WO2014047981A1 - 薄膜晶体管的制造方法及其制造的薄膜晶体管 - Google Patents

薄膜晶体管的制造方法及其制造的薄膜晶体管 Download PDF

Info

Publication number
WO2014047981A1
WO2014047981A1 PCT/CN2012/082819 CN2012082819W WO2014047981A1 WO 2014047981 A1 WO2014047981 A1 WO 2014047981A1 CN 2012082819 W CN2012082819 W CN 2012082819W WO 2014047981 A1 WO2014047981 A1 WO 2014047981A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film transistor
oxide semiconductor
thin film
titanium
Prior art date
Application number
PCT/CN2012/082819
Other languages
English (en)
French (fr)
Inventor
郑扬霖
萧祥志
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/806,131 priority Critical patent/US9171939B2/en
Publication of WO2014047981A1 publication Critical patent/WO2014047981A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to the field of planar display devices, and more particularly to a method of fabricating a thin film transistor and a thin film transistor fabricated therefrom. Background technique
  • Liquid crystal display has many advantages such as thin body, power saving, and no radiation, and has been widely used.
  • Most of the liquid crystal display devices on the market are backlight type liquid crystal display devices, which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates, control the liquid crystal molecules to change direction by energizing or not the glass substrate, and refract the light of the backlight module to produce a picture.
  • a liquid crystal display panel comprises a CF (Color Filter) substrate, a TFT (Thin Film Transistor) substrate, a liquid crystal (LC, Liquid Crystal) sandwiched between the color filter substrate and the thin film transistor substrate, and a sealant frame ( Sealant), the molding process generally includes: front array (Array) process (film, yellow, etching and stripping), middle cell (cell) process (TFT substrate and CF substrate bonding) and rear module assembly Process (drive IC is pressed with printed circuit board).
  • Array array
  • LCD Thin Film Transistor
  • LC Liquid Crystal
  • the front Array process mainly forms a TFT substrate to control the movement of liquid crystal molecules; the middle Cell process mainly adds liquid crystal between the TFT substrate and the CF substrate; the rear module assembly process is mainly to drive the IC to press and print the circuit.
  • the integration of the plates drives the liquid crystal molecules to rotate, displaying images.
  • the thin film transistor substrate generally comprises a glass substrate and a thin film transistor formed on the glass substrate.
  • the thin film transistor has three main structures, namely a co-planer structure, an island-stop structure and a back. Channel (BCE) structure, and the existing oxide thin film transistor is mainly composed of a coplanar structure and an etch stop layer structure, because the back channel structure may damage the oxide semiconductor layer during the process, affecting its electrical properties. .
  • FIG. 1 is a schematic structural diagram of a conventional back channel structure thin film transistor formed on a glass substrate 100 by a five-mask process, comprising: a gate electrode 101 formed on a glass substrate 100 and formed on a gate insulating layer 103.
  • Al aluminum
  • Mo molybdenum
  • the etching process is required for the aluminum layer.
  • the etching solution is generally a mixed acid of phosphoric acid (3 ⁇ 4P0 4 ) and nitric acid (HN0 3 ), and the mixed acid of phosphoric acid and nitric acid.
  • the oxide semiconductor layer 105 is reacted, which in turn causes the oxide semiconductor layer 105 to be etched, thereby affecting the electrical properties of the thin film transistor and lowering the quality of the thin film transistor.
  • An object of the present invention is to provide a method of manufacturing a thin film transistor which simplifies the production process, reduces the production cost, and improves the electrical properties of the produced thin film transistor.
  • Another object of the present invention is to provide a thin film transistor which is simple in process and has high electrical conductivity.
  • the present invention provides a method of fabricating a thin film transistor, comprising the steps of:
  • Step 1 providing a substrate
  • Step 2 forming a first metal layer on the substrate, and forming a gate through a photomask process; Step 3, forming a gate insulating layer on the gate;
  • Step 4 forming an oxide semiconductor layer on the gate insulating layer, and forming a second metal layer on the oxide semiconductor layer, the second metal layer including a titanium layer formed on the oxide semiconductor layer and formed on the titanium layer a copper layer, and forming a data line, and a source/drain through a photomask process;
  • Step 5 Form a transparent conductive layer on the second metal layer, and pattern the transparent conductive layer by a mask process to obtain a thin film transistor.
  • the substrate is a glass or plastic substrate.
  • the titanium layer has a thickness of less than 12 nm.
  • the oxide semiconductor layer contains at least one of zinc oxide, tin oxide, indium oxide, and gallium oxide.
  • the mask process of the step 4 includes:
  • Step 4.11 forming a photoresist layer on the copper layer, forming a data line by exposure and wet etching, and forming a channel at a corresponding position of the photoresist layer;
  • Step 4.12 dry etching the titanium layer with carbon tetrafluoride or sulfur hexafluoride
  • Step 4.13 smear the bottom of the channel with oxygen ash to expose the copper layer
  • Step 4.14 wet etching the oxide semiconductor layer with oxalic acid
  • Step 4.15 wet etching the exposed copper layer with copper acid to expose the titanium layer
  • Step 4.16 dry etching the exposed titanium layer with carbon tetrafluoride or sulfur hexafluoride, and removing the photoresist layer to form a source/drain.
  • the mask process of the step 4 includes:
  • Step 4.11 forming a photoresist layer on the copper layer, forming a data line by exposure and wet etching, and forming a channel at a corresponding position of the photoresist layer;
  • Step 4.22 dry etching the titanium layer with carbon tetrafluoride or sulfur hexafluoride;
  • Step 4.23 smear the bottom of the channel with oxygen ash to expose the copper layer
  • Step 4.24 wet etching the oxide semiconductor layer with oxalic acid
  • Step 4.25 wet etching the exposed copper layer with copper acid to expose the titanium layer
  • Step 4.26 oxidizing the surface of the copper layer with oxygen to form a copper oxide layer on the sidewall;
  • Step 4.27 dry etching the exposed titanium layer by chlorine gas, and removing the photoresist layer to form a source/drain.
  • the invention also provides a method for manufacturing a thin film transistor, comprising the following steps:
  • Step 1 providing a substrate
  • Step 2 forming a first metal layer on the substrate, and forming a gate through a photomask process; Step 3, forming a gate insulating layer on the gate;
  • Step 4 forming an oxide semiconductor layer on the gate insulating layer, and forming a second metal layer on the oxide semiconductor layer, the second metal layer including a titanium layer formed on the oxide semiconductor layer and formed on the titanium layer a copper layer, and forming a data line and a source/drain through a mask process;
  • Step 5 forming a transparent conductive layer on the second metal layer, and patterning the transparent conductive layer by a photomask process, thereby preparing a thin film transistor;
  • the substrate is a glass or plastic substrate
  • the thickness of the titanium layer is less than 12 nm
  • the oxide semiconductor layer contains at least one of zinc oxide, tin oxide, indium oxide, and gallium oxide;
  • the mask process of the step 4 includes:
  • Step 4.11 forming a photoresist layer on the copper layer, forming a data line by exposure and wet etching, and forming a channel at a corresponding position of the photoresist layer;
  • Step 4.12 dry etching the titanium layer with carbon tetrafluoride or sulfur hexafluoride
  • Step 4.13 smear the bottom of the channel with oxygen ash to expose the copper layer
  • Step 4.14 wet etching the oxide semiconductor layer with oxalic acid
  • Step 4.15 wet etching the exposed copper layer with copper acid to expose the titanium layer
  • Step 4.16 dry etching the exposed titanium layer with carbon tetrafluoride or sulfur hexafluoride, and removing the photoresist layer to form a source/drain.
  • the present invention also provides a thin film transistor comprising: a substrate, a gate formed on the substrate, a gate insulating layer covering the gate, an oxide semiconductor layer formed on the gate insulating layer, and an oxide semiconductor layer
  • the source/drain, the source/drain includes a titanium layer and a copper layer formed on the titanium layer.
  • the substrate is a glass or plastic substrate.
  • the titanium layer has a thickness of less than 12 nm.
  • the oxide semiconductor layer contains at least one of zinc oxide, tin oxide, indium oxide, and gallium oxide.
  • the copper layer is acid-etched, and the titanium layer is etched by carbon tetrafluoride, sulfur hexafluoride or chlorine gas to form a source/drain.
  • the mask is reduced.
  • the process effectively shortens the production time and reduces the production cost, and the electrical properties of the thin film transistor of the present invention are better than those of the existing coplanar structure thin film transistor, thereby improving the quality of the thin film transistor.
  • FIG. 1 is a schematic structural view of a conventional back channel structure thin film transistor formed on a glass substrate by a five-mask process
  • FIG. 2 is a flow chart of a method of fabricating a thin film transistor of the present invention
  • FIG. 9 are flowcharts showing a process of manufacturing a thin film transistor of the present invention.
  • Figure 10 is a flow chart showing an embodiment of the step 4 in the method for fabricating a thin film transistor of the present invention
  • Figure 11 is a comparison diagram of the selectivity of a mixed acid of phosphoric acid and nitric acid and a copper acid etched oxide semiconductor layer
  • step 4 is a flow chart showing another embodiment of step 4 in the method for fabricating a thin film transistor of the present invention.
  • Figure 13 is a schematic diagram showing the mechanism of the reaction of chlorine gas with the copper layer for 1 minute under specific conditions (temperature 25 ° C, pressure 20 mTorr, electric power 600 W, Cl 2 volume flow rate 20 sccm);
  • Figure 14 is a schematic diagram showing the mechanism of the reaction of chlorine gas with the copper layer for 2 minutes under specific conditions (temperature 25 ° C, pressure 20 mTorr, electric power 600 W, Cl 2 volume flow rate 20 sccm);
  • Figure 15 is a schematic view showing the structure of a thin film transistor of the present invention. detailed description
  • the present invention provides a method for fabricating a thin film transistor, comprising the following steps:
  • Step 1 Provide a substrate 20.
  • the substrate 20 is a transparent substrate, preferably a glass or plastic substrate.
  • Step 2 Form a first metal layer 22 on the substrate 20, and form a gate through a photomask process.
  • the first metal layer 22 is copper (Cu), aluminum (A1), molybdenum (Mo), titanium (Ti) or a laminated structure thereof.
  • Step 3 Form a gate insulating layer 24 on the gate.
  • Step 4 forming an oxide semiconductor layer 26 on the gate insulating layer 22, and forming a second metal layer 28 on the oxide semiconductor layer 26, the second metal layer 28 including a titanium layer 282 formed on the oxide semiconductor layer 26. And a copper layer 284 formed on the titanium layer 282, and the data line and the source/drain are formed by a photomask process.
  • the oxide semiconductor layer 26 contains at least one of zinc oxide (ZnOj, tin oxide (SnO x ), indium oxide (InO x ), and gallium oxide (GaO x ).
  • the mask process in the step 4 includes:
  • Step 4.11 a photoresist layer 29 is formed on the copper layer 284, a data line is formed by exposure and wet etching, and a channel 292 is formed at a corresponding position of the photoresist layer.
  • Step 4.12. Dry the candle layer 282 with carbon tetrafluoride (CF 4 ) or sulfur hexafluoride (SF 6 ).
  • the thickness of the titanium layer 282 is less than 12 nm, etching is performed with a small power to prevent plasma damage to the oxide semiconductor layer 26, ensuring the integrity of the oxide semiconductor layer 26, thereby ensuring the thin film transistor. quality.
  • Step 4.13 Ash (ash) the bottom of the channel 292 with oxygen (0 2 ) to expose the copper layer
  • Step 4.14 Wet etching the oxide semiconductor layer 26 with oxalic acid.
  • Step 4.15 wet etching the exposed copper layer 284 with a history of copper to expose the titanium layer 282.
  • a comparison of the selectivity of the mixed acid of phosphoric acid and nitric acid with the copper acid etched oxide semiconductor layer 26 shows that copper oxide (H 2 2 2 base) is less likely to etch the oxide semiconductor layer 26, and phosphoric acid.
  • the mixed acid with nitric acid is easily etched, and the underlying metal of the present invention is a titanium layer 282, which does not react with copper acid, and further, the copper layer of the present invention is selected in comparison with the aluminum layer and the molybdenum layer of the prior art.
  • the layer 284 and the titanium layer 282 are formed by wet etching the copper layer 284 with copper acid to form a data line, thereby avoiding the defect that the oxide semiconductor layer 26 is etched by the reaction with the etching liquid at the time of wet etching.
  • Step 4.16 The exposed titanium layer 282 is dry etched with carbon tetrafluoride or sulfur hexafluoride, and the photoresist layer 29 is removed to form a source/drain.
  • Step 5 Form a transparent conductive layer (not shown) on the second metal layer 28, and pattern the transparent conductive layer by a mask process to obtain a thin film transistor.
  • FIG. 9 is a flowchart of another embodiment of the method for manufacturing the thin film transistor of the present invention.
  • the mask process in the step 4 includes:
  • Step 4.11 a photoresist layer 29 is formed on the copper layer 284, and a data line is formed by exposure and wet etching, and a channel 292 is formed at a corresponding position of the photoresist layer.
  • Step 4.22 Dry the candle layer 282 with carbon tetrafluoride (CF 4 ) or sulfur hexafluoride (SF 6 ).
  • the thickness of the titanium layer 282 is less than 12 nm, etching is performed with a small power to prevent plasma damage to the oxide semiconductor layer 26, ensuring the integrity of the oxide semiconductor layer 26, thereby ensuring the thin film transistor. quality.
  • Step 4.23 ashing (ash) the bottom of the trench 292 with oxygen (0 2 ) to expose the copper layer 284.
  • Step 4.24 Wet etching the oxide semiconductor layer 26 with the history of the grass.
  • Step 4.25 wet etching the exposed copper layer 284 with a history of copper S to expose the titanium layer 282.
  • a comparison of the selectivity of the mixed acid of phosphoric acid and nitric acid with the copper acid etched oxide semiconductor layer 26 shows that copper oxide (H 2 2 2 base) is less likely to etch the oxide semiconductor layer 26, and phosphoric acid.
  • the mixed acid with nitric acid is easily etched, and the underlying metal of the present invention is a titanium layer 282, which does not react with copper acid, and further, the copper layer of the present invention is selected in comparison with the aluminum layer and the molybdenum layer of the prior art.
  • the layer 284 and the titanium layer 282 are formed by wet etching the copper layer 284 with copper acid to form a data line, thereby avoiding the defect that the oxide semiconductor layer 26 is etched by the reaction with the etching liquid at the time of wet etching. Step 4.26, oxidizing the surface of the copper layer 284 with oxygen to form a copper oxide (CuO) layer on the sidewall.
  • CuO copper oxide
  • the chlorine gas (Cl 2 ) is relatively corrosive to copper.
  • the surface of the copper layer 284 is required to be oxidized by oxygen to form copper oxide. .
  • Step 4.27 The exposed titanium layer 282 is dry etched by chlorine gas, and the photoresist layer 29 is removed to form a source/drain.
  • This embodiment can achieve the same technical effects as the above embodiment.
  • the present invention further provides a thin film transistor including: a substrate 20, a gate electrode 220 formed on the substrate, a gate insulating layer 24 covering the gate electrode 22, and an oxide formed on the gate insulating layer 24.
  • the semiconductor layer 26 and the source/drain electrodes formed on the oxide semiconductor layer 26 ; 20 are transparent substrates, preferably glass or plastic substrates.
  • the thickness of '5' of the titanium layer 282 is less than 12nm, so to a smaller intensity (power) to be etched, in order to avoid plasma damage to the oxide semiconductor layer 26, to ensure the integrity of the oxide semiconductor layer 26, and further Guarantee the quality of thin film transistors.
  • the oxide semiconductor layer 26 contains at least one of zinc oxide (ZnOj, tin oxide (SnO x ), indium oxide (InO x ), and gallium oxide (GaO x ).
  • the method for fabricating a thin film transistor of the present invention and the thin film transistor manufactured thereof simultaneously form an oxide semiconductor layer and a second metal layer, wherein the second metal layer is a combined layer of a titanium layer and a copper layer, and passes through a cupric acid
  • the copper layer is etched, and the titanium layer is etched by carbon tetrafluoride, sulfur hexafluoride or chlorine gas to form a source/drain, which reduces the mask process compared to the conventional thin film transistor in which the source and drain layers are formed by the aluminum layer and the molybdenum layer.
  • the production time is effectively shortened, the production cost is reduced, and the electrical conductivity of the thin film transistor of the present invention is better than that of the existing coplanar structure thin film transistor, thereby improving the quality of the thin film transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种薄膜晶体管的制造方法及其制造的薄膜晶体管,所述方法包括以下步骤:步骤1、提供一基板;步骤2、在基板上形成第一金属层,并通过光罩制程形成栅极;步骤3、在栅极上形成栅极绝缘层;步骤4、在栅极绝缘层上形成氧化物半导体层,在氧化物半导体层上形成第二金属层,该第二金属层包括形成于氧化物半导体层上的钛层及形成于钛层上的铜层,并通过光罩制程形成数据线与源/漏极;步骤5、在第二金属层上形成透明导电层,并通过光罩制程图案化该透明导电层,进而制得薄膜晶体管。

Description

薄膜晶体管的制造方法及其制造的薄膜晶体管 技术领域
本发明涉及平面显示装置技术领域, 尤其涉及一种薄膜晶体管的制造 方法及其制造的薄膜晶体管。 背景技术
液晶显示装置(LCD, Liquid Crystal Display )具有机身薄、 省电、 无 辐射等众多优点, 得到了广泛的应用。 现有市场上的液晶显示装置大部分 为背光型液晶显示装置, 其包括液晶显示面板及背光模组 (backlight module ) 。 液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液 晶分子, 通过玻璃基板通电与否来控制液晶分子改变方向, 将背光模组的 光线折射出来产生画面。
通常液晶显示面板由彩膜 (CF , Color Filter ) 基板、 薄膜晶体管 ( TFT, Thin Film Transistor)基板、 夹于彩膜基板与薄膜晶体管基板之间的 液晶 (LC, Liquid Crystal )及密封胶框 ( Sealant )组成, 其成型工艺一般 包括: 前段阵列 (Array ) 制程 (薄膜、 黄光、 蚀刻及剥膜) 、 中段成盒 ( Cell )制程(TFT基板与 CF基板贴合)及后段模组组装制程(驱动 IC 与印刷电路板压合) 。 其中, 前段 Array制程主要是形成 TFT基板, 以便 于控制液晶分子的运动; 中段 Cell制程主要是在 TFT基板与 CF基板之间 添加液晶; 后段模组组装制程主要是驱动 IC压合与印刷电路板的整合, 进而驱动液晶分子转动, 显示图像。
所述薄膜晶体管基板一般包括玻璃基板及形成于玻璃基板上的薄膜晶 体管, 所述薄膜晶体管主要有三种结构, 分别为共平面 (co-planer)结构、 蚀 刻中止层 (island-stop)结构及背通道 (BCE)结构, 而现有的氧化物薄膜晶体 管主要是以共平面结构与蚀刻中止层结构为主, 原因是背通道结构会在工 艺制程中对氧化物半导体层造成损伤, 影响其电性。
请参阅图 1 , 为现有的通过五道光罩制程形成于玻璃基板 100上的背 通道结构薄膜晶体管的结构示意图, 其包括: 形成于玻璃基板 100上的栅 极 101、 形成于栅极绝缘层 103、 形成于栅极绝缘层 103 上的氧化物半导 体层 105及形成于该氧化物半导体层 105上的源 /漏极 107, 所述氧化物半 导体层 105含有氧化锌(ZnOj 、 氧化锡(SnOx ) 、 氧化铟 (InOx )及氧 化镓(GaOx ) 中至少一种, 其一般选用氧化铟镓锌 (Indium Gallium Zinc Oxide, IGZO); 所述源 /漏极 107 一般为在氧化物半导体层 105 上通过溅 射(sputtering )工艺依次形成铝 ( A1 )层及钼 (Mo )层, 再通过光阻材料 涂布、 曝光、 显影、 蚀刻及去除光阻材料等制程形成, 对铝层处理时需要 进行蚀刻制程, 其蚀刻液一般为磷酸(¾P04 ) 与硝酸(HN03 ) 的混酸, 而该磷酸与硝酸的混酸会与氧化物半导体层 105发生反应, 进而导致氧化 物半导体层 105也被蚀刻, 进而影响薄膜晶体管的电性, 降低了薄膜晶体 管的质量。 发明内容
本发明的目的在于提供一种薄膜晶体管的制造方法, 其简化了生产制 程, 降低了生产成本, 提高了制得的薄膜晶体管的电性。
本发明的另一目的在于提供一种薄膜晶体管, 其制程简单, 且具有较 高的电性。
为实现上述目的, 本发明提供一种薄膜晶体管的制造方法, 包括以下 步骤:
步骤 1、 提供一基板;
步骤 2、 在基板上形成第一金属层, 并通过光罩制程形成栅极; 步骤 3、 在栅极上形成栅极绝缘层;
步骤 4、 在栅极绝缘层上形成氧化物半导体层, 在氧化物半导体层上 形成第二金属层, 该第二金属层包括形成于氧化物半导体层上的钛层及形 成于钛层上的铜层, 并通过光罩制程形成数据线、 及源 /漏极;
步骤 5、 在第二金属层上形成透明导电层, 并通过光罩制程图案化该 透明导电层, 进而制得薄膜晶体管。
所述基板为玻璃或塑胶基板。
所述钛层的厚度小于 12nm。
所述氧化物半导体层含有氧化锌、 氧化锡、 氧化铟及氧化镓中至少一 种。
所述步骤 4的光罩制程包括:
步骤 4.11、 在铜层上形成光阻层, 通过曝光及湿蚀刻形成数据线, 并 在光阻层对应位置上形成沟道;
步骤 4.12、 用四氟化碳或六氟化硫对钛层进行干蚀刻;
步骤 4.13、 用氧气灰烬化沟道底部, 以暴露铜层;
步骤 4.14、 用草酸对氧化物半导体层进行湿蚀刻;
步骤 4.15、 用铜酸对暴露的铜层进行湿蚀刻, 以暴露钛层; 步骤 4.16、 用四氟化碳或六氟化硫对暴露的钛层进行干蚀刻, 并去除 光阻层, 以形成源 /漏极。
所述步骤 4的光罩制程包括:
步骤 4.21、 在铜层上形成光阻层, 通过曝光及湿蚀刻形成数据线, 并 在光阻层对应位置上形成沟道;
步骤 4.22、 用四氟化碳或六氟化硫对钛层进行干蚀刻;
步骤 4.23、 用氧气灰烬化沟道底部, 以暴露铜层;
步骤 4.24、 用草酸对氧化物半导体层进行湿蚀刻;
步骤 4.25、 用铜酸对暴露的铜层进行湿蚀刻, 以暴露钛层;
步骤 4.26、 用氧气氧化铜层表面, 于侧壁形成氧化铜层;
步骤 4.27、 通过氯气对暴露的钛层进行干蚀刻, 并去除光阻层, 以形 成源 /漏极。
本发明还提供一种薄膜晶体管的制造方法, 包括以下步骤:
步骤 1、 提供一基板;
步骤 2、 在基板上形成第一金属层, 并通过光罩制程形成栅极; 步骤 3、 在栅极上形成栅极绝缘层;
步骤 4、 在栅极绝缘层上形成氧化物半导体层, 在氧化物半导体层上 形成第二金属层, 该第二金属层包括形成于氧化物半导体层上的钛层及形 成于钛层上的铜层, 并通过光罩制程形成数据线与源 /漏极;
步骤 5、 在第二金属层上形成透明导电层, 并通过光罩制程图案化该 透明导电层, 进而制得薄膜晶体管;
其中, 所述基板为玻璃或塑胶基板;
其中, 所述钛层的厚度小于 12nm;
其中, 所述氧化物半导体层含有氧化锌、 氧化锡、 氧化铟及氧化镓中 至少一种;
其中, 所述步骤 4的光罩制程包括:
步骤 4.11、 在铜层上形成光阻层, 通过曝光及湿蚀刻形成数据线, 并 在光阻层对应位置上形成沟道;
步骤 4.12、 用四氟化碳或六氟化硫对钛层进行干蚀刻;
步骤 4.13、 用氧气灰烬化沟道底部, 以暴露铜层;
步骤 4.14、 用草酸对氧化物半导体层进行湿蚀刻;
步骤 4.15、 用铜酸对暴露的铜层进行湿蚀刻, 以暴露钛层;
步骤 4.16、 用四氟化碳或六氟化硫对暴露的钛层进行干蚀刻, 并去除 光阻层, 以形成源 /漏极。 本发明还提供一种薄膜晶体管, 包括: 基板、 形成于基板上的栅极、 覆盖栅极的栅极绝缘层、 形成于栅极绝缘层上的氧化物半导体层、 及形成 于氧化物半导体层上的源 /漏极, 所述源 /漏极包含有钛层及形成于钛层上 的铜层。
所述基板为玻璃或塑胶基板。
所述钛层的厚度小于 12nm。
所述氧化物半导体层含有氧化锌、 氧化锡、 氧化铟及氧化镓中至少一 种。
本发明的有益效果: 本发明薄膜晶体管的制造方法及其制造的薄膜晶 体管, 同时形成氧化物半导体层与第二金属层, 其中第二金属层为钛层与 铜层的组合层, 并通过铜酸蚀刻铜层, 通过四氟化碳、 六氟化硫或氯气蚀 刻钛层以形成源 /漏极, 相比现有以铝层与钼层形成源 /漏极的薄膜晶体 管, 减少了光罩制程, 有效缩短了生产时间, 降低了生产成本, 且本发明 薄膜晶体管的电性也较现有的共平面结构薄膜晶体管好, 进而提高薄膜晶 体管的质量。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1 为现有的通过五道光罩制程形成于玻璃基板上的背通道结构薄膜 晶体管的结构示意图;
图 2为本发明薄膜晶体管制造方法的流程图;
图 3至图 9为本发明薄膜晶体管的制造方法的制程流程图;
图 10为本发明薄膜晶体管制造方法中步骤 4的一实施例的流程图; 图 11 为磷酸与硝酸的混酸与铜酸蚀刻氧化物半导体层的选择性的对 比图;
图 12 为本发明薄膜晶体管制造方法中步骤 4 的另一实施例的流程 图;
图 13 为在特定条件 (温度 25。C、 压强 20mTorr、 电功率 600W、 Cl2 体积流量 20sccm ) 下氯气与铜层反应 1分钟的显啟组织示意图; 图 14为在特定条件 (温度 25。C、 压强 20mTorr、 电功率 600W、 Cl2 体积流量 20sccm ) 下氯气与铜层反应 2分钟的显啟组织示意图;
图 15为本发明薄膜晶体管的结构示意图。 具体实施方式
为更进一步阐述本发明所釆取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图 2至图 11 , 本发明提供一种薄膜晶体管的制造方法, 包括以 下步骤:
步骤 1、 提供一基板 20。
所述基板 20为透明基板, 优选玻璃或塑胶基板。
步骤 2、 在基板 20 上形成第一金属层 22, 并通过光罩制程形成栅 极。
所述第一金属层 22 为铜 (Cu ) 、 铝 (A1 ) 、 钼 (Mo ) 、 钛(Ti )或 其层叠结构。
步骤 3、 在栅极上形成栅极绝缘层 24。
所述栅极绝缘层 24为氧化硅 ( SiOx )或氮化硅 ( SiNx )层, 其通过化 学气相沉积形成于第一金属层 22上。
步骤 4、 在栅极绝缘层 22上形成氧化物半导体层 26, 在氧化物半导 体层 26上形成第二金属层 28, 该第二金属层 28包括形成于氧化物半导体 层 26上的钛层 282及形成于钛层 282上的铜层 284, 并通过光罩制程形成 数据线与源 /漏极。
所述氧化物半导体层 26含有氧化锌(ZnOj 、 氧化锡(SnOx ) 、 氧 化铟 (InOx )及氧化镓(GaOx ) 中至少一种。
在本实施例中, 所述步骤 4中的光罩制程包括:
步骤 4.11、 在铜层 284上形成光阻层 29, 通过曝光及湿蚀刻形成数据 线, 并在光阻层对应位置上形成沟道 292。
步骤 4.12、 用四氟化碳 ( CF4 )或六氟化硫 ( SF6 )对钛层 282进行干 烛刻。
由于钛层 282的厚度小于 12nm, 所以要以较小的力度(power )来进 行蚀刻, 以避免电浆损伤到氧化物半导体层 26, 保证氧化物半导体层 26 的完整性, 进而保证薄膜晶体管的质量。
步骤 4.13、 用氧气(02 )灰烬化 ( Ash ) 沟道 292底部, 以暴露铜层
284。 步骤 4.14、 用草酸对氧化物半导体层 26进行湿蚀刻。
步骤 4.15、 用铜 S史对暴露的铜层 284进行湿蚀刻, 以暴露钛层 282。 请参阅图 11 , 为磷酸与硝酸的混酸与铜酸蚀刻氧化物半导体层 26 的 选择性的对比图, 可见, 铜酸 (H202 base)较不易对氧化物半导体层 26 蚀 刻, 而磷酸与硝酸的混酸却容易对其蚀刻, 同时, 本发明底层金属为钛层 282 , 钛不与铜酸反应, 进而, 相比现有技术中的铝层和钼层, 本发明金 属层选择用铜层 284和钛层 282, 其通过铜酸湿蚀刻铜层 284后, 形成数 据线, 能够避免因为进行湿蚀刻时氧化物半导体层 26 同时与蚀刻液反应 而被蚀刻的缺陷。
步骤 4.16、 用四氟化碳或六氟化硫对暴露的钛层 282进行干蚀刻, 并 去除光阻层 29, 以形成源 /漏极。
步骤 5、 在第二金属层 28上形成透明导电层(未图示) , 并通过光罩 制程图案化该透明导电层, 进而制得薄膜晶体管。
请参阅图 12, 同时参阅图 6至图 9, 为本发明薄膜晶体管制造方法中 步骤 4的另一实施例的流程图, 在本实施例中, 所述步骤 4中的光罩制程 包括:
步骤 4.21、 在铜层 284上形成光阻层 29, 通过曝光及湿蚀刻形成数据 线, 并在光阻层对应位置上形成沟道 292。
步骤 4.22、 用四氟化碳 ( CF4 )或六氟化硫 ( SF6 )对钛层 282进行干 烛刻。
由于钛层 282的厚度小于 12nm, 所以要以较小的力度(power )来进 行蚀刻, 以避免电浆损伤到氧化物半导体层 26, 保证氧化物半导体层 26 的完整性, 进而保证薄膜晶体管的质量。
步骤 4.23、 用氧气(02 )灰烬化 ( Ash ) 沟道 292底部, 以暴露铜层 284。
步骤 4.24、 用草 S史对氧化物半导体层 26进行湿蚀刻。
步骤 4.25、 用铜 S史对暴露的铜层 284进行湿蚀刻, 以暴露钛层 282。 请参阅图 11 , 为磷酸与硝酸的混酸与铜酸蚀刻氧化物半导体层 26 的 选择性的对比图, 可见, 铜酸 (H202 base)较不易对氧化物半导体层 26 蚀 刻, 而磷酸与硝酸的混酸却容易对其蚀刻, 同时, 本发明底层金属为钛层 282 , 钛不与铜酸反应, 进而, 相比现有技术中的铝层和钼层, 本发明金 属层选择用铜层 284和钛层 282, 其通过铜酸湿蚀刻铜层 284后, 形成数 据线, 能够避免因为进行湿蚀刻时氧化物半导体层 26 同时与蚀刻液反应 而被蚀刻的缺陷。 步骤 4.26、 用氧气氧化铜层 284 表面, 于侧壁形成氧化铜 (CuO ) 层。
请参阅图 13及图 14, 可见氯气(Cl2 )对铜的腐蚀性相对较强, 为了 避免在后续步骤中氯气对铜层 284的腐蚀, 需要用氧气将铜层 284表面氧 化, 生成氧化铜。
步骤 4.27、 通过氯气对暴露的钛层 282 进行干蚀刻, 并去除光阻层 29, 以形成源 /漏极。
本实施例可实现与上述实施例相同的技术效果。
请参阅图 15 , 本发明还提供一种薄膜晶体管, 其包括: 基板 20、 形 成于基板上的栅极 220、 覆盖栅极 22 的栅极绝缘层 24、 形成于栅极绝缘 层 24上的氧化物半导体层 26、 及形成于氧化物半导体层 26上的源 /漏极 所述^板;20为透明基板, 优选玻璃或塑胶基板。 ' 5 ' 所述钛层 282的厚度小于 12nm, 所以要以较小的力度(power )来进 行蚀刻, 以避免电浆损伤到氧化物半导体层 26, 保证氧化物半导体层 26 的完整性, 进而保证薄膜晶体管的质量。
所述氧化物半导体层 26含有氧化锌(ZnOj 、 氧化锡(SnOx ) 、 氧 化铟 (InOx )及氧化镓(GaOx ) 中至少一种。
综上所述, 本发明薄膜晶体管的制造方法及其制造的薄膜晶体管, 同 时形成氧化物半导体层与第二金属层, 其中第二金属层为钛层与铜层的组 合层, 并通过铜酸蚀刻铜层, 通过四氟化碳、 六氟化硫或氯气蚀刻钛层以 形成源 /漏极, 相比现有以铝层与钼层形成源 /漏极的薄膜晶体管, 减少了 光罩制程, 有效缩短了生产时间, 降低了生产成本, 且本发明薄膜晶体管 的电性也较现有的共平面结构薄膜晶体管好, 进而提高薄膜晶体管的质 量。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
1、 一种薄膜晶体管的制造方法, 包括以下步骤:
步骤 1、 提供一基板;
步骤 2、 在基板上形成第一金属层, 并通过光罩制程形成栅极; 步骤 3、 在栅极上形成栅极绝缘层;
步骤 4、 在栅极绝缘层上形成氧化物半导体层, 在氧化物半导体层上 形成第二金属层, 该第二金属层包括形成于氧化物半导体层上的钛层及形 成于钛层上的铜层, 并通过光罩制程形成数据线与源 /漏极;
步骤 5、 在第二金属层上形成透明导电层, 并通过光罩制程图案化该 透明导电层, 进而制得薄膜晶体管。
2、 如权利要求 1 所述的薄膜晶体管的制造方法, 其中, 所述基板为 玻璃或塑胶基板。
3、 如权利要求 1 所述的薄膜晶体管的制造方法, 其中, 所述钛层的 厚度小于 12nm。
4、 如权利要求 1 所述的薄膜晶体管的制造方法, 其中, 所述氧化物 半导体层含有氧化锌、 氧化锡、 氧化铟及氧化镓中至少一种。
5、 如权利要求 1 所述的薄膜晶体管的制造方法, 其中, 所述步骤 4 的光罩制程包括:
步骤 4.11、 在铜层上形成光阻层, 通过曝光及湿蚀刻形成数据线, 并 在光阻层对应位置上形成沟道;
步骤 4.12、 用四氟化碳或六氟化硫对钛层进行干蚀刻;
步骤 4.13、 用氧气灰烬化沟道底部, 以暴露铜层;
步骤 4.14、 用草酸对氧化物半导体层进行湿蚀刻;
步骤 4.15、 用铜酸对暴露的铜层进行湿蚀刻, 以暴露钛层;
步骤 4.16、 用四氟化碳或六氟化硫对暴露的钛层进行干蚀刻, 并去除 光阻层, 以形成源 /漏极。
6、 如权利要求 1 所述的薄膜晶体管的制造方法, 其中, 所述步骤 4 的光罩制程包括:
步骤 4.21、 在铜层上形成光阻层, 通过曝光及湿蚀刻形成数据线, 并 在光阻层对应位置上形成沟道;
步骤 4.22、 用四氟化碳或六氟化硫对钛层进行干蚀刻;
步骤 4.23、 用氧气灰烬化沟道底部, 以暴露铜层; 步骤 4.24、 用草酸对氧化物半导体层进行湿蚀刻;
步骤 4.25、 用铜酸对暴露的铜层进行湿蚀刻, 以暴露钛层;
步骤 4.26、 用氧气氧化铜层表面, 于侧壁形成氧化铜层;
步骤 4.27、 通过氯气对暴露的钛层进行干蚀刻, 并去除光阻层, 以形 成源 /漏极。
7、 一种薄膜晶体管的制造方法, 包括以下步骤:
步骤 1、 提供一基板;
步骤 2、 在基板上形成第一金属层, 并通过光罩制程形成栅极; 步骤 3、 在栅极上形成栅极绝缘层;
步骤 4、 在栅极绝缘层上形成氧化物半导体层, 在氧化物半导体层上 形成第二金属层, 该第二金属层包括形成于氧化物半导体层上的钛层及形 成于钛层上的铜层, 并通过光罩制程形成数据线与源 /漏极;
步骤 5、 在第二金属层上形成透明导电层, 并通过光罩制程图案化该 透明导电层, 进而制得薄膜晶体管;
其中, 所述基板为玻璃或塑胶基板;
其中, 所述钛层的厚度小于 12nm;
其中, 所述氧化物半导体层含有氧化锌、 氧化锡、 氧化铟及氧化镓中 至少一种;
其中, 所述步骤 4的光罩制程包括:
步骤 4.11、 在铜层上形成光阻层, 通过曝光及湿蚀刻形成数据线, 并 在光阻层对应位置上形成沟道;
步骤 4.12、 用四氟化碳或六氟化硫对钛层进行干蚀刻;
步骤 4.13、 用氧气灰烬化沟道底部, 以暴露铜层;
步骤 4.14、 用草酸对氧化物半导体层进行湿蚀刻;
步骤 4.15、 用铜酸对暴露的铜层进行湿蚀刻, 以暴露钛层;
步骤 4.16、 用四氟化碳或六氟化硫对暴露的钛层进行干蚀刻, 并去除 光阻层, 以形成源 /漏极。
8、 一种薄膜晶体管, 包括: 基板、 形成于基板上的栅极、 覆盖栅极 的栅极绝缘层、 形成于栅极绝缘层上的氧化物半导体层、 及形成于氧化物 半导体层上的源 /漏极, 所述源 /漏极包含有钛层及形成于钛层上的铜层。
9、 如权利要求 8 所述的薄膜晶体管, 其中, 所述基板为玻璃或塑胶 基板。
10、 如权利要求 8 所述的薄膜晶体管, 其中, 所述钛层的厚度小于 12nm„
11、 如权利要求 8 所述的薄膜晶体管, 其中, 所述氧化物半导体层含 有氧化锌、 氧化锡、 氧化铟及氧化镓中至少一种。
PCT/CN2012/082819 2012-09-28 2012-10-12 薄膜晶体管的制造方法及其制造的薄膜晶体管 WO2014047981A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/806,131 US9171939B2 (en) 2012-09-28 2012-10-12 Method for manufacturing thin-film transistor and thin-film transistor manufactured with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210370615.4A CN102881653B (zh) 2012-09-28 2012-09-28 薄膜晶体管的制造方法及其制造的薄膜晶体管
CN201210370615.4 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014047981A1 true WO2014047981A1 (zh) 2014-04-03

Family

ID=47482931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082819 WO2014047981A1 (zh) 2012-09-28 2012-10-12 薄膜晶体管的制造方法及其制造的薄膜晶体管

Country Status (3)

Country Link
US (1) US9171939B2 (zh)
CN (1) CN102881653B (zh)
WO (1) WO2014047981A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789219B (zh) * 2016-03-22 2018-07-27 京东方科技集团股份有限公司 一种用于制造显示面板的方法、显示面板以及显示装置
CN108198756B (zh) * 2017-12-26 2020-08-28 深圳市华星光电技术有限公司 薄膜晶体管的制备方法、阵列基板的制备方法
CN110034192B (zh) * 2019-05-17 2023-11-10 山东大学深圳研究院 利用氧化亚锡调节阈值电压的氧化镓场效应管及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100176394A1 (en) * 2009-01-12 2010-07-15 Samsung Mobile Display Co., Ltd. Thin film transistor and flat panel display device having the same
CN102104049A (zh) * 2009-12-04 2011-06-22 三星电子株式会社 薄膜晶体管阵列面板及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626744B (zh) * 2008-07-31 2018-06-11 半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
US8741702B2 (en) * 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101667909B1 (ko) * 2008-10-24 2016-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치의 제조방법
KR20110107130A (ko) * 2010-03-24 2011-09-30 삼성전자주식회사 박막 트랜지스터 기판 및 이의 제조 방법
TWI416736B (zh) * 2010-11-19 2013-11-21 Au Optronics Corp 薄膜電晶體及其製造方法
KR101934978B1 (ko) * 2011-08-04 2019-01-04 삼성디스플레이 주식회사 박막 트랜지스터 및 박막 트랜지스터 표시판

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100176394A1 (en) * 2009-01-12 2010-07-15 Samsung Mobile Display Co., Ltd. Thin film transistor and flat panel display device having the same
CN102104049A (zh) * 2009-12-04 2011-06-22 三星电子株式会社 薄膜晶体管阵列面板及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AHN, S.E. ET AL.: "Metal Oxide Thin Film Phototransistor for Remote Touch Interactive", ADVANCED MATERIALS, vol. 24, 13 April 2012 (2012-04-13) *
LEE, Y.W. ET AL.: "Effect of Ti/Cu Source/Drain on an Amorphous IGZO TFT Employing SiNx Passivation for Low Data-Line Resistance", ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 15, no. 4, 6 February 2012 (2012-02-06), pages H126 - H129 *
TAI, Y.H. ET AL.: "The Deterioration of a-IGZO TFTs Owing to the Copper Diffusion after the Process of the Source/Drain Metal Formation", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 159, no. 5, 15 March 2012 (2012-03-15), pages J200 - J203 *

Also Published As

Publication number Publication date
US20150137112A1 (en) 2015-05-21
US9171939B2 (en) 2015-10-27
CN102881653A (zh) 2013-01-16
CN102881653B (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5588740B2 (ja) Tft−lcdアレイ基板およびその製造方法
WO2017147974A1 (zh) 阵列基板的制作方法及制得的阵列基板
WO2017166341A1 (zh) Tft基板的制作方法及制得的tft基板
CN105742292B (zh) 阵列基板的制作方法及制得的阵列基板
WO2016173027A1 (zh) 薄膜晶体管阵列基板及其制作方法
WO2012008080A1 (ja) 薄膜トランジスタ基板
JP6521534B2 (ja) 薄膜トランジスタとその作製方法、アレイ基板及び表示装置
WO2015043282A1 (zh) 阵列基板及其制造方法和显示装置
JP6899487B2 (ja) Tft基板及びその製造方法
WO2017008333A1 (zh) Tft基板结构的制作方法
WO2017012306A1 (zh) 阵列基板的制备方法、阵列基板及显示装置
JP6261747B2 (ja) 薄膜トランジスタ配列基板の製造方法
US20220069108A1 (en) Manufacturing Method for Array Substrate and Array Substrate
WO2020093442A1 (zh) 阵列基板的制作方法及阵列基板
WO2015143818A1 (zh) 阵列基板及其制造方法、显示装置
TWI546850B (zh) 顯示面板之製備方法
WO2017076274A1 (zh) 低温多晶硅薄膜晶体管及制作方法、阵列基板、显示面板和显示装置
WO2014046068A1 (ja) アクティブマトリックス基板、表示装置、及び、その製造方法
WO2017147973A1 (zh) 阵列基板的制作方法及制得的阵列基板
WO2014047981A1 (zh) 薄膜晶体管的制造方法及其制造的薄膜晶体管
JP2008042218A (ja) 薄膜トランジスタパネルの製造方法
JP2008304830A (ja) 表示デバイスの製造方法
CN104681626A (zh) 氧化物薄膜晶体管及其制作方法、阵列基板
CN109801929B (zh) 一种阵列基板及其制造方法
WO2014117444A1 (zh) 阵列基板及其制作方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13806131

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885414

Country of ref document: EP

Kind code of ref document: A1