WO2014046360A1 - 면내 전류와 전기장을 이용한 수평형 자기메모리 소자 - Google Patents

면내 전류와 전기장을 이용한 수평형 자기메모리 소자 Download PDF

Info

Publication number
WO2014046360A1
WO2014046360A1 PCT/KR2013/003366 KR2013003366W WO2014046360A1 WO 2014046360 A1 WO2014046360 A1 WO 2014046360A1 KR 2013003366 W KR2013003366 W KR 2013003366W WO 2014046360 A1 WO2014046360 A1 WO 2014046360A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic layer
magnetic
layer
spin
current
Prior art date
Application number
PCT/KR2013/003366
Other languages
English (en)
French (fr)
Inventor
이경진
이서원
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US14/428,949 priority Critical patent/US9647030B2/en
Publication of WO2014046360A1 publication Critical patent/WO2014046360A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell

Definitions

  • the present invention relates to a magnetic memory device using a magnetic tunnel junction, and more particularly, to induce magnetization reversal of a free magnetic layer by applying an in-plane current to a conductor adjacent to a free magnetic layer having in-plane magnetic anisotropy, and at the same time a magnetic tunnel junction cell
  • the present invention relates to a magnetic memory device capable of selectively inverting magnetization of a free magnetic layer by selectively applying a voltage every cell.
  • Ferromagnetic material refers to a material that is spontaneously magnetized even if a strong magnetic field is not applied from the outside.
  • a tunnel magnetoresistance effect occurs in which the electrical resistance varies depending on the relative magnetization directions of the two magnetic layers. This occurs because the electrons in the up and down spins tunnel through the insulator and are different.
  • This tunnel magnetoresistance is larger than the giant magnetoresistance generated in the spin valve structure (first magnetic material, nonmagnetic material, and second magnetic material) in which a nonmagnetic material is inserted between two ferromagnetic materials. It is widely used as a core technology of a sensor for reading at high speed and a magnetic memory device for storing information.
  • the relative magnetization directions of the two magnetic layers control the flow of current.
  • the magnetization direction can control the flow of current, it is also possible to control the magnetization direction of the magnetic layer by applying a current in the reaction.
  • a current is applied in the perpendicular (thickness) direction to the magnetic tunnel junction structure, the current spin-polarized by the first magnetic body (fixed magnetic layer) passes through the second magnetic body (free magnetic layer) to transmit its spin angular momentum.
  • the torque felt by the magnetization by the transfer of the spin angular momentum is called spin-transfer-torque, and it is possible to fabricate a device that inverts or continuously rotates the magnetization of the free magnetic layer by using the spin-transfer torque.
  • a conventional magnetic memory device employing a magnetic tunnel junction structure composed of a magnetic body having magnetization in an in-plane direction basically has a structure as shown in FIG. 1. It has a structure of a second magnetic body (free magnetic layer) 103 / electrode whose direction of magnetization is changed by an electrode / first magnetic body (fixed magnetic layer 101) / insulator 102 / current. Transistors are disposed above or below the magnetic tunnel junction structure, which selectively serves to provide current flowing vertically to the magnetic tunnel junction located above or below. In FIG. 1, the magnetization direction of the magnetic body may be aligned in a direction penetrating or exiting the ground.
  • the magnetization reversal is induced by the current applied to the second magnetic body perpendicular to the film surface by the transistor.
  • two electrical signals, a high resistance and a low resistance are implemented according to the relative directions of the pinned magnetic layer and the free magnetic layer magnetization, and an application of a magnetic memory device that records the information as "0" or "1" is possible.
  • the critical current density J c is given by Equation 1 below.
  • the charge amount ⁇ is a spin polarization efficiency constant determined by the material and the overall structure, and has a value between 0 and 1
  • M S is the amount of saturation magnetization of the magnetic material
  • d is the thickness of the free magnetic layer
  • H K is the in-plane direction of the free magnetic layer.
  • Magnetic anisotropic magnetic field, N d is the effective potato constant in the vertical direction and is described in CGS units, and has a value between 0 and 4 ⁇ depending on the shape of the free magnetic layer, and H K ⁇ is the perpendicular magnetic anisotropic magnetic field of the free magnetic layer.
  • KV / k B T is defined as the thermal stability ⁇ of the magnetic memory device.
  • ⁇ > 50 For commercialization as a nonvolatile memory, a condition of ⁇ > 50 must generally be satisfied. If the volume ( V ) of the free magnetic layer is reduced for the high integration of the device, it can be seen that K must be increased to satisfy the condition of ⁇ > 50, resulting in an increase in J c .
  • the size of the transistor for applying a current of J c or more may be a limit in the high integration of the magnetic memory device.
  • Two problems that exist in the structure of inducing magnetization reversal of the free magnetic layer by the spin transfer torque by the current flowing in the vertical direction of the magnetic tunnel junction structure that is, (i) the density of the magnetic tunnel junction as well as the transistor connected thereto for high density to reduce the same time, each of the magnetic tunnel, because the bonding amount of current provided in the vertical direction is proportional to the size of the transistor is connected to the upper or lower portion of each of the magnetic tunnel junction, the size of a transistor for applying a more J c current magnetic memory
  • the problem of high integration of the device may be a limitation, and (ii) the thicker the insulator of the magnetic tunnel junction structure, the larger the magnetoresistance of the tunnel, the faster the magnetization state can be read, but the lower the current density, making it difficult to change the magnetization state.
  • the magnetization reversal of the free magnetic layer is induced by spin hole spin torque caused by in-plane current flowing in the conducting wire adjacent to the free magnetic layer, and each cell is made by using a voltage selectively applied to each magnetic tunnel junction memory cell. It is to provide a magnetic memory device capable of selective magnetization inversion of.
  • the present invention to solve the above technical problem
  • a plurality of magnetic memory cells including a pinned magnetic layer, an insulating layer, and a free magnetic layer;
  • a conductive line applying an in-plane current to the magnetic memory cell adjacent to the free magnetic layer; And a device for supplying a voltage to each of the magnetic memory cells independently.
  • the pinned magnetic layer is a thin film made of a material having a pinned magnetization direction and magnetized in a direction parallel to the membrane surface,
  • the free magnetic layer is a thin film made of a material that is changed in magnetization direction and magnetized in a direction parallel to the film surface,
  • the magnetization direction of each magnetic memory cell can be selectively changed by the applied in-plane current and the voltage supplied to each magnetic memory cell.
  • the pinned magnetic layer may be made of a material selected from Fe, Co, Ni, B, Si, Zr, and mixtures thereof.
  • the pinned magnetic layer is a first magnetic layer; It may be a semi-magnetic structure consisting of a nonmagnetic layer and a second magnetic layer, the first magnetic layer and the second magnetic layer may be made of a material independently selected from Fe, Co, Ni, B, Si, Zr and mixtures thereof, The nonmagnetic layer may be made of a material selected from Ru, Cu, and mixtures thereof.
  • the pinned magnetic layer is an antiferromagnetic layer; A first magnetic layer; Nonmagnetic layer; And a second magnetic layer; and an exchange biased diamagnetic body structure
  • the antiferromagnetic layer may be made of a material selected from Ir, Pt, Mn, and mixtures thereof
  • the first magnetic layer and the second magnetic layer may each be It may be independently made of a material selected from Fe, Co, Ni, B, Si, Zr and mixtures thereof
  • the nonmagnetic layer may be made of a material selected from Ru, Cu and mixtures thereof.
  • the free magnetic layer may be made of a material selected from Fe, Co, Ni, B, Si, Zr, and mixtures thereof.
  • the insulating layer may be made of a material selected from AlO x , MgO, TaO x , ZrO x, and mixtures thereof.
  • the conductive wire applying the in-plane current may be made of a material selected from Cu, Ta, Pt, W, Gd, Bi, Ir, and mixtures thereof.
  • the magnetic memory device uses a spin hole spin torque generated in the free magnetic layer when a current flows along a conductive line adjacent to the free magnetic layer and a principle in which the free magnetic layer is magnetized inverted by a voltage applied to each cell.
  • Spin torque serves to reverse the magnetization of the free magnetic layer.
  • the voltage applied to a specific cell changes the magnetic anisotropy of the magnetic layer included in the cell so that the specific cell can be selectively magnetized inverted.
  • the critical current density is proportional to the effective magnetic anisotropy and volume of the magnetic layer as in the conventional structure, but is also proportional to the amount of spin current to the applied current generated by the spin hole effect. Therefore, when reducing the volume of the device for high integration of the device, it is possible to increase the magnetic anisotropy to ensure thermal stability and to effectively increase the amount of spin current generated thereby reducing the critical current density. In other words, it is a memory device capable of securing thermal stability and critical current density at the same time.
  • a device such as a transistor for supplying the spin hole spin torque may be disposed outside the array of magnetic tunnel junction cells. have. This makes it possible to relatively freely control the size of the device that supplies the current regardless of the size of the magnetic tunnel junction device, and thus, it is possible to easily apply a large current above the critical current density that enables magnetization reversal by generating spin hole spin torque. There is an advantage.
  • FIG. 1 is a cross-sectional view illustrating a structure of a magnetic memory device using a conventional spin transfer torque.
  • FIG. 2 is a cross-sectional view illustrating a structure of a magnetic memory device according to an exemplary embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a structure of a magnetic memory device in which a plurality of magnetic tunnel junction structures capable of selective magnetization inversion using spin hole spin torque and an electric field according to an embodiment of the present invention are bonded to a conductive line.
  • FIG 4 is a graph showing the effective vertical magnetic anisotropy magnetic field H K, ⁇ eff having the same ratio as the horizontal axis with respect to N d M S by the voltage (electric field) applied to each magnetic tunnel junction according to an embodiment of the present invention.
  • the magnetic memory device includes an electrode / fixed magnetic layer 201 / insulator 202 / free magnetic layer 203 / conductor 204 as shown in FIG.
  • the current applied for the purpose is characterized in that flowing in the in-plane direction to the conductive wire 204.
  • the magnetization direction of the magnetic layer is aligned in the x direction or the -x direction.
  • the electrons of the up and down spins flowing in the conductor experience spin-hole effects that are deflected in different directions by spin-orbit interactions, resulting in spin currents in all directions perpendicular to the current direction.
  • the spin current generated in each direction has a spin component biased perpendicular to the direction.
  • the spin current flowing in the -z direction component of the generated spin current that is, incident on the free magnetic layer is in the x direction or the -x direction. It has a spin component and flows into a free magnetic body.
  • the magnetic body receives spin torque, and the spin torque received at this time is called spin hole spin-torque.
  • the free magnetic material subjected to spin hole spin torque undergoes magnetization reversal from the + x axis to the -x axis or from the -x axis to the + x axis depending on the direction of the applied current.
  • the magnetic memory device is characterized by including a method of applying a voltage, that is, an electric field to a specific cell in order to selectively magnetize the plurality of magnetic tunnel junction cells, respectively.
  • Applying a voltage, i.e., an electric field, to the magnetic tunnel junction in a vertical direction changes the energy density K ⁇ of the magnetic anisotropy of the magnetic layer.
  • a voltage is applied to the magnetic tunnel junction, an electric field is formed and the generated magnetic field increases or decreases the perpendicular magnetic anisotropy energy density of the magnetic body in the direction of the electric field.
  • each cell when the same magnetic tunnel junction cells 301 are in contact with the conductive line 204, when a current is applied through the conductive line 204, the free magnetic layer of each cell may be magnetized inverted according to the above-described principle.
  • the current flowing in the conductive line 204 is provided from an element such as a transistor connected to the end of the conductive line 204 to apply a current. At this time, if the magnitude of the applied current is large enough to overcome the effective magnetic anisotropy of the free magnetic layer, the free magnetic layers of all the cells connected to the conductive lines are magnetized and inverted.
  • the effective magnetic anisotropy of the free magnetic layer included in the selected cell may be reduced, thereby selectively causing magnetization reversal of the cell.
  • the voltage applied to each cell is provided from an element connected to each cell independently to apply a voltage.
  • Such a voltage applying element may be a transistor or a diode.
  • the same current is applied to the unselected cell as the cell selected through the conductive line 204, but the magnetization reversal does not occur because the value is not large enough to overcome the magnetic anisotropy.
  • the magnetic memory device is characterized by increasing the read speed of the memory by increasing the tunnel magnetoresistance while maintaining high thermal stability and lowering the critical current density while implementing high integration by reducing the size of the device.
  • the magnetic memory device induces magnetization reversal of the free magnetic layer by using spin hole spin torque generated by a current flowing in a conductive line adjacent to the free magnetic layer, so that the critical current density for magnetization reversal is thermally stable and tunnel magnetoresistance. It is also a separate structure independent of the insulator thickness that determines.
  • the magnetic field is formed by applying a voltage to the selected cell for cell selection, and uses the change in magnetic anisotropy caused by the selected cell.
  • the magnetic memory device includes a pinned magnetic layer 201, an insulator 202, a free magnetic layer 203, and a conductive wire 204, wherein the pinned magnetic layer has a fixed magnetization direction and is magnetized in a direction parallel to the membrane surface.
  • the free magnetic layer is a thin film made of a material that is changed in magnetization direction by a current applied through an adjacent conductor and an electric field selectively applied, and is magnetized in a direction parallel to the membrane surface.
  • the current applied to the conductive wire is provided from a device such as a transistor connected to the conductive wire to apply a current
  • the voltage applied to each cell is provided from an element connected to each cell to apply a voltage.
  • Devices providing such a current or voltage may be transistors or diodes.
  • the magnetic anisotropy of the magnetic layer is increased to improve thermal stability while reducing the volume to achieve high integration of the device. It is possible to reduce the critical current density by increasing the amount of spin current while ensuring it.
  • the thick insulator increases the tunnel magnetoresistance to increase the memory read speed and does not affect the critical current density.
  • the magnetic layer 201, the insulator 202, and the in-plane magnetic anisotropy have a structure including the free magnetic layer 203 and the conductive wire 204 which are selectively changed in the direction of magnetization by the in-plane current flowing through the conductive wire and the electric field.
  • the magnetic anisotropy of the free magnetic layer of the cell is changed.
  • the free magnetic layer receives the spin hole spin torque to reverse magnetization.
  • FIG. 3 illustrates a structure of a magnetic memory device in which a plurality of magnetic tunnel junction structures 301 capable of selectively inverting magnetization through spin hole spin torque and an electric field according to an embodiment of the present invention are bonded to the conductive wire 204.
  • current flows through a device connected to the conductive wire 204 to apply a current, causing spin hole spin torque to all cells bonded to the conductive wire 204, and connected to each cell to apply a voltage.
  • a voltage is applied only to a specific cell to form an electric field, and enables selective magnetization reversal of the specific cell.
  • the current for generating the spin hole spin torque flows only in the in-plane direction to the conducting wire 204, and thus may be independent of the thermal stability and the tunnel magnetoresistance of the device, thereby ensuring thermal stability and increasing the tunnel magnetoresistance simultaneously.
  • Magnetic memory devices can be implemented.
  • the magnetic memory device in order to obtain a high current density, it is desirable to implement the structure as small as possible using a patterning technique.
  • the effect of the magnetic memory device according to the present invention was confirmed through micromagnetic modeling using the equation of motion of magnetization.
  • the coordinate directions (x, y, z) of the equation are specified in FIG. 2 below.
  • the effective vertical magnetic anisotropy magnetic field H K, ⁇ eff of the free magnetic layer is equal to the horizontal axis with respect to N d M S according to the voltage applied to the magnetic memory device according to the exemplary embodiment of the present invention as shown in FIG. Switching current changes.
  • 300 structure of a magnetic memory device in which magnetic memory cells having a plurality of magnetic tunnel junction structures according to the present invention are bonded to a conductive line
  • magnetic memory cells having a plurality of magnetic tunnel junction structures adjacent to the conductors
  • the magnetic memory device since spin hole spin torque causing magnetization reversal occurs at the interface between the conducting wire and the free magnetic layer, it is possible to reduce the volume and achieve high integration of the device while increasing the magnetic anisotropy of the magnetic layer to ensure thermal stability, It is possible to decrease the critical current density by increasing the amount.
  • the thick insulator increases the tunnel magnetoresistance to increase the memory read speed and does not affect the critical current density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

본 발명은 면내 평행한 자기이방성을 갖는 자유 자성층에 인접한 도선에 면내 전류를 인가하여 자유 자성층의 자화 반전을 유도하고, 이와 동시에 자기터널접합 셀마다 선택적으로 전압을 인가하여 특정 셀마다 선택적으로 자유 자성층의 자화를 반전시킬 수 있는 자기 메모리 소자에 관한 것으로서, 본 발명에 따른 자기 메모리 소자에서는 자화반전을 일으키는 스핀 홀 스핀토크가 도선과 자유 자성층의 계면에서 일어나기 때문에 부피를 줄여 소자의 고집적화를 구현하면서 자성층의 자기이방성을 높여 열적 안정성을 확보하는 동시에 스핀전류의 양을 증가시켜 임계전류밀도를 감소시키는 것이 가능하다. 또한, 두꺼운 절연체로 터널자기저항을 높여 메모리의 읽는 속도를 증가시키면서도 임계전류밀도에 영향을 미치지 않는 메모리 소자이다.

Description

면내 전류와 전기장을 이용한 수평형 자기메모리 소자
본 발명은 자기터널접합을 이용한 자기 메모리 소자에 관한 것으로서, 더욱 상세하게는 면내 자기이방성을 갖는 자유 자성층에 인접한 도선에 면내 전류를 인가하여 자유 자성층의 자화 반전을 유도하고, 이와 동시에 자기터널접합 셀마다 선택적으로 전압을 인가하여 특정 셀마다 선택적으로 자유 자성층의 자화를 반전시킬 수 있는 자기 메모리 소자에 관한 것이다.
강자성체는 외부에서 강한 자기장을 인가하지 않더라도 자발적으로 자화가 되어 있는 물질을 말한다. 두 강자성체 사이에 절연체를 삽입한 자기터널접합 구조(제1 자성체/절연체/제2 자성체)에서 두 자성층의 상대적인 자화 방향에 따라 전기 저항이 달라지는 터널 자기저항 효과가 발생하며, 이는 자기터널접합 구조에서 업스핀과 다운스핀의 전자가 절연체를 터널링해 흐르는 정도가 다르기 때문에 발생한다. 이러한 터널 자기저항은 두 강자성체 사이에 절연체가 아닌 비자성체를 삽입한 스핀밸브 구조(제1 자성체/비자성체/제2 자성체)에서 발생하는 거대 자기저항보다 그 값이 커서 하드디스크에 기록된 정보를 빠른 속도로 읽기 위한 센서 및 정보저장용 자기메모리 소자의 핵심기술로 널리 이용되고 있다.
터널 자기저항 효과로 인하여 두 자성층의 상대적인 자화방향이 전류의 흐름을 제어하는 현상을 가져오게 된다. 한편, 뉴턴의 제3 법칙인 작용-반작용 법칙에 따라, 자화방향이 전류의 흐름을 제어할 수 있다면, 그 반작용으로 전류를 인가하여 자성층의 자화방향을 제어하는 것 역시 가능하다. 자기터널접합 구조에 수직(두께) 방향으로 전류를 인가하면, 제1 자성체(고정 자성층)에 의해 스핀 분극된 전류가 제2 자성체(자유 자성층)를 통과하면서 자신의 스핀 각운동량을 전달하게 된다. 이러한 스핀 각운동량의 전달에 의해 자화가 느끼는 토크를 스핀전달토크(Spin-transfer-torque)라고 하며, 스핀전달토크를 이용하여 자유 자성층의 자화를 반전시키거나 지속적으로 회전시키는 소자의 제작이 가능하다.
면내 방향의 자화를 갖는 자성체로 구성된 자기터널접합 구조를 응용한 종래의 자기 메모리 소자는 기본적으로 도 1과 같은 구조를 가진다. 전극/제1 자성체(고정 자성층, 101)/절연체(102)/전류에 의해 자화의 방향이 변하는 제2 자성체(자유 자성층, 103)/전극의 구조를 갖는다. 이러한 자기터널접합 구조의 상부 혹은 하부에 트랜지스터가 배치되며 이 트랜지스터는 선택적으로 상부 혹은 하부에 위치한 자기터널접합에 수직방향으로 흐르는 전류를 제공하는 역할을 한다. 하기 도 1에서 자성체의 자화방향은 지면을 뚫고 들어가는 방향 또는 나오는 방향으로 정렬될 수 있다. 여기서, 제2 자성체는 트랜지스터에 의해 막면에 수직으로 인가되는 전류에 의해 자화반전이 유도된다. 이때 고정 자성층과 자유 자성층 자화의 상대적인 방향에 따라 높은 저항과 낮은 저항의 두 가지 전기적 신호가 구현되는데, 이를 "0" 또는 "1"의 정보로 기록하는 자기 메모리 소자의 응용이 가능하다.
만일 자유 자성층의 자화를 제어하기 위해 전류가 아닌 외부 자기장을 이용할 경우, 소자의 크기가 작아질수록 반-선택 셀(half-selected cell) 문제가 발생하여 소자의 고집적화에 제약이 따른다. 반면, 소자에 전류를 인가하여 발생하는 스핀전달토크를 이용할 경우에는, 소자의 크기에 무관하게 선택적인 셀의 자화반전이 용이하다. 상기 기술한 스핀전달토크의 물리적 기구에 따르면, 자유 자성층에 발생하는 스핀전달토크의 크기는 인가된 전류밀도의 양에 의해 결정되며, 따라서 자유 자성층의 자화반전을 위한 임계전류밀도가 존재한다. 고정 자성층과 자유 자성층이 모두 면내 자기이방성을 갖는 물질로 구성된 경우, 임계전류밀도 J c 는 다음 [수학식 1]과 같다.
[수학식 1]
Figure PCTKR2013003366-appb-I000001
상기 [수학식 1]에서, α는 Gilbert 감쇠상수이며, ħ(=1.05×10-34 J·s)는 Planck 상수를 2π로 나눈 값이고, e(=1.6×10-19 C)는 전자의 전하량, η는 물질 및 전체 구조에 의해 결정되는 스핀분극효율 상수로 0과 1 사이의 값을 가지며, M S 는 자성체의 포화자화양, d는 자유 자성층의 두께, H K 는 자유 자성층의 면내 방향 자기이방성 자계이며, N d 는 수직방향의 유효 감자계 상수로 CGS 단위로 기술하였을 때, 자유자성층의 모양에 따라 0과 4π사이의 값을 갖고, H K 는 자유 자성층의 수직 자기이방성 자계이며, 자유 자성층의 면내 방향의 유효이방성자계 H K,eff H K,eff = (H K +(N d M S -H K )/2)로 정의된다.
고집적 메모리 소자를 위해 셀의 크기를 줄이게 되면 상온에서의 열에너지에 의해 기록된 자화방향이 임의적으로 바뀌는 초상자성 한계가 발생한다. 이는 기록된 자기정보가 원하지 않게 지워지는 문제를 야기한다. 열에너지에 저항하여 평균적으로 자화방향이 유지되는 시간(τ)은 하기 [수학식 2]와 같다.
[수학식 2]
Figure PCTKR2013003366-appb-I000002
상기 [수학식 2]에서, τ0는 시도주파수의 역수로 1 ns 정도이며, K는 자유 자성층의 유효 자기이방성 에너지 밀도(=H K M S /2), V는 소자의 부피, k B 는 볼쯔만 상수(=1.381×10-16 erg/K), T는 캘빈 온도이다.
여기서, KV/k B T가 자기 메모리 소자의 열적 안정성(Δ)으로 정의된다. 비휘발성 메모리로서의 상용화를 위해서는 일반적으로 Δ > 50의 조건이 만족되어야 한다. 소자의 고집적화를 위해 자유 자성층의 부피(V)를 줄이게 되면, Δ > 50의 조건을 만족시키기 위해 K를 키워야 하며, 그 결과 J c 가 증가하게 되는 것을 알 수 있다.
일반적으로 자기터널접합에 전류를 인가하는 소자에서 제공할 수 있는 전류의 양은 각 자기터널접합에 연결된 트랜지스터의 크기에 비례하는데 이는 J c 이상의 전류밀도를 인가하기 위해서는 적정 값 이상의 트랜지스터 크기를 유지해야 한다는 것을 의미한다. 따라서 J c 이상의 전류를 인가하기 위한 트랜지스터의 크기가 자기 메모리 소자의 고집적화에 있어 한계점이 될 수 있다.
또한, 기존구조에서 전류가 자기터널접합을 통해 흐를 때 절연체의 두께가 두꺼워지면 터널링하는 업스핀과 다운스핀의 차이는 더 커져 터널 자기저항이 증가한다. 하지만 이 경우 동일한 전압을 인가하였을 때, 터널링하는 전류 자체의 양이 감소해 자화반전을 위한 스핀전달토크를 자유 자성층에 효과적으로 주는 것이 매우 어려워진다. 즉, 절연체의 두께가 두꺼워지면 터널 자기저항 값이 커져 매우 빠른 속도로 자화 상태를 읽을 수 있고 이는 구조의 상용화에 있어 필수적인 요소지만 동시에 전류밀도가 감소해 두 요소를 동시에 만족시키는 소자를 구현시키기가 매우 어려워진다.
따라서, 본 발명이 해결하고자 하는 기술적 과제는,
종래 자기터널접합 구조를 수직방향으로 흐르는 전류에 의한 스핀전달토크로 자유 자성층의 자화 반전을 유도하는 구조에서 존재하였던 두 가지 문제점, 즉 (i) 고밀도화를 위해서는 자기터널접합은 물론 그에 연결된 트랜지스터의 크기를 동시에 줄여야 하는데, 각 자기터널접합에 수직방향으로 제공되는 전류의 크기는 각 자기터널접합의 상부 혹은 하부에 연결된 트랜지스터의 크기에 비례하므로, J c 이상의 전류를 인가하기 위한 트랜지스터의 크기가 자기 메모리 소자의 고집적화에 있어 한계점이 될 수 있다는 문제와, (ii) 자기터널접합 구조의 절연체를 두껍게 하면 터널 자기저항이 커져서 자화 상태를 보다 빠르게 읽을 수 있지만 동시에 전류밀도가 낮아져서 자화 상태를 변경하는 것이 어렵다는 문제를 동시에 해결할 뿐만 아니라 소자의 고집적화를 구현시키기 위하여, 자유 자성층에 인접한 도선에 흐르는 면내 전류에 의한 스핀 홀 스핀토크에 의해서 자유 자성층의 자화반전을 유도하고, 각각의 자기터널접합 메모리 셀마다 선택적으로 인가되는 전압을 이용하여 각 셀의 선택적인 자화반전이 가능한 자기 메모리 소자를 제공하는 것이다.
본 발명은 상기 기술적 과제를 해결하기 위하여,
고정 자성층, 절연층 및 자유 자성층을 포함하는 자기 메모리 셀;을 복수 개로 구비하고,
상기 자유 자성층에 인접하여 상기 자기 메모리 셀에 면내 전류를 인가하는 도선; 및 상기 자기 메모리 셀 각각에 독립적으로 전압을 공급하는 소자;를 포함하고,
상기 고정 자성층은 고정 자화 방향을 갖고, 막면에 대하여 평행한 방향으로 자화되는 물질로 이루어진 박막이고,
상기 자유 자성층은 자화 방향이 변하고, 막면에 대하여 평행한 방향으로 자화되는 물질로 이루어진 박막이며,
상기 인가되는 면내 전류와 각각의 자기 메모리 셀에 공급되는 전압에 의해서 각각의 자기 메모리 셀의 자화 방향을 선택적으로 변화시킬 수 있는 것을 특징으로 하는 자기 메모리 소자를 제공한다.
본 발명의 일 실시예에 의하면, 상기 고정 자성층은 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있다.
본 발명의 일 실시예에 의하면, 상기 고정 자성층은 제1 자성층; 비자성층 및 제2 자성층으로 이루어진 반자성체 구조일 수 있으며, 상기 제1 자성층 및 제2 자성층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있고, 상기 비자성층은 Ru, Cu 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있다.
본 발명의 일 실시예에 의하면, 상기 고정 자성층은 반강자성층; 제1 자성층; 비자성층; 및 제2 자성층;으로 이루어진 교환바이어스된 반자성체구조일 수 있으며, 상기 반강자성층은 Ir, Pt, Mn 및 이들의 혼합물 중에서 선택되는 물질로 이루질 수 있고, 상기 제1 자성층 및 제2 자성층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있으며, 상기 비자성층은 Ru, Cu 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있다.
본 발명의 일 실시예에 의하면, 상기 자유 자성층은 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있다.
본 발명의 일 실시예에 의하면, 상기 절연층은 AlOx, MgO, TaOx, ZrOx 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있다.
본 발명의 일 실시예에 의하면, 상기 면내 전류를 인가하는 도선은 Cu, Ta, Pt, W, Gd, Bi, Ir 및 이들의 혼합물 중에서 선택되는 물질로 이루어질 수 있다.
본 발명에 따른 자기 메모리 소자는 전류가 자유 자성층에 인접한 도선을 따라 흐를 때 자유 자성층에 발생하는 스핀 홀 스핀토크와 각 셀마다 인가되는 전압에 의해 자유 자성층이 자화반전되는 원리를 이용한 것으로서, 스핀 홀 스핀토크는 자유자성층의 자화를 반전시키는 역할을 한다. 또한, 특정 셀에 가해지는 전압은 셀이 포함한 자성층의 자기이방성을 변화시켜 그 특정 셀을 선택적으로 자화반전 시킬 수 있도록 한다.
스핀 홀 스핀토크에 의한 자화반전에 있어서 임계전류밀도는 기존 구조에서와 마찬가지로 자성층의 유효 자기이방성과 부피에도 비례하지만 스핀 홀 효과에 의해 발생되는 인가 전류에 대한 스핀전류의 양에도 비례한다. 따라서, 소자의 고집적화를 위해 소자의 부피를 감소시킬 때, 자기이방성을 증가시켜 열적 안정성을 확보하고 발생되는 스핀전류의 양을 효과적으로 증가시켜 이를 통해 임계전류밀도를 감소시킬 수 있다. 즉, 소자의 열적 안정성 확보와 임계전류밀도가 동시에 가능한 메모리 소자이다.
또한, 스핀 홀 스핀토크를 발생시켜 자화를 반전시키는 전류가 소자를 통해 수직 방향으로 흐르는 것이 아니라 도선의 면내로 흐르기 때문에 이를 공급하기 위한 트랜지스터 등의 소자가 자기터널접합 셀들로 이루어진 배열 밖에 배치될 수 있다. 이로 인해 자기터널접합 소자의 크기와 관계없이 전류를 공급하는 소자의 크기를 비교적 자유롭게 조절할 수 있게 되고 따라서 스핀 홀 스핀토크를 발생시켜 자화반전을 가능하게 하는 임계전류밀도 이상의 큰 전류를 쉽게 인가해줄 수 있다는 장점이 있다.
또한, 기존 구조에서 전자가 자기터널접합 내 절연체를 터널링해 스핀토크를 전달해주는 것과는 달리 스핀 홀 스핀토크는 도선과 인접한 자유 자성층 계면에서 발생하기 때문에 전류가 자기터널접합 내 절연체를 터널링해 흐를 필요가 없고 따라서 절연체의 두께를 증가시켜 터널 자기저항을 충분히 증가시키더라도 임계전류밀도에는 영향을 주지 않을 수 있다. 즉, 임계전류밀도와는 관계없이 터널 자기저항을 높여 자화 상태를 읽는 속도를 크게 높이는 것이 가능한 메모리 소자이다.
도 1은 종래의 스핀전달토크를 이용한 자기 메모리 소자의 구조를 나타낸 단면도이다.
도 2는 본 발명의 일 실시예에 따른 자기 메모리 소자의 구조를 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따른 스핀 홀 스핀토크와 전기장을 이용하여 선택적인 자화반전이 가능한 복수 개의 자기터널접합 구조가 도선에 접합되어 있는 자기 메모리 소자의 구조를 나타낸 단면도이다.
도 4는 본 발명의 일 실시예에 따른 각 자기터널접합에 인가된 전압 (전기장)에 의해 유효 수직자기이방성 자계 H K, eff N d M S 에 대해 가로축과 같은 비율을 가지며 변할 때의 자화반전 전류를 나타낸 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
본 발명에 따른 자기 메모리 소자는 하기 도 2에 나타나 있는 바와 같이, 전극/고정 자성층(201)/절연체(202)/자유 자성층(203)/도선(204)을 포함하고, 자유 자성층의 자화반전을 위해 인가되는 전류는 도선(204)에 면내 방향으로 흐르는 것을 특징으로 한다.
여기서 자성층의 자화 방향은 x 방향 또는 -x 방향으로 정렬되어 있다. 도선 내 흐르는 업스핀과 다운스핀의 전자는 스핀-궤도 상호작용에 의해 각기 다른 방향으로 편향되는 스핀 홀 효과를 경험하고 이로 인해 전류방향에 수직인 모든 방향으로 스핀전류가 발생한다.
이때 각 방향으로 발생한 스핀전류는 그 방향에 수직으로 편향된 스핀성분을 가지고 있다. 하기 도 2에 표시된 좌표계에 의거하여, 도선(204) 내의 면내 전류가 y 방향으로 흐르는 경우, 발생한 스핀전류 중 -z 방향 성분으로 흐르는, 즉 자유 자성층에 입사하는 스핀전류는 x 방향 또는 -x 방향의 스핀성분을 가지며 자유 자성체로 흘러 들어간다. 이렇게 흘러 들어간 스핀전류에 의해 자성체는 스핀토크를 받게 되고 이때 받는 스핀토크를 스핀 홀 스핀토크(spin Hall spin-torque)라고 한다. 스핀 홀 스핀토크를 받은 자유 자성체는 인가되는 전류의 방향에 따라 +x 축에서 -x 축으로, 또는 -x 축에서 +x 축으로 자화반전을 이룬다.
또한, 본 발명에 따른 자기 메모리 소자는 복수 개의 자기터널접합 셀을 각각 선택적으로 자화반전 시키기 위하여, 특정 셀에 전압, 즉 전기장을 가하는 방식을 포함하는 것을 특징으로 한다.
자기터널접합에 수직방향으로 전압, 즉 전기장을 가하면 자성층의 수직 자기이방성 에너지밀도 K가 변하게 된다. 자기터널접합에 전압이 가해지면 전기장이 형성되고 형성된 전기장으로 인해 자성체의 수직 자기이방성 에너지 밀도가 전기장의 방향에 따라 증가 또는 감소한다. 예를 들어, 전압 V를 인가하였을 때 증가하는 수직 자기이방성 에너지 밀도를 ΔK(V)로 정의하면, 자유 자성층의 유효이방성자계 H K,eff H K,eff = (H K +(N d M S -H K, eff )/2)로 치환되며, 여기서 H K, eff = H K H K 이며 ΔK(V)에 의한 수직 자기 이방성 자계 변화 ΔH K 는 ΔH K = 2K(V)/M S 로 기술된다. 따라서, 전압을 인가했을 때 H K,eff 가 감소하는 것을 알 수 있다. H K,eff 는 자유 자성층의 자화가 자화 용이축으로 얼마나 강하게 유지되는가를 나타내는 척도이므로, 전압을 인가하여 H K,eff 를 감소시키는 것으로 인하여, 자유 자성층의 자화를 반전시키는 것이 보다 용이해진다.
각 셀을 선택적으로 자화반전시키는 구체적 원리는 하기 도 3을 통해 설명한다. 하기 도 3에서 복수 개의 같은 자기터널접합 셀들(301)이 도선(204)에 접해있을 때, 도선(204)을 통해 전류가 인가되면 상기 설명한 원리로 각 셀의 자유 자성층이 자화반전될 수 있다. 도선(204)에 흐르는 전류는 도선(204)의 끝단에 연결되어 전류를 인가하는 트랜지스터 등의 소자로부터 제공된다. 이때 인가된 전류의 크기가 자유 자성층의 유효 자기이방성을 극복하기에 충분히 큰 값이면 도선에 연결되어있는 모든 셀의 자유 자성층이 자화반전된다. 하지만, 그 값에 못 미치는 전류를 인가한 상태에서 선택하고자 하는 셀에만 독립적으로 전압을 인가하면 선택한 셀이 포함하는 자유 자성층의 유효 자기이방성이 감소하여 선택적으로 그 셀의 자화반전을 일으킬 수 있다. 각 셀에 인가되는 전압은 각 셀에 독립적으로 연결되어 전압을 인가하는 소자로부터 제공된다. 이러한 전압 인가 소자는 트랜지스터 혹은 다이오드 일 수 있다. 이때 선택되지 않은 셀에는 도선(204)을 통해 선택된 셀에서와 같은 전류가 인가되지만 그 값이 자기이방성을 극복하기에 충분히 큰 값이 아니기 때문에 자화반전이 일어나지 않는다.
본 발명에 따른 자기 메모리 소자는 소자의 크기를 줄여 고집적화를 구현하는 동시에 열적 안정성을 유지하고 임계전류밀도를 낮추면서 터널 자기저항을 높여 메모리의 읽는 속도를 높인 것을 특징으로 한다.
또한, 본 발명에 따른 자기 메모리 소자는 자유 자성층에 인접한 도선 내에 흐르는 전류에 의해 발생한 스핀 홀 스핀토크를 이용하여 자유 자성층의 자화반전을 유도함으로써 자화반전을 위한 임계전류밀도가 열적 안정성 및 터널 자기저항을 결정하는 절연체 두께와도 독립적으로 분리된 구조이다. 또한, 셀 선택을 위해 선택 셀에 전압을 가해 자기장을 형성시키고 이로 인해 발생되는 자기이방성의 변화를 이용하는 구조이다.
본 발명에 따른 자기 메모리 소자는 고정 자성층(201), 절연체(202), 자유 자성층(203) 및 도선(204)을 포함하고, 상기 고정 자성층은 고정 자화 방향을 갖고 막면에 대하여 평행한 방향으로 자화되는 물질로 이루어진 박막이며, 상기 자유 자성층은 인접 도선을 통해 인가되는 전류와 선택적으로 인가되는 전기장에 의해 자화 방향이 변하고, 막면에 대하여 평행한 방향으로 자화되는 물질로 이루어진 박막인 것을 특징으로 한다.
자유 자성층에 인접한 도선을 통해 면내 전류가 흐를 때 스핀 홀 효과에 의해 자유 자성층에 스핀 홀 스핀토크가 발생되어 자유 자성층의 자화는 반전된다. 이때 셀을 선택적으로 자화반전 시키기 위하여 선택하고자 하는 셀에 전압을 인가한다. 전압이 인가된 셀은 인가된 전압으로 인해 전기장이 형성되고 이로 인해 자성층의 유효 자기이방성이 변한다. 따라서 전압을 인가해 선택한 셀만을 자화반전시킬 수 있게 된다.
도선에 인가되는 전류는 도선에 연결되어 전류를 인가하는 트랜지스터 등의 소자로부터 제공되고, 각 셀에 인가되는 전압은 각 셀에 연결되어 전압을 인가하는 소자로부터 제공된다. 이러한 전류 혹은 전압을 제공하는 소자는 트랜지스터 혹은 다이오드일 수 있다.
본 발명에 따른 자기 메모리 소자에서는 자화반전을 일으키는 스핀 홀 스핀토크가 도선(204)과 자유 자성층(203)의 계면에서 일어나기 때문에 부피를 줄여 소자의 고집적화를 구현하면서 자성층의 자기이방성을 높여 열적 안정성을 확보하는 동시에 스핀전류의 양을 증가시켜 임계전류밀도를 감소시키는 것이 가능하다. 또한, 두꺼운 절연체로 터널자기저항을 높여 메모리의 읽는 속도를 증가시키면서도 임계전류밀도에 영향을 미치지 않는 메모리 소자이다.
하기 도 2는 본 발명의 일 실시예에 따른 스핀 홀 스핀토크와 전기장을 이용한 자기 메모리 소자의 구조를 나타내는 단면도로서, 본 발명에 따른 소자는 기본적으로 전극, 면내에 평행한 방향의 자화를 갖는 고정 자성층(201), 절연체(202), 면내 자기이방성을 갖고 도선에 흐르는 면내 전류와 전기장에 의해 선택적으로 자화의 방향이 변하는 자유 자성층(203) 및 도선(204)을 포함하는 구조를 갖는다.
복수 개의 자기터널접합 셀을 각각 선택적으로 자화반전 시키기 위해 선택하고자 하는 셀에 전압을 가하면 그 셀의 자유자성층의 자기이방성이 달라진다. 이 상태에서 도선(204)를 통해 적정 값의 면내전류를 인가하면 자유 자성층은 스핀 홀 스핀토크를 전달받아 자화반전을 하게 된다.
하기 도 3은 본 발명의 일 실시예에 따른 스핀 홀 스핀토크와 전기장을 통해 선택적으로 자화반전이 가능한 복수 개의 자기터널접합 구조(301)가 도선(204)에 접합되어 있는 자기 메모리 소자의 구조를 나타낸 단면도로서, 도선(204)에 연결되어 전류를 인가하는 소자를 통해 도선 면내로 전류가 흘러 도선(204)에 접합되어 있는 모든 셀에 스핀 홀 스핀토크를 유발하고 각 셀마다 연결되어 전압을 인가하는 소자를 통해 특정 셀에만 전압이 가해져 전기장을 형성하며 그 특정 셀의 선택적인 자화반전을 가능하게 한다.
상기에 설명한 바와 같이 전압 인가를 통해 선택된 셀과 그렇지 않은 선택되지 않은 셀에는 유효 자기이방성의 차이가 존재한다. 전압을 걸어 전기장을 형성시킨 셀의 유효 자기이방성이 전기장이 형성되지 않은 셀에 비해 감소하면 더 작은 스핀 홀 스핀토크 및 자기장으로도 자화반전을 일으킬 수 있다. 즉, 적정한 값의 전류를 도선(204)에 인가하고 선택하고자 하는 셀에만 전압을 가해주면 선택한 셀만을 자화반전 시킬 수 있다. 이 경우, 스핀 홀 스핀토크를 발생시키는 전류는 도선(204)에만 면내방향으로 흐르므로 소자의 열적 안정성 및 터널자기저항과 독립적일 수 있고 따라서 열적 안정성의 확보, 터널자기저항의 증가를 동시에 만족시키는 자기메모리 소자를 구현시킬 수 있다.
본 발명에 따른 자기 메모리 소자에서는 높은 전류밀도를 얻기 위하여, 패터닝 기술을 이용하여 가능한 한 작은 크기의 구조로 구현함이 바람직하다.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 실험 조건, 물질 종류 등에 의하여 본 발명이 제한되거나 한정되지는 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
<실시예>
본 발명에 따른 자기 메모리 소자의 효과를 자화의 운동방정식을 이용한 미소자기모델링을 통해서 확인하였다.
자화의 운동방정식은 하기 [수학식 3]과 같다.
[수학식 3]
Figure PCTKR2013003366-appb-I000003
상기 [수학식 3]에서, m은 자유 자성층(203)의 단위 자화벡터,γ는 자기회전상수, H eff 는 자유 자성층(203)의 모든 유효 자기장벡터, α는 Gilbert 감쇠상수이며, θ SH 는 스핀 홀 효과에 의해 형성되는 인가 전류에 대한 스핀전류의 비율이고, ħ(=1.05×10-34 J·s)는 Planck 상수를 2π로 나눈 값이고, I는 인가된 전류, e(=1.6×10-19C)는 전자의 전하량, M S 는 자유 자성층의 포화자화양, d는 자유 자성층(205)의 두께를 나타낸다. 상기 수학식의 좌표 방향(x, y, z)은 하기 도 2에 명시되어 있다.
실험예 1. 본 발명에 따른 소자에 대해 인가된 자기장에 의해 유효 수직 자기이방성 자계 H K, eff 가 변할 때 자화반전 전류(스위칭 전류)의 변화
(1) 하기 도 2와 같이 본 발명의 일 실시예에 따른 자기 메모리 소자에 대해 인가된 전압에 따라 자유 자성층의 유효 수직자기이방성 자계 H K, eff N d M S 에 대해 가로축과 같은 비율을 가질 때 스위칭 전류가 변한다.
(2) 소자의 구조와 물성 값은 다음과 같다.
전체 구조의 단면적 = 130×60 nm2, 자유 자성층(203): "두께(t) = 2 nm, 포화자화값 (M S ) = 1000 emu/cm3, Gilbert감쇠상수 (α)=0.01, 스핀 홀 각도 (θ SH ) = 0.3"
(3) 하기 도 2를 참조하면, 인가된 전압에 따라 자유 자성층의 유효 수직자기이방성 자계 H K, eff N d M S 에 대해 가로축과 같은 비율로 증가하며 변할 때 스위칭 전류가 감소하는 것을 알 수 있다. 이는 스위칭 전류에 비례하는 H K,eff H K, eff H K,eff = (H K +(N d M S -H K )/2)의 관계를 갖기 때문이다. 즉, 자기장을 인가해 선택한 셀의 스위칭 전류는 선택되지 않은 셀의 스위칭 전류보다 작다. 따라서, 적정한 전류를 인가하여 선택한 셀에 대해서만 자화반전 시키는 것이 가능하다.
이하, 하기 도면에 기재된 도면 부호의 간단한 설명은 아래와 같다.
100 : 종래 자기 메모리 소자의 구조
101 : 고정 자성층 102 : 절연체
103 : 자유 자성층
200 : 본 발명에 따른 자기 메모리 소자의 구조
201 : 고정 자성층 202 : 절연체
203 : 자유 자성층 204 : 도선
300 : 본 발명에 따른 복수 개의 자기터널접합 구조의 자기 메모리 셀이 도선에 접합되어 있는 자기 메모리 소자의 구조
301 : 도선에 인접한 복수 개의 자기터널접합 구조의 자기 메모리 셀
본 발명에 따른 자기 메모리 소자에서는 자화반전을 일으키는 스핀 홀 스핀토크가 도선과 자유 자성층의 계면에서 일어나기 때문에 부피를 줄여 소자의 고집적화를 구현하면서 자성층의 자기이방성을 높여 열적 안정성을 확보하는 동시에 스핀전류의 양을 증가시켜 임계전류밀도를 감소시키는 것이 가능하다. 또한, 두꺼운 절연체로 터널자기저항을 높여 메모리의 읽는 속도를 증가시키면서도 임계전류밀도에 영향을 미치지 않는 메모리 소자이다.

Claims (7)

  1. 고정 자성층, 절연층 및 자유 자성층을 포함하는 자기 메모리 셀;을 복수 개로 구비하고,
    상기 자유 자성층에 인접하여 상기 자기 메모리 셀에 면내 전류를 인가하는 도선; 및 상기 자기 메모리 셀 각각에 독립적으로 전압을 공급하는 소자;를 포함하고,
    상기 고정 자성층은 고정 자화 방향을 갖고, 막면에 대하여 평행한 방향으로 자화되는 물질로 이루어진 박막이고,
    상기 자유 자성층은 자화 방향이 변하고, 막면에 대하여 평행한 방향으로 자화되는 물질로 이루어진 박막이며,
    상기 인가되는 면내 전류와 각각의 자기 메모리 셀에 공급되는 전압에 의해서 각각의 자기 메모리 셀의 자화 방향을 선택적으로 변화시킬 수 있는 것을 특징으로 하는 자기 메모리 소자.
  2. 제1항에 있어서,
    상기 고정 자성층은 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것을 특징으로 하는 자기 메모리 소자.
  3. 제1항에 있어서,
    상기 고정 자성층은 제1 자성층; 비자성층 및 제2 자성층으로 이루어진 반자성체 구조로서,
    상기 제1 자성층 및 제2 자성층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어지고,
    상기 비자성층은 Ru, Cu 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것을 특징으로 하는 자기 메모리 소자.
  4. 제1항에 있어서,
    상기 고정 자성층은 반강자성층; 제1 자성층; 비자성층; 및 제2 자성층;으로 이루어진 교환바이어스된 반자성체구조로서,
    상기 반강자성층은 Ir, Pt, Mn 및 이들의 혼합물 중에서 선택되는 물질로 이루어지고,
    상기 제1 자성층 및 제2 자성층은 각각 독립적으로 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어지며,
    상기 비자성층은 Ru, Cu 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것을 특징으로 하는 자기 메모리 소자.
  5. 제1항에 있어서,
    상기 자유 자성층은 Fe, Co, Ni, B, Si, Zr 및 이들의 혼합물 중에서 선택되는 물질로 이루어진 것을 특징으로 하는 자기 메모리 소자.
  6. 제1항에 있어서,
    상기 절연층은 AlOx, MgO, TaOx, ZrOx 및 이들의 혼합물 중에서 선택되는 물질로 이루어지는 것을 특징으로 하는 자기 메모리 소자.
  7. 제1항에 있어서,
    상기 면내 전류를 인가하는 도선은 Cu, Ta, Pt, W, Gd, Bi, Ir 및 이들의 혼합물 중에서 선택되는 물질로 이루어지는 것을 특징으로 하는 자기 메모리 소자.
PCT/KR2013/003366 2012-09-21 2013-04-22 면내 전류와 전기장을 이용한 수평형 자기메모리 소자 WO2014046360A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/428,949 US9647030B2 (en) 2012-09-21 2013-04-22 Horizontal magnetic memory device using in-plane current and electric field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120105356A KR101266792B1 (ko) 2012-09-21 2012-09-21 면내 전류와 전기장을 이용한 수평형 자기메모리 소자
KR10-2012-0105356 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014046360A1 true WO2014046360A1 (ko) 2014-03-27

Family

ID=48666709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003366 WO2014046360A1 (ko) 2012-09-21 2013-04-22 면내 전류와 전기장을 이용한 수평형 자기메모리 소자

Country Status (3)

Country Link
US (1) US9647030B2 (ko)
KR (1) KR101266792B1 (ko)
WO (1) WO2014046360A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2526455B (en) * 2013-03-14 2020-04-01 Intel Corp Cross point array MRAM having spin hall MTJ devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179824A (ja) * 2014-02-28 2015-10-08 Tdk株式会社 磁性素子およびそれを備えた磁性高周波素子
JP6178451B1 (ja) * 2016-03-16 2017-08-09 株式会社東芝 メモリセルおよび磁気メモリ
JP6438531B1 (ja) * 2017-06-16 2018-12-12 株式会社東芝 磁気記憶装置
CN112447250B (zh) * 2019-08-30 2022-09-27 中电海康集团有限公司 测试结构和测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017782A (ja) * 2001-07-04 2003-01-17 Rikogaku Shinkokai キャリヤスピン注入磁化反転型磁気抵抗効果膜と該膜を用いた不揮発性メモリー素子及び該素子を用いたメモリー装置
KR20050059044A (ko) * 2002-07-17 2005-06-17 프리스케일 세미컨덕터, 인크. 향상된 저장 밀도를 갖는 다중-상태 mram
KR20120025489A (ko) * 2009-04-28 2012-03-15 시게이트 테크놀로지 엘엘씨 스핀 토크 스위칭을 보조하는 층을 갖는 스핀 토크 스위칭을 이용하는 자기 스택
KR20120027525A (ko) * 2009-06-11 2012-03-21 콸콤 인코포레이티드 자기 터널 정션 디바이스 및 제조

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465185A (en) * 1993-10-15 1995-11-07 International Business Machines Corporation Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor
JPH08279117A (ja) * 1995-04-03 1996-10-22 Alps Electric Co Ltd 巨大磁気抵抗効果材料膜およびその製造方法とそれを用いた磁気ヘッド
DE10053965A1 (de) * 2000-10-31 2002-06-20 Infineon Technologies Ag Verfahren zur Verhinderung unerwünschter Programmierungen in einer MRAM-Anordnung
US6473328B1 (en) * 2001-08-30 2002-10-29 Micron Technology, Inc. Three-dimensional magnetic memory array with a minimal number of access conductors therein
US6600184B1 (en) * 2002-03-25 2003-07-29 International Business Machines Corporation System and method for improving magnetic tunnel junction sensor magnetoresistance
US6807092B1 (en) * 2003-06-13 2004-10-19 Infineon Technologies Ag MRAM cell having frustrated magnetic reservoirs
US7149106B2 (en) * 2004-10-22 2006-12-12 Freescale Semiconductor, Inc. Spin-transfer based MRAM using angular-dependent selectivity
WO2013025994A2 (en) * 2011-08-18 2013-02-21 Cornell University Spin hall effect magnetic apparatus, method and applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017782A (ja) * 2001-07-04 2003-01-17 Rikogaku Shinkokai キャリヤスピン注入磁化反転型磁気抵抗効果膜と該膜を用いた不揮発性メモリー素子及び該素子を用いたメモリー装置
KR20050059044A (ko) * 2002-07-17 2005-06-17 프리스케일 세미컨덕터, 인크. 향상된 저장 밀도를 갖는 다중-상태 mram
KR20120025489A (ko) * 2009-04-28 2012-03-15 시게이트 테크놀로지 엘엘씨 스핀 토크 스위칭을 보조하는 층을 갖는 스핀 토크 스위칭을 이용하는 자기 스택
KR20120027525A (ko) * 2009-06-11 2012-03-21 콸콤 인코포레이티드 자기 터널 정션 디바이스 및 제조

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2526455B (en) * 2013-03-14 2020-04-01 Intel Corp Cross point array MRAM having spin hall MTJ devices

Also Published As

Publication number Publication date
US9647030B2 (en) 2017-05-09
US20150214274A1 (en) 2015-07-30
KR101266792B1 (ko) 2013-05-27

Similar Documents

Publication Publication Date Title
WO2014046361A1 (ko) 면내 전류와 전기장을 이용한 자기메모리 소자
WO2016182354A1 (ko) 자기 메모리 소자
US11585874B2 (en) Magnetic tunnel junction device
US9343658B2 (en) Magnetic memory bits with perpendicular magnetization switched by current-induced spin-orbit torques
KR102179913B1 (ko) 자기 메모리 소자
WO2014046360A1 (ko) 면내 전류와 전기장을 이용한 수평형 자기메모리 소자
US8519498B2 (en) Magnetic stack having reference layers with orthogonal magnetization orientation directions
WO2012153926A2 (ko) 자기 공명 세차 현상과 이중 스핀 필터 효과를 이용한 스핀전달토크 자기 메모리 소자
US7589994B2 (en) Methods of writing data to magnetic random access memory devices with bit line and/or digit line magnetic layers
CN101861622A (zh) 具有减小的电流密度的磁性元件
TW200403688A (en) Memory storage device with heating element
US10636840B2 (en) Quaternary spin hall memory
TW200306431A (en) A magnetic field detection sensor
US20190189912A1 (en) Structures Enabling Voltage Control of Oxidation Within Magnetic Heterostructures
US10204678B2 (en) Multi-state magnetic memory device
WO2019177204A1 (ko) 저전력 테라헤르쯔 자기 나노 발진 소자
Miura et al. A novel SPRAM (SPin-transfer torque RAM) with a synthetic ferrimagnetic free layer for higher immunity to read disturbance and reducing write-current dispersion
TW200414191A (en) Antiferromagnetically coupled bi-layer sensor for magnetic random access memory
KR101906708B1 (ko) 비대칭 자기 소자
CN110366756A (zh) 磁存储器、半导体装置、电子设备和读取磁存储器的方法
WO2018125106A1 (en) Vector magnetic field sensors using spin-orbit readout
WO2024010347A1 (ko) 고속 고에너지효율 자기터널접합 소자
WO2021020736A1 (ko) 합성형 반강자성체 및 이를 이용하는 다중 비트 메모리
Ohno Spintronics-from materials through devices to circuits
Kamiyanagi et al. Transient characteristic of fabricated magnetic tunnel junction (MTJ) programmed with CMOS circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14428949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838761

Country of ref document: EP

Kind code of ref document: A1