WO2014061421A1 - 均等化装置 - Google Patents

均等化装置 Download PDF

Info

Publication number
WO2014061421A1
WO2014061421A1 PCT/JP2013/076141 JP2013076141W WO2014061421A1 WO 2014061421 A1 WO2014061421 A1 WO 2014061421A1 JP 2013076141 W JP2013076141 W JP 2013076141W WO 2014061421 A1 WO2014061421 A1 WO 2014061421A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
discharge
voltage
equalization
mcu
Prior art date
Application number
PCT/JP2013/076141
Other languages
English (en)
French (fr)
Inventor
鈴木 慎吾
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to CN201380054726.7A priority Critical patent/CN104769808A/zh
Priority to US14/436,102 priority patent/US20150295424A1/en
Priority to DE112013005066.8T priority patent/DE112013005066T5/de
Publication of WO2014061421A1 publication Critical patent/WO2014061421A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an equalizing device, and more particularly, to an equalizing device that equalizes voltages across a plurality of unit cells connected in series with each other.
  • an assembled battery mounted on a hybrid vehicle or an electric vehicle is composed of a plurality of unit cells connected in series with each other, a high voltage such as 200 V is generated at both ends thereof, and the generated power is supplied to a drive motor.
  • a high voltage such as 200 V
  • the generated power is supplied to a drive motor.
  • an equalization device uses a discharge resistor to perform equalization by discharging so that the voltage across the unit battery approaches a minimum value (for example, Patent Document 1).
  • the equalizing device detects the voltage across the unit cells C 1 to C 5 using the ignition off as a trigger, sets the minimum value among the detected voltages across the unit cells C 1 to C 5 as the reference voltage, A voltage slightly higher than that is set as the target voltage (threshold 1), and a voltage higher than the target voltage is set as the threshold 2.
  • the equalization device starts equalization when any one of the unit cells C 1 to C 5 has a voltage across the threshold voltage greater than threshold 1, and the unit cell C 1 whose voltage across the target voltage exceeds the target voltage. , C 2 , C 3 and C 5 are discharged for a specified time.
  • an object of the present invention is to provide an equalization apparatus that can quickly and accurately equalize with a simple configuration.
  • the voltage detection device is an equalization device that equalizes voltages across a plurality of unit cells connected in series with each other, A voltage detection unit for detecting a voltage at both ends, a plurality of discharge resistors provided for each unit cell for discharging the unit cell, a plurality of switches for connecting the unit cell to the discharge resistor, and the switch
  • An equalization unit that controls and equalizes the unit cells, and the equalization unit uses the lowest voltage across the terminals detected by the voltage detection unit as a reference voltage, and the reference voltage
  • a classifying unit that classifies the magnitude of the voltage across the unit battery into three or more according to a difference between the voltage across the unit battery detected by the voltage detection unit, and the class that is closest to the reference voltage.
  • the switch control unit of the voltage detection device according to the first aspect may discharge all unit cells other than the division closest to the reference voltage among the divisions. Is provided to control the on / off of the switch so as to stop discharging in order from the unit cells of the section close to the reference voltage.
  • the switch control unit of the voltage detection device according to the first aspect may keep all unit cells other than the division closest to the reference voltage among the divisions constant.
  • a device for controlling on / off of the switch so as to stop the discharge for a certain period of time in order from the unit battery in a section close to the reference voltage, intermittently repeating the discharge for a certain period of time.
  • the unit cells can be discharged in a stepwise discharge time for each section corresponding to the voltage at both ends, and can be quickly and accurately equalized with a simple configuration.
  • FIG. 1 is a block diagram showing an embodiment of the equalization apparatus of the present invention.
  • FIG. 2 is a circuit diagram showing details of the equalization block constituting the equalization apparatus shown in FIG.
  • FIGS. 3A to 3C are explanatory diagrams for explaining the operation of the equalization apparatus shown in FIG.
  • FIG. 4 is a flowchart showing the equalization control processing procedure of the MCU constituting the equalization apparatus shown in FIG. 1 in the first embodiment.
  • FIG. 5 is a flowchart showing the equalization control processing procedure of the MCU constituting the equalization apparatus shown in FIG. 1 in the second embodiment.
  • FIG. 6A is a graph showing an example of both-end voltages of the unit voltages B1 to B5.
  • FIG. 6B shows the discharge of the unit voltages B1 to B5 having the both-end voltages shown in FIG. 6A for a specified time. It is a graph which shows the both-ends voltage after doing.
  • the equalizing device 1 is a device that equalizes the voltage across the plurality of unit cells C 1 to C 60 that are connected in series to each other that constitute the assembled battery BH.
  • Each of the unit batteries C 1 to C 60 is composed of one secondary battery in the present embodiment, but may be composed of a plurality of secondary batteries.
  • the assembled battery BH is used as a power source for the electric motor in, for example, a hybrid electric vehicle that uses an engine and an electric motor (both not shown) as a travel drive source.
  • the assembled battery BH is connected to both ends thereof with the electric motor as a load as necessary, and an alternator or the like (not shown) as a charger as necessary.
  • the unit batteries C 1 to C 60 are divided into, for example, six blocks B1 to B6. That is, the assembled battery BH includes six blocks B1 to B6. Each of the blocks B1 to B6 is composed of, for example, 10 unit batteries.
  • the equalizing device 1 controls a plurality of equalizing blocks 31 to 36 that equalize the unit cells C 1 to C 60 and the entire device, and serves as an equalizing unit that controls the equalizing blocks 31 to 36.
  • the equalization blocks 31 to 36 are provided for each of the blocks B1 to B6, and operate by receiving power supply from the corresponding blocks B1 to B6. Further, the equalization blocks 31 to 36 detect the voltages at both ends of the unit batteries C 1 to C 60 constituting the corresponding blocks B1 to B6, respectively, and transmit the detected voltages to the MCU 4, and the corresponding block B1 according to a command from the MCU 4 The unit cells C 1 to C 60 constituting B 6 are discharged to perform equalization.
  • the MCU 4 is composed of a microcomputer and operates by receiving power supply from a low-voltage battery (not shown) different from the assembled battery BH.
  • Equalization block 36 a monitoring IC5, + side of each unit cell C 1 ⁇ C 10 - (hereinafter abbreviated as "LPF") a plurality of low-pass filter provided between the monitoring IC5 and 6, the unit cell C 1 ⁇ It includes a plurality of discharge resistor Rd provided for each C 10, a plurality of switches Q connected to the discharge resistor Rd in series between the respective unit cells C 1 ⁇ C 10, a.
  • Each LPF 6 is a so-called CR filter comprising a resistor R1 and a capacitor C as shown in FIG.
  • the resistor R1 is connected between the + side of the unit cells C 1 to C 10 and the monitoring IC 5.
  • the capacitor C is connected between the connection point of the resistor R1 and the monitoring IC 5 and the negative electrode of the corresponding block B6.
  • This LPF6 is provided between the unit cells C 1 ⁇ C 10 and monitoring IC5, supplies monitoring IC5 by cutting high-frequency components from the + side potential of the unit cell C 1 ⁇ C 10.
  • each discharge resistor Rd is connected to the + side of each of the unit cells C 1 to C 10 .
  • the switch Q is composed of, for example, an N-channel field effect transistor, the drain is connected to the other end of the discharge resistor Rd, and the source is connected to the negative side of the unit cells C 1 to C 10 .
  • both ends of the discharge resistor Rd of the unit cell C 1 ⁇ C 10 are connected, the unit cell C 1 ⁇ C 10 are discharged.
  • the switch Q is turned off, the connection between the unit cells C 1 to C 10 and the discharge resistor Rd is disconnected, and the discharge of the unit cells C 1 to C 10 is stopped.
  • a resistor R2 is connected between the gate and the source of the switch Q, and the gate of the switch Q is connected to the monitoring IC 5 via the resistor R3, and the monitoring IC 5 controls the on / off thereof.
  • Monitoring IC5 is connected to both ends of the unit cells C 1 ⁇ C 10, a multiplexer 51 connected to the input of the A / D converter 52 to be described later by selecting one of the ends of the unit cells C 1 ⁇ C 10,
  • An A / D converter 52 as a voltage detection unit that converts an input analog voltage into digital and outputs the digital voltage to the control unit 53, and a control unit 53 that controls the entire monitoring IC 5 are provided.
  • control units 53 of the equalization blocks 31 to 36 are connected to each other in series, and only the control unit 53 of the equalization block 36 having the lowest potential communicates directly with the MCU 4 via the insulation I / F 7. Can do.
  • the control unit 53 of the equalization blocks 32 to 35 other than the lowest potential communicates with the MCU 4 via the control unit 53 on the lower potential side than itself.
  • the control unit 53 controls the multiplexer 51 to sequentially input the + side of the unit batteries C 1 to C 10 to the A / D converter 52.
  • the A / D converter 52 sequentially A / D converts the positive side potentials of the unit batteries C 1 to C 10 and supplies them to the control unit 53.
  • the control unit 53 transmits the digital value of the positive potential of the unit batteries C 1 to C 10 from the A / D converter 52 to the MCU 4 as a detection voltage.
  • the control unit 53 of the equalization block 36 can directly communicate with the MCU 4, it directly transmits to the MCU 4.
  • the control unit 53 of the equalization blocks 31 to 35 transmits this detected voltage to the MCU 4 via the control unit 53 of the equalization blocks 32 to 36 on the lower potential side than itself.
  • the control unit 53 is connected to the gate of each switch Q, and controls on / off of each switch Q according to an on / off signal transmitted from the MCU 4.
  • the MCU 4 sets the both-ends voltage of the unit battery C 4 having the lowest end-to-end voltage among all the unit batteries C 1 to C 5 constituting the assembled battery BH as a reference voltage, Depending on the difference between the reference voltage and the voltage across the unit batteries C 1 to C 5 , the magnitudes of the voltages across the unit batteries C 1 to C 5 are “no discharge”, “discharge short”, “discharge normal”. And “Discharge Long”.
  • the above classification is performed by comparison with a plurality of threshold values 1 to 3 set for the reference voltage. That is, the MCU 4 sets a voltage slightly higher than the reference voltage as the threshold 1 (target voltage), sets a voltage higher than the threshold 1 as the threshold 2, and sets a voltage higher than the threshold 2 as the threshold 3. .
  • the MCU 4 determines that equalization needs to be performed if any one of the unit batteries C 1 to C 5 is higher than the threshold value 1 (target voltage).
  • MCU 4 compares the voltage across the plurality of thresholds 1 to 3 and the unit cells C 1 ⁇ C 5, dividing the magnitude of the voltage across the unit cell C 1 ⁇ C 5.
  • a unit cell with both-end voltage ⁇ threshold 1 is “no discharge”
  • a unit cell with threshold 2> both-end voltage ⁇ threshold 1 is “discharge short”
  • a unit cell with threshold 3> both-end voltage ⁇ threshold 2 is The unit battery with the voltage across both ends> threshold value 3 is classified as “discharge long” and “discharge normal”.
  • the unit battery C 5 is classified as “discharge long”
  • the unit batteries C 1 and C 3 are classified as “discharge normal”
  • the unit battery C 2 is classified as “discharge short”.
  • the unit battery C 4 is classified as “no discharge”.
  • the MCU 4 starts discharging all unit cells C 1 to C 3 and C 5 other than the section “no discharge” closest to the reference voltage among the sections, and then the section “discharge short” close to the reference voltage.
  • the unit battery C 2 discharge is stopped, then the discharge of the unit batteries C 1 and C 3 of the category “discharge normal” close to the reference voltage is stopped, and finally the unit of the category “discharge long” farthest from the reference voltage stopping the discharge of the battery C 5.
  • the discharge amount of “discharge long” is hatched by parallel diagonal lines, and the discharge amount of “discharge normal” is hatched by crossing diagonal lines.
  • the amount of discharge is drawn by hatching filled with black. Thereby, as shown in FIG. 3B, the discharge amount can be decreased in the order of “discharge long”, “discharge normal”, and “discharge short”. This is repeated until all the voltages across the unit batteries C 1 to C 5 are equal to or lower than the threshold value 1 (target voltage).
  • the unit batteries C 1 and C 5 are larger than the threshold value 1 (target voltage) as shown in FIG. Then, the voltages at both ends of the unit batteries C 1 to C 5 are again detected and classified. In the example shown in FIG. 3B, the unit cells C 1 and C 5 are classified as “discharge short”, and the unit cells C 2 to C 4 are classified as “no discharge”. Next, the MCU 4 starts discharging all the unit cells C 1 and C 5 other than the section “no discharge”, and first discharges the unit batteries C 1 and C 5 of the “discharge short” whose voltage classification is small. Stop.
  • the discharge of all the unit batteries C 1 to C 5 ends here.
  • the voltage across both unit batteries C 1 to C 5 has a threshold value of 1. Since it is equal to (target voltage) or less and is classified as “no discharge”, the equalization ends here.
  • the MCU 4 detects the voltage across the unit cells C 1 to C 5 at regular time intervals, and restarts equalization when a variation of the threshold value 2 or more occurs.
  • the MCU 4 starts the equalization control process when it is determined that equalization is necessary, or when an equalization command is output from a host system (not shown) in response to a trigger such as turning on or off the ignition switch.
  • the MCU 4 waits for a voltage stabilization time for the voltage across the unit batteries C 1 to C 60 to stabilize (step S1).
  • the MCU 4 sequentially outputs a voltage detection command to the control unit 53 of each equalization block 31 to 36, and detects the voltage across the unit batteries C 1 to C 60 (step S2).
  • the control unit 53 of each equalization block 31 to 36 determines whether or not the destination is addressed to itself.
  • the voltage detection command is transferred to the control unit 53 of the equalization blocks 31 to 35 adjacent to the high potential side.
  • the multiplexer 51 is controlled to connect the + side potentials of the unit batteries C 1 to C 60 to the input of the A / D converter 52 in sequence.
  • the A / D converter 52 sequentially A / D converts the + side potentials of the unit cells C 1 to C 60
  • the control unit 53 sequentially transmits them to the MCU 4 as detection voltages.
  • the detection voltage transmitted from the control unit 53 of the equalization block 36 is directly transmitted to the MCU 4.
  • the detection voltage transmitted from the control unit 53 of the equalization blocks 31 to 35 is transmitted to the MCU 4 via the control unit 53 of the equalization blocks 32 to 36 on the lower potential side than itself.
  • the + side potentials of the unit batteries C 1 to C 60 are sequentially transmitted to the MCU 4, and the MCU 4 that has received them calculates the voltage across the unit batteries C 1 to C 60 .
  • the MCU 4 functions as a threshold value setting unit, and sets the lowest voltage among the detected voltages across the unit cells C 1 to C 60 as a reference voltage, and a plurality of threshold values 1 that increase stepwise with respect to the reference voltage. To 3 are set (step S3).
  • the MCU 4 determines whether or not there is a voltage across the unit batteries C 1 to C 60 that is equal to or higher than the threshold value 1 (target voltage) (step S4). When there is no threshold value 1 (target voltage) or more (if “false” in step S4, “false” is described as “N” hereinafter), the MCU 4 does not need to equalize. And waits for a predetermined time to elapse (step S24), and returns to step S2.
  • step S5 serves as the partitioning portion, compares the voltage across the plurality of thresholds 1 to 3 and the unit cells C 1 ⁇ C 60, "no discharge” the size of each unit cell C 1 ⁇ C 60, “discharge short”, " It is divided into four types, “discharge normal” and “discharge long”. More specifically, the MCU 4 first sets n ⁇ n + 1 (step S5).
  • MCU 4 as long across voltage Vn of the unit cell C n is exceeding the third threshold (at step S6 Y), the magnitude of the voltage across Vn of the unit cell C n is classified as "discharge long" (step S12 ).
  • MCU 4 is lower than than the voltage across Vn threshold 3 unit cells C n, and, if exceeding the second threshold (Y in step S7), and the magnitude of the voltage across Vn of the unit cell C n "discharge normal" (Step S11). Further, MCU 4 is the voltage across Vn of the unit cell C n is less than the threshold 2, and, if exceeding the first threshold (Y in step S8), and the magnitude of the voltage across Vn of the unit cell C n "discharge short” (Step S10). Further, MCU 4, as long below from both ends voltage Vn threshold 1 unit cell C n (in step S8 N), the magnitude of the voltage across Vn of the unit cell C n is divided into "no discharge" (step S9 ).
  • step S14 the MCU 4 sends an on / off signal of the switch Q for discharging the unit cells C 1 to C 60 classified into “discharge long”, “discharge normal” and “discharge short” other than “no discharge”. Transmit to the equalization blocks 31-36.
  • the control unit 53 of each of the equalization blocks 31 to 36 receives an on / off signal addressed to itself, the control unit 53 turns on / off the switch Q in accordance with the on / off signal.
  • both ends of the unit cells C 1 to C 60 divided into “discharge long”, “discharge normal” and “discharge short” are connected to the discharge resistor Rd and discharged.
  • the MCU 4 waits for the first discharge time to elapse (step S15), and transmits an ON / OFF signal for stopping the discharge of the unit cells classified as “discharge short” to each of the equalization blocks 31 to 36 ( Step S16).
  • the control unit 53 of each of the equalization blocks 31 to 36 receives an on / off signal addressed to itself, the control unit 53 turns on / off the switch Q according to the on / off signal.
  • both ends of the unit cells C 1 to C 60 classified as “discharge short-circuit” are disconnected from the discharge resistor Rd, and the discharge is stopped.
  • step S17 Thereafter, if there is no unit battery C 1 to C 60 classified into “discharge normal” and “discharge long” (N in step S17), the MCU 4 immediately proceeds to step S23 and ends the unit batteries C 1 to C 60 . After waiting for a voltage stabilization time for the voltage to stabilize, the process returns to step S2. On the other hand, if there are unit cells C 1 to C 60 classified as “discharge normal” and “discharge long” (Y in step S17), the MCU 4 waits for the second discharge time to elapse (step S18), An on / off signal for stopping the discharge of the unit cells C 1 to C 60 classified as “discharge normal” is transmitted to the equalization blocks 31 to 36 (step S19).
  • control unit 53 of each of the equalization blocks 31 to 36 receives an on / off signal addressed to itself, the control unit 53 turns on / off the switch Q in accordance with the on / off signal. As a result, both ends of the unit cells C 1 to C 60 classified as “discharge normal” are disconnected from the discharge resistor Rd, and the discharge is stopped.
  • step S20 Thereafter, if there are no unit batteries C 1 to C 60 classified as “discharge long” (N in step S20), the MCU 4 immediately proceeds to step S23 and then returns to step S2. On the other hand, if there are unit cells C 1 to C 60 classified as “discharge long” (Y in step S20), the MCU 4 waits for the third discharge time to elapse (step S21) and changes to “discharge long”. After an on / off signal for stopping the discharge of the divided unit cells is transmitted to each of the equalization blocks 31 to 36 (step S22), the process proceeds to step S23.
  • control unit 53 of each of the equalization blocks 31 to 36 receives an on / off signal addressed to itself, the control unit 53 turns on / off the switch Q in accordance with the on / off signal. As a result, both ends of the unit cells C 1 to C 60 classified as “discharge long” are disconnected from the discharge resistor Rd, and the discharge is stopped.
  • the MCU 4 does not discharge the unit cell of the section “no discharge” closest to the reference voltage, and the unit cell of the other section discharges longer as the section farther from the reference voltage. Controls on / off.
  • the discharge will be described with reference to FIGS. 3A to 3C.
  • the discharge time increases and the discharge amount increases in the order of the unit batteries C 5 categorized as “discharge long”. Therefore, the unit cells C 1 to C 60 can be discharged in a stepwise discharge time for each section corresponding to the both-end voltages, and can be quickly and accurately equalized with a simple configuration.
  • a plurality of threshold values are set, and the discharge time is divided into how many patterns (three patterns in the first embodiment).
  • the RAM area used by the monitoring IC 5 can be reduced.
  • the monitoring IC 5 enters a sleep state, and thereafter the monitoring IC 5 is woken up every time the switch Q is switched on and off to perform the next discharge. Therefore, when the discharge time is calculated and set for each of the unit cells C 1 to C 60 , the monitoring IC 5 needs to wake up for the number of unit cells that need to be discharged. By dividing it, it is possible to reduce the number of times that the monitoring IC 5 wakes up and to reduce current consumption.
  • the MCU 4 executes steps S1 to S13 in the same manner as in the first embodiment, when it is determined that equalization is necessary, or according to a trigger such as turning on or off the ignition switch.
  • steps S10 to S12 the MCU 4 classifies the voltage across the unit battery Cn into “no discharge”, “discharge short”, “discharge normal”, and “discharge long”, and other than “no discharge”.
  • the MCU 4 transmits to the equalization blocks 31 to 36 an on / off signal of the switch Q that discharges the unit cells C 1 to C 60 classified as m ⁇ a (step S25).
  • the control unit 53 of each of the equalization blocks 31 to 36 receives an on / off signal addressed to itself, the control unit 53 turns on / off the switch Q in accordance with the on / off signal.
  • both ends of the unit cells C 1 to C 60 divided into m ⁇ a are connected to the discharge resistor Rd and discharged.
  • the MCU 4 intermittently repeats the discharge for a fixed time period in which all the unit cells C 1 to C 60 other than the section “no discharge” closest to the reference voltage among the sections are discharged for the discharge time. Discharging is stopped for a certain time in order from the unit cells C 1 to C 60 of the section close to the voltage.
  • the “discharge long” unit cells C 1 to C 60 are discharged three times for a fixed time, and the “discharge normal” unit cells C 1 to C 60 are discharged twice for a fixed time.
  • the “discharge short” unit cells C 1 to C 60 are discharged once for a fixed time.
  • This second embodiment can also obtain the same effects as the first embodiment.
  • the number of unit batteries C 1 to C 60 constituting the assembled battery BH is 60, but the present invention is not limited to this.
  • the number of unit cells C 1 to C 60 is not limited to 60 as long as it is plural.
  • the voltage across the unit batteries C 1 to C 60 is divided into four types of “no discharge”, “discharge long”, “discharge normal”, and “discharge short”.
  • the present invention is not limited to this.
  • the voltage across the unit batteries C 1 to C 60 may be divided into three or more.
  • the threshold value and the number of sections with respect to the reference voltage are constant regardless of variations in the unit cells C 1 to C 60 , but the present invention is not limited to this.
  • the threshold value set with respect to the reference voltage is compared with the voltage across the unit battery, and equalization is performed.
  • the present invention is not limited to this. For example, a voltage difference between the reference voltage and the voltage across the unit battery may be obtained, and it may be determined whether the voltage difference is below a threshold value.
  • An equalization device (1) for equalizing voltages across a plurality of unit cells (C 1 to C 60 ) connected in series with each other, A voltage detector (A / D converter 52) for detecting a voltage across each of the unit batteries; A plurality of discharge resistors (Rd) provided for each unit cell and for discharging the unit cell; A plurality of switches (Q) for connecting the unit cells to the discharge resistors; An equalization unit (MCU4) for controlling the switch to equalize the unit cells; With The equalizing unit is Each unit battery according to the difference between the reference voltage and the both-ends voltage of the unit battery detected by the voltage detection unit, using the smallest end-to-end voltage detected by the voltage detection unit as a reference voltage.
  • a section (MCU4) that divides the magnitude of the voltage at both ends into three or more
  • a switch control unit (MCU4) that controls on / off of the switch so that the unit battery in the section closest to the reference voltage does not discharge, and the unit battery in the other section discharges longer as the section is farther from the reference voltage.
  • an equalizing device (M)
  • the switch control unit starts discharging all unit batteries other than the section closest to the reference voltage among the sections, and stops discharging sequentially from the unit cells in the section closest to the reference voltage.
  • the equalizing apparatus according to [1], which controls on / off of the switch.
  • the switch control unit intermittently repeats a fixed time discharge for discharging for a fixed time all the unit cells other than the section closest to the reference voltage among the sections, and the unit of the section close to the reference voltage
  • the unit cells can be discharged in a stepwise discharge time for each section corresponding to the voltage across the terminals, and can be quickly and accurately equalized with a simple configuration.
  • the present invention that exhibits this effect is useful in the field of an equalizing device that equalizes the voltages across a plurality of unit cells connected in series with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 MCU(4)は、各単位電池(C1~C5)の両端電圧の大きさを「放電ロング」、「放電ノーマル」、「放電ショート」、「放電なし」に区分し、最も基準電圧に近い区分「放電なし」の単位電池(C4)は放電せず、他の区分の単位電池(C1~C3、C5)は基準電圧から遠い区分ほど長く放電するようにスイッチのオンオフを制御する。

Description

均等化装置
 本発明は、均等化装置に係り、特に、互いに直列接続された複数の単位電池の両端電圧を均等化する均等化装置に関するものである。
 例えば、ハイブリッド自動車や電気自動車に搭載される組電池は、互いに直列接続された複数の単位電池から構成され、その両端に例えば200V等の高電圧が発生し、発生した電力を駆動用モータに供給する。このような組電池は、単位電池の両端電圧にバラツキが生じると、利用効率が低下したり、過充電となる虞がある。そこで、放電抵抗を用いて各単位電池の両端電圧が最小値に近づくように放電することにより均等化する均等化装置が提案されている(例えば特許文献1)。
 上記従来の放電抵抗を用いた均等化について図6(A)及び図6(B)を参照して説明する。均等化装置は、イグニッションオフなどをトリガとして、各単位電池C1~C5の両端電圧を検出し、検出した単位電池C1~C5の両端電圧のうち最小値を基準電圧に設定し、それよりも少し大きい電圧を目標電圧(閾値1)に、目標電圧よりもさらに大きい電圧を閾値2として設定する。次に、均等化装置は、単位電池C1~C5の中に閾値1よりも大きい両端電圧のものがあると、均等化を開始し、両端電圧が目標電圧を超えている単位電池C1、C2、C3、C5を規定時間だけ放電する。これを全ての単位電池C1~C5の両端電圧が目標電圧以下になるまで繰り返し行う。均等化終了後は、単位電池C1~C5の中に閾値2よりも大きい両端電圧のものがあると、均等化を開始し、両端電圧が目標電圧を超えている単位電池C1、C2、C3、C5を規定時間だけ放電する。
日本国特開2010-263733号公報
 しかしながら、従来の均等化では、目標電圧を越えた全ての単位電池C1、C2、C3、C5の放電時間が規定時間で一定であるため、図6(B)の斜線で示すように放電量が全て一定となってしまう。このため、規定時間が長く設定されていると、もともと目標電圧に近い単位電池に関しては放電されすぎてしまい、容量を無駄にしてしまう可能性があった。図6(B)に示す例では、単位電池C2及びC3については、放電しすぎてしまい、基準電圧よりも小さくなってしまっている。さらに、放電しすぎることで単位電池C1~C5のバラツキを拡大させてしまう虞もあった。一方、上記の事態が発生しないようにするため、規定時間を短く設定すると、その分両端電圧を調整するのに時間がかかってしまう。
 そこで、本発明は、上記事情に鑑みてなされたものであって、その目的は、簡単な構成で迅速に精度良く均等化することができる均等化装置を提供することにある。
課題を解決するための部
 上述した課題を解決するために、本発明の第1態様に係る電圧検出装置として、互いに直列接続された複数の単位電池の両端電圧を均等化する均等化装置であって、前記単位電池それぞれの両端電圧を検出する電圧検出部と、前記単位電池毎に設けられ、前記単位電池を放電するための複数の放電抵抗と、前記単位電池を前記放電抵抗に接続する複数のスイッチと、前記スイッチを制御して前記単位電池の均等化を行う均等化部と、を備え、前記均等化部が、前記電圧検出部により検出された両端電圧のうち最も小さい両端電圧を基準電圧とし、前記基準電圧と、前記電圧検出部により検出された前記単位電池の両端電圧と、の差に応じて各単位電池の両端電圧の大きさを3以上に区分する区分部と、最も前記基準電圧に近い区分の前記単位電池は放電せず、他の区分の前記単位電池は、前記基準電圧から遠い区分ほど長く放電するように前記スイッチのオンオフを制御するスイッチ制御部と、を有するものが提供される。
 また、本発明の第2態様に係る電圧検出装置として、前記第1態様に係る電圧検出装置の前記スイッチ制御部が、前記区分のうち最も前記基準電圧に近い区分以外の全ての単位電池の放電を開始し、前記基準電圧に近い区分の前記単位電池から順に放電を停止するように前記スイッチのオンオフを制御するものが提供される。
 また、本発明の第3態様に係る電圧検出装置として、前記第1態様に係る電圧検出装置の前記スイッチ制御部が、前記区分のうち最も前記基準電圧に近い区分以外の全ての単位電池を一定時間だけ放電する一定時間放電を間欠的に繰り返し、前記基準電圧の近い区分の前記単位電池から順に前記一定時間放電を停止するように前記スイッチのオンオフを制御するものが提供される。
 本発明によれば、両端電圧に応じた区分毎に段階的な放電時間で単位電池を放電することができ、簡単な構成で迅速に精度良く均等化することができる。
図1は、本発明の均等化装置の一実施形態を示すブロック図である。 図2は、図1に示す均等化装置を構成する均等化ブロックの詳細を示す回路図である。 図3(A)から図3(C)は、図1に示す均等化装置の動作を説明するための説明図である。 図4は、第1実施形態における図1に示す均等化装置を構成するMCUの均等化制御処理手順を示すフローチャートである。 図5は、第2実施形態における図1に示す均等化装置を構成するMCUの均等化制御処理手順を示すフローチャートである。 図6(A)は単位電圧B1~B5の両端電圧の一例を示すグラフであり、図6(B)は、図6(A)に示す両端電圧を有する単位電圧B1~B5を規定時間だけ放電した後の両端電圧を示すグラフである。
[第1実施形態]
 以下、本発明の均等化装置の一実施形態について図1から図4を参照しながら説明する。図1に示すように、均等化装置1は、組電池BHを構成する互いに直列接続された複数の単位電池C1~C60の両端電圧を均等化する装置である。上記単位電池C1~C60各々は、本実施形態では1つの二次電池から構成されているが、複数の二次電池から構成されていてもよい。
 上記組電池BHは、例えば、エンジンと電動モータ(何れも図示せず)を走行駆動源として併用するハイブリッド電気自動車において前記電動モータの電源として用いられる。組電池BHは、その両端には、上記電動モータが必要に応じて負荷として接続されると共に、オルタネータ等(図示せず)が必要に応じて充電器として接続される。また、上記単位電池C1~C60は、例えば6個のブロックB1~B6に分けられている。すなわち、組電池BHは、6個のブロックB1~B6を備える。各ブロックB1~B6は各々、例えば10個の単位電池で構成されている。
 上記均等化装置1は、各単位電池C1~C60を均等化する複数の均等化ブロック31~36と、装置全体の制御を司り、均等化ブロック31~36の制御を行う均等化部としてのMCU4と、を備えている。均等化ブロック31~36は、ブロックB1~B6毎に対応して設けられ、対応するブロックB1~B6から電源供給を受けて動作する。また、均等化ブロック31~36は、対応するブロックB1~B6を構成する単位電池C1~C60の両端電圧を各々検出して、MCU4に送信すると共に、MCU4からの命令に従って対応するブロックB1~B6を構成する単位電池C1~C60を放電して均等化を実行する。MCU4は、マイクロコンピュータから構成され、組電池BHとは別の図示しない低圧バッテリからの電源供給を受けて動作する。
 次に、図2を参照して均等化ブロック36の詳細について説明する。なお、均等化ブロック31~36は、互いに同等の構成であるため、ここでは均等化ブロック36の詳細について説明し、均等化ブロック31~35の詳細は省略する。均等化ブロック36は、監視IC5と、各単位電池C1~C10の+側-監視IC5間に設けられた複数のローパスフィルタ(以下「LPF」と略記する)6と、単位電池C1~C10毎に設けられた複数の放電抵抗Rdと、各単位電池C1~C10間に放電抵抗Rdと直列に接続された複数のスイッチQと、を備えている。
 監視IC5については後述する。LPF6は各々、図2に示すように、抵抗R1及びコンデンサCから成る所謂CRフィルタである。上記抵抗R1は、単位電池C1~C10の+側と監視IC5との間に接続されている。コンデンサCは、抵抗R1及び監視IC5の接続点と、対応するブロックB6の負極と、の間に接続されている。このLPF6は、単位電池C1~C10と監視IC5との間に設けられ、単位電池C1~C10の+側電位から高周波成分をカットして監視IC5に供給する。
 各放電抵抗Rdは、その一端が単位電池C1~C10それぞれの+側に接続されている。スイッチQは、例えばNチャンネルの電界効果トランジスタから構成され、ドレインが放電抵抗Rdの他端に接続され、ソースが単位電池C1~C10の-側に接続されている。これにより、スイッチQがオンすると、単位電池C1~C10の両端に放電抵抗Rdが接続され、単位電池C1~C10が放電される。一方、スイッチQをオフにすると、単位電池C1~C10と放電抵抗Rdとの接続が切り離され、単位電池C1~C10の放電が停止する。また、スイッチQのゲート-ソース間には、抵抗R2が接続され、スイッチQのゲートは、抵抗R3を介して監視IC5に接続され、監視IC5によりそのオンオフが制御される。
 次に、上記監視IC5の詳細について説明する。監視IC5は、単位電池C1~C10の両端に接続され、単位電池C1~C10の両端の1つを選択して後述するA/D変換器52の入力に接続するマルチプレクサ51と、入力されたアナログの電圧をデジタルに変換して、コントロール部53に出力する電圧検出部としてのA/D変換器52と、監視IC5全体の制御を司るコントロール部53と、を備えている。
 各均等化ブロック31~36のコントロール部53は、図1に示すように、互いに直列に接続され、最低電位の均等化ブロック36のコントロール部53のみが絶縁I/F7を介してMCU4と直接通信をすることができる。最低電位以外の均等化ブロック32~35のコントロール部53は、自身よりも低電位側のコントロール部53を介してMCU4と通信を行う。コントロール部53は、MCU4から自身宛の電圧検出命令を受け取ると、マルチプレクサ51を制御して、単位電池C1~C10の+側を順次A/D変換器52に入力する。
 A/D変換器52は、単位電池C1~C10の+側電位を順次A/D変換して、コントロール部53に供給する。コントロール部53は、A/D変換器52からの単位電池C1~C10の+側電位のデジタル値を検出電圧としてMCU4宛に送信する。このとき、均等化ブロック36のコントロール部53は、MCU4と直接通信できるため、MCU4に直接送信する。均等化ブロック31~35のコントロール部53は、この検出電圧を自身よりも低電位側の均等化ブロック32~36のコントロール部53を介してMCU4に送信する。上記コントロール部53は、各スイッチQのゲートに接続されており、MCU4から送信されるオンオフ信号に従って各スイッチQのオンオフを制御する。
 次に、上記構成の均等化装置1の動作について図3(A)から図3(C)を参照して説明する。なお、説明を簡単にするために、組電池BHを構成する単位電池C1~C5が5つの場合について説明する。まず、MCU4は、MCU4よりも命令系統上上位に位置する上位システム(図示しない)から電圧検出命令が出力されると、単位電池C1~C5の両端電圧を検出する。その後、MCU4は、図3(A)に示すように、組電池BHを構成する全単位電池C1~C5のうち最も両端電圧が低い単位電池C4の両端電圧を基準電圧に設定し、基準電圧と、単位電池C1~C5の両端電圧と、の差に応じて各単位電池C1~C5の両端電圧の大きさを「放電なし」、「放電ショート」、「放電ノーマル」、「放電ロング」の4つに区分する。
 具体的には、上記区分は、基準電圧に対して設定された複数の閾値1~3との比較により行う。即ち、MCU4は、基準電圧よりも少し大きい電圧を閾値1(目標電圧)として設定し、閾値1よりもさらに大きい電圧を閾値2として設定し、閾値2よりもさらに大きい電圧を閾値3として設定する。
 MCU4は、単位電池C1~C5のうち閾値1(目標電圧)よりも高いものが1つでもあれば、均等化を行う必要があると判断する。次に、MCU4は、複数の閾値1~3と単位電池C1~C5の両端電圧とを比較して、各単位電池C1~C5の両端電圧の大きさを区分する。本実施形態では、両端電圧<閾値1の単位電池は「放電なし」に、閾値2>両端電圧≧閾値1の単位電池は「放電ショート」に、閾値3>両端電圧≧閾値2の単位電池は「放電ノーマル」に、両端電圧>閾値3の単位電池は「放電ロング」に区分される。図3(A)に示す例では、単位電池C5が「放電ロング」に区分され、単位電池C1、C3が「放電ノーマル」に区分され、単位電池C2が「放電ショート」に区分され、単位電池C4が「放電なし」に区分される。
 次に、MCU4は、区分のうち最も基準電圧に近い区分「放電なし」以外の全ての単位電池C1~C3、C5の放電を開始し、次に基準電圧に近い区分「放電ショート」の単位電池C2の放電を停止し、次に基準電圧に近い区分「放電ノーマル」の単位電池C1、C3の放電を停止し、最後に最も基準電圧から遠い区分「放電ロング」の単位電池C5の放電を停止させる。図3(B)及び図3(C)では、「放電ロング」の放電量を平行な斜め線によるハッチングによって、「放電ノーマル」の放電量を斜め線が交差するハッチングによって、「放電ショート」の放電量を黒で塗りつぶしたハッチングによって、それぞれ描いている。これにより、図3(B)に示すように、「放電ロング」、「放電ノーマル」、「放電ショート」の順に放電量を小さくすることができる。これを単位電池C1~C5の両端電圧が全て閾値1(目標電圧)以下になるまで繰り返し行う。
 図3(B)に示す例では、1回目の放電を実行した後も、図3(B)に示すように、単位電池C1、C5が閾値1(目標電圧)より大きいため、MCU4は、再び単位電池C1~C5の両端電圧を検出して区分する。図3(B)に示す例では、単位電池C1、C5が「放電ショート」に区分され、単位電池C2~C4が「放電なし」に区分される。次に、MCU4は、区分「放電なし」以外の全ての単位電池C1、C5の放電を開始し、まず両端電圧の区分が小さい「放電ショート」の単位電池C1、C5の放電を停止する。この場合、「放電ノーマル」、「放電ロング」に区分されている単位電池がないため、ここで全単位電池C1~C5の放電が終了する。図3(A)から図3(C)に示す例では、2回目の放電をした後は、図3(C)に示すように、全ての単位電池C1~C5の両端電圧が閾値1(目標電圧)以下となり、「放電なし」に区分されるため、ここで均等化を終了する。なお、均等化終了後、MCU4は、規定の時間おきに単位電池C1~C5の両端電圧を検出し、閾値2以上のバラツキが発生したら均等化を再開始する。
 次に、上記概略で説明した均等化装置1の動作について図4を参照して説明する。MCU4は、自ら均等化が必要と判断した場合や、イグニッションスイッチのオン又はオフなどのトリガに応じて図示しない上位システムから均等化命令が出力されると均等化制御処理を開始する。まず、MCU4は、単位電池C1~C60の両端電圧が安定する電圧安定時間経過するのを待つ(ステップS1)。
 その後、MCU4は、各均等化ブロック31~36のコントロール部53宛に順次、電圧検出命令を出力して、単位電池C1~C60の両端電圧を検出する(ステップS2)。各均等化ブロック31~36のコントロール部53は、電圧検出命令を受信すると、宛先が自身宛か否かを判定する。自身宛でない電圧検出命令を受信すると、高電位側に隣接する均等化ブロック31~35のコントロール部53にその電圧検出命令を転送する。一方、自身宛の電圧検出命令を受信すると、マルチプレクサ51を制御して単位電池C1~C60の+側電位を順次A/D変換器52の入力に接続する。これにより、A/D変換器52は、単位電池C1~C60の+側電位を順次A/D変換し、これをコントロール部53が検出電圧として順次MCU4宛に送信する。
 均等化ブロック36のコントロール部53から送信された検出電圧は、直接MCU4に送信される。均等化ブロック31~35のコントロール部53から送信された検出電圧は、自身よりも低電位側の均等化ブロック32~36のコントロール部53を経由してMCU4に送信される。これにより、単位電池C1~C60の+側電位が順次MCU4に送信され、これを受け取ったMCU4が単位電池C1~C60の両端電圧を算出する。
 次に、MCU4は、閾値設定部として働き、検出された単位電池C1~C60の両端電圧のうち最も小さい両端電圧を基準電圧とし、当該基準電圧に対して段階的に大きい複数の閾値1~3を設定する(ステップS3)。
 その後、MCU4は、全単位電池C1~C60の両端電圧のうち閾値1(目標電圧)以上のものがあるか否かを判定する(ステップS4)。閾値1(目標電圧)以上のものが1つもなかった場合(ステップS4で「偽」の場合。以下「偽」の場合を「N」と記載する。)、MCU4は、均等化する必要がないと判断して、所定時間経過するのを待って(ステップS24)、再びステップS2に戻る。
 一方、閾値1以上のものが1つでもあった場合(ステップS4で「真」の場合。以下「真」の場合は「Y」と記載する。)、MCU4は、ステップS5~S13に進み、区分部として働き、複数の閾値1~3と単位電池C1~C60の両端電圧とを比較し、各単位電池C1~C60の大きさを「放電なし」、「放電ショート」、「放電ノーマル」、「放電ロング」の4つに区分する。詳しく説明すると、MCU4はまず、n←n+1を設定する(ステップS5)。初期設定ではn=0に設定されているため、均等化制御処理を開始してから最初のステップS5でn=1が設定される。次に、MCU4は、単位電池Cnの両端電圧Vnが閾値3以上であれば(ステップS6でY)、単位電池Cnの両端電圧Vnの大きさを「放電ロング」に区分する(ステップS12)。
 また、MCU4は、単位電池Cnの両端電圧Vnが閾値3より下回り、かつ、閾値2以上であれば(ステップS7でY)、単位電池Cnの両端電圧Vnの大きさを「放電ノーマル」に区分する(ステップS11)。また、MCU4は、単位電池Cnの両端電圧Vnが閾値2より下回り、かつ、閾値1以上であれば(ステップS8でY)、単位電池Cnの両端電圧Vnの大きさを「放電ショート」に区分する(ステップS10)。また、MCU4は、単位電池Cnの両端電圧Vnが閾値1より下回っていれば(ステップS8でN)、単位電池Cnの両端電圧Vnの大きさを「放電なし」に区分する(ステップS9)。
 ステップS9~S12で両端電圧Vnが区分された後、MCU4は、n≧60(60=セル数)であるか否かを判断する(ステップS13)。n≧60でなければ(ステップS13でN)、MCU4は、再びステップS5に戻る。n≧60であれば(ステップS13でY)、MCU4は、全単位電池C1~C60の両端電圧V1~V60を区分できたと判断してn=0にリセットしてステップS14に進む。以降、MCU4は、スイッチ制御部として働く。
 ステップS14において、MCU4は、「放電なし」以外の「放電ロング」、「放電ノーマル」及び「放電ショート」に区分された単位電池C1~C60を放電するようなスイッチQのオンオフ信号を各均等化ブロック31~36宛に送信する。各均等化ブロック31~36のコントロール部53は、自身宛のオンオフ信号を受信すると、そのオンオフ信号に従ってスイッチQのオンオフを行う。これにより、「放電ロング」、「放電ノーマル」及び「放電ショート」に区分された単位電池C1~C60の両端が放電抵抗Rdに接続され、放電される。
 その後、MCU4は、第1放電時間経過するのを待って(ステップS15)、「放電ショート」に区分された単位電池の放電を停止させるオンオフ信号を各均等化ブロック31~36宛に送信する(ステップS16)。各均等化ブロック31~36のコントロール部53は、自身宛のオンオフ信号を受信すると、そのオンオフ信号に従ってスイッチQのオンオフを行う。これにより、「放電ショート」に区分された単位電池C1~C60の両端が放電抵抗Rdから切り離され、放電が停止される。
 その後、MCU4は、「放電ノーマル」及び「放電ロング」に区分された単位電池C1~C60がなければ(ステップS17でN)、直ちにステップS23に進んで単位電池C1~C60の両端電圧が安定する電圧安定時間待った後、ステップS2に戻る。一方、「放電ノーマル」及び「放電ロング」に区分された単位電池C1~C60があれば(ステップS17でY)、MCU4は、第2放電時間経過するのを待って(ステップS18)、「放電ノーマル」に区分された単位電池C1~C60の放電を停止させるオンオフ信号を各均等化ブロック31~36宛に送信する(ステップS19)。各均等化ブロック31~36のコントロール部53は、自身宛のオンオフ信号を受信すると、そのオンオフ信号に従ってスイッチQのオンオフを行う。これにより、「放電ノーマル」に区分された単位電池C1~C60の両端が放電抵抗Rdから切り離され、放電が停止される。
 その後、MCU4は、「放電ロング」に区分された単位電池C1~C60がなければ(ステップS20でN)、直ちにステップS23に進んだ後、ステップS2に戻る。一方、「放電ロング」に区分された単位電池C1~C60があれば(ステップS20でY)、MCU4は、第3放電時間経過するのを待って(ステップS21)、「放電ロング」に区分された単位電池の放電を停止させるオンオフ信号を各均等化ブロック31~36宛に送信した後(ステップS22)、ステップS23に進む。各均等化ブロック31~36のコントロール部53は、自身宛のオンオフ信号を受信すると、そのオンオフ信号に従ってスイッチQのオンオフを行う。これにより、「放電ロング」に区分された単位電池C1~C60の両端が放電抵抗Rdから切り離され、放電が停止される。
 上述した実施形態によれば、MCU4は、最も基準電圧に近い区分「放電なし」の単位電池は放電せず、他の区分の単位電池は、基準電圧から遠い区分ほど長く放電するようにスイッチQのオンオフを制御する。この放電について図3(A)から図3(C)を参照して説明すると、「放電ショート」に区分された単位電池C2、「放電ノーマル」に区分された単位電池C1、C3、「放電ロング」に区分された単位電池C5、の順に放電時間が長くなり、放電量が大きくなる。よって、両端電圧に応じた区分毎に段階的な放電時間で単位電池C1~C60を放電することができ、簡単な構成で迅速に精度良く均等化することができる。
 即ち、複数の閾値を設定し、複数の放電時間を設定可能とすることで、細かな電圧調整が可能となり、高精度に単位電池C1~C60の両端電圧を調整することができる。また、単位電池C1~C60の放電時間を短く設定することができるため、少しの放電のみでよい単位電池C1~C60に対して、無駄に放電してしまうことがなくなり、効率よく単位電池C1~C60の均等化を実施することが可能となる。
 また、個別の単位電池C1~C60に対して放電時間を演算して設定するよりも、複数の閾値を設定し、放電時間を何パターン(第1実施形態では3パターン)かに分けて放電することにより、監視IC5で使用するRAMの領域を縮小することが可能となる。さらには、放電中、監視IC5はスリープ状態に入り、その後、スイッチQのオンオフを切り替えて次の放電を実施する毎に監視IC5をウエイクアップさせている。このため、個別の単位電池C1~C60に対して放電時間を演算して設定した場合、放電が必要な単位電池の数分監視IC5がウエイクアップする必要があるが、放電時間を何パターンかに分けることにより、監視IC5がウエイクアップする回数を削減することができ、消費電流を削減することが可能となる。
[第2実施形態]
 次に、第2実施形態の均等化装置1について説明する。第2実施形態の均等化装置1の構成は、第1実施形態で既に説明した図1に示す構成と同等であるため、ここでは詳細な説明を省略する。次に、第2実施形態の均等化装置1の動作について図5を参照して説明する。なお、上述した図4について説明した第1実施形態での動作と同等のステップについては、同一符号を付してその詳細な説明を省略する。
 まず、MCU4は、自ら均等化が必要と判断した場合や、イグニッションスイッチのオン又はオフなどのトリガに応じて第1実施形態と同様にステップS1~S13まで実行する。なお、ステップS10~S12において、MCU4は、単位電池Cnの両端電圧の大きさをそれぞれ「放電なし」、「放電ショート」、「放電ノーマル」、「放電ロング」に区分すると共に「放電なし」以外の区分に番号mを付ける。例えば、「放電ショート」にはm=1、「放電ノーマル」にはm=2、「放電ロング」にはm=3の番号を付ける。
 その後、MCU4は、a←a+1を設定する(ステップS24)。初期設定ではa=0に設定されているため、均等化制御処理を開始してから最初のステップS24でa=1が設定される。次に、MCU4は、m≧aに区分された単位電池C1~C60を放電するようなスイッチQのオンオフ信号を各均等化ブロック31~36宛に送信する(ステップS25)。各均等化ブロック31~36のコントロール部53は、自身宛のオンオフ信号を受信すると、そのオンオフ信号に従ってスイッチQのオンオフを行う。これにより、m≧aに区分された単位電池C1~C60の両端が放電抵抗Rdに接続され、放電される。従って、a=1が設定されたときは、「放電ショート」、「放電ノーマル」、「放電ロング」の3つの区分の単位電池C1~C60が放電され、a=2が設定されたときは、「放電ノーマル」、「放電ロング」の2つの区分の単位電池C1~C60が放電され、a=3が設定されたときは、「放電ロング」の単位電池C1~C60が放電される。
 その後、MCU4は、放電時間(一定時間)が経過するのを待って(ステップS26)、全単位電池C1~C60の放電を停止させるオンオフ信号を各均等化ブロック31~36宛に送信する(ステップS27)。その後、MCU4は、放電ロングか放電ノーマルに区分された単位電池C1~C60があれば(ステップS28でY又はステップS29でY)、a=3であるか否かを判断する(ステップS30)。a=3でなければ(ステップS30でN)、MCU4は、再びステップS24に戻る。a=3であれば(ステップS30でY)、MCU4は、「放電ロング」まで放電できたと判断して、a=0にリセットしてステップS23に進む。
 このステップS24~S30により、MCU4は、区分のうち最も基準電圧に近い区分「放電なし」以外の全ての単位電池C1~C60を放電時間だけ放電させる一定時間放電を間欠的に繰り返し、基準電圧に近い区分の単位電池C1~C60から順に一定時間放電を停止させる。即ち、本実施形態では、「放電ロング」の単位電池C1~C60については一定時間放電が3回繰り返され、「放電ノーマル」の単位電池C1~C60については一定時間放電が2回繰り返され、「放電ショート」の単位電池C1~C60については一定時間放電が1回行われるようになる。この第2実施形態も第1実施形態と同様の効果を得ることができる。
 なお、上述した実施形態によれば、組電池BHを構成する単位電池C1~C60の数は60個であったが本発明はこれに限ったものではない。単位電池C1~C60の数としては、複数あればよく60個に限定されるものではない。
 また、上述した実施形態によれば、単位電池C1~C60の両端電圧は、「放電なし」、「放電ロング」、「放電ノーマル」、「放電ショート」の4つに区分されていたが、本発明はこれに限ったものではない。単位電池C1~C60の両端電圧は、3つ以上に区分されていればよい。
 また、上述した実施形態によれば、基準電圧に対する閾値や区分数は単位電池C1~C60のバラツキに関係なく一定であったが、本発明はこれに限ったものではない。例えば、単位電池C1~C60のバラツキ(単位電池C1~C60の両端電圧の最大と最小の差)に応じて閾値や区分数を変更するようにしてもよい。
 また、上述した実施形態によれば、基準電圧に対して設定した閾値と単位電池の両端電圧とを比較して、均等化を行っていたが、本発明はこれに限ったものではない。例えば、基準電圧と単位電池の両端電圧との電圧差を求めて、この電圧差がどの程度かで閾値以下か否かを判定するようにしてもよい。
 また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。
 ここで、上述した本発明に係るコネクタの実施形態の特徴をそれぞれ以下[1]~[5]に簡潔に纏めて列記する。
[1] 互いに直列接続された複数の単位電池(C1~C60)の両端電圧を均等化する均等化装置(1)であって、
 前記単位電池それぞれの両端電圧を検出する電圧検出部(A/D変換器52)と、
 前記単位電池毎に設けられ、前記単位電池を放電するための複数の放電抵抗(Rd)と、
 前記単位電池を前記放電抵抗に接続する複数のスイッチ(Q)と、
 前記スイッチを制御して前記単位電池の均等化を行う均等化部(MCU4)と、
 を備え、
 前記均等化部が、
 前記電圧検出部により検出された両端電圧のうち最も小さい両端電圧を基準電圧とし、前記基準電圧と、前記電圧検出部により検出された前記単位電池の両端電圧と、の差に応じて各単位電池の両端電圧の大きさを3以上に区分する区分部(MCU4)と、
 最も前記基準電圧に近い区分の前記単位電池は放電せず、他の区分の前記単位電池は、前記基準電圧から遠い区分ほど長く放電するように前記スイッチのオンオフを制御するスイッチ制御部(MCU4)と、を有する
 均等化装置。
[2] 前記スイッチ制御部が、前記区分のうち最も前記基準電圧に近い区分以外の全ての単位電池の放電を開始し、前記基準電圧に近い区分の前記単位電池から順に放電を停止するように前記スイッチのオンオフを制御する
 [1]に記載の均等化装置。
[3] 前記スイッチ制御部が、前記区分のうち最も前記基準電圧に近い区分以外の全ての単位電池を一定時間だけ放電する一定時間放電を間欠的に繰り返し、前記基準電圧の近い区分の前記単位電池から順に前記一定時間放電を停止するように前記スイッチのオンオフを制御する
 [1]に記載の均等化装置。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年10月18日出願の日本特許出願(特願2012-230605)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の均等化装置によれば、両端電圧に応じた区分毎に段階的な放電時間で単位電池を放電することができ、簡単な構成で迅速に精度良く均等化することができる。この効果を奏する本発明は、互いに直列接続された複数の単位電池の両端電圧を均等化する均等化装置の分野において有用である。
 1 均等化装置
 4 MCU(均等化部、区分部、スイッチ制御部)
 52 A/D変換器(電圧検出部)
 C1~C60 単位電池
 Q スイッチ
 Rd 放電抵抗

Claims (3)

  1.  互いに直列接続された複数の単位電池の両端電圧を均等化する均等化装置であって、
     前記単位電池それぞれの両端電圧を検出する電圧検出部と、
     前記単位電池毎に設けられ、前記単位電池を放電するための複数の放電抵抗と、
     前記単位電池を前記放電抵抗に接続する複数のスイッチと、
     前記スイッチを制御して前記単位電池の均等化を行う均等化部と、
     を備え、
     前記均等化部が、
     前記電圧検出部により検出された両端電圧のうち最も小さい両端電圧を基準電圧とし、前記基準電圧と、前記電圧検出部により検出された前記単位電池の両端電圧と、の差に応じて各単位電池の両端電圧の大きさを3以上に区分する区分部と、
     最も前記基準電圧に近い区分の前記単位電池は放電せず、他の区分の前記単位電池は、前記基準電圧から遠い区分ほど長く放電するように前記スイッチのオンオフを制御するスイッチ制御部と、を有する
     均等化装置。
  2.  前記スイッチ制御部が、前記区分のうち最も前記基準電圧に近い区分以外の全ての単位電池の放電を開始し、前記基準電圧に近い区分の前記単位電池から順に放電を停止するように前記スイッチのオンオフを制御する
     請求項1に記載の均等化装置。
  3.  前記スイッチ制御部が、前記区分のうち最も前記基準電圧に近い区分以外の全ての単位電池を一定時間だけ放電する一定時間放電を間欠的に繰り返し、前記基準電圧の近い区分の前記単位電池から順に前記一定時間放電を停止するように前記スイッチのオンオフを制御する
     請求項1に記載の均等化装置。
PCT/JP2013/076141 2012-10-18 2013-09-26 均等化装置 WO2014061421A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380054726.7A CN104769808A (zh) 2012-10-18 2013-09-26 均等化装置
US14/436,102 US20150295424A1 (en) 2012-10-18 2013-09-26 Equalization Device
DE112013005066.8T DE112013005066T5 (de) 2012-10-18 2013-09-26 Ausgleichsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012230605A JP6101039B2 (ja) 2012-10-18 2012-10-18 均等化装置
JP2012-230605 2012-10-18

Publications (1)

Publication Number Publication Date
WO2014061421A1 true WO2014061421A1 (ja) 2014-04-24

Family

ID=50487994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076141 WO2014061421A1 (ja) 2012-10-18 2013-09-26 均等化装置

Country Status (5)

Country Link
US (1) US20150295424A1 (ja)
JP (1) JP6101039B2 (ja)
CN (1) CN104769808A (ja)
DE (1) DE112013005066T5 (ja)
WO (1) WO2014061421A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537327B2 (en) * 2012-12-21 2017-01-03 Lite-On Electronics (Guangzhou) Co., Ltd. Battery cell balancing control system and battery management method thereof
JP6555753B2 (ja) * 2016-01-27 2019-08-07 Fdk株式会社 充電回路
US10097014B2 (en) * 2016-06-03 2018-10-09 Nidec Motor Corporation Battery charger monitor with charge balancing between batteries in a battery supply
DE102017202204A1 (de) * 2017-02-13 2018-08-16 Siemens Aktiengesellschaft Umrichteranordnung
US11594883B2 (en) * 2018-01-23 2023-02-28 Tdk Corporation Direct current power supplying system
CN108899952B (zh) 2018-07-25 2021-07-27 维沃移动通信有限公司 一种多电池充放电装置及移动终端
DE102020209395A1 (de) * 2020-07-24 2022-01-27 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Erfassung von elektrischen Fehlerzuständen in einem Wechselakkupack und System zur Durchführung des Verfahrens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244142A (ja) * 2006-03-10 2007-09-20 Hitachi Vehicle Energy Ltd 電池群制御装置及び電池電源システム
WO2009113530A1 (ja) * 2008-03-11 2009-09-17 三洋電機株式会社 充電状態均等化装置及びこれを具えた組電池システム
JP2011041452A (ja) * 2009-07-17 2011-02-24 Toshiba Corp 組電池装置及び車両
JP2011115015A (ja) * 2009-11-30 2011-06-09 Sanyo Electric Co Ltd 均等化装置、それを備えたバッテリシステムおよび電動車両ならびに均等化処理プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374351B2 (ja) * 2006-04-12 2009-12-02 矢崎総業株式会社 充電状態調整装置
JPWO2011118484A1 (ja) * 2010-03-24 2013-07-04 株式会社Gsユアサ 二次電池システム
JP6106991B2 (ja) * 2011-09-09 2017-04-05 株式会社Gsユアサ 状態管理装置、蓄電素子の均等化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244142A (ja) * 2006-03-10 2007-09-20 Hitachi Vehicle Energy Ltd 電池群制御装置及び電池電源システム
WO2009113530A1 (ja) * 2008-03-11 2009-09-17 三洋電機株式会社 充電状態均等化装置及びこれを具えた組電池システム
JP2011041452A (ja) * 2009-07-17 2011-02-24 Toshiba Corp 組電池装置及び車両
JP2011115015A (ja) * 2009-11-30 2011-06-09 Sanyo Electric Co Ltd 均等化装置、それを備えたバッテリシステムおよび電動車両ならびに均等化処理プログラム

Also Published As

Publication number Publication date
US20150295424A1 (en) 2015-10-15
CN104769808A (zh) 2015-07-08
JP6101039B2 (ja) 2017-03-22
DE112013005066T5 (de) 2015-07-02
JP2014082900A (ja) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2014061421A1 (ja) 均等化装置
US9444267B2 (en) Cell voltage equalizer for multi-cell battery pack which determines the waiting time between equalization operations based on the voltage difference and the state of charge level
KR102655397B1 (ko) 배터리 관리 장치 및 시스템
JP4186916B2 (ja) 組電池管理装置
US7414381B2 (en) Charging circuit for parallel charging in multiple battery systems
WO2014046166A1 (ja) 電圧検出装置及び均等化装置
KR20190110054A (ko) 지능형 배터리의 dc 충전
US20140079963A1 (en) Battery System Control Method
EP2367261A2 (en) Direct-current power source apparatus
US8878491B2 (en) Battery voltage monitoring apparatus
US7180266B2 (en) Capacity adjustment apparatus for battery pack and capacity adjustment method for battery pack
WO2012105448A1 (ja) バッテリモジュール、バッテリシステム、電源装置、及び移動体
US20130141034A1 (en) Charging management system and charger with the same
US20130057218A1 (en) Device and method for controlling charge of assembled battery
US9160177B2 (en) Semiconductor circuit, battery monitoring system, and control method
US20130099726A1 (en) System and Method for Charging of Battery
JP2008154317A (ja) 組電池制御方法、組電池制御回路、及びこれを備えた充電回路、電池パック
US20150077061A1 (en) Regulating device, battery assembly device and regulating method
CN102144346A (zh) 充电设备和充电控制方法
US20150048795A1 (en) Charge control apparatus and charge control method
US9236753B2 (en) Power source device and method of controlling assembled battery
EP2808973A1 (en) Battery cell voltage equalisation circuit
JP2008182809A (ja) 電池回路、電池パック、及び電池システム
JP2009017630A (ja) バッテリの容量制御方法
JP6853884B2 (ja) 電池監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847439

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14436102

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130050668

Country of ref document: DE

Ref document number: 112013005066

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847439

Country of ref document: EP

Kind code of ref document: A1