WO2014046166A1 - 電圧検出装置及び均等化装置 - Google Patents

電圧検出装置及び均等化装置 Download PDF

Info

Publication number
WO2014046166A1
WO2014046166A1 PCT/JP2013/075267 JP2013075267W WO2014046166A1 WO 2014046166 A1 WO2014046166 A1 WO 2014046166A1 JP 2013075267 W JP2013075267 W JP 2013075267W WO 2014046166 A1 WO2014046166 A1 WO 2014046166A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
low
pass filter
voltage detection
Prior art date
Application number
PCT/JP2013/075267
Other languages
English (en)
French (fr)
Inventor
宏尚 藤井
崇明 伊澤
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to EP13838402.9A priority Critical patent/EP2899835B1/en
Priority to CN201380040669.7A priority patent/CN104541431A/zh
Publication of WO2014046166A1 publication Critical patent/WO2014046166A1/ja
Priority to US14/595,943 priority patent/US10020661B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a voltage detection device and an equalization device, and more particularly, to a voltage detection device and an equalization device that detect both-end voltages of a plurality of unit cells connected in series with each other.
  • an assembled battery mounted on a hybrid vehicle or an electric vehicle is composed of a plurality of unit cells connected in series with each other, a high voltage such as 200 V is generated at both ends thereof, and the generated power is supplied to a drive motor.
  • a high voltage such as 200 V
  • the generated power is supplied to a drive motor.
  • an equalizing device that detects the voltage across each unit battery and equalizes the voltage across each unit battery using a discharge resistance or the like based on the detection result.
  • the equalizing device is composed of a battery monitoring IC in which an A / D converter for detecting the voltage across each unit battery is incorporated.
  • a low-pass filter hereinafter referred to as LPF
  • LPF low-pass filter
  • the conventional technology sometimes cannot detect the failure of the LPF depending on the content of the failure. Specifically, in the case of a failure in which the voltage drop of the LPF output is noticeable in a short time due to open breakdown of the resistor forming the LPF, the LPF failure is detected from the detection result of the voltage across the unit battery. It is possible. On the other hand, in the case of a failure in which the output of the LPF gradually decreases over a long period of time, such as a capacitor leak failure, it is difficult to clearly distinguish from the deterioration of the characteristics of the unit cell itself. It was difficult to detect the failure. If the LPF failure cannot be detected promptly in this way, the detected value of the unit battery will be lower than the actual value until the failure is detected, and the battery use efficiency may be reduced or overcharge may occur. was there.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a voltage detection device and an equalization device capable of detecting a failure including a leakage failure of a capacitor of a low-pass filter. is there.
  • the voltage detection device is a voltage detection device that detects voltages across a plurality of unit cells connected in series with each other, and is connected to each of the unit cells.
  • a low-pass filter that cuts a high-frequency component from the voltage across the unit battery, and a first voltage detection unit that is connected to the low-pass filter and detects the voltage across the unit battery supplied via the low-pass filter.
  • a second voltage detecting means for detecting a voltage across each of the unit batteries supplied without going through the low-pass filter, a detected value detected by the first voltage detecting means, and a detection by the second voltage detecting means.
  • a failure detecting means for detecting a failure of the low-pass filter by comparing the detected value with the detected value.
  • the first voltage detection means and the second voltage detection means of the voltage detection device according to the first aspect are configured by one A / D converter.
  • the voltage detection apparatus according to the first aspect or the second aspect, a discharge resistor connected to a connection point between the unit battery and the low-pass filter, An equalization switch disposed between both ends of the unit battery and connected in series with the discharge resistor, wherein the second voltage detecting means transmits a connection point voltage between the discharge resistor and the equalization switch to the low pass.
  • an equalizing device for detecting the voltage of the unit battery supplied without passing through a filter.
  • the failure detection means detects the detection value detected by the first voltage detection means, that is, the detection value via the low-pass filter and the detection value detected by the second voltage detection means. That is, since the failure of the low-pass filter is detected by comparing with the detection value not passing through the low-pass filter, it is possible to detect the failure including the leakage failure of the capacitor of the low-pass filter.
  • the switching means switches the voltage input to the A / D converter between the voltage of the unit battery via the low pass filter and the voltage of the unit battery not via the low pass filter.
  • the 1 voltage detection means and the 2nd voltage detection means can be comprised with one A / D converter, and cost reduction can be aimed at.
  • the on / off of the equalization switch can be determined from the voltage at the connection point between the discharge resistor and the equalization switch, it is possible to detect the failure of the circuit that controls the on / off of the equalization switch.
  • FIG. 1 is a block diagram showing an embodiment of a voltage detection unit constituting the equalization apparatus of the present invention.
  • FIG. 2 is a block diagram showing an embodiment of an equalization unit constituting the equalization apparatus shown in FIG.
  • FIG. 3 is a diagram showing details of the battery monitoring IC constituting the equalizing apparatus shown in FIG.
  • FIG. 4 is a flowchart showing a processing procedure of the main microcomputer shown in FIG.
  • the equalizing device 1 is a device that equalizes the voltage across the plurality of unit cells C 11 to C mn that are connected in series to each other to form the assembled battery BH.
  • Each of the unit batteries C 11 to C mn (m and n are arbitrary integers) is composed of one secondary battery in the present embodiment, but may be composed of a plurality of secondary batteries.
  • the assembled battery BH is used as a power source for the electric motor in, for example, a hybrid electric vehicle that uses an engine and an electric motor (both not shown) as a driving source.
  • the assembled battery BH is connected to both ends thereof with the electric motor as a load as necessary, and an alternator or the like (not shown) as a charger as necessary.
  • the unit cells C 11 to C mn are divided into n blocks CB 1 to CB n . That is, the assembled battery BH includes n blocks CB 1 to CB n . Each of the blocks CB 1 to CB n is composed of m unit batteries.
  • the equalization device 1 includes a voltage detection unit 2 as a voltage detector for detecting a voltage between both ends of the unit batteries C 11 ⁇ C mn (FIG. 1), the unit cell C 11 with discharge resistance Rd ⁇ C mn And a main microcomputer 4 that controls the entire device and controls the equalization unit 3 based on the detection result from the voltage detection unit 2. ing.
  • a voltage detection unit 2 as a voltage detector for detecting a voltage between both ends of the unit batteries C 11 ⁇ C mn (FIG. 1), the unit cell C 11 with discharge resistance Rd ⁇ C mn
  • a main microcomputer 4 that controls the entire device and controls the equalization unit 3 based on the detection result from the voltage detection unit 2. ing.
  • the voltage detection unit 2 includes n battery monitoring ICs 21 to 2n provided corresponding to the blocks CB 1 to CB n and the positive side of each unit battery C 11 to C mn ( And a plurality of low-pass filters (hereinafter abbreviated as “LPF”) 5 provided between the battery monitoring ICs 21 to 2n.
  • the battery monitoring ICs 21 to 2n detect the voltages at both ends of the unit batteries C 11 to C mn constituting the corresponding blocks CB 1 to CB n and transmit them to the main microcomputer 4.
  • the battery monitoring ICs 21 to 2n are cascade-connected to each other, and only the battery monitoring IC 2n having the highest potential can directly communicate with the main microcomputer 4 via the insulation I / F 6.
  • the battery monitoring ICs 21 to 2n-1 other than the highest potential communicate with the main microcomputer 4 via the battery monitoring IC on the higher potential side than itself.
  • the LPF 5 is a so-called CR filter including a resistor R1 and a capacitor C as shown in FIG.
  • the resistor R1 is connected between the positive side of the unit batteries C 11 to C mn and the battery monitoring ICs 21 to 2n.
  • the capacitor C is connected between the connection point of the resistor R1 and the battery monitoring ICs 21 to 2n and the negative electrodes of the corresponding blocks CB 1 to CB n .
  • the LPF 5 is provided between the unit batteries C 11 to C mn and the battery monitoring ICs 21 to 2n, cuts high frequency components from the + side voltage of the unit batteries C 11 to C mn and supplies them to the battery monitoring ICs 21 to 2n.
  • the capacitor C is connected to the negative electrodes of the corresponding blocks CB 1 to CB n. Instead, it is connected to the connection point between the resistor R1 having a low voltage for one unit battery and the battery monitoring ICs 21 to 2n. It is good also as a structure to be made.
  • the equalizing unit 3 includes a plurality of discharge resistors Rd provided corresponding to the unit cells C 11 to C mn and a discharge resistor Rd between the unit cells C 11 to C mn in series.
  • a plurality of equalization switches Q, a register 31, and a level shift circuit 32 are provided.
  • the equalizing switch Q is composed of a field effect transistor or the like. When you turn the equalization switch Q, across the discharge resistor Rd of the unit cell C 11 ⁇ C mn are connected, the unit cell C 11 ⁇ C mn are discharged. On the other hand, when the equalization switch Q is turned off, the connection between the unit cells C 11 to C mn and the discharge resistor Rd is disconnected, and the discharge of the unit cells C 11 to C mn is stopped.
  • the register 31 temporarily stores the ON / OFF signal of the equalization switch Q transmitted from the main microcomputer 4 and transmits the signal to the equalization switches Q in parallel.
  • the main microcomputer 4 outputs an on / off signal that is a bit string corresponding to the number of unit batteries C 11 to C mn , and sets bits corresponding to the unit batteries C 11 to C mn determined to be discharged. “1”, an on / off signal is output with the bits corresponding to the unit cells C 11 to C mn determined not to be discharged as “0”. Specifically, if it is desired to discharge only the unit cells C 11, and outputs the OFF signal as a bit string of "10 ... 00" in order of unit cells C 11 ⁇ C mn.
  • each level shift circuit 32 converts the on / off signal transmitted from the register 31 into a voltage level at which each equalization switch Q can be turned on / off, and outputs the voltage level to the equalization switch Q.
  • the equalization switch Q is turned on when the voltage level converted “1” (H level) on / off signal is input, and discharges the connected unit cells C 11 to C mn .
  • the unit cells C 11 to C mn that are turned on and connected at “1” (H level) are discharged, but turned on at “0” (L level) using a Pch field effect transistor or the like.
  • the unit batteries C 11 to C mn connected in this way may be discharged.
  • voltage driving is used in the present embodiment, but current driving may be used.
  • the battery monitoring IC 2k includes connection points between the terminals V 1 to V m to which the + side of each of the unit batteries C 1k to C mk is connected via the LPF 5, the discharge resistors Rd, and the equalization switch Q. And terminals V 21 to V 2m to which a voltage is connected via a resistor R2.
  • the positive voltages of the unit cells C 11 to C mn after passing through the LPF 5 are supplied to the terminals V 1 to V m , and the LPF 5 is supplied to the terminals V 21 to V 2m.
  • the + side voltage of the unit cells C 11 to C mn before being passed is supplied.
  • the battery monitoring IC 2k includes a changeover switch 7 as a switching means for connecting one of terminals V 1 to V m and V 21 to V 2m to an input of an A / D converter 8 to be described later, and an input analog signal.
  • a / D converter 8 as first voltage detection means and second voltage detection means for converting the voltage to digital and transmitting it to the main microcomputer 4, a control logic circuit 9 for controlling the changeover switch 7, and A / D And a control unit 10 that controls the converter 8 and the control logic circuit 9.
  • the main microcomputer 4 starts the equalization process in response to a trigger such as turning on or off the ignition switch.
  • a trigger such as turning on or off the ignition switch.
  • the main microcomputer 4 each battery monitoring IC 21 ⁇ 2n sequentially addressed, and outputs a first voltage detection command, + side voltage of the unit cell C 11 ⁇ C mn after passing through the LPF5 the battery monitoring IC 21 ⁇ 2n Is detected (step S1).
  • the control unit 10 of each of the battery monitoring ICs 21 to 2n receives the first voltage detection command, it determines whether the destination is addressed to itself. When the first voltage detection command not addressed to itself is received, the first voltage detection command is transmitted to the battery monitoring ICs 21 to 2 (n ⁇ 1) adjacent to the low potential side. On the other hand, when the first voltage detection command addressed to itself is received, the control logic circuit 9 is controlled to connect the terminals V 1 to V m sequentially to the input of the A / D converter 8 by the changeover switch 7. As a result, the A / D converter 8 sequentially A / D converts the voltages input to the terminals V 1 to V m , and the control unit 10 sequentially transmits the detected voltages to the main microcomputer 4.
  • the detection voltage transmitted from the battery monitoring IC 2n is directly transmitted to the main microcomputer 4.
  • the detection voltage transmitted from the battery monitoring ICs 21 to 2 (n ⁇ 1) is transmitted to the main microcomputer 4 via the battery monitoring ICs 22 to 2n on the higher potential side than itself.
  • the + side voltages of the unit batteries C 11 to C mn after passing through the LPF 5 are sequentially transmitted to the main microcomputer 4.
  • the main microcomputer 4 sequentially outputs a second voltage detection command to each of the battery monitoring ICs 21 to 2n, and sets the + side voltage of the unit batteries C 11 to C mn before passing the LPF 5 to the battery monitoring ICs 21 to 2n. It is detected (step S2).
  • the control unit 10 of each of the battery monitoring ICs 21 to 2n receives the second voltage detection command, it determines whether the destination is addressed to itself.
  • the second voltage detection command is transmitted to the battery monitoring ICs 21 to 2 (n ⁇ 1) adjacent to the low potential side.
  • the control logic circuit 9 is controlled, and the terminals V 21 to V 2m are sequentially connected to the input of the A / D converter 8 by the changeover switch 7.
  • the A / D converter 8 sequentially A / D converts the voltages input to the terminals V 21 to V 2m
  • the control unit 10 sequentially transmits the detected voltages to the main microcomputer 4.
  • the detection voltage transmitted from the battery monitoring IC 2n is directly transmitted to the main microcomputer 4.
  • the detection voltage transmitted from the battery monitoring ICs 21 to 2 (n ⁇ 1) is transmitted to the main microcomputer 4 via the battery monitoring ICs 22 to 2n on the higher potential side than itself.
  • the + side voltages of the unit batteries C 11 to C mn before passing through the LPF 5 are sequentially transmitted to the main microcomputer 4.
  • the main microcomputer 4 functions as a failure detection means. That is, the + side voltage of the unit cells C 11 to C mn after passing through the LPF 5 and the + side voltage of the unit cells C 11 to C mn before passing through the LPF 5 are compared to detect a failure of the LPF 5. (Step S3). Unless such open failure and leakage failure occurs in the LPF 5, and the positive side voltage of the unit cells C 11 ⁇ C mn after passing through the LPF 5, and the unit plus side voltage of the battery C 11 ⁇ C mn before passing the LPF 5 Should be almost the same value.
  • step S4 the main microcomputer 4 notifies the fact to a higher system (not shown) positioned higher in the instruction system than the main microcomputer 4 (step S5), and then processing Exit.
  • step S5 Without failure (N in step S4), and the main microcomputer 4, seeking the voltage across the unit cells C 11 ⁇ C mn of + unit from the side voltage battery C 11 ⁇ C mn after passing through the LPF 5, was determined The both-end voltages are compared, and an on / off signal that discharges the unit cells C 11 to C mn having a high end-to-end voltage is output (step S6).
  • the on-off signal is inputted to the equalizing switch Q through a resistor 31 and the level shift circuit 32, is equalized switch Q is turned on the voltage across the corresponding high unit cells C 11 ⁇ C mn, the voltage across a high unit cell C 11 to C mn are discharged.
  • the main microcomputer 4 sequentially outputs the second voltage detection command again to each of the battery monitoring ICs 21 to 2n to detect the connection point voltage of the discharge resistor Rd and the equalization switch Q (step S7).
  • the control unit 10 of each of the battery monitoring ICs 21 to 2n receives the second voltage detection command addressed to itself, the control unit 10 controls the control logic circuit 9 and sequentially switches the terminals V 21 to V 2m by the changeover switch 7 to the A / D converter 8. Connect to the input.
  • the A / D converter 8 sequentially A / D converts the voltages input to the terminals V 21 to V 2m , and the control unit 10 sequentially transmits them to the main microcomputer 4 as detection voltages.
  • connection point voltage of the discharge resistor Rd and the equalization switch Q is sequentially transmitted to the main microcomputer 4.
  • this connection point voltage is substantially equal to the + side voltage of the unit cells C 11 to C mn
  • the equalization switch Q is on, the negative side of the unit cells C 11 to C mn It becomes almost equal to the voltage. Therefore, the on / off state of the equalization switch Q can be determined from this connection point voltage.
  • the main microcomputer 4 determines on / off of the equalization switch Q from the connection point voltage (step S8), and compares the on / off of the equalization switch Q determined in step S8 with the on / off signal output in step S6. A failure of the conversion unit 3 is detected (step S9).
  • the main microcomputer 4 notifies the host system (not shown) to that effect (step S11) and ends the process. On the other hand, if no failure is detected in the equalizing unit 3 (N in step S10), the main microcomputer 4 immediately ends the process.
  • the main microcomputer 4 the detection value of the unit cell C 11 ⁇ C mn of + side voltage detection value and the LPF5 the intervention without units of the battery C 11 ⁇ C mn + side voltage across the LPF5 And a failure of the LPF 5 is detected. For this reason, failure detection including leakage failure of the capacitor C of the LPF 5 is possible.
  • the first voltage detecting means and the second voltage detecting means can be constituted by one A / D converter 8, and the cost can be reduced.
  • the voltage at the connection point between the discharge resistor Rd and the equalization switch Q is detected as the voltage across the unit cells C 11 to C mn not through the LPF 5. Therefore, it is possible to determine whether the equalization switch Q is on or off from this voltage during discharging. Therefore, a failure of the equalizing unit 3 that controls the on / off of the equalizing switch Q can also be detected.
  • the failure detection of the equalization unit 3 is performed, but this is not essential, and the failure detection of the equalization unit 3 may not be performed.
  • LPF 5 may be converted by the unit cell C 11 ⁇ C units + without passing through the side voltage and LPF 5 mn cell C 11 ⁇ C mn of + a side voltage separate A / D converter 8 via.
  • the battery monitoring IC 2n on the highest potential side is directly connected to the main microcomputer 4 via the insulation I / F 6.
  • the present invention is not limited to this.
  • the battery monitoring IC 21 on the lowest potential side may be connected to the main microcomputer 4 via the insulation I / F 6.
  • a microcomputer may be provided for each battery monitoring IC.
  • the main microcomputer 4 is used as the failure detection means, but it may be implemented by a battery monitoring IC.
  • a voltage detection device (1) for detecting voltages across a plurality of unit cells (C 11 to C mn ) connected in series with each other, A low-pass filter (LPF5) that is connected to each of the unit batteries and cuts a high-frequency component from the voltage across the unit battery;
  • a first voltage detecting means (A / D converter 8) connected to the low-pass filter and detecting a voltage across each of the unit batteries supplied via the low-pass filter;
  • a second voltage detecting means (A / D converter 8) for detecting a voltage across each of the unit batteries supplied without passing through the low-pass filter;
  • a failure detection means main microcomputer 4) for detecting a failure of the low-pass filter by comparing the detection value detected by the first voltage detection means with the detection value detected by the second voltage detection means;
  • a voltage detection device comprising: [2] The first voltage detection means and the second voltage detection means are configured by one A / D converter (8), Switching means (switching) for switching the voltage input to the A / D converter between
  • the voltage detection device and equalization device of the present invention can detect a failure including a leakage failure of a capacitor of a low-pass filter.
  • the present invention exhibiting this effect is useful in the field of a voltage detection device and an equalization device that detect voltages across a plurality of unit cells connected in series with each other.
  • Equalizer Voltage detector (voltage detector) 4 Main microcomputer (Failure detection means) 5 LPF (low pass filter) 7 changeover switch (switching means) 8 A / D converter (first voltage detection means, second voltage detection means) C 11 to C mn unit batteries

Abstract

 A/D変換器(8)による検出結果を受信したメインマイコン(4)は、LPF(5)を介して検出された単位電池(C1k~Cmk)の電圧とLPF(5)を介さないで検出された単位電池(C1k~Cmk)の電圧とを比較して、LPF(5)の故障を検出する。

Description

電圧検出装置及び均等化装置
 本発明は、電圧検出装置及び均等化装置に係り、特に、互いに直列接続された複数の単位電池の両端電圧を検出する電圧検出装置及び均等化装置に関するものである。
 例えば、ハイブリッド自動車や電気自動車に搭載される組電池は、互いに直列接続された複数の単位電池から構成され、その両端に例えば200V等の高電圧が発生し、発生した電力を駆動用モータに供給する。このような組電池は、単位電池の両端電圧にバラツキが生じると、利用効率が低下したり、過充電となる虞がある。そこで、各単位電池の両端電圧を検出して、その検出結果に基づいて放電抵抗などを用いて各単位電池の両端電圧を均等化する均等化装置が提案されている。
 上記均等化装置は、各単位電池の両端電圧を検出するためのA/D変換器などが内蔵された電池監視ICから構成されている。また、電池監視ICによる電圧検出精度を高めるために、単位電池それぞれとA/D変換器との間にローパスフィルタ(以下LPF)が設けられ、このLPFにより高周波ノイズがカットされている。
日本国特開2012-122856号公報
 しかしながら、上記LPFに故障が発生した場合、従来技術では故障内容によってはLPFの故障を検出することができない場合があった。具体的には、LPFを形成する抵抗のオープン破壊等によりLPFの出力が短時間で顕著に電圧低下が見られるような故障の場合、単位電池の両端電圧の検出結果からLPFの故障を検出することが可能である。他方、コンデンサのリーク故障などLPFの出力が長時間かけて徐々に低下するような故障の場合、単位電池自体の特性劣化との明確な区別が困難であり、LPFの故障発生後速やかにLPFの故障を検出することが困難であった。このようにLPFの故障を速やかに検出することができない場合、故障を検出するまでは単位電池の検出値は実際の値よりも低くなり、電池の利用効率が低下したり、過充電となるおそれがあった。
 また、上記LPFの断線を検出するものとして特許文献1に記載されたものが提案されている。しかしながら、特許文献1に記載された装置は、LPFの断線は検出できるものの、コンデンサのリーク故障については検出できない。
 そこで、本発明は、上記事情に鑑みてなされたものであって、その目的は、ローパスフィルタのコンデンサのリーク故障を含めた故障検出が可能となる電圧検出装置及び均等化装置を提供することにある。
 上述した課題を解決するために、本発明の第1態様に係る電圧検出装置として、互いに直列接続された複数の単位電池の両端電圧を検出する電圧検出装置であって、前記単位電池それぞれに接続された、前記単位電池の両端電圧から高周波成分をカットするローパスフィルタと、前記ローパスフィルタに接続され、前記ローパスフィルタを介して供給される前記単位電池それぞれの両端電圧を検出する第1電圧検出手段と、前記ローパスフィルタを介さずに供給される前記単位電池それぞれの両端電圧を検出する第2電圧検出手段と、前記第1電圧検出手段により検出された検出値と前記第2電圧検出手段により検出された検出値とを比較して、前記ローパスフィルタの故障を検出する故障検出手段と、を備えたものが提供される。
 また、本発明の第2態様に係る電圧検出装置として、前記第1態様に係る電圧検出装置の前記第1電圧検出手段及び前記第2電圧検出手段が、1つのA/D変換器から構成され、前記A/D変換器に入力する電圧を、前記ローパスフィルタを介して供給される前記単位電池の電圧及び前記ローパスフィルタを介さずに供給される前記単位電池の電圧の間で切り替える切替手段をさらに備えたものが提供される。
 また、本発明の第3態様に係る均等化装置として、前記第1態様又は前記第2態様の電圧検出装置と、前記単位電池と前記ローパスフィルタとの接続点に接続された放電抵抗と、前記単位電池の両端間に配置され、前記放電抵抗と直列に接続された均等化スイッチと、を備え、前記第2電圧検出手段が、前記放電抵抗と前記均等化スイッチとの接続点電圧を前記ローパスフィルタを介さずに供給される前記単位電池の電圧として検出する均等化装置が提供される。
 以上説明したように前記第1態様によれば、故障検出手段が、第1電圧検出手段により検出された検出値、即ちローパスフィルタを介した検出値と第2電圧検出手段により検出された検出値、即ちローパスフィルタを介さない検出値とを比較して、ローパスフィルタの故障を検出するので、ローパスフィルタのコンデンサのリーク故障を含めた故障検出が可能となる。
 また、前記第2態様によれば、切替手段が、A/D変換器に入力する電圧をローパスフィルタを介した単位電池の電圧及びローパスフィルタを介さない単位電池の電圧の間で切り替えるので、第1電圧検出手段及び第2電圧検出手段を1つのA/D変換器で構成でき、コストダウンを図ることができる。
 また、前記第3態様によれば、放電抵抗と均等化スイッチとの接続点電圧から均等化スイッチのオンオフも判定することができるので、均等化スイッチのオンオフを制御する回路の故障も検出できる。
図1は、本発明の均等化装置を構成する電圧検出部の一実施形態を示すブロック図である。 図2は、図1に示す均等化装置を構成する均等化部の一実施形態を示すブロック図である。 図3は、図1に示す均等化装置を構成する電池監視ICの詳細を示す図である。 図4は、図1に示すメインマイコンの処理手順を示すフローチャートである。
 以下、本発明の電圧検出装置を組み込んだ均等化装置の一実施形態について図1~図4を参照しながら説明する。図1に示すように、均等化装置1は、組電池BHを構成する互いに直列接続された複数の単位電池C11~Cmnの両端電圧を均等化する装置である。上記単位電池C11~Cmn(m、nは任意の整数)各々は、本実施形態では1つの二次電池から構成されているが、複数の二次電池から構成されていてもよい。
 上記組電池BHは、例えば、エンジンと電動モータ(何れも図示せず)を走行駆動源として併用するハイブリッド電気自動車において、前記電動モータの電源として用いられる。組電池BHは、その両端には、上記電動モータが必要に応じて負荷として接続されると共に、オルタネータ等(図示せず)が必要に応じて充電器として接続される。また、上記単位電池C11~Cmnは、n個のブロックCB1~CBnに分けられている。すなわち、組電池BHはn個のブロックCB1~CBnを備える。各ブロックCB1~CBnは各々、m個の単位電池で構成されている。
 上記均等化装置1は、各単位電池C11~Cmnの両端電圧を検出する電圧検出装置としての電圧検出部2(図1)と、放電抵抗Rdを用いて各単位電池C11~Cmnを放電して均等化する均等化部3(図2)と、装置全体の制御を司り、電圧検出部2からの検出結果に基づいて均等化部3の制御を行うメインマイコン4と、を備えている。
 電圧検出部2は、図1に示すように、各ブロックCB1~CBn毎に対応して設けられたn個の電池監視IC21~2nと、各単位電池C11~Cmnの+側(一端側)-電池監視IC21~2n間に設けられた複数のローパスフィルタ(以下「LPF」と略記する)5と、を備えている。上記電池監視IC21~2nは、対応するブロックCB1~CBnを構成する単位電池C11~Cmnの両端電圧を各々検出して、メインマイコン4に対して送信する。
 上記電池監視IC21~2nは、互いに縦続接続され、最高電位の電池監視IC2nのみが絶縁I/F6を介してメインマイコン4と直接通信することができる。最高電位以外の電池監視IC21~2n-1は、自身よりも高電位側の電池監視ICを介してメインマイコン4と通信を行う。LPF5は、図3に示すように、抵抗R1及びコンデンサCから成る所謂CRフィルタである。上記抵抗R1は、単位電池C11~Cmnの+側と電池監視IC21~2nとの間に接続されている。コンデンサCは、抵抗R1及び電池監視IC21~2nの接続点と、対応するブロックCB1~CBnの負極と、の間に接続されている。このLPF5は、単位電池C11~Cmnと電池監視IC21~2nとの間に設けられ、単位電池C11~Cmnの+側電圧から高周波成分をカットして電池監視IC21~2nに供給する。本実施形態ではコンデンサCは対応するブロックCB1~CBnの負極と接続されているが、これに代えて、単位電池1つ分電圧の低い抵抗R1と電池監視IC21~2nの接続点に接続される構成としてもよい。
 均等化部3は、図2に示すように、各単位電池C11~Cmnに対応して設けられた複数の放電抵抗Rdと、単位電池C11~Cmn間に放電抵抗Rdと直列に接続された複数の均等化スイッチQと、レジスタ31と、レベルシフト回路32と、を備えている。上記均等化スイッチQは、電界効果トランジスタなどから構成される。均等化スイッチQをオンにすると、単位電池C11~Cmnの両端に放電抵抗Rdが接続され、単位電池C11~Cmnが放電される。一方、均等化スイッチQをオフにすると、単位電池C11~Cmnと放電抵抗Rdとの接続が切り離され、単位電池C11~Cmnの放電が停止する。
 レジスタ31は、メインマイコン4から送信された均等化スイッチQのオンオフ信号を一時保存して各均等化スイッチQに向けてパラレルに送信する。メインマイコン4は、単位電池C11~Cmnの個数に応じたビット列となるオンオフ信号を出力するものであり、放電する必要があると判定された単位電池C11~Cmnに対応するビットを「1」、放電する必要がないと判定された単位電池C11~Cmnに対応するビットを「0」とするオンオフ信号を出力する。具体的には、単位電池C11だけを放電させたい場合、単位電池C11~Cmnの順に「10…00」のビット列となるオンオフ信号を出力する。
 レジスタ31から出力されるオンオフ信号はメインマイコン4の電源である低圧バッテリを基準とした電圧であるため、そのまま均等化スイッチQのゲートに入力しても均等化スイッチQのオンオフを制御することができない。そこで、各レベルシフト回路32により、レジスタ31から送信されたオンオフ信号を各均等化スイッチQがオンオフできる電圧レベルに変換して、均等化スイッチQに出力する。そして、均等化スイッチQは、電圧レベル変換された「1」(Hレベル)のオンオフ信号を入力するとオンして接続されている単位電池C11~Cmnを放電する。本実施形態では「1」(Hレベル)でオンして接続されている単位電池C11~Cmnを放電するとしているが、Pch電界効果トランジスタなどを用いて「0」(Lレベル)でオンして接続されている単位電池C11~Cmnを放電する構成とされていてもよい。また、均等化スイッチQの駆動方式に関して、本実施形態では電圧駆動を用いているが、電流駆動としてもよい。
 次に、上記概略で説明した電池監視IC21~2nの構成の詳細について図3を参照して説明する。なお、電池監視IC21~2nは、互いに同等の構成であるため、ここでは任意の電池監視IC2kを代表して説明する(kは1以上m以下の任意の整数)。図3に示すように、電池監視IC2kは、各単位電池C1k~Cmkの+側がLPF5を介して接続される端子V1~Vmと、各放電抵抗Rd及び均等化スイッチQの接続点電圧が抵抗R2を介して接続される端子V21~V2mと、を備えている。即ち、端子V1~Vmには、LPF5を通した後の(すなわち、LPF5を介した)単位電池C11~Cmnの+側電圧が供給され、端子V21~V2mには、LPF5を通す前の(すなわち、LPF5を介さない)単位電池C11~Cmnの+側電圧が供給される。
 また、電池監視IC2kは、端子V1~Vm、V21~V2mの1つを後述するA/D変換器8の入力に接続する切替手段としての切替スイッチ7と、入力されたアナログの電圧をデジタルに変換して、メインマイコン4に送信する第1電圧検出手段及び第2電圧検出手段としてのA/D変換器8と、切替スイッチ7を制御する制御ロジック回路9と、A/D変換器8や制御ロジック回路9を制御するコントロール部10と、を備えている。
 次に、上述した構成の均等化装置1の動作について図4を参照して説明する。メインマイコン4は、イグニッションスイッチのオン又はオフなどのトリガに応じて均等化処理を開始する。まず、メインマイコン4は、各電池監視IC21~2n宛に順次、第1電圧検出命令を出力して、電池監視IC21~2nにLPF5を通した後の単位電池C11~Cmnの+側電圧を検出させる(ステップS1)。
 各電池監視IC21~2nのコントロール部10は、第1電圧検出命令を受信すると、宛先が自身宛か否かを判定する。自身宛でない第1電圧検出命令を受信すると、低電位側に隣接する電池監視IC21~2(n-1)にその第1電圧検出命令を送信する。一方、自身宛の第1電圧検出命令を受信すると、制御ロジック回路9を制御して切替スイッチ7により端子V1~Vmを順次A/D変換器8の入力に接続する。これにより、A/D変換器8は、端子V1~Vmに入力された電圧を順次A/D変換し、これをコントロール部10が検出電圧として順次メインマイコン4に向けて送信する。電池監視IC2nから送信された検出電圧は、直接メインマイコン4に送信される。電池監視IC21~2(n-1)から送信された検出電圧は、自身よりも高電位側の電池監視IC22~2nを経由してメインマイコン4に送信される。これにより、LPF5を通した後の単位電池C11~Cmnの+側電圧が順次メインマイコン4に送信される。
 次に、メインマイコン4は、各電池監視IC21~2nに順次、第2電圧検出命令を出力して、電池監視IC21~2nにLPF5を通す前の単位電池C11~Cmnの+側電圧を検出させる(ステップS2)。各電池監視IC21~2nのコントロール部10は、第2電圧検出命令を受信すると、宛先が自身宛か否かを判定する。自身宛でない第2電圧検出命令を受信すると、低電位側に隣接する電池監視IC21~2(n-1)にその第2電圧検出命令を送信する。一方、自身宛の第2電圧検出命令を受信すると、制御ロジック回路9を制御して切替スイッチ7により端子V21~V2mを順次A/D変換器8の入力に接続する。これにより、A/D変換器8は、端子V21~V2mに入力された電圧を順次A/D変換し、これをコントロール部10が検出電圧として順次メインマイコン4に向けて送信する。電池監視IC2nから送信された検出電圧は、直接メインマイコン4に送信される。電池監視IC21~2(n-1)から送信された検出電圧は、自身よりも高電位側の電池監視IC22~2nを経由してメインマイコン4に送信される。これにより、LPF5を通す前の単位電池C11~Cmnの+側電圧が順次メインマイコン4に送信される。
 次に、メインマイコン4は、故障検出手段として働く。すなわち、LPF5を通した後の単位電池C11~Cmnの+側電圧と、LPF5を通す前の単位電池C11~Cmnの+側電圧と、を比較して、LPF5の故障を検出する(ステップS3)。LPF5にオープン故障やリーク故障などが生じていなければ、LPF5を通した後の単位電池C11~Cmnの+側電圧と、LPF5を通す前の単位電池C11~Cmnの+側電圧とはほとんど同じ値になるはずである。
 その後、故障があれば(ステップS4でY)、メインマイコン4は、その旨をメインマイコン4よりも命令系統上上位に位置する上位システム(図示せず)に報知した後(ステップS5)、処理を終了する。故障がなければ(ステップS4でN)、メインマイコン4は、LPF5を通した後の単位電池C11~Cmnの+側電圧から単位電池C11~Cmnの両端電圧を求めて、求めた両端電圧を比較して、両端電圧が高い単位電池C11~Cmnを放電するようなオンオフ信号を出力する(ステップS6)。このオンオフ信号は、レジスタ31及びレベルシフト回路32を通じて均等化スイッチQに入力され、両端電圧が高い単位電池C11~Cmnに対応する均等化スイッチQがオンされて、両端電圧が高い単位電池C11~Cmnが放電される。
 その後、メインマイコン4は、再び各電池監視IC21~2nに順次、第2電圧検出命令を出力して、放電抵抗Rd及び均等化スイッチQの接続点電圧を検出させる(ステップS7)。各電池監視IC21~2nのコントロール部10は、自身宛の第2電圧検出命令を受信すると、制御ロジック回路9を制御して切替スイッチ7により端子V21~V2mを順次A/D変換器8の入力に接続する。A/D変換器8は、端子V21~V2mに入力された電圧を順次A/D変換して、これをコントロール部10が検出電圧として順次メインマイコン4に送信する。これにより、放電抵抗Rd及び均等化スイッチQの接続点電圧が順次メインマイコン4に送信される。この接続点電圧は、均等化スイッチQがオフの場合、単位電池C11~Cmnの+側電圧とほぼ等しくなり、均等化スイッチQがオンの場合、単位電池C11~Cmnの-側電圧とほぼ等しくなる。よって、この接続点電圧から均等化スイッチQのオンオフを判定できる。
 そして、メインマイコン4は、接続点電圧から均等化スイッチQのオンオフを判定し(ステップS8)、ステップS8で判定した均等化スイッチQのオンオフと、ステップS6で出力したオンオフ信号と比較して均等化部3の故障を検出する(ステップS9)。均等化部3の故障を検出すると(ステップS10でY)、メインマイコン4はその旨を上位システム(図示せず)に報知して(ステップS11)、処理を終了する。一方、均等化部3の故障を検出しなければ(ステップS10でN)、メインマイコン4は直ちに処理を終了する。
 上述した実施形態によれば、メインマイコン4が、LPF5を介した単位電池C11~Cmnの+側電圧の検出値とLPF5を介さない単位電池C11~Cmnの+側電圧の検出値とを比較して、LPF5の故障を検出する。このため、LPF5のコンデンサCのリーク故障を含めた故障検出が可能となる。
 また、上述した実施形態によれば、切替スイッチ7が、A/D変換器8に入力する電圧をLPF5を介した単位電池C11~Cmnの+側電圧とLPF5を介さない単位電池C11~Cmnの+側電圧との間で切り替える。このため、第1電圧検出手段及び第2電圧検出手段を1つのA/D変換器8で構成でき、コストダウンを図ることができる。
 さらに、上述した実施形態によれば、放電抵抗Rdと均等化スイッチQとの接続点電圧をLPF5を介さない単位電池C11~Cmnの両端電圧として検出する。このため、放電時にはこの電圧から均等化スイッチQのオンオフも判定することができる。よって、均等化スイッチQのオンオフを制御する均等化部3の故障も検出できる。
 なお、上述した実施形態によれば、均等化部3の故障検出を行っていたが、これは必須ではなく、均等化部3の故障検出については行わなくても良い。
 また、上述した実施形態によれば、1つのA/D変換器8でLPF5を介した単位電池C11~Cmnの+側電圧とLPF5を介さない単位電池C11~Cmnの+側電圧とをA/D変換していたが、本発明はこれに限ったものではない。LPF5を介した単位電池C11~Cmnの+側電圧とLPF5を介さない単位電池C11~Cmnの+側電圧とを別々のA/D変換器8で変換するようにしてもよい。
 また、上述した実施形態では、最高電位側の電池監視IC2nが絶縁I/F6を介して直接メインマイコン4に接続されていたが、本発明はこれに限ったものではない。例えば、最低電位側の電池監視IC21が絶縁I/F6を介してメインマイコン4に接続されていてもよい。また、各電池監視IC毎にマイコンを設けてもよい。
 また、上述した実施形態では、故障検出手段としてメインマイコン4を用いているが、電池監視ICで実施してもよい。
 また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。
 ここで、上述した本発明に係る電圧検出装置及び均等化装置の実施形態の特徴をそれぞれ以下[1]~[3]に簡潔に纏めて列記する。
[1] 互いに直列接続された複数の単位電池(C11~Cmn)の両端電圧を検出する電圧検出装置(1)であって、
 前記単位電池それぞれに接続された、前記単位電池の両端電圧から高周波成分をカットするローパスフィルタ(LPF5)と、
 前記ローパスフィルタに接続され、前記ローパスフィルタを介して供給される前記単位電池それぞれの両端電圧を検出する第1電圧検出手段(A/D変換器8)と、
 前記ローパスフィルタを介さずに供給される前記単位電池それぞれの両端電圧を検出する第2電圧検出手段(A/D変換器8)と、
 前記第1電圧検出手段により検出された検出値と前記第2電圧検出手段により検出された検出値とを比較して、前記ローパスフィルタの故障を検出する故障検出手段(メインマイコン4)と、
 を備えた電圧検出装置。
[2] 前記第1電圧検出手段及び前記第2電圧検出手段が、1つのA/D変換器(8)から構成され、
 前記A/D変換器に入力する電圧を、前記ローパスフィルタを介して供給される前記単位電池の電圧及び前記ローパスフィルタを介さずに供給される前記単位電池の電圧の間で切り替える切替手段(切替スイッチ7)をさらに備えた[1]に記載の電圧検出装置。
[3] [1]又は[2]に記載の電圧検出装置と、
 前記単位電池と前記ローパスフィルタとの接続点に接続された放電抵抗(放電抵抗Rd)と、
 前記単位電池の両端間に配置され、前記放電抵抗と直列に接続された均等化スイッチ(均等化スイッチQ)と、
 を備え、
 前記第2電圧検出手段が、前記放電抵抗と前記均等化スイッチとの接続点電圧を前記ローパスフィルタを介さずに供給される前記単位電池の電圧として検出する均等化装置。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年9月21日出願の日本特許出願(特願2012-208480)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の電圧検出装置及び均等化装置は、ローパスフィルタのコンデンサのリーク故障を含めた故障検出が可能となる。この効果を奏する本発明は、互いに直列接続された複数の単位電池の両端電圧を検出する電圧検出装置及び均等化装置の分野において有用である。
 1 均等化装置
 2 電圧検出部(電圧検出装置)
 4 メインマイコン(故障検出手段)
 5 LPF(ローパスフィルタ)
 7 切替スイッチ(切替手段)
 8 A/D変換器(第1電圧検出手段、第2電圧検出手段)
 C11~Cmn 単位電池

Claims (3)

  1.  互いに直列接続された複数の単位電池の両端電圧を検出する電圧検出装置であって、
     前記単位電池それぞれに接続された、前記単位電池の両端電圧から高周波成分をカットするローパスフィルタと、
     前記ローパスフィルタに接続され、前記ローパスフィルタを介して供給される前記単位電池それぞれの両端電圧を検出する第1電圧検出手段と、
     前記ローパスフィルタを介さずに供給される前記単位電池それぞれの両端電圧を検出する第2電圧検出手段と、
     前記第1電圧検出手段により検出された検出値と前記第2電圧検出手段により検出された検出値とを比較して、前記ローパスフィルタの故障を検出する故障検出手段と、
     を備えた電圧検出装置。
  2.  前記第1電圧検出手段及び前記第2電圧検出手段が、1つのA/D変換器から構成され、
     前記A/D変換器に入力する電圧を、前記ローパスフィルタを介して供給される前記単位電池の電圧及び前記ローパスフィルタを介さずに供給される前記単位電池の電圧の間で切り替える切替手段をさらに備えた請求項1に記載の電圧検出装置。
  3.  請求項1又は2に記載の電圧検出装置と、
     前記単位電池と前記ローパスフィルタとの接続点に接続された放電抵抗と、
     前記単位電池の両端間に配置され、前記放電抵抗と直列に接続された均等化スイッチと、
     を備え、
     前記第2電圧検出手段が、前記放電抵抗と前記均等化スイッチとの接続点電圧を前記ローパスフィルタを介さずに供給される前記単位電池の電圧として検出する均等化装置。
PCT/JP2013/075267 2012-09-21 2013-09-19 電圧検出装置及び均等化装置 WO2014046166A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13838402.9A EP2899835B1 (en) 2012-09-21 2013-09-19 Voltage detection device and equalization device
CN201380040669.7A CN104541431A (zh) 2012-09-21 2013-09-19 电压检测装置和均衡装置
US14/595,943 US10020661B2 (en) 2012-09-21 2015-01-13 Voltage detection device and equalization device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012208480A JP6200139B2 (ja) 2012-09-21 2012-09-21 均等化装置
JP2012-208480 2012-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/595,943 Continuation US10020661B2 (en) 2012-09-21 2015-01-13 Voltage detection device and equalization device

Publications (1)

Publication Number Publication Date
WO2014046166A1 true WO2014046166A1 (ja) 2014-03-27

Family

ID=50341470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075267 WO2014046166A1 (ja) 2012-09-21 2013-09-19 電圧検出装置及び均等化装置

Country Status (5)

Country Link
US (1) US10020661B2 (ja)
EP (1) EP2899835B1 (ja)
JP (1) JP6200139B2 (ja)
CN (1) CN104541431A (ja)
WO (1) WO2014046166A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102652265A (zh) * 2010-12-06 2012-08-29 科达汽车公司 使用电路故障自检测量装置来测量隔离高压以及检测隔离击穿
JP6324333B2 (ja) * 2015-02-18 2018-05-16 三菱電機株式会社 セルバランス回路及びその故障診断装置
DE102015002072A1 (de) * 2015-02-18 2016-08-18 Audi Ag Einstellen von Ladungszuständen von Batteriezellen
JP6544681B2 (ja) * 2015-03-31 2019-07-17 株式会社ケーヒン 電池電圧検出装置
JP6621256B2 (ja) 2015-07-16 2019-12-18 ラピスセミコンダクタ株式会社 半導体装置、電池監視装置および電池セルの電圧検出方法
KR102025285B1 (ko) * 2015-11-06 2019-09-26 주식회사 엘지화학 배터리 팩 내부 커패시터 크랙 검출 방법 및 시스템
JP6398964B2 (ja) 2015-12-15 2018-10-03 株式会社デンソー 組電池監視システム
DE102016202761A1 (de) * 2016-02-23 2017-08-24 Continental Automotive Gmbh Batteriesystem mit einer Spannungsausgleichsschaltung, Verfahren zum Erkennen eines fehlerhaften Zustandes der Spannungsausgleichsschaltung und der Zellspannungsmessung
JP6477593B2 (ja) 2016-05-16 2019-03-06 株式会社デンソー 組電池監視システム
JP6539618B2 (ja) * 2016-07-21 2019-07-03 矢崎総業株式会社 電池監視システム
CN109661588A (zh) * 2016-08-30 2019-04-19 松下知识产权经营株式会社 管理装置以及蓄电系统
KR102051177B1 (ko) * 2016-10-19 2019-12-17 주식회사 엘지화학 전압 분배를 이용한 스위치 진단 장치 및 방법
EP3327455B1 (en) * 2016-11-28 2020-10-21 NXP USA, Inc. Leakage current determination
WO2018235774A1 (ja) * 2017-06-20 2018-12-27 株式会社Gsユアサ 故障診断装置
KR101897077B1 (ko) * 2017-07-28 2018-09-10 현대오트론 주식회사 배터리 관리 시스템, 및 그것의 동작 방법
JP6653309B2 (ja) * 2017-11-22 2020-02-26 矢崎総業株式会社 電池監視装置
US11677253B2 (en) * 2018-01-16 2023-06-13 Gs Yuasa International Ltd. Monitoring device, monitoring method, computer program, deterioration determination method, deterioration determination device, and deterioration determination system
JP7000966B2 (ja) * 2018-04-04 2022-01-19 株式会社デンソー スイッチの過電流検出回路
US11056891B2 (en) * 2018-07-18 2021-07-06 Nxp Usa, Inc. Battery stack monitoring and balancing circuit
KR20200137509A (ko) 2019-05-30 2020-12-09 주식회사 엘지화학 배터리 팩의 결함 검출 장치 및 방법
US11670952B2 (en) * 2019-10-18 2023-06-06 Fca Us Llc Voltage estimation for automotive battery charging system control
KR102368977B1 (ko) * 2020-02-25 2022-03-02 삼성에스디아이 주식회사 배터리 관리 장치
DE102020117744A1 (de) * 2020-07-06 2022-01-13 HELLA GmbH & Co. KGaA Verfahren und Vorrichtung zur Überwachen eines Tiefpassfilters sowie Batteriemanagementsystem, Batterie sowie Fahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243157A (ja) * 2009-04-01 2010-10-28 Denso Corp 電圧検出装置
JP2012122856A (ja) 2010-12-08 2012-06-28 Toshiba Corp 組電池装置
JP2012137334A (ja) * 2010-12-24 2012-07-19 Toshiba Corp 監視回路、組電池モジュールおよび車両
WO2012132220A1 (ja) * 2011-03-31 2012-10-04 ルネサスエレクトロニクス株式会社 電圧監視モジュール及びこれを用いた電圧監視システム
JP2013094032A (ja) * 2011-10-27 2013-05-16 Hitachi Vehicle Energy Ltd 電池システム監視装置およびこれを備えた蓄電装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035777B2 (ja) * 2003-02-10 2008-01-23 株式会社デンソー 組電池の放電装置
US8629687B2 (en) * 2009-04-24 2014-01-14 Yazaki Corporation Disconnection detecting device
JP5416491B2 (ja) * 2009-06-24 2014-02-12 矢崎総業株式会社 断線検出装置
JP5571485B2 (ja) 2010-07-14 2014-08-13 矢崎総業株式会社 組電池の電圧均等化装置
CN102652265A (zh) * 2010-12-06 2012-08-29 科达汽车公司 使用电路故障自检测量装置来测量隔离高压以及检测隔离击穿
JP5698004B2 (ja) * 2011-01-12 2015-04-08 ラピスセミコンダクタ株式会社 半導体回路、電池監視システム、診断プログラム、及び診断方法
JP5353915B2 (ja) * 2011-02-01 2013-11-27 株式会社デンソー 電池電圧監視装置
JP5786355B2 (ja) * 2011-02-17 2015-09-30 株式会社ニコン デフォーカス量検出装置および電子カメラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243157A (ja) * 2009-04-01 2010-10-28 Denso Corp 電圧検出装置
JP2012122856A (ja) 2010-12-08 2012-06-28 Toshiba Corp 組電池装置
JP2012137334A (ja) * 2010-12-24 2012-07-19 Toshiba Corp 監視回路、組電池モジュールおよび車両
WO2012132220A1 (ja) * 2011-03-31 2012-10-04 ルネサスエレクトロニクス株式会社 電圧監視モジュール及びこれを用いた電圧監視システム
JP2013094032A (ja) * 2011-10-27 2013-05-16 Hitachi Vehicle Energy Ltd 電池システム監視装置およびこれを備えた蓄電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899835A4

Also Published As

Publication number Publication date
CN104541431A (zh) 2015-04-22
EP2899835A1 (en) 2015-07-29
US20150162759A1 (en) 2015-06-11
JP2014064404A (ja) 2014-04-10
JP6200139B2 (ja) 2017-09-20
EP2899835B1 (en) 2016-12-14
US10020661B2 (en) 2018-07-10
EP2899835A4 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2014046166A1 (ja) 電圧検出装置及び均等化装置
CN111264014B (zh) 蓄电系统
JP4656152B2 (ja) 電池システム
US8704405B2 (en) Parallel device including a battery module and control method thereof
JP4656151B2 (ja) 電池システム、電池セル監視用集積回路
JP5498742B2 (ja) 変圧器を用いたセル平衡化システム
JP5210511B2 (ja) 異常検出装置
WO2014061422A1 (ja) 電圧検出装置
WO2010116671A1 (ja) 電池制御装置、電池制御方法、及び車両
EP2827468B1 (en) Equalization device
KR101811062B1 (ko) 이차전지 배터리의 균등화 장치
JP6260716B2 (ja) 電源装置、保護装置、及び保護方法
JP5553061B2 (ja) セルバランス装置
WO2012043590A1 (ja) 電源装置
WO2013161512A1 (ja) 充電制御装置および充電制御方法
JP2008079364A (ja) 充放電装置
WO2014061421A1 (ja) 均等化装置
JP2006280171A (ja) 車両用の電源装置
JP2012205407A (ja) 蓄電装置および蓄電装置の電圧均等化方法
CN104040826A (zh) 电池组电池电压均衡电路
JP3979594B2 (ja) バッテリの電圧検出装置
JP5481367B2 (ja) 組電池モジュール、および、車両
JP2013088233A (ja) 電池監視装置
JP2013201866A (ja) 電池均等化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838402

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013838402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013838402

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE