设为变量, ¾和 的变化范围为 -0.5〜+0.5, 离散化取值, 其余参 数保持不变, 对¾、 取值组合进行遍历, 每选择一组数据, 就重新计算该 点的像散值, 最后找出拥有最小像散值的 ¾、 取值, 并保留; 第二阶段在 第一阶段优化的基础上, 保持 ¾和 不变, 将各点曲率张量中的 设为变 量, 的变化范围为 -0.01〜+0.01, 离散化取值, 其余参数保持不变, 对 取 值进行遍历, 每选择一个数据, 就重新计算该点的像散值, 最后找出拥有最小 像散值的 取值; 经过 2轮的迭代优化, 得到最终的自由曲面渐进多焦点镜片 的表面面型。
[0038] 本发明不受自由曲面渐进多焦点镜片加光度数要求的限制, 相对而言, 加光度数越低则优化后的镜片光学特性越好。 本发明同样适用于面型左右对称 型的渐进多焦点镜片。
[0039] 本发明不限于所示的示例。 如镜片的外表面不仅限于球面, 还可以是非 球面或者环曲面。 而且同样可以对渐进多焦点镜片的外表面进行优化使其成为 自由曲面, 而内表面为球面、 非球面或者环曲面。 当然, 内表面和外表面也可 以同时为自由曲面 (
Claims
1.一种自由曲面渐进多焦点镜片的设计方法, 包括以下歩骤:
( a) 初始面型构造:
自由曲面渐进多焦点镜片的面型构造,采用扩展的轴对称二次曲面公 式进行构造, 公式为:
一 k u X p + 2d u X p y p + h y p
其中, ( , , )为各点的空间坐标,
, 为各点的曲率张量,
(¾, , )为二次曲线系数张量;
构造子午脐线:先后连接视远点、适配点、视近点得到子午脐线, 当视近点与视远点存在侧向位移时, 子午脐线为曲线; 当视近点与视 远点不存在侧向位移时, 子午脐线即为镜片的纵向中心线;
构造初始面型: 设定镜片视远点与视近点的球径度, 利用高阶的 非线性插值方法计算子午脐线上各点的球径度, 同时已知镜片折射 率,即可计算子午脐线上每一点沿 X方向和 y方向的初始曲率 和 , 而曲率 du均设为零; 同时将各点的二次曲线系数张量 (^, ¾, )也 设为零,由扩展的轴对称二次曲面公式计算得到镜片上各点的初始矢 高。此时,扩展的轴对称二次曲面公式就退化为普通的二次曲面公式, 得到的就是传统渐进多焦点镜片的面型;
( b ) 表面光学特性计算
然后利用微分几何的基本公式计算出相应点的最大和最小曲率半径
和 , 从而获得镜片表面光学特性, 即各点的表面球径度和像散 值: n - l丄 丄 J 1_
球面度 D = 像散 C = (w - 1)
R、 R R、 R n为镜片材料的折射率;
(c) 面型优化:
面型优化分两个阶段, 第一阶段选取歩骤 (a) 中得到的像散值大于 0.05D的各个点进行面型优化:将歩骤(a)中二次曲线系数的 ¾和 设为变量, ¾和 的变化范围为 -0.5〜+0.5, 离散化取值, 其余参数 保持不变, 对¾、 取值组合进行遍历, 每选择一组数据, 就用歩 骤(b)的方程计算出该点的像散值,最后找出拥有最小像散值的 ¾、 取值, 并保留; 第二阶段在第一阶段优化的基础上, 保持 ¾和 不变, 将各点曲率张量中的 设为变量, 的变化范围为 -0.01〜 +0.01, 离散化取值, 其余参数保持不变, 对 取值进行遍历, 每选 择一个数据, 就用歩骤 (b) 的方程计算出该点的像散值, 最后找出 拥有最小像散值的 du取值,得到最终的自由曲面渐进多焦点镜片的表 面面型。
2.—种按照权利要求 1的镜片的设计方法设计的自由曲面渐进多焦点 镜片, 镜片包含前后两个工作面, 其特征在于: 镜片的前后两个工作 面中至少有一个为复杂的非回转对称的自由曲面,镜片可以提供包括 视远、 视中和视近在内的全程清晰视觉。
3.根据权利要求 2所述的自由曲面渐进多焦点镜片, 其特征是, 所述 镜片的上半部分为有效视觉区域,其中包括位于中间的远用区和两侧
的旁视加光区。
4. 根据权利要求 2或 3所述的自由曲面渐进多焦点镜片, 其特征是, 所述远用区工作范围能够达到 130度, 像散值小于 0.05D。
5. 根据权利要求 2或 3所述的自由曲面渐进多焦点镜片, 其特征是, 所述旁视加光区的加光度数能够到达镜片整体加光度数的 50%,该区 域像散值小于 0.25D。
6. 根据权利要求 2所述的自由曲面渐进多焦点镜片, 其特征是, 所 述镜片水平中心轴附近的狭长区域为像散区,等像散曲线近似呈水平 方向分布, 该水平位置恰好是镜片沿子午脐线加光的起始位置。
7. 根据权利要求 2所述的自由曲面渐进多焦点镜片, 其特征是, 所 述镜片下半部分靠近子午脐线左右两侧为像散区,等像散曲线近似呈 垂直方向分布, 当表面球径度加光 2.00D时, 像散值 1.30D。
8. 根据权利要求 2所述的自由曲面渐进多焦点镜片, 其特征是, 所 述沿子午脐线从镜片光学中心到 85%表面球径度加光位置的通道长 度 11 mm。
9. 根据权利要求 2所述的自由曲面渐进多焦点镜片, 其特征是, 所 述表面球径度加光 2.00D时, 中间过渡区的渐变通道宽度能够达到 8 mm, 加光度越小, 通道越宽。
10. 根据权利要求 2所述的自由曲面渐进多焦点镜片, 其特征是, 所 述像差区域内像散值的渐变度小于中间过渡区域内表面球径度的渐 变度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210363751.0 | 2012-09-26 | ||
CN201210363751.0A CN102902078B (zh) | 2012-09-26 | 2012-09-26 | 一种自由曲面渐进多焦点镜片及其设计方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014048081A1 true WO2014048081A1 (zh) | 2014-04-03 |
Family
ID=47574401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/071259 WO2014048081A1 (zh) | 2012-09-26 | 2013-02-01 | 一种自由曲面渐进多焦点镜片及其设计方法年 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102902078B (zh) |
WO (1) | WO2014048081A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111736365A (zh) * | 2020-06-29 | 2020-10-02 | 苏州科技大学 | 一种渐进多焦点眼用镜片环曲面的设计方法 |
CN113341590A (zh) * | 2021-06-18 | 2021-09-03 | 温州医科大学 | 区域化自由曲面消像散渐变镜及设计方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102902078B (zh) * | 2012-09-26 | 2014-07-30 | 温州医学院眼视光研究院 | 一种自由曲面渐进多焦点镜片及其设计方法 |
US9618774B2 (en) | 2014-02-10 | 2017-04-11 | Shamir Optical Industry Ltd. | Quasi progressive lenses for eyewear |
US20150253587A1 (en) * | 2014-02-10 | 2015-09-10 | Shamir Optical Industry Ltd. | Quasi progressive lenses for eyewear |
JP6416394B2 (ja) | 2015-05-26 | 2018-10-31 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | 累進屈折力レンズの設計方法及びレンズセット |
CN107632411A (zh) * | 2016-07-19 | 2018-01-26 | 上海根植企业管理咨询有限公司 | 一种半渐变镜片及含其的眼镜 |
CN107065220B (zh) * | 2017-03-30 | 2018-12-07 | 温州医科大学 | 镜框匹配优化的个性化自由曲面渐变镜设计方法 |
CN113867005A (zh) * | 2021-10-27 | 2021-12-31 | 苏州科技大学 | 一种渐进多焦点眼用镜片面型优化设计方法 |
CN118151411A (zh) * | 2024-03-15 | 2024-06-07 | 天津松润医疗器械有限公司 | 一种渐进多焦点镜的设计方法、系统和渐进多焦点镜 |
CN117991505A (zh) * | 2024-04-03 | 2024-05-07 | 武汉二元科技有限公司 | 一种增强型适应法光学自动设计中的病态处理方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050206840A1 (en) * | 2004-03-22 | 2005-09-22 | Giuseppe Roscini | Innovative minus power lens and processing methods thereof |
CN102419476A (zh) * | 2011-12-23 | 2012-04-18 | 苏州大学 | 一种减小渐进多焦点镜片像散的优化方法 |
CN102436075A (zh) * | 2011-12-23 | 2012-05-02 | 苏州大学 | 一种大视区小像散的渐进多焦点镜片 |
CN102902078A (zh) * | 2012-09-26 | 2013-01-30 | 温州医学院眼视光研究院 | 一种自由曲面渐进多焦点镜片及其设计方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6923540B2 (en) * | 2002-07-31 | 2005-08-02 | Novartis Ag | Toric multifocal contact lenses |
CN101359089B (zh) * | 2008-10-08 | 2010-08-11 | 北京理工大学 | 轻小型大视场自由曲面棱镜头盔显示器光学系统 |
-
2012
- 2012-09-26 CN CN201210363751.0A patent/CN102902078B/zh active Active
-
2013
- 2013-02-01 WO PCT/CN2013/071259 patent/WO2014048081A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050206840A1 (en) * | 2004-03-22 | 2005-09-22 | Giuseppe Roscini | Innovative minus power lens and processing methods thereof |
CN102419476A (zh) * | 2011-12-23 | 2012-04-18 | 苏州大学 | 一种减小渐进多焦点镜片像散的优化方法 |
CN102436075A (zh) * | 2011-12-23 | 2012-05-02 | 苏州大学 | 一种大视区小像散的渐进多焦点镜片 |
CN102902078A (zh) * | 2012-09-26 | 2013-01-30 | 温州医学院眼视光研究院 | 一种自由曲面渐进多焦点镜片及其设计方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111736365A (zh) * | 2020-06-29 | 2020-10-02 | 苏州科技大学 | 一种渐进多焦点眼用镜片环曲面的设计方法 |
CN113341590A (zh) * | 2021-06-18 | 2021-09-03 | 温州医科大学 | 区域化自由曲面消像散渐变镜及设计方法 |
CN113341590B (zh) * | 2021-06-18 | 2022-08-23 | 温州医科大学 | 区域化自由曲面消像散渐变镜及设计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102902078B (zh) | 2014-07-30 |
CN102902078A (zh) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014048081A1 (zh) | 一种自由曲面渐进多焦点镜片及其设计方法年 | |
JP3800629B2 (ja) | 眼鏡用多焦点レンズおよび眼鏡レンズ | |
JP4685999B2 (ja) | 眼鏡レンズの決定方法 | |
JP2859054B2 (ja) | 眼鏡用のマルチフォーカルレンズ | |
CA2467786C (en) | Balanced progressive lens | |
JP5542447B2 (ja) | 単焦点眼鏡レンズを決定する方法および単焦点眼鏡レンズ | |
JP5286473B2 (ja) | 累進屈折力眼鏡レンズの設計方法 | |
AU2004297992C1 (en) | Shaped non-corrective eyewear lenses and methods for providing same | |
JP2010520514A (ja) | 累進光学パワー領域と不連続部を有する多焦点レンズ | |
WO2000073846A1 (en) | Progressive lens | |
CN104808353B (zh) | 角膜塑形镜 | |
AU2015213612B2 (en) | Quasi progressive lenses for eyewear | |
JP2007241276A (ja) | 累進焦点眼鏡レンズの決定方法 | |
CN106444073B (zh) | 一种为佩镜者定制的眼用镜片及其制备方法 | |
KR20160144379A (ko) | 보충 이미지를 출력하도록 구성되는 누진 가법 안과용 렌즈의 광학계를 계산하는 방법 | |
JP6997355B2 (ja) | 領域的に変化する屈折率を有する累進眼鏡レンズ及びその設計方法 | |
CN102650748B (zh) | 渐进屈光力镜片及其设计方法 | |
CN106526890B (zh) | 一种为佩镜者定制的渐进多焦点镜片及其制备方法 | |
CN206311862U (zh) | 一种镜片为个性化渐进多焦点的眼镜 | |
JP3690427B2 (ja) | 累進多焦点レンズおよび眼鏡レンズ | |
WO2015015536A1 (ja) | 老視用コンタクトレンズセット | |
CN117572669A (zh) | 一种基于Bezier曲线设计渐进多焦点镜片的方法 | |
JP4243335B2 (ja) | 累進屈折力レンズ | |
JP6294466B2 (ja) | 累進屈折力レンズの設計方法および製造方法、ならびに累進屈折力レンズ製造システム | |
JP2004501390A (ja) | わずかな拡大差を有する漸進的な眼鏡レンズ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13841004 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13841004 Country of ref document: EP Kind code of ref document: A1 |