WO2014046361A1 - 면내 전류와 전기장을 이용한 자기메모리 소자 - Google Patents

면내 전류와 전기장을 이용한 자기메모리 소자 Download PDF

Info

Publication number
WO2014046361A1
WO2014046361A1 PCT/KR2013/003367 KR2013003367W WO2014046361A1 WO 2014046361 A1 WO2014046361 A1 WO 2014046361A1 KR 2013003367 W KR2013003367 W KR 2013003367W WO 2014046361 A1 WO2014046361 A1 WO 2014046361A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
magnetic layer
mixtures
magnetic memory
Prior art date
Application number
PCT/KR2013/003367
Other languages
English (en)
French (fr)
Inventor
이경진
이서원
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US14/428,947 priority Critical patent/US20150236071A1/en
Priority to JP2015532940A priority patent/JP6219395B2/ja
Publication of WO2014046361A1 publication Critical patent/WO2014046361A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/933Spintronics or quantum computing
    • Y10S977/935Spin dependent tunnel, SDT, junction, e.g. tunneling magnetoresistance, TMR

Definitions

  • the present invention relates to a magnetic memory device using a magnetic tunnel junction, and more particularly, to induce magnetization reversal of a free magnetic layer by applying an in-plane current to a conductor adjacent to a free magnetic layer having perpendicular magnetic anisotropy, and at the same time, a magnetic tunnel junction cell.
  • the present invention relates to a magnetic memory device capable of selectively inverting magnetization of a free magnetic layer by selectively applying a voltage every cell.
  • Ferromagnetic material refers to a material that is spontaneously magnetized even if a strong magnetic field is not applied from the outside.
  • a tunnel magnetoresistance effect occurs in which the electrical resistance varies depending on the relative magnetization directions of the two magnetic layers. This occurs because the electrons in the up and down spins tunnel through the insulator and are different.
  • This tunnel magnetoresistance is larger than the giant magnetoresistance generated in the spin valve structure (first magnetic material, nonmagnetic material, and second magnetic material) in which a nonmagnetic material is inserted between two ferromagnetic materials. It is widely used as a core technology of a sensor for reading at high speed and a magnetic memory device for storing information.
  • the relative magnetization directions of the two magnetic layers control the flow of current.
  • the magnetization direction can control the flow of current, it is also possible to control the magnetization direction of the magnetic layer by applying a current in the reaction.
  • a current is applied in the perpendicular (thickness) direction to the magnetic tunnel junction structure, the current spin-polarized by the first magnetic body (fixed magnetic layer) passes through the second magnetic body (free magnetic layer) to transmit its spin angular momentum.
  • the torque felt by the magnetization by the transfer of the spin angular momentum is called spin-transfer-torque, and it is possible to fabricate a device that inverts or continuously rotates the magnetization of the free magnetic layer by using the spin-transfer torque.
  • a conventional magnetic memory device employing a magnetic tunnel junction structure composed of a magnetic body having magnetization perpendicular to the film plane has a structure as shown in FIG. 1 below. It has a structure of a second magnetic body (free magnetic layer) 103 / electrode whose direction of magnetization is changed by an electrode / first magnetic body (fixed magnetic layer 101) / insulator 102 / current.
  • the magnetization reversal is induced by a current that is connected to the electrode and is vertically applied to the membrane surface.
  • two electrical signals, a high resistance and a low resistance are implemented according to the relative directions of the pinned magnetic layer and the free magnetic layer magnetization, and an application of a magnetic memory device that records the information as "0" or "1" is possible.
  • the critical current density J C is expressed by Equation 1 below.
  • H K ⁇ (2K ⁇ / M S) is a perpendicular magnetic anisotropy field of the free magnetic layer
  • K ⁇ the perpendicular magnetic anisotropy energy density of the free magnetic layer
  • the vertical direction of the free magnetic layer the effective anisotropic magnetic field H K
  • eff H K
  • eff (H K ⁇ - N d M S ), where N d is an effective potato-based constant in the vertical direction and is described in CGS units, and has a value between 0 and 4 ⁇ depending on the shape of the free magnetic layer.
  • K eff V / k B T is defined as the thermal stability ⁇ of the magnetic memory device.
  • ⁇ > 50 For commercialization as a nonvolatile memory, a condition of ⁇ > 50 must generally be satisfied. If the volume ( V ) of the free magnetic layer is reduced for the high integration of the device, it can be seen that K eff must be increased to satisfy the condition of ⁇ > 50, resulting in an increase in J c .
  • the size of the current supply device for applying a current of J c or more may be a limit in the high integration of the magnetic memory device.
  • the present invention to solve the above technical problem
  • a plurality of magnetic memory cells including a pinned magnetic layer, an insulating layer, and a free magnetic layer;
  • the pinned magnetic layer is a thin film made of a material having a fixed magnetization direction and magnetized in a direction perpendicular to the film surface
  • the free magnetic layer is a thin film made of a material in which the magnetization direction is changed and magnetized in a direction perpendicular to the film surface
  • the magnetizing direction of each magnetic memory cell can be selectively changed by the applied in-plane current, the magnetic field provided to the magnetic memory cell, and the voltage supplied to each magnetic memory cell. do.
  • the pinned magnetic layer may be made of a material selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta and mixtures thereof.
  • the pinned magnetic layer may be a multilayer thin film structure of a multilayer thin film ((X / Y) n , n ⁇ 1) formed by n stacked double layers consisting of an X layer and a Y layer,
  • the X layer and the Y layer may be independently selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta and mixtures thereof.
  • the pinned magnetic layer is a first magnetic layer; It may be a semi-magnetic structure consisting of a nonmagnetic layer and a second magnetic layer, wherein the first magnetic layer and the second magnetic layer are each independently Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta and It is made of a material selected from a mixture of these, the nonmagnetic layer may be made of a material selected from Ru, Cu and mixtures thereof.
  • At least one of the first magnetic layer and the second magnetic layer is a multilayer thin film ((X / Y) n , n ⁇ 1 in which n double layers composed of an X layer and a Y layer are laminated. ),
  • the X layer and the Y layer may be independently selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta, and mixtures thereof. Can be.
  • the pinned magnetic layer is an antiferromagnetic layer; A first magnetic layer; Nonmagnetic layer; And a second magnetic layer; and an exchange biased diamagnetic body structure, wherein the antiferromagnetic layer is made of a material selected from Ir, Pt, Mn, and mixtures thereof, and the first magnetic layer and the second magnetic layer are each independently Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta and a mixture thereof, the nonmagnetic layer is selected from Ru, Cu and mixtures thereof It may be made of.
  • At least one of the first magnetic layer and the second magnetic layer is a multilayer thin film ((X / Y) n , n ⁇ 1 in which n double layers composed of an X layer and a Y layer are laminated. ),
  • the X layer and the Y layer may be independently selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta, and mixtures thereof. Can be.
  • the free magnetic layer may be made of a material selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta and mixtures thereof.
  • the free magnetic layer may be a multilayer thin film structure of a multilayer thin film ((X / Y) n , n ⁇ 1) formed by n stacked double layers consisting of an X layer and a Y layer,
  • the X layer and the Y layer may be independently selected from Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta and mixtures thereof.
  • the insulating layer may be made of a material selected from AlO x , MgO, TaO x , ZrO x and mixtures thereof.
  • the conductive wire applying the in-plane current may be made of a material selected from Cu, Ta, Pt, W, Gd, Bi, Ir, and mixtures thereof.
  • the magnetic field may further include a conductive line adjacent to the outside of the magnetic memory cell, and an Oersted magnetic field formed when a current is applied to the conductive line may be a magnetic field provided to the magnetic memory cell. Can be used.
  • the magnetic memory cell may further include a magnetic layer having horizontal magnetic anisotropy outside the structure in which the fixed magnetic layer, the insulating layer, and the free magnetic layer are stacked, and is generated from the magnetic layer having the horizontal magnetic anisotropy.
  • the leakage magnetic field may be used as a magnetic field provided to the magnetic memory cell.
  • the magnetic layer having horizontal magnetic anisotropy may be made of a material selected from Fe, Co, Ni, B, Si, Zr, and mixtures thereof.
  • the anti-ferromagnetic layer adjacent to the magnetic layer having the horizontal magnetic anisotropy of the present invention may further include, and the magnetic layer having the horizontal magnetic anisotropy may be fixed magnetization due to the anti-ferromagnetic layer.
  • the antiferromagnetic layer adjacent to the magnetic layer having horizontal magnetic anisotropy may be made of a material selected from IrMn, FeMn, PtMn, and mixtures thereof.
  • the magnetic memory device inverts the magnetization of the free magnetic layer by spin hole spin torque generated in the free magnetic layer and an external magnetic field when a current flows along a lead adjacent to the free magnetic layer, and applies a voltage applied to each magnetic memory cell.
  • the critical current density in the magnetization reversal by spin hole spin torque is similar to the perpendicular magnetic anisotropy of the magnetic layer as in the conventional structure. It is proportional to volume but also to the amount of spin current to the applied current generated by the spin hole effect.
  • the memory device satisfies the thermal stability of the device and the critical current density at the same time.
  • a device for supplying the device may be disposed outside the magnetic memory cell array of the magnetic tunnel junction structure. Therefore, the size of the device that supplies the current can be controlled relatively freely regardless of the size of the magnetic tunnel junction structure. Therefore, it is easy to apply a large current above the critical current density that enables the magnetization reversal by generating spin hole spin torque. There is an advantage that it can.
  • FIG. 1 is a cross-sectional view illustrating a structure of a magnetic memory device using a conventional spin transfer torque.
  • FIG. 2 is a cross-sectional view illustrating a structure of a magnetic memory device in which a magnetic memory cell having a magnetic tunnel junction structure according to the present invention is bonded to a conductive line.
  • FIG. 3 is a cross-sectional view illustrating a structure of a magnetic memory device in which magnetic memory cells having a plurality of magnetic tunnel junction structures are bonded to a conductive line according to an exemplary embodiment of the present invention.
  • 4A is a graph showing magnetization reversal of a free magnetic layer according to an applied current and a magnetic field for a cell to which an electric field is not applied, that is, not selected, according to an embodiment of the present invention.
  • FIG. 4C is a graph showing magnetization reversible regions of currents and magnetic fields that vary according to cells selected and not selected due to the presence or absence of an electric field according to an embodiment of the present invention.
  • the magnetic memory device does not induce magnetization reversal of the free magnetic layer as a spin transfer torque due to current flowing in a conventional magnetic tunnel junction structure, but rather spin holes due to in-plane current flowing in a conductive line adjacent to the free magnetic layer. It is characterized by inducing magnetization reversal of the free magnetic layer with spin torque.
  • the magnetic memory device is characterized by selectively magnetizing and inverting each cell through a voltage applied to each magnetic memory cell of the plurality of magnetic tunnel junction structures.
  • the present invention is characterized in that, in the magnetic memory device, the size of the device is reduced to realize high integration, while maintaining thermal stability, lowering the critical current density, and increasing the tunnel magnetoresistance to increase the memory reading speed.
  • the magnetic memory device uses a spin hole spin torque generated by a current flowing in a conductive line adjacent to a free magnetic layer and an external magnetic field to induce magnetization reversal of the free magnetic layer, thereby structurally increasing the critical current density for magnetization reversal. It is also separated from the insulator thickness, which determines the magnetoresistance.
  • the magnetic field is formed by applying a voltage to the selected cell for cell selection, and uses the change in magnetic anisotropy caused by the selected cell.
  • the magnetic memory device includes a pinned magnetic layer, an insulating layer, a free magnetic layer, and a conductive wire, wherein the pinned magnetic layer is a thin film made of a material having a fixed magnetization direction and magnetized in a direction perpendicular to the film surface, and the free magnetic layer is adjacent to the magnetic memory device.
  • the magnetization direction is selectively changed by a current applied through the conductive wire, an external magnetic field and an electric field, and is a thin film made of a material magnetized in a direction perpendicular to the membrane surface.
  • the current applied to the conductive wire is provided from a device connected to the conductive wire to apply a current
  • the voltage applied to each cell is provided from a device connected to each cell to apply a voltage.
  • Devices providing such a current or voltage may be transistors or diodes.
  • a method of applying an external magnetic field is to place a ferromagnetic material inside or outside an array of magnetic tunnel junction cells to use a leakage magnetic field generated therefrom, or to place additional conductors in the vicinity of the device to form an electric current.
  • a magnetic field having a horizontal magnetic anisotropy on the outside of the structure laminated with a fixed magnetic layer, an insulating layer and a free magnetic layer, and using a leakage magnetic field generated therefrom. have.
  • FIG. 2 is a cross-sectional view illustrating a structure of a magnetic memory device in which a magnetic memory cell having a magnetic tunnel junction structure according to the present invention is bonded to a conductive line.
  • the device according to the present invention is basically an electrode, a pinned magnetic layer 201 having a perpendicular magnetization, an insulating layer 202, the in-plane current flowing through the conducting wire 204 with vertical magnetic anisotropy, and selectively by an external magnetic field and an electric field It has a structure including the free magnetic layer 203 and the conductive line 204, the direction of the magnetization is changed.
  • an electrode / fixed magnetic layer 201 / insulating layer 202 / free magnetic layer 203 / conductor 204 are included, and a current is in-plane to the conductor 204 for magnetization reversal of the free magnetic layer. Flow in the direction.
  • the electrons of the up and down spins flowing in the conducting wire generate spin hole effects that are deflected in different directions by the spin-orbit interaction, and thus spin currents are generated in all directions perpendicular to the current direction.
  • the spin current generated in each direction has a spin component biased perpendicular to the direction.
  • the in-plane current in the conducting wire 204 flows in the x direction
  • the spin current flowing in the -z direction component of the generated spin current, that is, incident on the free magnetic layer 203 is in the y direction or-. It has a spin component in the y direction and flows into the free magnetic layer 203.
  • the free magnetic layer 203 receives the spin torque by the flow of the spin current, and the spin torque received at this time is referred to as spin hole spin-torque.
  • the magnetization of the free magnetic layer 203 subjected to spin torque along with a magnetic field (not shown) applied from the outside becomes a magnetization inversion, where the external magnetic field breaks the balance of the magnetization reaction with the spin hole spin torque in the direction of the applied current. This enables magnetization reversal from the + z axis to the -z axis or from the -z axis to the + z axis.
  • the present invention is characterized in that a method of applying a voltage, that is, an electric field to a specific cell in order to selectively magnetize and invert a specific magnetic tunnel junction cell in a magnetic memory cell of a plurality of magnetic tunnel junction structures.
  • FIG. 3 is a cross-sectional view illustrating a structure of a magnetic memory device in which magnetic memory cells having a plurality of magnetic tunnel junction structures are bonded to a conductive line according to an embodiment of the present invention, and selectively formed through spin hole spin torque, a magnetic field, and an electric field
  • the free magnetic layers of all the cells connected to the conductive lines are magnetized inverted.
  • voltage is applied to only the cell to be selected independently with the current and magnetic field below that value, the perpendicular magnetic anisotropy of the free magnetic layer included in the selected cell is reduced, and only the cell can cause magnetization reversal.
  • the voltage applied to each cell is provided from an element connected to each cell independently to apply a voltage.
  • Such a voltage applying element may be a transistor or a diode.
  • the current for generating the spin hole spin torque flows only in the in-plane direction to the conducting wire 204 so that it can be independent of the thermal stability and the tunnel magnetoresistance of the device, thus ensuring thermal stability and increasing the tunnel magnetoresistance simultaneously.
  • Magnetic memory devices can be implemented.
  • the magnetic memory device in order to obtain a high current density, it is desirable to implement the structure as small as possible using a patterning technique.
  • the effect of the magnetic memory device according to the present invention was confirmed through micromagnetic modeling using the equation of motion of magnetization.
  • the coordinate directions (x, y, z) of the equation are specified in FIG. 2 below.
  • in-plane current and external values of various values applied to the conductive line 204 may be The magnetization reversal of the free magnetic layer is determined according to the applied magnetic field.
  • FIG. 4A is a graph showing magnetization reversal according to applied current and magnetic field when there is no change in magnetic anisotropy of the free magnetic layer because no voltage is selectively applied to the cell.
  • the magnetization reversal of the free magnetic layer does not occur in the 'non-magnetism reversal' area of the white background, but the magnetization reversal occurs in the 'magnetism reversal' area of the black background.
  • 4B is a graph showing magnetization reversal according to applied current and magnetic field when a voltage applied to a cell is selectively applied to reduce the magnitude of the perpendicular magnetic anisotropy of the free magnetic layer by 30%.
  • the magnetization reversal of the free magnetic layer does not occur in the 'non-magnetism reversal' area of the white background, but the magnetization reversal occurs in the 'magnetism reversal' area of the black background.
  • the selected cell is capable of magnetization reversal of the free magnetic layer at a lower current and magnetic field region than the unselected cell of FIG. 4A.
  • 4C is a graph showing whether magnetization reversal is performed according to current and magnetic field when a voltage selectively applied to each cell is not applied and when it is applied, that is, when the selected cell and the selected cell are not applied.
  • magnetization reversal does not occur in both the selected and unselected cells in Zone 1, magnetization reversal occurs only in the selected cells in Zone 2, and magnetization reversal occurs in both the selected and unselected cells in Zone 3. This happens. Therefore, by applying the current and the magnetic field corresponding to the zone 2, it is possible to selectively magnetize and invert only the cells selected by the voltage application.
  • 300 structure of a magnetic memory device in which magnetic memory cells having a plurality of magnetic tunnel junction structures according to the present invention are bonded to a conductive line
  • magnetic memory cells having a plurality of magnetic tunnel junction structures adjacent to the conductors
  • the magnetic memory device since spin hole spin torque causing magnetization reversal occurs at the interface between the conducting wire and the free magnetic layer, it is possible to achieve high integration of the device by reducing the volume and to increase thermal magnetic anisotropy of the magnetic layer to secure thermal stability. At the same time, it is possible to reduce the threshold current density by increasing the amount of spin current. In addition, the thick insulator increases the tunnel magnetoresistance to increase the memory read speed and does not affect the critical current density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

본 발명은 수직 자기이방성을 갖는 자유 자성층에 인접한 도선에 면내 전류를 인가하여 자유 자성층의 자화 반전을 유도하고, 이와 동시에 자기터널접합 셀마다 선택적으로 전압을 인가하여 특정 셀마다 선택적으로 자유 자성층의 자화를 반전시킬 수 있는 자기 메모리 소자에 관한 것으로서, 본 발명에 따른 자기 메모리 소자는 자화반전을 일으키는 스핀 홀 스핀토크가 도선과 자유 자성층의 계면에서 일어나기 때문에 부피를 줄여 소자의 고집적화를 구현할 수 있고, 자성층의 수직 자기이방성을 높여 열적 안정성을 확보함과 동시에 스핀전류의 양을 증가시켜 임계전류밀도를 감소시키는 것이 가능하다. 또한, 두꺼운 절연체로 터널자기저항을 높여 메모리의 읽는 속도를 증가시키면서도 임계전류밀도에 영향을 미치지 않는 메모리 소자이다.

Description

면내 전류와 전기장을 이용한 자기메모리 소자
본 발명은 자기터널접합을 이용한 자기 메모리 소자에 관한 것으로서, 더욱 상세하게는 수직 자기이방성을 갖는 자유 자성층에 인접한 도선에 면내 전류를 인가하여 자유 자성층의 자화 반전을 유도하고, 이와 동시에 자기터널접합 셀마다 선택적으로 전압을 인가하여 특정 셀마다 선택적으로 자유 자성층의 자화를 반전시킬 수 있는 자기 메모리 소자에 관한 것이다.
강자성체는 외부에서 강한 자기장을 인가하지 않더라도 자발적으로 자화가 되어 있는 물질을 말한다. 두 강자성체 사이에 절연체를 삽입한 자기터널접합 구조(제1 자성체/절연체/제2 자성체)에서 두 자성층의 상대적인 자화 방향에 따라 전기 저항이 달라지는 터널 자기저항 효과가 발생하며, 이는 자기터널접합 구조에서 업스핀과 다운스핀의 전자가 절연체를 터널링해 흐르는 정도가 다르기 때문에 발생한다. 이러한 터널 자기저항은 두 강자성체 사이에 절연체가 아닌 비자성체를 삽입한 스핀밸브 구조(제1 자성체/비자성체/제2 자성체)에서 발생하는 거대 자기저항보다 그 값이 커서 하드디스크에 기록된 정보를 빠른 속도로 읽기 위한 센서 및 정보저장용 자기메모리 소자의 핵심기술로 널리 이용되고 있다.
터널 자기저항 효과로 인하여 두 자성층의 상대적인 자화방향이 전류의 흐름을 제어하는 현상을 가져오게 된다. 한편, 뉴턴의 제3 법칙인 작용-반작용 법칙에 따라, 자화방향이 전류의 흐름을 제어할 수 있다면, 그 반작용으로 전류를 인가하여 자성층의 자화방향을 제어하는 것 역시 가능하다. 자기터널접합 구조에 수직(두께) 방향으로 전류를 인가하면, 제1 자성체(고정 자성층)에 의해 스핀 분극된 전류가 제2 자성체(자유 자성층)를 통과하면서 자신의 스핀 각운동량을 전달하게 된다. 이러한 스핀 각운동량의 전달에 의해 자화가 느끼는 토크를 스핀전달토크(Spin-transfer-torque)라고 하며, 스핀전달토크를 이용하여 자유 자성층의 자화를 반전시키거나 지속적으로 회전시키는 소자의 제작이 가능하다.
막 면에 수직인 자화를 갖는 자성체로 구성된 자기터널접합 구조를 응용한 종래의 자기 메모리 소자는 기본적으로 하기 도 1과 같은 구조를 가진다. 전극/제1 자성체(고정 자성층, 101)/절연체(102)/전류에 의해 자화의 방향이 변하는 제2 자성체(자유 자성층, 103)/전극의 구조를 갖는다. 여기서, 제2 자성체는 전극에 연결되어 막면에 수직으로 인가되는 전류에 의해 자화반전이 유도된다. 이때 고정 자성층과 자유 자성층 자화의 상대적인 방향에 따라 높은 저항과 낮은 저항의 두 가지 전기적 신호가 구현되는데, 이를 "0" 또는 "1"의 정보로 기록하는 자기 메모리 소자의 응용이 가능하다.
만일 자유 자성층의 자화를 제어하기 위해 전류가 아닌 외부 자기장을 이용할 경우, 소자의 크기가 작아질수록 반-선택 셀(half-selected cell) 문제가 발생하여 소자의 고집적화에 제약이 따른다. 반면, 소자에 전류를 인가하여 발생하는 스핀전달토크를 이용할 경우에는, 소자의 크기에 무관하게 선택적인 셀의 자화반전이 용이하다. 상기 기술한 스핀전달토크의 물리적 기구에 따르면, 자유 자성층에 발생하는 스핀전달토크의 크기는 인가된 전류밀도의 양에 의해 결정되며, 따라서 자유 자성층의 자화반전을 위한 임계전류밀도가 존재한다. 고정 자성층과 자유 자성층이 모두 수직 자기이방성을 갖는 물질로 구성된 경우, 임계전류밀도 J C 는 다음 [수학식 1]과 같다.
[수학식 1]
Figure PCTKR2013003367-appb-I000001
상기 [수학식 1]에서, α는 Gilbert 감쇠상수이며, ħ(=1.05×10-34 J·s)는 Planck 상수를 2π로 나눈 값이고, e(=1.6 × 10-19 C)는 전자의 전하량, η는 물질 및 전체 구조에 의해 결정되는 스핀분극효율 상수로 0과 1 사이의 값을 가지며, M S 는 자성체의 포화자화양, d는 자유 자성층의 두께, HK┴=(2K/M S )는 자유 자성층의 수직 자기이방성 자계이며, K는 자유 자성층의 수직 자기이방성 에너지밀도이며, 자유 자성층의 수직방향의 유효이방성자계 H K,eff H K,eff = (H K -N d M S )로 정의되며, N d 는 수직방향의 유효 감자계 상수로 CGS 단위로 기술하였을 때, 자유자성층의 모양에 따라 0과 4π사이의 값을 갖는다.
고집적 메모리 소자를 위해 셀의 크기를 줄이게 되면 상온에서의 열에너지에 의해 기록된 자화방향이 임의적으로 바뀌는 초상자성 한계가 발생한다. 이는 기록된 자기정보가 원하지 않게 지워지는 문제를 야기한다. 열에너지에 저항하여 평균적으로 자화방향이 유지되는 시간(τ)은 하기 [수학식 2]와 같다.
[수학식 2]
Figure PCTKR2013003367-appb-I000002
상기 [수학식 2]에서, t는 시도주파수의 역수로 1 ns 정도이며, K eff 는 자유 자성층의 유효 자기이방성 에너지 밀도(=H K,eff M S /2), V는 소자의 부피, k B 는 볼쯔만 상수(=1.381×10-16 erg/K), T는 캘빈 온도이다.
여기서, K eff V/k B T가 자기 메모리 소자의 열적 안정성(Δ)으로 정의된다. 비휘발성 메모리로서의 상용화를 위해서는 일반적으로 Δ > 50의 조건이 만족되어야 한다. 소자의 고집적화를 위해 자유 자성층의 부피(V)를 줄이게 되면, Δ > 50의 조건을 만족시키기 위해 K eff 를 키워야 하며, 그 결과 J c 가 증가하게 되는 것을 알 수 있다.
이와 같이 하기 도 1에서 나타낸 기존 구조에서 스핀전달토크를 이용해 자화반전을 유도하는 경우 와 J c 가 모두 K eff 에 비례하기 때문에, 상용화가 가능할 정도로 충분히 높은 Δ와 충분히 낮은 J c 를 동시에 만족시키기는 매우 어렵다.
뿐만 아니라, 일반적으로 자기터널접합에 전류를 인가하는 소자에서 제공할 수 있는 전류의 양은 전류를 인가하는 소자의 크기에 비례하는데 이는 J c 이상의 전류밀도를 인가하기 위해서는 적정 값 이상의 소자 크기를 유지해야 한다는 것을 의미한다. 따라서 J c 이상의 전류를 인가하기 위한 전류 공급 소자의 크기가 자기 메모리 소자의 고집적화에 있어 한계점이 될 수 있다.
또한, 기존구조에서 전류가 자기터널접합을 통해 흐를 때 절연체의 두께가 두꺼워지면 터널링하는 업스핀과 다운스핀의 차이는 더 커져 터널 자기저항이 증가한다. 하지만 이 경우 동일한 전압을 인가하였을 때, 터널링하는 전류 자체의 양이 감소해 자화반전을 위한 스핀전달토크를 자유 자성층에 효과적으로 주는 것이 매우 어려워진다. 즉, 절연체의 두께가 두꺼워지면 터널 자기저항 값이 커져 매우 빠른 속도로 자화 상태를 읽을 수 있고 이는 구조의 상용화에 있어 필수적인 요소지만 동시에 전류밀도가 감소해 두 요소를 동시에 만족시키는 소자를 구현시키기가 매우 어려워진다.
따라서, 본 발명이 해결하고자 하는 기술적 과제는,
종래 자기터널접합 구조를 수직방향으로 흐르는 전류에 의한 스핀전달토크로 자유 자성층의 자화 반전을 유도하는 구조에서 존재하였던 두 가지 문제점, 즉 (i) 임계전류밀도와 열적 안정성이 동일한 물질 변수인 K eff (자유 자성층의 유효 자기이방성 에너지 밀도)에 비례하기 때문에 상용화에 필요한 충분히 낮은 임계전류밀도와 충분히 높은 열적 안정성을 동시에 만족시키기 어렵다는 문제와, (ii) 자기터널접합 구조의 절연체를 두껍게 하면 터널 자기저항이 커져서 자화 상태를 보다 빠르게 읽을 수 있지만 동시에 전류밀도가 낮아져서 자화 상태를 변경하는 것이 어렵다는 문제를 동시에 해결할 뿐만 아니라 소자의 고집적화를 구현시키기 위하여, 자유 자성층에 인접한 도선에 흐르는 면내 전류에 의한 스핀 홀 스핀토크에 의해서 자유 자성층의 자화반전을 유도하고, 각각의 자기터널접합 메모리 셀마다 선택적으로 인가되는 전압을 이용하여 각 셀의 선택적인 자화반전이 가능한 자기 메모리 소자를 제공하는 것이다.
본 발명은 상기 기술적 과제를 해결하기 위하여,
고정 자성층, 절연층 및 자유 자성층을 포함하는 자기 메모리 셀;을 복수 개로 구비하고,
상기 자유 자성층에 인접하여 상기 자기 메모리 셀에 면내 전류를 인가하는 도선; 상기 자기 메모리 셀에 제공되는 자기장; 및 상기 자기 메모리 셀 각각에 독립적으로 전압을 공급하는 소자;를 포함하고,
상기 고정 자성층은 고정 자화 방향을 갖고, 막면에 대하여 수직 방향으로 자화되는 물질로 이루어진 박막이고, 상기 자유 자성층은 자화 방향이 변하고, 막면에 대하여 수직 방향으로 자화되는 물질로 이루어진 박막이며,
상기 인가되는 면내 전류와 상기 자기 메모리 셀에 제공되는 자기장 및 각각의 자기 메모리 셀에 공급되는 전압에 의해서 각각의 자기 메모리 셀의 자화 방향을 선택적으로 변화시킬 수 있는 것을 특징으로 하는 자기 메모리 소자를 제공한다.
본 발명의 일 실시예에 의하면, 상기 고정 자성층은 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있다.
본 발명의 일 실시예에 의하면, 상기 고정 자성층은 X층 및 Y층으로 이루어진 2중층이 n개 적층되어 이루어진 다층박막((X/Y)n, n≥1)의 다층박막 구조일 수 있으며, 상기 X층 및 Y층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 고정 자성층은 제1 자성층; 비자성층 및 제2 자성층으로 이루어진 반자성체 구조일 수 있으며, 상기 제1 자성층 및 제2 자성층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 물질로 이루어지고, 상기 비자성층은 Ru, Cu 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 제1 자성층 및 제2 자성층 중 적어도 하나 이상은 X층 및 Y층으로 이루어진 2중층이 n개 적층되어 이루어진 다층박막((X/Y)n, n≥1)의 다층박막 구조일 수 있으며, 상기 X층 및 Y층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 고정 자성층은 반강자성층; 제1 자성층; 비자성층; 및 제2 자성층;으로 이루어진 교환바이어스된 반자성체 구조일 수 있으며, 상기 반강자성층은 Ir, Pt, Mn 및 이들의 혼합물 중에서 선택되는 물질로 이루어지고, 상기 제1 자성층 및 제2 자성층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 물질로 이루어지며, 상기 비자성층은 Ru, Cu 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 제1 자성층 및 제2 자성층 중 적어도 하나 이상은 X층 및 Y층으로 이루어진 2중층이 n개 적층되어 이루어진 다층박막((X/Y)n, n≥1)의 다층박막 구조일 수 있으며, 상기 X층 및 Y층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 자유 자성층은 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 자유 자성층은 X층 및 Y층으로 이루어진 2중층이 n개 적층되어 이루어진 다층박막((X/Y)n, n≥1)의 다층박막 구조일 수 있으며, 상기 X층 및 Y층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 절연층은 AlOx, MgO, TaOx, ZrOx및 이들의 혼합물 중에서 선택되는 물질로 이루어지는 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 면내 전류를 인가하는 도선은 Cu, Ta, Pt, W, Gd, Bi, Ir 및 이들의 혼합물 중에서 선택되는 물질로 이루어지는 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 자기 메모리 셀 외부에 인접하는 도선을 더 포함하고, 상기 도선에 전류가 인가될 때 형성되는 외르스테드(Oersted) 자기장을 상기 자기 메모리 셀에 제공되는 자기장으로 사용할 수 있다.
본 발명의 일 실시예에 의하면, 상기 자기 메모리 셀은 고정 자성층, 절연층 및 자유 자성층이 적층된 구조 외부에 수평 자기이방성을 갖는 자성층을 더 포함할 수 있으며, 상기 수평 자기이방성을 갖는 자성층으로부터 발생하는 누설자기장을 상기 자기 메모리 셀에 제공되는 자기장으로 사용할 수 있다.
본 발명의 일 실시예에 의하면, 상기 수평 자기이방성을 갖는 자성층은 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있다.
본 발명의 상기 수평 자기이방성을 갖는 자성층에 인접하는 반강자성층을 더 포함할 수 있으며, 상기 반강자성층으로 인하여 상기 수평 자기이방성을 갖는 자성층은 자화가 고정된 것일 수 있다.
본 발명의 일 실시예에 의하면, 상기 수평 자기이방성을 갖는 자성층에 인접한 반강자성층은 IrMn, FeMn, PtMn 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있다.
본 발명에 따른 자기 메모리 소자는 자유 자성층에 인접한 도선을 따라 전류가 흐를 때 자유 자성층에 발생하는 스핀 홀 스핀토크와 외부 자기장에 의해서 자유 자성층의 자화를 반전시키고, 각 자기 메모리 셀마다 인가되는 전압에 의해 각 셀이 포함한 자성층의 자기이방성을 변화시켜 그 특정 셀을 선택적으로 자화반전시킬 수 있는 것으로서, 스핀 홀 스핀토크에 의한 자화반전에 있어서 임계전류밀도는 기존 구조에서와 마찬가지로 자성층의 수직 자기이방성과 부피에도 비례하지만 스핀 홀 효과에 의해 발생되는 인가 전류에 대한 스핀전류의 양에도 비례한다.
따라서, 소자의 고집적화를 위해 소자의 부피를 감소시킬 때, 수직 자기이방성을 증가시켜 열적 안정성을 확보하고 발생되는 스핀전류의 양을 효과적으로 증가시켜 이를 통해 임계전류밀도를 감소시킬 수 있다. 즉, 소자의 열적 안정성 확보와 임계전류밀도를 동시에 만족시키는 메모리 소자이다.
또한, 스핀 홀 스핀토크를 발생시켜 자화를 반전시키는 전류가 소자를 통해 수직 방향으로 흐르는 것이 아니라 도선의 면내로 흐르기 때문에 이를 공급하기 위한 소자가 자기터널접합 구조의 자기 메모리 셀 배열 밖에 배치될 수 있고, 이로 인하여 자기터널접합 구조의 크기에 관계 없이 전류를 공급하는 소자의 크기를 비교적 자유롭게 조절할 수 있게 되고 따라서 스핀 홀 스핀토크를 발생시켜 자화반전을 가능하게 하는 임계전류밀도 이상의 큰 전류를 쉽게 인가해줄 수 있다는 장점이 있다.
또한, 종래 구조에서 전자가 자기터널접합 구조 내 절연체를 터널링해 스핀토크를 전달해주는 것과는 달리 스핀 홀 스핀토크는 도선과 인접한 자유 자성층 계면에서 발생하기 때문에 전류가 자기터널접합 구조 내 절연체를 터널링해 흐를 필요가 없다. 따라서 절연체의 두께를 증가시켜 터널 자기저항을 충분히 증가시키더라도 임계전류밀도에는 영향을 주지 않을 수 있다. 즉, 임계전류밀도와는 관계없이 터널 자기저항을 높여 자화 상태를 읽는 속도를 크게 높이는 것이 가능한 메모리 소자이다.
도 1은 종래의 스핀전달토크를 이용한 자기 메모리 소자의 구조를 나타낸 단면도이다.
도 2는 본 발명에 따른 자기터널접합 구조의 자기 메모리 셀이 도선에 접합되어 있는 자기 메모리 소자의 구조를 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따른 복수 개의 자기터널접합 구조의 자기 메모리 셀이 도선에 접합되어 있는 자기 메모리 소자의 구조를 나타낸 단면도이다.
도 4a는 본 발명의 일 실시예에 따른 전기장이 가해지지 않은, 즉 선택되지 않은 셀에 대한 인가된 전류 및 자기장에 따른 자유 자성층의 자화반전 여부를 나타낸 그래프이다.
도 4b는 본 발명의 일 실시예에 따른 전기장이 가해져 자유 자성층의 수직 자기이방성이 30% 감소한 (즉, ΔK(V)=0.3K) 선택된 셀에 대한 인가된 전류 및 자기장에 따른 자유 자성층의 자화반전 여부를 나타낸 그래프이다.
도 4c는 본 발명의 일 실시예에 따른 전기장의 유무로 인해 선택이 된 셀과 선택이 되지 않은 셀에 따라 달라지는 전류 및 자기장에 관한 자화반전 가능 구역을 나타낸 그래프이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명에 따른 자기 메모리 소자는 종래의 자기터널접합 구조를 수직방향으로 흐르는 전류에 의한 스핀전달토크로 자유 자성층의 자화반전을 유도하는 것이 아니라, 자유 자성층에 인접한 도선에 흐르는 면내 전류에 의한 스핀 홀 스핀토크로 자유 자성층의 자화반전을 유도하는 것을 특징으로 한다. 또한, 본 발명에 따른 자기 메모리 소자는 복수 개의 자기터널접합 구조의 자기 메모리 셀마다 인가되는 전압을 통하여 각 셀을 선택적으로 자화반전시키는 것을 특징으로 한다.
이에 의해서, 종래 구조가 갖고 있었던 낮은 임계전류밀도와 높은 열적안정성을 동시에 만족시킬 수 없었던 문제점을 해결함과 동시에 자기터널접합 구조의 절연체를 두껍게 하면 터널 자기저항이 커져서 자화 상태를 보다 빠르게 읽을 수 있지만 동시에 전류밀도가 낮아져서 자화 상태를 변경하는 것이 어렵다는 문제를 동시에 해결할 수 있다. 또한, 소자의 고집적화를 구현시킬 수 있다. 즉, 본 발명은 자기 메모리 소자에 있어서, 소자의 크기를 줄여 고집적화를 구현하는 동시에 열적 안정성을 유지하고 임계전류밀도를 낮추면서 터널 자기저항을 높여 메모리의 읽는 속도를 높인 것을 특징으로 한다.
본 발명에 따른 자기 메모리 소자는 자유 자성층에 인접한 도선 내에 흐르는 전류에 의해 발생한 스핀 홀 스핀토크와 외부 자기장을 이용해 자유 자성층의 자화반전을 유도함으로써 구조상으로 자화반전을 위한 임계전류밀도가 열적 안정성 및 터널 자기저항을 결정하는 절연체 두께와도 독립적으로 분리된 구조이다. 또한, 셀 선택을 위해 선택 셀에 전압을 가해 자기장을 형성시키고 이로 인해 발생되는 자기이방성의 변화를 이용하는 구조이다.
본 발명에 따른 자기 메모리 소자는 고정 자성층, 절연층, 자유 자성층 및 도선을 포함하고, 상기 고정 자성층은 고정 자화 방향을 갖고 막면에 대하여 수직 방향으로 자화되는 물질로 이루어진 박막이며, 상기 자유 자성층은 인접 도선을 통해 인가되는 전류와 외부 자기장 및 전기장에 의해서 선택적으로 자화 방향이 변하고, 막면에 대하여 수직 방향으로 자화되는 물질로 이루어진 박막인 것을 특징으로 한다.
자유 자성층에 인접한 도선을 통해 면내 전류가 흐를 때 스핀 홀 효과에 의해 자유 자성층에 스핀 홀 스핀토크가 발생하고 외부 자기장이 주어질 때 자유 자성층의 자화는 반전된다. 이때 셀을 선택적으로 자화반전시키기 위하여 선택하고자 하는 셀에 전압을 인가한다. 전압이 인가된 셀은 인가된 전압으로 인해 전기장이 형성되고 이로 인해 자성층의 자기이방성이 변한다. 따라서 전압을 인가해 선택한 셀만을 자화반전시킬 수 있게 된다.
도선에 인가되는 전류는 도선에 연결되어 전류를 인가하는 소자로부터 제공되고, 각 셀에 인가되는 전압은 각 셀에 연결되어 전압을 인가하는 소자로부터 제공된다. 이러한 전류 혹은 전압을 제공하는 소자는 트랜지스터 혹은 다이오드 일 수 있다.
외부 자기장을 가해주는 방법으로는 자기터널접합 셀들로 이루어진 배열 내 또는 밖에 강자성체를 배치해 이로부터 발생하는 누설자기장을 사용하는 방법, 소자의 근방에 추가적인 도선을 배치해 그 도선에 전류가 흐를 때 형성되는 외르스테드(Oersted) 자기장을 사용하는 방법, 고정 자성층, 절연층 및 자유 자성층으로 적층된 구조의 바깥쪽에에 수평 자기이방성을 갖는 자성층을 포함하여 이로부터 발생하는 누설자기장을 사용하는 방법 등이 있다.
하기 도 2는 본 발명에 따른 자기터널접합 구조의 자기 메모리 셀이 도선에 접합되어 있는 자기 메모리 소자의 구조를 나타낸 단면도이다.
본 발명에 따른 소자는 기본적으로 전극, 수직방향의 자화를 갖는 고정 자성층(201), 절연층(202), 수직 자기이방성을 갖고 도선(204)에 흐르는 면내 전류와 외부 자기장 및 전기장에 의해 선택적으로 자화의 방향이 변하는 자유 자성층(203) 및 도선(204)을 포함하는 구조를 갖는다.
선택적인 자기터널접합 셀의 자화반전을 위해 선택하고자 하는 셀에 전압을 가하면 그 셀의 자유자성층의 자기이방성이 달라진다. 이 상태에서 도선(204)를 통해 적정 값의 면내전류를 인가하고 외부 자기장을 가해주게 되면 자유 자성층은 스핀 홀 스핀토크를 전달받아 자화반전을 하게 된다.
하기 도 2를 참조하면, 전극/고정 자성층(201)/절연층(202)/자유 자성층(203)/도선(204)을 포함하고, 자유 자성층의 자화반전을 위해 전류는 도선(204)에 면내방향으로 흐른다.
도선 내 흐르는 업스핀과 다운스핀의 전자는 스핀-궤도 상호작용에 의해 각기 다른 방향으로 편향되는 스핀 홀 효과가 발생하고, 이로 인해 전류방향에 수직인 모든 방향으로 스핀전류가 발생한다. 이때 각 방향으로 발생한 스핀전류는 그 방향에 수직으로 편향된 스핀성분을 가지고 있다. 도 2에 표시된 좌표계에 의거하여, 도선(204) 내의 면내 전류가 x 방향으로 흐르는 경우, 발생한 스핀전류 중 -z 방향 성분으로 흐르는, 즉 자유 자성층(203)에 입사하는 스핀전류는 y 방향 또는 -y 방향의 스핀성분을 가지며 자유 자성층(203)로 흘러 들어간다.
이렇게 흘러 들어간 스핀전류에 의해 자유 자성층(203)은 스핀토크를 받게 되고 이때 받는 스핀토크를 스핀 홀 스핀토크(spin Hall spin-torque)라고 한다. 외부에서 인가되는 자기장(미도시)과 함께 스핀토크를 받은 자유 자성층(203)의 자화는 자화반전이 되는데, 여기서 외부 자기장은 스핀 홀 스핀토크에 대한 자화 반응의 균형을 깨뜨려 인가되는 전류의 방향에 따라 +z 축에서 -z 축으로, 또는 -z 축에서 +z 축으로 자화반전을 가능하게 한다.
또한, 본 발명은 복수 개의 자기터널접합 구조의 자기 메모리 셀에서 특정 자기터널접합 셀을 선택적으로 자화 반전시키기 위하여 특정 셀에 전압, 즉 전기장을 가하는 방식을 포함하는 것을 특징으로 한다.
자기터널접합에 수직방향으로 전압, 즉 전기장을 가하면 자성층의 수직 자기이방성 에너지밀도 K가 변하게 된다. 즉, 자기터널접합에 전압이 가해지면 전기장이 형성되고 형성된 전기장으로 인해 자성체의 수직 자기이방성 에너지 밀도가 변화된다. 예를 들어, 전압 V를 인가하였을 때 줄어드는 수직 자기이방성 에너지 밀도를 ΔK(V)로 정의하면, 자유 자성층의 수직방향의 유효이방성자계 H K,eff H K,eff = 2(K-K(V)/(M S -N d M S )로 치환된다. 따라서, 전압을 인가하였을 때 H K,eff 가 감소하게 된다. H K,eff 는 자유 자성층의 자화가 수직방향으로 얼마나 강하게 유지되는가를 나타내는 척도이므로, 전압을 인가하여 H K,eff 를 감소시키는 것으로 인하여, 자유 자성층의 자화를 반전시키는 것이 보다 용이해진다.
셀 선택의 구체적 원리를 하기 도 3을 통해 보다 구체적으로 설명한다. 하기 도 3은 본 발명의 일 실시예에 따른 복수 개의 자기터널접합 구조의 자기 메모리 셀이 도선에 접합되어 있는 자기 메모리 소자의 구조를 나타낸 단면도로서, 스핀 홀 스핀토크와 자기장 및 전기장을 통해 선택적으로 자화반전이 가능한 여러 개의 자기터널접합 구조(301)가 도선(204)에 접합되어 있는 자기 메모리 소자의 구조를 나타낸 단면도이다.
도선(204)에 연결되어 전류를 인가하는 소자를 통해 도선 면내로 전류가 흘러 도선(204)에 접합되어있는 모든 셀에 스핀 홀 스핀토크를 유발하고 각 셀마다 연결되어 전압을 인가하는 소자를 통해 특정 셀에만 전압이 가해져 전기장을 형성하며 그 특정 셀의 선택적인 자화반전을 가능하게 한다.
하기 도 3에서 복수 개의 자기터널접합 구조의 자기 메모리 셀(301)이 도선(204)에 접해 있을 때, 도선(204)을 통해 전류가 인가되고 외부 자기장(미도시)이 가해지면 상기 설명한 원리로 인해 각 셀의 자유 자성층이 자화 반전될 수 있다. 도선(204)에 흐르는 전류는 도선(204)의 끝단에 연결되어 전류를 인가하는 소자로부터 제공된다. 이러한 전류 인가 소자는 트랜지스터 혹은 다이오드 일 수 있다.
이때, 인가된 전류 및 자기장의 크기가 자유 자성층의 수직 자기이방성을 극복하기에 충분히 큰 값이면 도선에 연결되어있는 모든 셀의 자유 자성층이 자화반전된다. 하지만, 그 값에 못 미치는 전류 및 자기장을 인가한 상태에서 선택하고자 하는 셀에만 독립적으로 전압을 인가하면 선택한 셀이 포함하는 자유 자성층의 수직 자기이방성이 감소하여 선택적으로 그 셀만이 자화반전을 일으킬 수 있다. 각 셀에 인가되는 전압은 각 셀에 독립적으로 연결되어 전압을 인가하는 소자로부터 제공된다. 이러한 전압 인가 소자는 트랜지스터 혹은 다이오드일 수 있다.
이때 선택되지 않은 셀에는 도선(204)을 통해 선택된 셀에서와 같은 전류는 인가되지만 그 값이 수직 자기이방성을 극복하기에 충분히 큰 값이 아니기 때문에 자화반전이 일어나지 않는다.
상기에서 설명한 바와 같이 전압 인가를 통해 선택된 셀과 그렇지 않은 선택되지 않은 셀에는 자기이방성의 차이가 존재한다. 전압을 걸어 전기장을 형성시킨 셀의 자기이방성이 전기장이 형성되지 않은 셀에 비해 감소하면 더 작은 스핀 홀 스핀토크 및 자기장으로도 자화반전을 일으킬 수 있다. 즉, 적정한 값의 전류를 도선(204)에 인가하고 외부 자기장을 가해준 상태에서 선택하고자 하는 셀에만 전압을 가해주면 선택한 셀만을 자화반전 시킬 수 있다. 이 경우, 스핀 홀 스핀토크를 발생시키는 전류는 도선(204)에만 면내 방향으로 흐르므로 소자의 열적 안정성 및 터널자기저항과 독립적일 수 있고 따라서 열적 안정성의 확보, 터널자기저항의 증가를 동시에 만족시키는 자기메모리 소자를 구현시킬 수 있다.
본 발명에 따른 자기 메모리 소자에서는 높은 전류밀도를 얻기 위하여, 패터닝 기술을 이용하여 가능한 한 작은 크기의 구조로 구현함이 바람직하다.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 실험 조건, 물질 종류 등에 의하여 본 발명이 제한되거나 한정되지는 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
<실시예>
본 발명에 따른 자기 메모리 소자의 효과를 자화의 운동방정식을 이용한 미소자기모델링을 통해서 확인하였다.
자화의 운동방정식은 하기 [수학식 3]과 같다.
[수학식 3]
Figure PCTKR2013003367-appb-I000003
상기 [수학식 3]에서, m은 자유 자성층(203)의 단위 자화벡터, γ는 자기회전상수, H eff 는 자유 자성층(203)의 모든 유효 자기장벡터, α는 Gilbert 감쇠상수이며, θ SH 는 스핀 홀 효과에 의해 형성되는 인가 전류에 대한 스핀전류의 비율이고, ħ(=1.05×10-34 J·s)는 Planck 상수를 2π로 나눈 값이고, J는 인가된 전류밀도, e(=1.6×0-19C)는 전자의 전하량, M S 는 자유 자성층의 포화자화양, d는 자유 자성층(205)의 두께를 나타낸다. 상기 수학식의 좌표 방향(x, y, z)은 하기 도 2에 명시되어 있다.
실험예1. 본 발명에 따른 소자에 대해 인가된 전류 및 자기장에 따른 자유 자성층의 자화반전 여부
(1) 하기 도 2와 같이 본 발명의 일 실시예에 따른 자기 메모리 소자에 대해 각 셀마다 전압으로 셀을 선택하거나 선택하지 않은 경우, 도선(204)에 인가한 다양한 값의 면내 전류 및 외부에서 인가한 자기장에 따른 자유 자성층의 자화반전 여부가 결정된다.
(2) 소자의 구조와 물성 값은 다음과 같다.
전체 구조의 단면적 = 400 nm2
자유 자성층(203) : 두께(t) = 2 nm, 수직 자기이방성 상수(K) = 8×106 erg/cm3, 포화자화값(M S ) = 1000 emu/cm3, Gilbert 감쇠상수(α)=0.1, 스핀 홀 각도(θ SH ) = 0.3"
(3) 하기 도 4a는 셀에 선택적으로 가해지는 전압이 인가되지 않아 자유 자성층의 자기이방성의 변화가 없을 때, 인가된 전류 및 자기장에 따라 자화반전 여부를 도시한 그래프이다. 흰 바탕의 '자화반전 불가능' 영역에서는 자유 자성층의 자화반전이 일어나지 않고 검은 바탕의 '자화반전 가능' 영역에서는 자화반전이 일어난다.
하기 도 4b는 셀에 선택적으로 가해지는 전압이 인가되어 자유 자성층의 수직 자기이방성의 크기가 30% 감소했을 때 인가된 전류 및 자기장에 따라 자화반전 여부를 도시한 그래프이다. 흰 바탕의 '자화반전 불가능' 영역에서는 자유 자성층의 자화반전이 일어나지 않고 검은 바탕의 '자화반전 가능' 영역에서는 자화반전이 일어난다.
하기 도 4b를 참조하면, 전압이 인가되어 선택된 셀은 하기 도 4a의 선택되지 않은 셀에 비해 더 낮은 전류 및 자기장 영역에서 자유 자성층의 자화반전이 가능한 것을 볼 수 있다.
하기 도 4c는 각 셀마다 선택적으로 가해지는 전압이 인가되지 않은 경우와 인가된 경우 즉, 선택되지 않은 셀과 선택된 셀의 경우 전류 및 자기장에 따른 자화반전 여부를 함께 나타낸 그래프이다.
하기 도 4c를 참조하면, 구역1에서는 선택된 셀과 선택되지 않은 셀 모두 자화반전이 일어나지 않고, 구역2에서는 선택된 셀의 경우에만 자화반전이 일어나며, 구역3에서는 선택된 셀과 선택되지 않은 셀 모두 자화반전이 일어난다. 따라서 구역 2에 해당하는 전류 및 자기장을 인가하면 전압 인가에 의해 선택된 셀만을 선택적으로 자화 반전 시키는 것이 가능하다.
이하, 하기 도면에 기재된 도면 부호의 간단한 설명은 아래와 같다.
100 : 종래 자기 메모리 소자의 구조
101 : 고정 자성층
102 : 절연층
103 : 자유 자성층
200 : 본 발명에 따른 자기 메모리 소자의 구조
201 : 고정 자성층
202 : 절연층
203 : 자유 자성층
204 : 도선
300 : 본 발명에 따른 복수 개의 자기터널접합 구조의 자기 메모리 셀이 도선에 접합되어 있는 자기 메모리 소자의 구조
301 : 도선에 인접한 복수 개의 자기터널접합 구조의 자기 메모리 셀
본 발명에 따른 자기 메모리 소자는 자화반전을 일으키는 스핀 홀 스핀토크가 도선과 자유 자성층의 계면에서 일어나기 때문에 부피를 줄여 소자의 고집적화를 구현할 수 있고, 자성층의 수직 자기이방성을 높여 열적 안정성을 확보함과 동시에 스핀전류의 양을 증가시켜 임계전류밀도를 감소시키는 것이 가능하다. 또한, 두꺼운 절연체로 터널자기저항을 높여 메모리의 읽는 속도를 증가시키면서도 임계전류밀도에 영향을 미치지 않는 메모리 소자이다.

Claims (16)

  1. 고정 자성층, 절연층 및 자유 자성층을 포함하는 자기 메모리 셀;을 복수 개로 구비하고,
    상기 자유 자성층에 인접하여 상기 자기 메모리 셀에 면내 전류를 인가하는 도선; 상기 자기 메모리 셀에 제공되는 자기장; 및 상기 자기 메모리 셀 각각에 독립적으로 전압을 공급하는 소자;를 포함하고,
    상기 고정 자성층은 고정 자화 방향을 갖고, 막면에 대하여 수직 방향으로 자화되는 물질로 이루어진 박막이고,
    상기 자유 자성층은 자화 방향이 변하고, 막면에 대하여 수직 방향으로 자화되는 물질로 이루어진 박막이며,
    상기 인가되는 면내 전류와 상기 자기 메모리 셀에 제공되는 자기장 및 각각의 자기 메모리 셀에 공급되는 전압에 의해서 각각의 자기 메모리 셀의 자화 방향을 선택적으로 변화시킬 수 있는 것을 특징으로 하는 자기 메모리 소자.
  2. 제1항에 있어서,
    상기 고정 자성층은 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것을 특징으로 하는 자기 메모리 소자.
  3. 제2항에 있어서,
    상기 고정 자성층은 X층 및 Y층으로 이루어진 2중층이 n개 적층되어 이루어진 다층박막((X/Y)n, n≥1)의 다층박막 구조이고,
    상기 X층 및 Y층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 것을 특징으로 하는 자기 메모리 소자.
  4. 제1항에 있어서,
    상기 고정 자성층은 제1 자성층, 비자성층 및 제2 자성층으로 이루어진 반자성체 구조로서,
    상기 제1 자성층 및 제2 자성층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 물질로 이루어지고,
    상기 비자성층은 Ru, Cu 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것을 특징으로 하는 자기 메모리 소자.
  5. 제4항에 있어서,
    상기 제1 자성층 및 제2 자성층 중 적어도 하나 이상은 X층 및 Y층으로 이루어진 2중층이 n개 적층되어 이루어진 다층박막((X/Y)n, n≥1)의 다층박막 구조이고,
    상기 X층 및 Y층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 것을 특징으로 하는 자기 메모리 소자.
  6. 제1항에 있어서,
    상기 고정 자성층은 반강자성층; 제1 자성층; 비자성층; 및 제2 자성층;으로 이루어진 교환바이어스된 반자성체구조로서,
    상기 반강자성층은 Ir, Pt, Mn 및 이들의 혼합물 중에서 선택되는 물질로 이루어지고,
    상기 제1 자성층 및 제2 자성층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 물질로 이루어지며,
    상기 비자성층은 Ru, Cu 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것을 특징으로 하는 자기 메모리 소자.
  7. 제6항에 있어서,
    상기 제1 자성층 및 제2 자성층 중 적어도 하나 이상은 X층 및 Y층으로 이루어진 2중층이 n개 적층되어 이루어진 다층박막((X/Y)n, n≥1)의 다층박막 구조이고,
    상기 X층 및 Y층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 것을 특징으로 하는 자기 메모리 소자.
  8. 제1항에 있어서,
    상기 자유 자성층은 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것을 특징으로 하는 자기 메모리 소자.
  9. 제8항에 있어서,
    상기 자유 자성층은 X층 및 Y층으로 이루어진 2중층이 n개 적층되어 이루어진 다층박막((X/Y)n, n≥1)의 다층박막 구조이고,
    상기 X층 및 Y층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr, Pt, Tb, Pd, Cu, W, Ta 및 이들의 혼합물 중에서 선택되는 것을 특징으로 하는 자기 메모리 소자.
  10. 제1항에 있어서,
    상기 절연층은 AlOx, MgO, TaOx, ZrOx및 이들의 혼합물 중에서 선택되는 물질로 이루어지는 것을 특징으로 하는 자기 메모리 소자.
  11. 제1항에 있어서,
    상기 면내 전류를 인가하는 도선은 Cu, Ta, Pt, W, Gd, Bi, Ir 및 이들의 혼합물 중에서 선택되는 물질로 이루어지는 것을 특징으로 하는 자기 메모리 소자.
  12. 제1항에 있어서,
    상기 자기 메모리 셀 외부에 인접하는 도선을 더 포함하고, 상기 도선에 전류가 인가될 때 형성되는 외르스테드(Oersted) 자기장을 상기 자기 메모리 셀에 제공되는 자기장으로 사용하는 것을 특징으로 하는 자기 메모리 소자.
  13. 제1항에 있어서,
    상기 자기 메모리 셀은 고정 자성층, 절연층 및 자유 자성층이 적층된 구조 외부에 수평 자기이방성을 갖는 자성층을 더 포함하고,
    상기 수평 자기이방성을 갖는 자성층으로부터 발생하는 누설자기장을 상기 자기 메모리 셀에 제공되는 자기장으로 사용하는 것을 특징으로 하는 자기 메모리 소자.
  14. 제13항에 있어서,
    상기 수평 자기이방성을 갖는 자성층은 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어지는 것을 특징으로 하는 자기 메모리 소자.
  15. 제13항에 있어서,
    상기 수평 자기이방성을 갖는 자성층에 인접하는 반강자성층을 더 포함하고, 상기 반강자성층으로 인하여 상기 수평 자기이방성을 갖는 자성층은 자화가 고정된 것을 특징으로 하는 자기 메모리 소자.
  16. 제15항에 있어서,
    상기 수평 자기이방성을 갖는 자성층에 인접한 반강자성층은 IrMn, FeMn, PtMn 및 이들의 혼합물 중에서 선택되는 물질로 이루어지는 것을 특징으로 하는 자기 메모리 소자.
PCT/KR2013/003367 2012-09-21 2013-04-22 면내 전류와 전기장을 이용한 자기메모리 소자 WO2014046361A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/428,947 US20150236071A1 (en) 2012-09-21 2013-04-22 Magnetic memory device using in-plane current and electric field
JP2015532940A JP6219395B2 (ja) 2012-09-21 2013-04-22 面内電流と電場を利用した磁気メモリ素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120105355A KR101266791B1 (ko) 2012-09-21 2012-09-21 면내 전류와 전기장을 이용한 자기메모리 소자
KR10-2012-0105355 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014046361A1 true WO2014046361A1 (ko) 2014-03-27

Family

ID=48666708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003367 WO2014046361A1 (ko) 2012-09-21 2013-04-22 면내 전류와 전기장을 이용한 자기메모리 소자

Country Status (4)

Country Link
US (1) US20150236071A1 (ko)
JP (1) JP6219395B2 (ko)
KR (1) KR101266791B1 (ko)
WO (1) WO2014046361A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162978A (ja) * 2015-03-04 2016-09-05 株式会社東芝 パターン照合器
JP2017168658A (ja) * 2016-03-16 2017-09-21 株式会社東芝 メモリセルおよび磁気メモリ
JP2018505555A (ja) * 2015-05-13 2018-02-22 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation 磁気メモリ素子
US10608169B2 (en) 2017-01-03 2020-03-31 Korea University Research And Business Foundation Magnetic tunnel junction device with spin-filter structure

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10127957B2 (en) * 2013-12-27 2018-11-13 Tohoku University Control method for magnetoresistance effect element and control device for magnetoresistance effect element
JP6270934B2 (ja) * 2015-12-14 2018-01-31 株式会社東芝 磁気メモリ
JP6297104B2 (ja) * 2016-08-04 2018-03-20 株式会社東芝 磁気記憶装置及びその製造方法
KR102179913B1 (ko) * 2016-09-29 2020-11-17 삼성전자주식회사 자기 메모리 소자
KR102458889B1 (ko) 2017-08-09 2022-10-27 한국과학기술원 반도체 소자 및 반도체 로직 소자
KR101998268B1 (ko) 2016-10-21 2019-07-11 한국과학기술원 반도체 소자
CN109891613B (zh) * 2016-10-21 2023-09-19 韩国科学技术院 半导体器件和半导体逻辑器件
KR101738829B1 (ko) 2016-12-14 2017-05-22 고려대학교 산학협력단 수직자기이방성을 갖는 다층 박막
KR101738828B1 (ko) 2016-12-14 2017-05-22 고려대학교 산학협력단 수직자기이방성을 갖는 합금 박막
JP6280195B1 (ja) 2016-12-16 2018-02-14 株式会社東芝 磁気メモリ
US10276780B2 (en) 2017-01-13 2019-04-30 Korea Advanced Institute Of Science And Technology Semiconductor device, semiconductor device control method and optical switch
KR101906708B1 (ko) 2017-01-23 2018-10-10 고려대학교 산학협력단 비대칭 자기 소자
JP6954089B2 (ja) * 2017-03-01 2021-10-27 Tdk株式会社 乱数発生器、乱数発生装置、ニューロモロフィックコンピュータ及び量子コンピュータ
JP6495980B2 (ja) * 2017-08-08 2019-04-03 株式会社東芝 磁気メモリ
JP6509971B2 (ja) * 2017-08-08 2019-05-08 株式会社東芝 磁気記憶素子及び磁気記憶装置
KR102024876B1 (ko) 2017-09-14 2019-11-05 한국과학기술원 Sot 반도체 소자 및 sot 반도체 소자의 기록 방법
KR102108399B1 (ko) * 2019-04-22 2020-05-11 한국과학기술원 반도체 소자
KR20230049265A (ko) 2021-10-06 2023-04-13 재단법인대구경북과학기술원 누설 자기장을 이용하는 스핀궤도토크 기반의 스위칭 소자 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080733A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 磁気抵抗素子及び磁気メモリ
KR20100118743A (ko) * 2009-04-29 2010-11-08 삼성전자주식회사 자기 메모리 소자
KR20120025489A (ko) * 2009-04-28 2012-03-15 시게이트 테크놀로지 엘엘씨 스핀 토크 스위칭을 보조하는 층을 갖는 스핀 토크 스위칭을 이용하는 자기 스택
KR20120080531A (ko) * 2011-01-07 2012-07-17 소니 주식회사 저장 소자 및 저장 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390977B1 (ko) * 2000-12-28 2003-07-12 주식회사 하이닉스반도체 반도체소자의 제조방법
JP3667244B2 (ja) * 2001-03-19 2005-07-06 キヤノン株式会社 磁気抵抗素子、それを用いたメモリ素子、磁気ランダムアクセスメモリ及び磁気ランダムアクセスメモリの記録再生方法
JP4444241B2 (ja) * 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
JP2008028362A (ja) * 2006-06-22 2008-02-07 Toshiba Corp 磁気抵抗素子及び磁気メモリ
TWI333208B (en) * 2007-03-26 2010-11-11 Ind Tech Res Inst Magnetic memory and method for manufacturing the same
JP5157268B2 (ja) * 2007-06-13 2013-03-06 株式会社日立製作所 スピン蓄積磁化反転型のメモリ素子及びスピンram
JP5023395B2 (ja) * 2007-12-18 2012-09-12 株式会社東芝 磁気ランダムアクセスメモリ及びその書き込み方法
KR101255474B1 (ko) * 2008-12-10 2013-04-16 가부시키가이샤 히타치세이사쿠쇼 자기 저항 효과 소자, 그것을 이용한 자기 메모리 셀 및 자기 랜덤 액세스 메모리
US8406041B2 (en) * 2009-07-08 2013-03-26 Alexander Mikhailovich Shukh Scalable magnetic memory cell with reduced write current
US20110031569A1 (en) * 2009-08-10 2011-02-10 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
JP2011108991A (ja) * 2009-11-20 2011-06-02 Sony Corp 磁性体の磁化反転方法、メモリ
KR102130054B1 (ko) * 2012-06-07 2020-07-06 삼성전자주식회사 자기 터널링 접합 시드, 캡핑 및 스페이서 막 물질들

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080733A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 磁気抵抗素子及び磁気メモリ
KR20120025489A (ko) * 2009-04-28 2012-03-15 시게이트 테크놀로지 엘엘씨 스핀 토크 스위칭을 보조하는 층을 갖는 스핀 토크 스위칭을 이용하는 자기 스택
KR20100118743A (ko) * 2009-04-29 2010-11-08 삼성전자주식회사 자기 메모리 소자
KR20120080531A (ko) * 2011-01-07 2012-07-17 소니 주식회사 저장 소자 및 저장 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162978A (ja) * 2015-03-04 2016-09-05 株式会社東芝 パターン照合器
JP2018505555A (ja) * 2015-05-13 2018-02-22 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation 磁気メモリ素子
JP2017168658A (ja) * 2016-03-16 2017-09-21 株式会社東芝 メモリセルおよび磁気メモリ
US10608169B2 (en) 2017-01-03 2020-03-31 Korea University Research And Business Foundation Magnetic tunnel junction device with spin-filter structure
US10886460B2 (en) 2017-01-03 2021-01-05 Korea University Research And Business Foundation Magnetic tunnel junction device with spin-filter structure

Also Published As

Publication number Publication date
JP2015534272A (ja) 2015-11-26
US20150236071A1 (en) 2015-08-20
JP6219395B2 (ja) 2017-10-25
KR101266791B1 (ko) 2013-05-27

Similar Documents

Publication Publication Date Title
WO2014046361A1 (ko) 면내 전류와 전기장을 이용한 자기메모리 소자
WO2016182354A1 (ko) 자기 메모리 소자
KR102179913B1 (ko) 자기 메모리 소자
KR100678758B1 (ko) 스핀주입 소자 및 스핀주입 소자를 이용한 자기 장치
US7110284B2 (en) Magnetic nonvolatile memory cell and magnetic random access memory using the same
US11585874B2 (en) Magnetic tunnel junction device
WO2012153926A2 (ko) 자기 공명 세차 현상과 이중 스핀 필터 효과를 이용한 스핀전달토크 자기 메모리 소자
US6603677B2 (en) Three-layered stacked magnetic spin polarization device with memory
WO2011149274A2 (ko) 자기적으로 연결되고 수직 자기 이방성을 갖도록 하는 비정질 버퍼층을 가지는 자기 터널 접합 소자
JP2012533189A (ja) 直交磁化配向方向を伴う基準層を有する磁気スタック
TW200306431A (en) A magnetic field detection sensor
KR20110103411A (ko) 자기 터널 접합 스택
WO2014046360A1 (ko) 면내 전류와 전기장을 이용한 수평형 자기메모리 소자
WO2019177204A1 (ko) 저전력 테라헤르쯔 자기 나노 발진 소자
TW200414191A (en) Antiferromagnetically coupled bi-layer sensor for magnetic random access memory
KR20060124578A (ko) 자기저항효과에 의해 데이터를 기억하는 자기기억소자
US7466585B2 (en) Magnetic random access memory
WO2020213844A1 (ko) 비대칭 교환 상호작용 조절을 통한 자기 스커미온 소자
WO2019151696A1 (ko) 교류전류를 이용한 스핀 궤도 토크 자기 메모리 소자
TW200304143A (en) Synthetic ferrimagnet reference layer for a magnetic storage device
WO2018021706A1 (ko) 자기 나노 발진 소자
WO2021020736A1 (ko) 합성형 반강자성체 및 이를 이용하는 다중 비트 메모리
WO2010079881A2 (ko) 자벽이동 기억 장치 및 그 동작 방법
WO2024010347A1 (ko) 고속 고에너지효율 자기터널접합 소자
JP2001320108A (ja) 磁気抵抗素子、磁気メモリ及び磁気センサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14428947

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015532940

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838948

Country of ref document: EP

Kind code of ref document: A1