WO2014046131A1 - リチウムイオンキャパシタ - Google Patents

リチウムイオンキャパシタ Download PDF

Info

Publication number
WO2014046131A1
WO2014046131A1 PCT/JP2013/075159 JP2013075159W WO2014046131A1 WO 2014046131 A1 WO2014046131 A1 WO 2014046131A1 JP 2013075159 W JP2013075159 W JP 2013075159W WO 2014046131 A1 WO2014046131 A1 WO 2014046131A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
lithium ion
active material
negative electrode
electrode active
Prior art date
Application number
PCT/JP2013/075159
Other languages
English (en)
French (fr)
Inventor
宣宏 岡田
斉藤 修
健介 新村
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US14/429,519 priority Critical patent/US10236133B2/en
Priority to KR1020157006617A priority patent/KR101674843B1/ko
Priority to CN201380047862.3A priority patent/CN104620343B/zh
Priority to EP13839901.9A priority patent/EP2899730B1/en
Priority to JP2014536879A priority patent/JP6029675B2/ja
Publication of WO2014046131A1 publication Critical patent/WO2014046131A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/16Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against electric overloads, e.g. including fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a lithium ion capacitor having high capacity, high output, and high safety.
  • the first requirement is that the energy density of the power storage elements used is high.
  • development of lithium ion batteries has been energetically advanced.
  • the second requirement is high output characteristics.
  • a combination of a high-efficiency engine and a power storage system for example, a hybrid electric vehicle
  • a combination of a fuel cell and a power storage system for example, a fuel cell electric vehicle
  • an electric double layer capacitor using activated carbon as an electrode has been developed as a high-power storage element, has high durability (especially cycle characteristics and high-temperature storage characteristics), and has an output of about 0.5 to 1 kW / L. Has characteristics.
  • These electric double layer capacitors have been considered as the most suitable storage element in the field where the above high output is required, but the energy density is only about 1 to 5 Wh / L, and the output duration time is not practical. It is a footpad.
  • nickel metal hydride batteries currently used in hybrid electric vehicles achieve high output equivalent to electric double layer capacitors and have an energy density of about 160 Wh / L.
  • research is underway energetically to further increase the energy density and output, further improve the stability at high temperatures, and increase the durability.
  • lithium ion batteries have been developed that can obtain a high output exceeding 3 kW / L at a discharge depth (that is, a value representing what percentage of the device discharge capacity is discharged) 50%. , 100 Wh / L or less, and is designed to deliberately suppress the high energy density, which is the greatest feature of lithium ion batteries. Further, its durability (particularly cycle characteristics and high temperature storage characteristics) is inferior to that of an electric double layer capacitor. Therefore, in order to give practical durability, lithium ion batteries can be used only in a range where the depth of discharge is narrower than the range of 0 to 100%.
  • a polyolefin having a membrane resistance equal to or lower than that of a conventional polyolefin microporous membrane and having a high porosity also referred to as “high porosity”
  • high porosity also referred to as “high porosity”
  • a non-aqueous electrolyte secondary battery including a microporous membrane made of polyethylene or the like and a microporous membrane made of polyolefin has been proposed (refer to Patent Document 1 below).
  • a lithium ion capacitor is a type of energy storage device that uses a non-aqueous electrolyte containing an electrolyte containing lithium ions (that is, a non-aqueous lithium-type energy storage device), and in the positive electrode, an anion similar to an electric double layer capacitor is used. It is a storage element that charges and discharges by a non-Faraday reaction by adsorption / desorption of lithium and a Faraday reaction by occlusion / release of lithium ions in the negative electrode similar to a lithium ion battery.
  • an electric double layer capacitor that charges and discharges by a non-Faraday reaction in both the positive electrode and the negative electrode has excellent output characteristics but low energy density.
  • a lithium ion battery that is a secondary battery that charges and discharges by a Faraday reaction in both the positive electrode and the negative electrode is excellent in energy density but inferior in output characteristics.
  • a lithium ion capacitor is a new power storage element that aims to achieve both excellent output characteristics and high energy density by performing charge and discharge by a non-Faraday reaction at the positive electrode and a Faraday reaction at the negative electrode.
  • lithium ion capacitors include railways or construction machinery, and power storage for automobiles. In these applications, since the operating environment is harsh, it is necessary to have excellent temperature characteristics. Specifically, high input / output characteristics at low temperatures or high cycle life characteristics at high temperatures.
  • Examples of such a lithium ion capacitor include a positive electrode having a positive electrode active material layer and a positive electrode current collector, a negative electrode having a negative electrode active material layer and a negative electrode current collector, and a separator interposed between the positive electrode and the negative electrode.
  • a lithium ion capacitor comprising a non-aqueous electrolyte and an exterior body, wherein the positive electrode active material layer contains activated carbon, the negative electrode active material layer contains a carbon material capable of occluding lithium ions, and the separator has a film thickness.
  • the separator has a liquid resistance of 2.5 ⁇ cm 2 or less and not more than 15 ⁇ m and not more than 50 ⁇ m (hereinafter, see Patent Document 2).
  • the polyolefin microporous membrane used as a separator plugs the pores when the temperature of the microporous membrane reaches a high temperature due to a runaway electrochemical reaction in the battery. It is intended to have a function of suppressing the progress of further electrochemical reaction by causing it to shut down.
  • the microporous film is melt-deformed (melt-down) in an environment where it is not possible to prevent the temperature from becoming higher even though the electrochemical reaction is shut down. Thus, it is difficult to prevent a short circuit between the negative electrode body and the positive electrode body of the battery.
  • lithium ion capacitors may have a lower energy density than lithium ion batteries, and even if the electrochemical reaction runs away, it is not considered necessary to prevent them by the shutdown function of the polyolefin microporous membrane. For this reason, paper separators that do not melt down even at higher temperatures have been used.
  • the present inventors have found that there is a possibility of rupture or ignition depending on conditions even in a lithium ion capacitor. And it is thought that the necessity for preventing explosion and ignition increases as the capacity and output of the lithium ion capacitor increase.
  • a problem to be solved by the present invention is to provide a lithium ion capacitor having high energy density, high output, and high safety.
  • the present inventors have adopted a separator satisfying specific conditions in a lithium ion capacitor, so that the meltdown state can be actively set in an early stage at an abnormally high temperature.
  • the electrode stack By short-circuiting and discharging the electrode stack, it is possible to further increase the safety when the outer casing is opened and the electrolyte is ejected as a gas at a higher temperature, with high energy density, high output, and high safety
  • the present invention is as follows.
  • a lithium ion capacitor that is housed in an exterior body, When the separator is kept at 100 ° C.
  • the thermal contraction rate of the separator is 3% or more and 10% or less in the first direction and orthogonal to the first direction. 2% to 10% in the second direction
  • the area of the positive electrode active material layer of the positive electrode body or the area of the negative electrode of the negative electrode active material layer of the negative electrode body and the area of the separator is (separator area)> (electrode area)
  • the length of the portion where the electrode area and the separator overlap in the arbitrary straight line is A, and the electrode area and the separator overlap.
  • the negative electrode active material is formed by depositing a carbon material on the surface of activated carbon, and the amount of mesopores derived from pores having a diameter of 20 to 500 mm calculated by the BJH method is expressed as Vm1 (cc / g)
  • Vm1 (cc / g) When the amount of micropores derived from pores having a diameter of less than 20 mm calculated by the MP method is Vm2 (cc / g), 0.010 ⁇ Vm1 ⁇ 0.250
  • the positive electrode active material is derived from V1 (cc / g) mesopore amount derived from pores having a diameter of 20 to 500 mm calculated by the BJH method and pores having a diameter of less than 20 mm calculated by the MP method.
  • V2 (cc / g) mesopore amount derived from pores having a diameter of 20 to 500 mm calculated by the BJH method and pores having a diameter of less than 20 mm calculated by the MP method.
  • the micropore amount is V2 (cc / g)
  • the activated carbon satisfying 0.3 ⁇ V1 ⁇ 0.8 and 0.5 ⁇ V2 ⁇ 1.0, and having a specific surface area measured by the BET method of 1500 m 2 / g or more and 3000 m 2 / g or less, [1]
  • the lithium ion capacitor according to any one of [7].
  • the lithium ion capacitor has a short circuit start temperature and a complete short circuit temperature in the range of 120 ° C. or more and 150 ° C. or less. And the difference between the short circuit start temperature and the complete short circuit temperature is 20 ° C. or less.
  • the lithium ion capacitor according to the present invention has high energy density, high output, and high safety.
  • a lithium ion capacitor (hereinafter also referred to as “capacitor”) mainly includes a positive electrode body, a separator, a negative electrode body, an electrolytic solution, and an exterior body.
  • capacitor mainly includes a positive electrode body, a separator, a negative electrode body, an electrolytic solution, and an exterior body.
  • polyethylene is used.
  • separator made of a polyolefin resin is used.
  • the positive electrode body used for the capacitor of the present invention is a positive electrode current collector provided with a positive electrode active material layer.
  • the positive electrode current collector is preferably a metal foil, more preferably an aluminum foil having a thickness of 1 to 100 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material and a binder, and optionally contains a conductive filler.
  • Activated carbon is preferably used as the positive electrode active material.
  • the pores of the activated carbon should be optimally controlled. Is preferred. Specifically, the amount of mesopores derived from pores having a diameter of 20 to 500 mm calculated by the BJH method is V1 (cc / g), and the amount of micropores derived from pores having a diameter of less than 20 mm calculated by the MP method is calculated.
  • V2 (cc / g) When V2 (cc / g) is satisfied, 0.3 ⁇ V1 ⁇ 0.8 and 0.5 ⁇ V2 ⁇ 1.0 are satisfied, and the specific surface area measured by the BET method is 1500 m 2 / g or more and 4000 m 2. Activated carbon that is less than / g is preferred.
  • the mesopore amount V1 is preferably a value larger than 0.3 cc / g from the viewpoint of increasing the output characteristics when the positive electrode material is incorporated in the power storage element, and also from the viewpoint of suppressing a decrease in the capacity of the power storage element. , Preferably 0.8 cc / g or less. V1 is more preferably 0.35 cc / g or more and 0.7 cc / g or less, and further preferably 0.4 cc / g or more and 0.6 cc / g or less.
  • the micropore volume V2 is preferably 0.5 cc / g or more in order to increase the specific surface area of the activated carbon and increase the capacity, and also suppresses the bulk of the activated carbon and increases the density as an electrode. From the viewpoint of increasing the capacity per unit volume, it is preferably 1.0 cc / g or less. V2 is more preferably 0.6 cc / g or more and 1.0 cc / g or less, and further preferably 0.8 cc / g or more and 1.0 cc / g or less.
  • the ratio of the mesopore volume V1 to the micropore volume V2 is preferably in the range of 0.3 ⁇ V1 / V2 ⁇ 0.9. That is, V1 / V2 is preferably 0.3 or more from the viewpoint of increasing the ratio of the mesopore amount to the micropore amount to such an extent that the decrease in output characteristics can be suppressed while obtaining a high capacity. V1 / V2 is preferably 0.9 or less from the viewpoint of increasing the ratio of the micropore amount to the mesopore amount so that the decrease in capacity can be suppressed while obtaining high output characteristics. A more preferable range of V1 / V2 is 0.4 ⁇ V1 / V2 ⁇ 0.7, and a more preferable range of V1 / V2 is 0.55 ⁇ V1 / V2 ⁇ 0.7.
  • the micropore volume and mesopore volume are values determined by the following method. That is, the sample is vacuum-dried at 500 ° C. all day and night, and the adsorption and desorption isotherm is measured using nitrogen as an adsorbate. Using the isotherm on the desorption side at this time, the micropore volume is calculated by the MP method, and the mesopore volume is calculated by the BJH method.
  • the MP method uses a “t-plot method” (BC Lippens, JH de Boer, J. Catalysis, 4319 (1965)), and uses micropore volume, micropore area, and micropores. Is a method for obtaining the distribution of M.M. This is a method devised by Mikhal, Brunauer, Bodor (R. M. Mikhal, S. Brunauer, EE Bodor, J. Colloid Interface Sci., 26, 45 (1968)).
  • the BJH method is a calculation method generally used for analysis of mesopores and was proposed by Barrett, Joyner, Halenda et al. (EP Barrett, L. G. Joyner and P. Halenda, J Amer. Chem. Soc., 73, 373 (1951)).
  • the average pore diameter of the activated carbon is preferably 17 mm or more, more preferably 18 mm or more, and most preferably 20 mm or more in order to maximize the output. Further, from the point of maximizing the capacity, it is preferably 25 mm or less.
  • the average pore diameter described in the present specification is obtained by dividing the total pore volume per weight obtained by measuring each equilibrium adsorption amount of nitrogen gas at each relative pressure at the liquid nitrogen temperature by the BET specific surface area. Point to what you asked for.
  • BET specific surface area of the activated carbon is preferably from 1500 m 2 / g or more 3000 m 2 / g, more preferably not more than 1500 m 2 / g or more 2500 m 2 / g.
  • the BET specific surface area is 1500 m 2 / g or more, good energy density is easily obtained.
  • the BET specific surface area is 3000 m 2 / g or less, a large amount of binder is used to maintain the strength of the electrode. Since it is not necessary to put in, the performance per electrode volume tends to be high.
  • the activated carbon having the above-described characteristics can be obtained using, for example, raw materials and processing methods as described below.
  • the carbon source used as the raw material for the activated carbon is not particularly limited, and for example, plant raw materials such as wood, wood flour, coconut shell, by-products during pulp production, bagasse, and molasses.
  • Fossil materials such as peat, lignite, lignite, bituminous coal, anthracite, petroleum distillation residue components, petroleum pitch, coke, coal tar; phenol resin, vinyl chloride resin, vinyl acetate resin, melamine resin, urea resin, resorcinol resin, celluloid And various synthetic resins such as epoxy resin, polyurethane resin, polyester resin, and polyamide resin; synthetic rubber such as polybutylene, polybutadiene, and polychloroprene; other synthetic wood, synthetic pulp, and their carbides.
  • plant-based raw materials such as coconut shells and wood flour, and carbides thereof are preferable, and coconut shell carbides are particularly preferable.
  • the carbonization and activation methods for converting these raw materials into the activated carbon known methods such as a fixed bed method, a moving bed method, a fluidized bed method, a slurry method, and a rotary kiln method can be employed.
  • an exhaust gas such as combustion exhaust gas, or other gases mainly composed of these inert gases. Examples of the method include firing at a temperature of about 400 to 700 ° C. (preferably 450 to 600 ° C.) for about 30 minutes to 10 hours using a mixed gas.
  • a gas activation method in which firing is performed using an activation gas such as water vapor, carbon dioxide, or oxygen is preferably used.
  • an activation gas such as water vapor, carbon dioxide, or oxygen
  • a method using water vapor or carbon dioxide as the activation gas is preferable.
  • the carbide is supplied for 3 to 12 hours (preferably 5 to 11) while supplying an activation gas at a rate of 0.5 to 3.0 kg / h (preferably 0.7 to 2.0 kg / h). It is preferable to activate by heating to 800 to 1000 ° C. over a period of time, more preferably 6 to 10 hours.
  • the carbide may be activated in advance prior to the activation treatment of the carbide.
  • the carbide may be activated in advance.
  • an activation gas such as water vapor, carbon dioxide or oxygen.
  • the activated carbon having the above characteristics, which can be used in the embodiment of the present invention. Can be manufactured.
  • the average particle diameter of the activated carbon is preferably 1 to 20 ⁇ m.
  • the average particle size described in the present specification is the particle at which the cumulative curve becomes 50% when the cumulative curve is determined with the total volume being 100% when the particle size distribution is measured using a particle size distribution measuring device. Diameter (that is, 50% diameter (Median diameter)).
  • the average particle diameter When the average particle diameter is 1 ⁇ m or more, the capacity per electrode volume tends to increase because the density of the active material layer is high. On the other hand, when the average particle size is 20 ⁇ m or less, it tends to be suitable for high-speed charge / discharge. Further, the average particle diameter is preferably 2 to 15 ⁇ m, more preferably 3 to 10 ⁇ m.
  • binder for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), fluororubber, styrene-butadiene copolymer and the like can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluororubber fluororubber
  • styrene-butadiene copolymer styrene-butadiene copolymer and the like.
  • the amount of the binder mixed in the positive electrode active material layer is preferably 3 to 20% by mass, more preferably 5 to 15% by mass with respect to the positive electrode active material.
  • a conductive filler made of a conductive carbonaceous material having higher conductivity than the positive electrode active material can be mixed in the positive electrode active material layer as necessary.
  • a conductive filler ketjen black, acetylene black, vapor grown carbon fiber, graphite, a mixture thereof and the like are preferable.
  • the mixing amount of the conductive filler in the positive electrode active material layer is preferably 0 to 20% by mass, more preferably 1 to 15% by mass with respect to the positive electrode active material.
  • the conductive filler is preferably mixed from the viewpoint of high input, but if the mixing amount is more than 20% by mass, the content of the positive electrode active material in the positive electrode active material layer is reduced, so that the energy density per volume decreases. This is not preferable.
  • the thickness of the positive electrode active material layer is usually about 50 to 200 ⁇ m.
  • a paste in which a positive electrode active material and a binder (conductive filler if necessary) are dispersed in a solvent is prepared, and this paste is applied onto the positive electrode current collector, dried, and then used as necessary. It is obtained by pressing accordingly.
  • the coating method include a bar coating method, a transfer roll method, a T-die method, a screen printing method, and the like, and a coating method according to the physical properties and coating thickness of the paste can be appropriately selected.
  • the negative electrode body used in the capacitor of the present invention is a negative electrode current collector provided with a negative electrode active material layer.
  • the negative electrode current collector is preferably a metal foil, more preferably a copper foil having a thickness of 1 to 100 ⁇ m.
  • the negative electrode active material layer contains a negative electrode active material and a binder, and optionally contains a conductive filler.
  • the negative electrode active material is a carbon material that can occlude and release lithium ions.
  • the negative electrode current collector can contain other materials that occlude and release lithium ions, such as lithium titanium composite oxides and conductive polymers. Examples of the carbon material include non-graphitizable carbon, graphitizable carbon, and composite porous material.
  • the negative electrode active material is a composite porous material formed by depositing a carbon material on the surface of activated carbon, and is derived from pores having a diameter of 20 mm or more and 500 mm or less calculated by the BJH method in the composite porous material.
  • Vm1 cc / g
  • Vm2 cc / g
  • the material satisfies 0.001 ⁇ Vm2 ⁇ 0.200 and 1.5 ⁇ Vm1 / Vm2 ⁇ 20.0.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the composite porous material can be obtained, for example, by heat-treating activated carbon and a carbon material precursor in the coexistence state.
  • the activated carbon used as a raw material for the composite porous material as long as the obtained composite porous material exhibits desired characteristics, there are no particular restrictions on the raw material for obtaining the activated carbon, and petroleum-based, coal-based, plant-based, Commercial products obtained from various raw materials such as molecular systems can be used.
  • the average particle diameter is more preferably 2 ⁇ m or more and 10 ⁇ m or less.
  • the measuring method of the said average particle diameter is the same as the measuring method used for the average particle diameter of the activated carbon which is the above-mentioned positive electrode active material.
  • a carbon material precursor used as a raw material for the composite porous material is an organic material that can be dissolved in a solid, liquid, or solvent, which can be subjected to heat treatment to deposit the carbon material on activated carbon.
  • Examples thereof include synthetic resins such as pitch, mesocarbon microbeads, coke, and phenol resin.
  • Pitch is roughly divided into petroleum pitch and coal pitch. Examples of petroleum pitches include crude oil distillation residue, fluid catalytic cracking residue (decant oil, etc.), bottom oil derived from thermal crackers, ethylene tar obtained during naphtha cracking, and the like.
  • the composite porous material can be obtained by depositing a carbon material on the activated carbon by thermally reacting the volatile component or pyrolysis component of the pitch on the surface of the activated carbon.
  • the deposition of the pitch volatile component or pyrolysis component into the activated carbon pores proceeds at a temperature of about 200 to 500 ° C.
  • the reaction that the deposited component becomes a carbon material proceeds at 400 ° C. or higher.
  • the peak temperature during the heat treatment is appropriately determined depending on the characteristics of the composite porous material to be obtained, the thermal reaction pattern, the thermal reaction atmosphere, etc., but is preferably 400 ° C. or higher, more preferably 450 ° C. to 1000 ° C.
  • the peak temperature is about 500 to 800 ° C.
  • the time for maintaining the peak temperature during the heat treatment may be 30 minutes to 10 hours, preferably 1 hour to 7 hours, more preferably 2 hours to 5 hours.
  • the carbon material deposited on the activated carbon surface is considered to be a polycyclic aromatic hydrocarbon.
  • Examples of the method for producing the composite porous material include a method in which activated carbon is heat-treated in an inert atmosphere containing a hydrocarbon gas volatilized from a carbon material precursor, and the carbon material is deposited in a gas phase.
  • a method in which activated carbon and a carbon material precursor are mixed and heat-treated in advance, or a method in which a carbon material precursor dissolved in a solvent is applied to activated carbon and dried and then heat-treated is also possible.
  • the composite porous material is obtained by depositing a carbon material on the surface of activated carbon, but the pore distribution after the carbon material is deposited inside the pores of activated carbon is important. It can be defined by the amount of pores.
  • the ratio of mesopore amount / micropore amount is particularly important as well as the absolute values of mesopore amount and micropore amount. That is, in one embodiment of the present invention, the amount of mesopores derived from pores having a diameter of 20 mm or more and 500 mm or less calculated by the BJH method in the composite porous material is Vm1 (cc / g), and the diameter of 20 mm calculated by the MP method is used.
  • the mesopore amount Vm1 is more preferably 0.010 ⁇ Vm1 ⁇ 0.225, and further preferably 0.010 ⁇ Vm1 ⁇ 0.200.
  • the ratio of mesopore amount / micropore amount is more preferably 1.5 ⁇ Vm1 / Vm2 ⁇ 15.0, and further preferably 1.5 ⁇ Vm1 / Vm2 ⁇ 10.0.
  • mesopore volume Vm1 is less than or equal to the upper limit (Vm1 ⁇ 0.250), high charge / discharge efficiency with respect to lithium ions can be maintained, and the mesopore volume Vm1 and the micropore volume Vm2 are equal to or greater than the lower limit (0.010 ⁇ Vm1, 0. If 001 ⁇ Vm2), high output characteristics can be obtained.
  • mesopores with a large pore diameter have higher ionic conductivity than micropores, a mesopore amount is necessary to obtain high output characteristics. Since impurities such as moisture, which are thought to adversely affect the properties, are difficult to desorb, it is considered necessary to control the amount of micropores in order to obtain high durability. Therefore, it is important to control the ratio between the amount of mesopores and the amount of micropores. When the ratio is equal to or higher than the lower limit (1.5 ⁇ Vm1 / Vm2), that is, the carbon material adheres more to the micropores than the mesopores of activated carbon.
  • the composite porous material after deposition has a large amount of mesopores and a small amount of micropores, high energy density, high output characteristics and high durability (cycle characteristics, float characteristics, etc.) can be obtained.
  • the ratio between the mesopore amount and the micropore amount is not more than the upper limit (Vm1 / Vm2 ⁇ 20.0), high output characteristics can be obtained.
  • the method for measuring the mesopore volume Vm1 and the micropore volume Vm2 is the same as that for the positive electrode active material described above.
  • the mesopore / micropore ratio after the carbon material is deposited on the surface of the activated carbon is important.
  • the pore distribution of activated carbon used as a raw material is important.
  • the mesopore amount derived from the pores having a diameter of 20 to 500 mm calculated by the BJH method is V1 (cc / g), the diameter calculated by the MP method.
  • the mesopore amount V1 is more preferably 0.050 ⁇ V1 ⁇ 0.350, and further preferably 0.100 ⁇ V1 ⁇ 0.300.
  • the micropore amount V2 is more preferably 0.005 ⁇ V2 ⁇ 0.850, and further preferably 0.100 ⁇ V2 ⁇ 0.800.
  • the ratio of mesopore amount / micropore amount is more preferably 0.22 ⁇ V1 / V2 ⁇ 15.0, and further preferably 0.25 ⁇ V1 / V2 ⁇ 10.0.
  • the pore structure tends to be easily controlled.
  • the mesopore amount V1 of the activated carbon is 0.050 or more
  • the micropore amount V2 is 0.005 or more
  • V1 / V2 is 0.2 or more
  • V1 / V2 is 20.0.
  • the pore structure of the composite porous material of one embodiment of the present invention tends to be easily obtained from the pore distribution of the activated carbon.
  • the average particle size of the composite porous material in the present invention is preferably 1 ⁇ m or more and 10 ⁇ m or less. About a lower limit, More preferably, it is 2 micrometers or more, More preferably, it is 2.5 micrometers or more. About an upper limit, More preferably, it is 6 micrometers or less, More preferably, it is 4 micrometers or less. If the average particle size is 1 ⁇ m or more and 10 ⁇ m or less, good durability is maintained.
  • the measurement method of the average particle diameter of said composite porous material is the same as the measurement method used for the average particle diameter of the activated carbon of the above-mentioned positive electrode active material.
  • the atomic ratio of hydrogen atoms / carbon atoms (hereinafter also referred to as H / C) is preferably 0.05 or more and 0.35 or less, and 0.05 or more and 0.15. The following is more preferable.
  • H / C is 0.35 or less, the structure (typically polycyclic aromatic conjugated structure) of the carbon material deposited on the activated carbon surface is sufficiently developed, so the capacity (energy density) ) And charging / discharging efficiency is high.
  • H / C is 0.05 or more, since carbonization does not proceed excessively, a sufficient energy density can be obtained.
  • H / C is measured by an elemental analyzer.
  • the composite porous material usually has an amorphous structure derived from the activated carbon as a raw material and a crystal structure mainly derived from the deposited carbon material.
  • the composite porous material preferably has a structure with low crystallinity in order to exhibit high output characteristics, and has a structure with high crystallinity in order to maintain reversibility in charge and discharge. From the (002) plane spacing d 002 is 3.60 to 4.00 mm, and the crystallite size Lc in the c-axis direction obtained from the half width of this peak is 8.0 to 20.0 mm.
  • d 002 is 3.60 to 3.75 ⁇
  • the crystallite size Lc in the c-axis direction obtained from the half width of this peak is 11.0 to 16.0 ⁇ ⁇ . preferable.
  • the binder for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), fluororubber, styrene-butadiene copolymer and the like can be used.
  • the amount of the binder mixed in the negative electrode active material layer is preferably 3 to 20% by mass, more preferably 5 to 15% by mass with respect to the negative electrode active material.
  • the negative electrode active material layer can be mixed with a conductive filler made of a carbonaceous material having higher conductivity than the negative electrode active material, if necessary.
  • the conductive filler include acetylene black, ketjen black, vapor grown carbon fiber, and a mixture thereof.
  • the mixing amount of the conductive filler is preferably 0 to 20% by mass, more preferably 1 to 15% by mass with respect to the negative electrode active material.
  • the conductive filler is preferably mixed from the viewpoint of high input, but if the mixing amount is more than 20% by mass, the content of the negative electrode active material in the negative electrode active material layer decreases, so the energy density per volume decreases. This is not preferable.
  • the negative electrode body create a paste in which a lithium ion storable carbon material and a binder (conductive filler, if necessary) are dispersed in a solvent, apply this paste onto the negative electrode current collector, and dry it. It is obtained by pressing as necessary.
  • a coating method the same method as that for the positive electrode body can be used, and a coating method according to the physical properties and coating thickness of the paste can be appropriately selected.
  • the thickness of the negative electrode active material layer is usually about 50 to 200 ⁇ m.
  • the negative electrode active material used in the capacitor of the present invention can be doped with lithium in advance. By doping with lithium, it is possible to control the initial efficiency, capacitance, and output characteristics of the capacitor.
  • the doping amount is in the range of 30 to 100% of lithium ions that can be occluded by the negative electrode active material, and more preferably in the range of 40 to 80%.
  • the method of previously doping the negative electrode active material with lithium ions is not particularly limited in the present invention, but a known method can be used. For example, after forming a negative electrode active material into an electrode, using the negative electrode body as a working electrode and metallic lithium as a counter electrode, an electrochemical cell combining non-aqueous electrolyte solution is produced, and lithium ions are doped electrochemically. The method of doing is mentioned. It is also possible to dope lithium ions into the negative electrode active material by pressing a metal lithium foil on the negative electrode body and placing it in a non-aqueous electrolyte.
  • the separator used in the capacitor of the present invention insulates the positive electrode body and the negative electrode body from being in direct electrical contact with each other, and holds the electrolytic solution in the internal gap to provide a lithium ion conduction path between the electrodes. Play a role to form.
  • the separator is made of a polyolefin resin containing polyethylene, and when the separator is kept at 100 ° C. for 1 hour in an unconstrained state, the thermal shrinkage rate of the separator is 3% in the first direction. It is 10% or less and 2% or more and 10% or less in the second direction orthogonal to the first direction.
  • the thermal contraction rate of the separator is more preferably 4% or more and 9% or less in the first direction, 3% or more and 9% or less in the second direction, and further preferably 5% in the first direction. It is 8% or less and 3.5% or more and 5% or less in the second direction.
  • the first direction is the MD direction (the advancing direction when the sheet-formed separator is wound on a roll, also referred to as “longitudinal direction”)
  • the second direction is the TD direction (perpendicular to the MD direction).
  • Direction also referred to as “width direction” or “short direction”
  • the first direction is MD
  • the second direction is May be written as TD.
  • the “unconstrained state” means a state in which the object is not fixed, and means, for example, that a sheet-like separator is put in an oven as it is. This heat shrinkage rate is measured according to the method described in the following examples.
  • X 1 is a separator
  • 2 is the electrode of the positive electrode active material layer of the positive electrode body or the negative electrode area of the negative electrode active material layer of the negative electrode body, whichever is larger
  • 3 is the electrode of 2
  • a current collector (portion where the active material layer is not applied) is shown.
  • X 1 and X 2 are preferably 2.0 or more and 6.0 or less, and more preferably 3.0 or more and 5.0 or less.
  • the concept of “margin” in the present invention will be described with reference to FIG. (1) Points of interest
  • the margin was defined by the ratio of the width (L 1 , L 2 , L 3 , L 4 ) of the separator protruding from the electrode and the electrode width (A 1 , A 2 ).
  • the margin part (L 1 ) with the shortest width shrinks to the inside of the electrode by heating the fastest and causes a short circuit. (L 1 ⁇ L 3 ⁇ L 2 ⁇ L 4 ). Accordingly, the margin portion (L 1 ) having the shortest width is determined as a specific method corresponding to various shapes.
  • Identification method First, the direction of the separator is identified.
  • the separator has an MD direction and a TD direction in production, and the flowed product is also decomposed and heated, and the direction can be specified from the heat-shrinkable state. Therefore, the MD direction and the TD direction are specified.
  • rupture refers to a state in which the electrode laminate is broken and scattered with the electrolyte when the outer package is opened.
  • a separator made of a polyolefin resin containing polyethylene having a heat shrinkage rate as described above is melted down in a short time at an abnormally high temperature, and when the exterior body is opened due to the continuation of the abnormally high temperature state, It has been found preferable because the capacitor can be safely short-circuited without ignition and the safety can be improved.
  • the thermal contraction rate of the separator of the present invention is 3% or more in the first direction and 2% or more in the second direction, the separator can be melted down at an abnormally high temperature in a short period of time, resulting in rupture or ignition.
  • Capacitor can be safely short-circuited without the need to improve safety, and if the first direction is 10% or less and the second direction is 10% or less, the capacitor function is maintained without being short-circuited in the normal operating temperature range. can do.
  • X 1 and X 2 are 0.5% or more, the capacitor function can be maintained without being short-circuited in the normal operating temperature range, and if it is 8.0% or less, it is short at an abnormally high temperature. It can be melted down in time, and the capacitor can be safely short-circuited without rupture or ignition, improving safety.
  • the separator is preferably a microporous membrane
  • the puncture strength (absolute strength) of the microporous membrane is preferably 200 g or more, and more preferably 300 g or more.
  • the piercing strength is 200 g or more
  • a microporous film is used as a capacitor separator, pinholes or cracks may occur even when sharp parts such as electrode materials provided in the capacitor pierce the microporous film. It is preferable from the viewpoint that generation can be reduced.
  • limiting in particular as an upper limit of puncture strength It is preferable that it is 1000 g or less.
  • the puncture strength is measured according to the method described in the examples below.
  • the porosity of the microporous membrane of this embodiment is preferably 30% to 70%, and more preferably 55 to 70%. Setting the porosity to 30% or more is preferable from the viewpoint of following the rapid movement of lithium ions at a high rate when a microporous film is used as a capacitor separator. On the other hand, setting the porosity to 70% or less is preferable from the viewpoint of improving the film strength, and also preferable from the viewpoint of suppressing self-discharge when the microporous film is used as a capacitor separator. The porosity is measured according to the method described in the following examples.
  • the AC resistance of the microporous membrane of this embodiment the viewpoint preferably 0.9 ⁇ ⁇ cm 2 or less from the output when used as a separator for capacitors, and more preferably 0.6 ohm ⁇ cm 2 or less, 0.3 [Omega -More preferably cm 2 or less.
  • the AC resistance of the microporous membrane is measured according to the method described in the examples below.
  • Examples of means for forming a microporous membrane having various properties as described above include, for example, the concentration of polyolefin during extrusion, the blending ratio of various polyolefins such as polyethylene and polypropylene in the polyolefin, the molecular weight of polyolefin, the draw ratio, and after extraction. And a method of optimizing the stretching and relaxation operations. Moreover, the thermal contraction rate in the MD direction and the TD direction of the separator can be adjusted by optimizing the stretching temperature and the magnification at the time of heat setting. Moreover, the aspect of the microporous membrane may be an aspect of a single layer or an aspect of a laminate.
  • the production method of the present embodiment includes a polymer type, a solvent type, an extrusion method, a stretching method, an extraction method, an opening method, a heat setting / heat treatment.
  • the method is not limited at all.
  • the manufacturing method of the microporous membrane of this embodiment includes a step of melt-kneading and molding a polymer and a plasticizer, or a polymer, a plasticizer and a filler, a stretching step, a plasticizer (and a filler if necessary) ) It is preferable from the viewpoint of appropriately controlling the balance between physical properties of permeability and membrane strength to include an extraction step and a heat setting step.
  • (1) to (4) (1) a kneading step in which a polyolefin, a plasticizer, and a filler as necessary are kneaded to form a kneaded product; (2) A sheet forming step of extruding the kneaded material after the kneading step, forming it into a single-layered or laminated sheet and cooling and solidifying it; (3) After the sheet forming step, a plasticizer and / or filler is extracted as necessary, and the sheet (sheet-like formed body) is further stretched in one or more directions; (4) A post-processing step of extracting a plasticizer and / or filler as necessary after the stretching step and further performing a heat treatment; A method for producing a microporous membrane comprising the following steps can be used:
  • the polyolefin used in the kneading step (1) includes polyethylene as an essential component.
  • the polyolefin may be composed of one kind of polyethylene, or may be a polyolefin composition containing plural kinds of polyolefins.
  • Examples of the polyolefin include polyethylene, polypropylene, and poly-4-methyl-1-pentene. A mixture of two or more of these may be used.
  • polyethylene may be abbreviated as “PE” and polypropylene may be abbreviated as “PP”.
  • the viscosity average molecular weight (Mv) of the polyolefin is preferably 50,000 to 3 million, more preferably 150,000 to 2 million.
  • Mv The viscosity average molecular weight
  • a high-strength microporous membrane tends to be obtained, and when it is 3 million or less, the effect of facilitating the extrusion process tends to be obtained.
  • a viscosity average molecular weight is measured based on the method as described in the following Example.
  • the melting point of the polyolefin is preferably 100 to 165 ° C, more preferably 110 to 140 ° C.
  • the melting point means the temperature of the melting peak in differential scanning calorimetry (DSC) measurement.
  • DSC differential scanning calorimetry
  • the melting point of polyolefin when polyolefin is used as a mixture of plural kinds means the temperature of the peak having the largest melting peak area in DSC measurement of the mixture.
  • the polyolefin it is preferable to use high-density polyethylene from the viewpoint that heat fixation can be performed at a higher temperature while suppressing clogging of the pores.
  • the proportion of such high density polyethylene in the polyolefin is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the proportion of the high density polyethylene in the polyolefin is preferably 99% by mass or less, and more preferably 95% by mass or less.
  • the microporous membrane can have not only the effect of high density polyethylene but also the effect of other polyolefins in a well-balanced manner.
  • the polyolefin has a viscosity average molecular weight (Mv) of 100,000 to 300,000 from the viewpoint of improving shutdown characteristics when a microporous membrane is used as a capacitor separator or improving safety of a nail penetration test. It is preferable to use polyethylene.
  • the proportion of such 100,000 to 300,000 polyethylene in the polyolefin is preferably 30% by mass or more, and more preferably 45% by mass or more.
  • the ratio is 30% by mass or more, the shutdown characteristics when the microporous film is used as a capacitor separator can be improved, or the safety of the nail penetration test can be improved.
  • the ratio of 100,000 to 300,000 polyethylene in the polyolefin is preferably 100% by mass or less, and more preferably 95% by mass or less.
  • Polypropylene may be added and used as the polyolefin from the viewpoint of controlling the meltdown temperature.
  • the proportion of such polypropylene in the polyolefin is preferably 5% by mass or more, more preferably 8% by mass or more. It is preferable that the ratio is 5% by mass or more from the viewpoint of improving the film resistance at high temperatures.
  • the proportion of polypropylene in the polyolefin is preferably 20% by mass or less, and more preferably 18% by mass or less. It is preferable that the ratio is 20% by mass or less from the viewpoint of realizing a microporous membrane that has not only the effect of polypropylene but also the effect of other polyolefins in a well-balanced manner.
  • the plasticizer used in the kneading step (1) may be those conventionally used for polyolefin microporous membranes, and may be abbreviated as, for example, dioctyl phthalate (hereinafter referred to as “DOP”). ), Phthalic acid esters such as diheptyl phthalate and dibutyl phthalate; organic acid esters other than phthalic acid esters such as adipic acid ester and glyceric acid ester; phosphoric acid esters such as trioctyl phosphate; liquid paraffin; solid wax; Mineral oil is mentioned. These are used alone or in combination of two or more. Among these, phthalate ester is particularly preferable in consideration of compatibility with polyethylene.
  • DOP dioctyl phthalate
  • Phthalic acid esters such as diheptyl phthalate and dibutyl phthalate
  • organic acid esters other than phthalic acid esters such as adipic acid ester and gly
  • a polyolefin and a plasticizer may be kneaded to form a kneaded product, or a polyolefin, a plasticizer, and a filler may be kneaded to form a kneaded product.
  • a filler used in the latter case, at least one of organic fine particles and inorganic fine particles can be used. Examples of the organic fine particles include modified polystyrene fine particles and modified acrylic resin particles.
  • inorganic fine particles include oxide ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, yttria, zinc oxide and iron oxide; nitrides such as silicon nitride, titanium nitride and boron nitride Ceramics: silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, Ceramics such as calcium silicate, magnesium silicate, diatomaceous earth, and silica sand; glass fiber.
  • oxide ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, yttria, zinc oxide and iron oxide
  • nitrides such as silicon nitrid
  • the blend ratio of the polyolefin, the plasticizer, and the filler used as necessary is not particularly limited in the kneading step (1).
  • the proportion of polyolefin in the kneaded product is preferably 25 to 50% by mass from the viewpoint of the strength and film-forming property of the resulting microporous membrane.
  • the proportion of the plasticizer in the kneaded product is preferably 30 to 60% by mass from the viewpoint of obtaining a viscosity suitable for extrusion.
  • the proportion of the filler in the kneaded product is preferably 10% by mass or more from the viewpoint of improving the uniformity of the pore diameter of the obtained microporous membrane, and preferably 40% by mass or less from the viewpoint of film forming properties.
  • the kneaded product may be further phenolic, phosphorus-based, sulfur-based, such as pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], if necessary.
  • Antioxidants such as calcium soaps, metal soaps such as calcium stearate and zinc stearate; ultraviolet absorbers; light stabilizers; antistatic agents; antifogging agents; and various additives such as color pigments may be mixed.
  • the kneading order is a general mixing such as a Henschel mixer, a V-blender, a pro-shear mixer, and a ribbon blender in which polyolefin, a plasticizer, and a part of filler used as necessary are mixed in advance.
  • the remaining raw materials may be further kneaded, or all of the raw materials may be kneaded simultaneously.
  • the sheet forming step is, for example, a step of extruding the kneaded material into a sheet shape via a T-die or the like and bringing the extrudate into contact with a heat conductor to cool and solidify.
  • a heat conductor metal, water, air, and the plasticizer itself can be used.
  • the stretching step (3) is a step of obtaining a stretched sheet by stretching a sheet (sheet-like formed body) obtained through the sheet forming step.
  • Sheet stretching methods in the stretching process include MD uniaxial stretching with a roll stretching machine, TD uniaxial stretching with a tenter, a combination of roll stretching machine and tenter, or sequential biaxial stretching with a combination of tenter and tenter, simultaneous biaxial tenter Or simultaneous biaxial stretching by inflation molding is mentioned. From the viewpoint of obtaining a more uniform film, the sheet stretching method is preferably simultaneous biaxial stretching.
  • the total surface magnification at the time of stretching is preferably 8 times or more, more preferably 15 times or more, and more preferably 30 times or more from the viewpoint of film thickness uniformity and balance of tensile elongation, porosity and average pore diameter. Further preferred. When the total surface magnification is 30 times or more, a high-strength microporous film is easily obtained.
  • the stretching temperature is preferably 121 ° C. or higher from the viewpoint of imparting high permeability and high temperature and low shrinkage, and is preferably 135 ° C. or lower from the viewpoint of film strength.
  • the extraction prior to the stretching in the stretching step of (3) or the heat treatment in the post-processing step of (4) is a method of immersing the sheet or the stretched sheet in the extraction solvent or showering the extraction solvent on the sheet or the stretched sheet. It is done by.
  • the extraction solvent is preferably a poor solvent for polyolefin and a good solvent for plasticizer and filler, and preferably has a boiling point lower than the melting point of polyolefin.
  • extraction solvents examples include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,1,1-trichloroethane and fluorocarbon; alcohols such as ethanol and isopropanol; acetone and 2 -Ketones such as butanone; and alkaline water.
  • An extraction solvent is used individually by 1 type or in combination of 2 or more types. Note that the filler may be extracted in whole or in part in any of the steps, or may remain in the finally obtained microporous membrane.
  • the stretched sheet obtained through the stretching step is stretched and / or relaxed at a predetermined temperature using a tenter and / or a roll stretching machine.
  • a heat setting method may be mentioned.
  • the relaxation operation is a reduction operation performed at a predetermined relaxation rate on the MD and / or TD of the film.
  • the relaxation rate is a value obtained by dividing the MD dimension of the film after the relaxation operation by the MD dimension of the film before the operation, or a value obtained by dividing the TD dimension after the relaxation operation by the TD dimension of the film before the operation, or MD In the case of relaxation by both TD and TD, it is a value obtained by multiplying the relaxation rate of MD and the relaxation rate of TD.
  • the predetermined temperature is preferably 130 ° C. or lower and more preferably 123 ° C. or lower from the viewpoint of controlling the thermal shrinkage rate or controlling the film resistance.
  • the predetermined temperature is preferably 115 ° C. or higher.
  • the stretched sheet is preferably stretched 1.5 times or more to TD, and more preferably 1.8 times or more to TD.
  • the predetermined relaxation rate is preferably 0.9 times or less from the viewpoint of suppressing heat shrinkage, and is preferably 0.6 times or more from the viewpoint of preventing wrinkle generation, porosity, and permeability.
  • the relaxation operation may be performed in both directions of MD and TD, but may be a relaxation operation of only one of MD and TD. Even if the relaxation operation is performed on only one of MD and TD, it is possible to reduce the thermal contraction rate not only in the operation direction but also in the other direction.
  • the viscosity average molecular weight of the obtained microporous membrane is preferably 200,000 to 1,000,000. If the viscosity average molecular weight is 200,000 or more, the strength of the film is easily maintained, and if it is 1,000,000 or less, the moldability is excellent.
  • the film thickness of the microporous membrane is preferably 5 ⁇ m or more from the viewpoint of safety, preferably 35 ⁇ m or less from the viewpoint of high output and high capacity density, and more preferably 25 ⁇ m or less. This film thickness is measured according to the method described in the following Examples.
  • the pore diameter of the microporous membrane is preferably 0.01 ⁇ m to 0.1 ⁇ m, and the number of pores is preferably 100 to 250 / ⁇ m 2 .
  • the pore diameter is 0.01 ⁇ m or more, the size is such that ions can be sufficiently diffused, and when the pore diameter is 0.1 ⁇ m or less, the roughness of the film surface can be reduced, so that short-circuiting due to the electrode biting in can be prevented. Can be prevented.
  • the number of pores is 100 / ⁇ m 2 or more, it is possible to have a sufficient space for ions to diffuse, and when the number is 250 / ⁇ m 2 or less, the strength of the film can be maintained.
  • the pore diameter and the number of pores are measured according to the methods described in the following examples.
  • the measured Burgman index is 2.0 to 3.0 when the methyl ethyl carbonate of the microporous membrane is measured as a probe molecule.
  • D diffusion coefficient obtained from a pulsed magnetic field gradient nuclear magnetic resonance method
  • D 0 the diffusion coefficient in free space
  • is the Burgman index.
  • This value expresses the quality of the pore structure of the membrane independent of the porosity. is there. Therefore, the smaller the Burgman index, the better the pore structure in ion diffusion.
  • the index is 2.0 or more, the strength of the film can be maintained, and when the index is 3.0 or less,
  • the method for producing a microporous membrane can have a step of superimposing a plurality of single layer bodies as a step for obtaining a laminate.
  • the production method may include a step of subjecting the microporous film to surface treatment such as electron beam irradiation, plasma irradiation, surfactant coating, and chemical modification.
  • the capacitor of the present invention is produced by preparing an electrode laminate in which a positive electrode body and a negative electrode body are laminated via a separator, and mounting an exterior body such as a laminate film on the electrode laminate, and having a temperature lower than the heat resistance temperature of the separator. It can be produced by a method of heating and drying with a dryer set at a temperature and injecting an electrolytic solution. Alternatively, after the electrode laminate is heated and dried in advance, a method of injecting an electrolytic solution by attaching an exterior body, or after laminating each electrode body and the separator individually before lamination, May be prepared, and an outer package is attached and an electrolytic solution is injected. When performing heat drying, it is more preferable to heat dry under reduced pressure conditions because the drying time can be shortened.
  • the separator made of the polyolefin resin described above when used for the capacitor of the present invention, it may be heated and dried at 80 ° C. By setting such temperature conditions, heating of the electrode laminate before injecting the electrolytic solution can dry without closing the pores opened in the separator, maintaining the output characteristics of the capacitor. Reliability can be improved. Although the details of the reason why the reliability of the capacitor is improved by heating and drying the electrode laminate before pouring is not clear, it is considered that the amount of water contained in the positive electrode and the negative electrode can be reduced.
  • the lithium ion capacitor of the present invention has a short circuit start temperature and a complete short circuit within a range of 120 ° C. or more and 150 ° C.
  • rupture refers to a state in which the electrode laminate is broken and scattered with the electrolyte when the outer package is opened.
  • the difference between the short circuit start temperature and the complete short circuit temperature is more preferably 15 ° C. or less, and further preferably 10 ° C. or less.
  • the short-circuit start temperature and the complete short-circuit temperature are surface temperatures of the capacitor, and can be measured by, for example, a thermocouple attached to the central portion of the main surface of the capacitor with a heat-resistant tape.
  • the short-circuit start temperature means the temperature at the start point at which the voltage curve suddenly decreases under the above heating conditions, and corresponds to point A in Example 1-2 in FIG.
  • the complete short-circuit temperature means the temperature at which the voltage curve first becomes 0 under the above heating conditions, and corresponds to point B in Example 1-2 in FIG.
  • the capacitor of the present invention can also be produced by using an electrode body obtained by winding a positive electrode body and a negative electrode body with a separator interposed therebetween. At that time, the positive and negative electrode bodies to be wound and the separator are band-shaped, and only one of X 1 or X 2 corresponding to the short-side direction of the band can be defined. However, it may be 0.5 or more and 8.0 or less.
  • the capacitor of the present invention preferably has a capacitance of 1000F to 5000F.
  • the capacitance is 1000 F or more, since the amount of electricity stored in the capacitor is large, the effect that the capacitor of the present invention can be short-circuited safely and instantaneously is more effective.
  • a cell can be efficiently produced as an electrostatic capacitance is 5000 F or less.
  • the non-aqueous electrolyte used in the capacitor of the present invention may be a non-aqueous liquid containing a lithium ion-containing electrolyte.
  • a non-aqueous liquid may contain a solvent.
  • a solvent examples include cyclic carbonates represented by ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC), and dimethyl carbonate. (DMC), chain carbonates typified by ethyl methyl carbonate (MEC), lactones such as ⁇ -butyrolactone ( ⁇ BL), and mixed solvents thereof can be used.
  • a salt dissolved in these solvents lithium salts such as LiBF 4 and LiPF 6 can be used.
  • the salt concentration of the electrolytic solution is preferably in the range of 0.5 to 2.0 mol / L. If it is 0.5 mol / L or more, anions are sufficiently present, and the capacitance of the capacitor is maintained. On the other hand, at 2.0 mol / L or less, the salt is sufficiently dissolved in the electrolytic solution, and appropriate viscosity and conductivity of the electrolytic solution are maintained.
  • one end of the positive electrode terminal is electrically connected to the positive electrode body, and one end of the negative electrode terminal is electrically connected to the negative electrode body.
  • the positive electrode terminal is electrically connected to the positive electrode active material layer uncoated region of the positive electrode current collector, and the negative electrode terminal is electrically connected to the negative electrode active material layer uncoated region of the negative electrode current collector.
  • the material of the positive electrode terminal is aluminum, and the material of the negative electrode terminal is preferably nickel-plated copper.
  • the electrode terminal generally has a substantially rectangular shape, one end of which is electrically connected to the current collector of the electrode laminate, and the other end is connected to an external load (in the case of discharge) or a power source (charging). Electrically connected).
  • the center part of the electrode terminal which becomes the sealing part of the laminate film outer package, is made of a resin such as polypropylene to prevent short circuit between the electrode terminal and the metal foil constituting the laminate film and to improve the sealing hermeticity. It is a preferable aspect that the film is affixed.
  • an ultrasonic welding method is generally used as an electrical connection method between the electrode laminate and the electrode terminal.
  • resistance welding, laser welding, or the like may be used, and the method is not limited.
  • the laminate film used for the exterior body is preferably a film in which a metal foil and a resin film are laminated, and an example of a three-layer structure comprising an outer layer resin film / metal foil / inner layer resin film is exemplified.
  • the outer layer resin film is for preventing the metal foil from being damaged by contact or the like, and a resin such as nylon or polyester can be suitably used.
  • the metal foil is for preventing the permeation of moisture or gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used.
  • the inner layer resin film protects the metal foil from the electrolyte contained therein and is used for melting and sealing at the time of heat sealing.
  • polyolefin, acid-modified polyolefin and the like can be suitably used.
  • Various physical properties of the separator microporous membrane were measured by the following methods: (1) Viscosity average molecular weight (Mv) In order to prevent deterioration of the sample, 2,6-di-t-butyl-4-methylphenol was dissolved in decahydronaphthalene to a concentration of 0.1% by mass (hereinafter abbreviated as “DHN”). Was used as a solvent for the sample. The sample was dissolved in DHN at 150 ° C. to a concentration of 0.1% by mass to obtain a sample solution.
  • Mv Viscosity average molecular weight
  • the viscosity average molecular weight (Mv) was calculated from the determined [ ⁇ ].
  • Porosity (volume ⁇ mass / membrane density) / volume ⁇ 100
  • the film density was calculated from the fraction of the composition, with 0.95 for polyethylene and 0.91 for polypropylene. As various film densities, the density obtained by the density gradient tube method of JIS K-7112 can also be used.
  • the heat shrinkage rate was obtained.
  • the most heat-shrinkable direction is determined as the MD direction by natural drying, and the direction perpendicular to the MD direction is determined as the TD direction. Rate.
  • the taken out separator is strip-shaped (in this case, the electrode is also strip-shaped and the electrode body is wound) or ninety-nine-folded (in this case, the electrode is a sheet, and the electrode body is In the case of a single sheet), the heat shrinkage rate is specified by specifying the direction by the same method.
  • the MD direction the direction that is most thermally contracted by natural drying
  • the TD direction the direction perpendicular thereto
  • the heat shrinkage rate in the MD direction and TD direction of the strip-shaped or 99-fold separator was determined.
  • the strip in only if the length of the MD direction four times larger than the length of the TD direction, the MD direction defined does not, (a prescribed X 2 only) to define the TD direction only.
  • the separator taken out is a single wafer and a stack of a large number of electrodes
  • the single wafer is cut out as it is or after grasping the positional relationship with the margin, and each separator is processed as described above.
  • the thermal shrinkage rate was determined by specifying the MD direction and the TD direction.
  • Pore diameter of microporous membrane ( ⁇ m), number of pores (pieces / ⁇ m 2 ) It is known that the fluid inside the capillary follows the Knudsen flow when the mean free path of the fluid is larger than the pore size of the capillary, and the Poiseuille flow when it is small. Therefore, it is assumed that the air flow in the measurement of the permeability of the microporous membrane follows the Knudsen flow, and the water flow in the measurement of the permeability of the porous membrane follows the Poiseuille flow.
  • the film thickness L ( ⁇ m) can be obtained using the following equation.
  • R gas is obtained from the air permeability (sec) using the following equation.
  • R gas 0.0001 / (air permeability ⁇ (6.424 ⁇ 10 ⁇ 4 ) ⁇ (0.01276 ⁇ 101325))
  • R liq is obtained from the water permeability (cm 3 / (cm 2 ⁇ sec ⁇ Pa)) using the following equation.
  • R liq water permeability / 100
  • water permeability is calculated
  • a porous membrane previously immersed in alcohol was set in a stainless steel liquid-permeable cell having a diameter of 41 mm, and after the alcohol in the membrane was washed with water, water was permeated at a differential pressure of about 50000 Pa, and 120 seconds had elapsed.
  • the water permeability per unit time, unit pressure, and unit area was calculated from the water permeability (cm 3 ) at the time, and this was used as the water permeability.
  • Example 1-1 [Preparation of positive electrode body]
  • the crushed palm shell carbide was carbonized in nitrogen in a small carbonization furnace at 500 ° C. for 3 hours.
  • the treated carbide is placed in an activation furnace, 1 kg / h of steam is heated in a preheating furnace, and the temperature is raised to 900 ° C. over 8 hours.
  • To obtain activated carbon The obtained activated carbon was washed with water for 10 hours and then drained. Then, after drying for 10 hours in an electric dryer maintained at 115 ° C., pulverization was performed for 1 hour with a ball mill to obtain activated carbon 1.
  • the average particle size was measured using a laser diffraction particle size distribution analyzer (SALD-2000J) manufactured by Shimadzu Corporation, and the result was 4.2 ⁇ m. Further, the pore distribution was measured with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 2360 m 2 / g, the mesopore volume (V1) was 0.52 cc / g, and the micropore volume (V2) was 0.88 cc / g.
  • the BET specific surface area was 1,780 m 2 / g
  • the mesopore volume was 0.198 cc / g
  • the micropore volume was 0.695 cc / g
  • V1 / V2 0.29
  • the average pore diameter was 21.2 mm. there were.
  • this coconut shell activated carbon 150 g is placed in a stainless steel mesh basket, placed on a stainless steel bat containing 270 g of a coal-based pitch (softening point: 50 ° C.), and an electric furnace (effective size in the furnace 300 mm ⁇ 300 mm ⁇ 300 mm) It installed in and performed the heat reaction.
  • Heat treatment is performed in a nitrogen atmosphere by raising the temperature to 600 ° C. in 8 hours and holding at that temperature for 4 hours. Subsequently, after cooling to 60 ° C. by natural cooling, the composite porous material that is taken out from the furnace and becomes a negative electrode material The material 1 was obtained.
  • the BET specific surface area was 262 m 2 / g
  • the mesopore volume (Vm1) was 0.1798 cc / g
  • Separator 1 As a pure polymer, homopolymers of polyethylene having Mv of 250,000 and 700,000 were prepared in a weight ratio of 50:50, respectively. 1.0% by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant is added to 99% by mass of the pure polymer, and a tumbler blender is used. By using and dry blending, a polymer mixture was obtained. The obtained mixture of polymers and the like was fed by a feeder under a nitrogen atmosphere to a twin-screw extruder in which the system was purged with nitrogen.
  • liquid paraffin as a plasticizer was injected into the cylinder of the extruder by a plunger pump. Feeder and pump so that the amount ratio of liquid paraffin in the total mixture extruded and melt-kneaded by a twin screw extruder is 68% by mass (that is, the amount ratio of the polymer mixture (PC) is 32% by mass). Adjusted.
  • the melt kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 100 rpm, and a discharge rate of 12 kg / hour.
  • the obtained melt-kneaded product was extruded through a T-die onto a cooling roll controlled at a surface temperature of 40 ° C. and cast to obtain a gel sheet having a thickness of 1600 ⁇ m.
  • the obtained gel sheet was guided to a simultaneous biaxial tenter stretching machine, and biaxial stretching was performed to obtain a stretched sheet.
  • the set stretching conditions were an MD draw ratio of 7.0 times, a TD draw ratio of 6.1 times, and a set temperature of 121 ° C.
  • the stretched sheet was introduced into a methyl ethyl ketone bath and sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin from the stretched sheet, and then the methyl ethyl ketone was removed by drying.
  • the stretched sheet from which methyl ethyl ketone was removed by drying was guided to a TD tenter and heat-set.
  • the heat setting temperature was 121 ° C.
  • the TD maximum magnification was 2.0 times
  • the relaxation rate was 0.90 times.
  • thermocouple was affixed to the center of one surface of the capacitor with a polyimide tape, sandwiched between metal plates, wound with a ribbon heater, used as a heating medium, and set in a thermostatic chamber in an atmospheric atmosphere.
  • the temperature rise rate of the ribbon heater was 5 ° C./min, and the voltage and temperature of the capacitor were measured.
  • the short-circuit start temperature was 128 ° C., and the complete short-circuit temperature was 138 ° C.
  • the capacitor When the temperature exceeded 200 ° C., the capacitor was opened without rupture and ignition, and almost no gas injection was observed.
  • the manufactured capacitor is charged to 3.8 V by constant current constant voltage charging that can secure a constant voltage charging time of 1 hour at a current value of 1.5 C, and constant current discharge is also performed at a current value of 1.5 C up to 2.2 V. gave. From the capacitance and voltage change at that time, it was found that the capacitance of this capacitor was 1200F.
  • the produced capacitor was evaluated in an environment of 25 ° C. The battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current constant voltage charging in which a constant voltage of 4.0 V was applied for 2 hours.
  • the battery was discharged to 2.0 V with a current amount of 1C.
  • the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 82%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 55%.
  • Example 1-2 [Preparation of positive electrode body] It was produced in the same manner as Example 1-1. [Preparation of negative electrode body] It was produced in the same manner as Example 1-1. [Preparation of separator] It was produced in the same manner as Example 1-1. [Preparation of electrolyte] It was produced in the same manner as Example 1-1. [Assembly of capacitor] A lithium ion capacitor was assembled under the same conditions as in Example 1-1, except that both X 1 and X 2 were 4.0.
  • the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 82%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 55%.
  • Example 1-3 [Preparation of positive electrode body] It was produced in the same manner as Example 1-1. [Preparation of negative electrode body] It was produced in the same manner as Example 1-1. [Preparation of separator] It was produced in the same manner as Example 1-1. [Preparation of electrolyte] It was produced in the same manner as Example 1-1. [Assembly of capacitor] A lithium ion capacitor was assembled under the same conditions as in Example 1-1, except that X 1 and X 2 were both 7.5.
  • the short circuit start temperature was 133 ° C. and the complete short circuit temperature was 149 ° C.
  • the capacitor was opened without rupture and ignition, and almost no gas injection I could't see it.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current and constant voltage charging for applying a constant voltage of 4.0 V for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 82%. Next, the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C. The ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 55%.
  • Example 2-1 [Preparation of positive electrode body] It was produced in the same manner as Example 1-1.
  • [Preparation of separator] Separator 2 A homopolymer of polyethylene having a Mv of 250,000 was prepared as a pure polymer. Thereafter, a separator 2 was produced in the same manner as in Example 1. However, the set stretching conditions were an MD stretch ratio of 5.0 times, a TD stretch ratio of 5.0 times, and a set temperature of 121 ° C. The heat setting temperature was 120 ° C., the TD maximum magnification was 2.4 times, and the relaxation rate was 0.85 times.
  • Table 1 shows the evaluation results of various characteristics of the microporous membrane separator 2 thus obtained together with the composition and the like.
  • [Preparation of electrolyte] It was produced in the same manner as Example 1-1.
  • [Assembly of capacitor] A lithium ion capacitor was assembled using the obtained microporous membrane separator 2 under the same conditions as in Example 1-1.
  • the short circuit start temperature was 131 ° C. and the complete short circuit temperature was 143 ° C.
  • the capacitor was opened without rupture and ignition, and almost no gas injection I could't see it.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current constant voltage charging in which a constant voltage of 4.0 V was applied for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 81%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 53%.
  • Example 2-2> [Preparation of positive electrode body] It was produced in the same manner as Example 1-1. [Preparation of negative electrode body] It was produced in the same manner as Example 1-1. [Preparation of separator] It was produced in the same manner as Example 2-1. [Preparation of electrolyte] It was produced in the same manner as Example 1-1. [Assembly of capacitor] Except that X 1 and X 2 together and 4.0, under the same conditions as in Example 2-1 was assembled lithium ion capacitor.
  • the short circuit start temperature was 132 ° C and the complete short circuit temperature was 145 ° C.
  • the capacitor was opened without rupture and ignition, and almost no gas injection occurred. I wouldn't see it.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current constant voltage charging in which a constant voltage of 4.0 V was applied for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 81%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 53%.
  • Example 2-3 [Preparation of positive electrode body] It was produced in the same manner as Example 1-1. [Preparation of negative electrode body] It was produced in the same manner as Example 1-1. [Preparation of separator] It was produced in the same manner as Example 2-1. [Preparation of electrolyte] It was produced in the same manner as Example 1-1. [Assembly of capacitor] Except that X 1 and X 2 which are both 7.5, under the same conditions as in Example 2-1 to assemble a lithium ion capacitor.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 81%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 53%.
  • Example 3-1 [Preparation of positive electrode body] It was produced in the same manner as Example 1-1. [Preparation of negative electrode body] It was produced in the same manner as Example 1-1. [Preparation of separator] Separator 3 A separator 3 was produced in the same manner as in Example 1. However, the thermal fixation relaxation rate was 1.0 times (not relaxed). The evaluation results of various properties of the microporous membrane separator 3 thus obtained are shown in Table 1 together with the composition and the like. [Preparation of electrolyte] It was produced in the same manner as Example 1-1. [Assembly of capacitor] A lithium ion capacitor was assembled using the obtained microporous membrane separator 3 under the same conditions as in Example 1-1.
  • the short circuit start temperature was 123 ° C and the complete short circuit temperature was 131 ° C.
  • the capacitor was opened without rupture and ignition, and almost no gas injection I could't see it.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current and constant voltage charging for applying a constant voltage of 4.0 V for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 84%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 56%.
  • Example 3-2> [Preparation of positive electrode body] It was produced in the same manner as Example 1-1. [Preparation of negative electrode body] It was produced in the same manner as Example 1-1. [Preparation of separator] It was produced in the same manner as Example 3-1. [Preparation of electrolyte] It was produced in the same manner as Example 1-1. [Assembly of capacitor] Except that X 1 and X 2 together and 4.0, under the same conditions as in Example 3-1 was assembled lithium ion capacitor.
  • the short circuit start temperature was 129 ° C and the complete short circuit temperature was 139 ° C.
  • the capacitor was opened without rupture and ignition, and almost no gas injection I could't see it.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current constant voltage charging in which a constant voltage of 4.0 V was applied for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 84%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 56%.
  • Example 3-3 [Preparation of positive electrode body] It was produced in the same manner as Example 1-1. [Preparation of negative electrode body] It was produced in the same manner as Example 1-1. [Preparation of separator] It was produced in the same manner as Example 3-1. [Preparation of electrolyte] It was produced in the same manner as Example 1-1. [Assembly of capacitor] Except that X 1 and X 2 which are both 7.5, under the same conditions as in Example 3-1 was assembled lithium ion capacitor.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 84%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 56%.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 78%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 49%.
  • Example 2-1 [Preparation of positive electrode body] It was produced in the same manner as Example 1-1. [Preparation of negative electrode body] It was produced in the same manner as Example 1-1. [Preparation of separator] Separator 5 A homopolymer of polypropylene having a Mv of 200,000 was prepared as a pure polymer. Thereafter, a separator 5 was produced by the same method as in Example 1. However, the set stretching conditions were an MD stretch ratio of 5.0 times, a TD stretch ratio of 5.0 times, and a set temperature of 130 ° C. The heat setting temperature was 140 ° C., the TD maximum magnification was 1.8 times, and the relaxation rate was 0.85 times.
  • the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 67%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 28%.
  • the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 67%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 28%.
  • the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 67%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 28%.
  • the short circuit start temperature was 140 ° C.
  • the complete short circuit temperature was 175 ° C.
  • the outer body was opened without rupture and ignition, but strong Gas injection was observed.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current constant voltage charging in which a constant voltage of 4.0 V was applied for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 82%. Next, the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C. The ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 55%.
  • the short circuit start temperature was 95 ° C.
  • the complete short circuit temperature was 109 ° C.
  • the outer package was opened without rupture and ignition. Injection was observed.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current constant voltage charging in which a constant voltage of 4.0 V was applied for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 82%. Next, the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C. The ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 55%.
  • Example 5-1 [Preparation of positive electrode body] It was produced in the same manner as Example 1-1. [Preparation of negative electrode body] It was produced in the same manner as Example 1-1. [Preparation of separator] Separator 6 A separator 6 was produced in the same manner as in Example 1. However, the process was completed by biaxial stretching, extraction, and drying, and heat setting was not performed. The evaluation results of various properties of the microporous membrane separator 6 thus obtained are shown in Table 1 together with the composition and the like. [Preparation of electrolyte] It was produced in the same manner as Example 1-1. [Assembly of capacitor] A lithium ion capacitor was assembled under the same conditions as in Example 1-1, except that the obtained microporous membrane separator 6 was used and both X 1 and X 2 were set to 0.3.
  • the short circuit start temperature was 91 ° C. and the complete short circuit temperature was 105 ° C.
  • the capacitor body opened without rupture and ignition, Injection was observed.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current constant voltage charging in which a constant voltage of 4.0 V was applied for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 80%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 50%.
  • the short circuit start temperature was 93 ° C.
  • the complete short circuit temperature was 107 ° C.
  • the outer package was opened without rupture and ignition, but strong Gas injection was observed.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current constant voltage charging in which a constant voltage of 4.0 V was applied for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 80%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 50%.
  • the short circuit start temperature was 135 ° C.
  • the complete short circuit temperature was 165 ° C.
  • the outer package was opened without rupture and ignition, but strong Gas injection was observed.
  • the produced capacitor was evaluated in an environment of 25 ° C.
  • the battery was charged to 4.0 V with a current amount of 1 C, and then subjected to constant current constant voltage charging in which a constant voltage of 4.0 V was applied for 2 hours. Subsequently, the battery was discharged to 2.0 V with a current amount of 1C. Next, after charging for 2 hours, the battery was discharged to 2.0 V at a current value of 300C.
  • the ratio of the discharge capacity at 300 C to the discharge capacity at 1 C was 80%.
  • the characteristics were evaluated in an environment of ⁇ 20 ° C. The same charge as above was performed, and the battery was discharged to 2.0 V with a current amount of 200C.
  • the ratio of the discharge capacity at 200 C at ⁇ 20 ° C. to the discharge capacity at 1 C at 25 ° C. was 50%.
  • the lithium ion capacitor of the present invention by using a separator having a high thermal shrinkage rate at a high temperature, it can be short-circuited safely and instantaneously due to its meltdown, relatively By consuming electric power at a low temperature, it is possible to provide a safe capacitor that is free from the risk of explosion or fire during thermal runaway.
  • the lithium ion capacitor of the present invention can be suitably used as a storage element for a hybrid drive system.
  • A The length of the portion where the electrode area and the separator overlap in the arbitrary straight line parallel to the first direction of the separator L1
  • the electrode area and the length of the portion where the separator does not overlap L1 ′ The electrode area and the separator 1 Separator 2 Current collector (active electrode) of electrode 32, whichever is greater of the area of the positive electrode active material layer of the positive electrode body or the negative electrode area of the negative electrode active material layer of the negative electrode body The part where the substance layer is not applied)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 高エネルギー密度、高出力、及び高安全性を有するリチウムイオンキャパシタの提供。 炭素材料を負極活物質として含む負極活物質層が負極集電体に設置されている負極電極体;ポリエチレンを含むポリオレフィン樹脂から成るセパレータ;及び炭素材料又は炭素化合物材料のいずれかから成る正極活物質を含む正極活物質層が正極集電体に設置されている正極電極体;を積層して成る電極積層体;並びにリチウムイオン含有電解質を含む非水系電解液を、外装体に収納して含むリチウムイオンキャパシタであって、該セパレータの熱収縮率が、所定の範囲にあり、該正極電極体の正極活物質層の面積又は該負極電極体の負極活物質層の負極面積よりも該セパレータの面積が大きく、かつ、該電極面積と該セパレータが重ならない部分の長さが、該セパレータの大きさと所定の関係にあることを特徴とする前記リチウムイオンキャパシタ。

Description

リチウムイオンキャパシタ
 本発明は、高容量、高出力、及び高安全性を兼ね備えたリチウムイオンキャパシタに関する。
 近年、地球環境の保全及び省資源を目指したエネルギーの有効利用の観点から、深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システム等が注目を集めている。
 これらの蓄電システムにおいて、第一の要求事項は、用いられる蓄電素子のエネルギー密度が高いことである。この様な要求に対応可能な高エネルギー密度蓄電素子の有力候補として、リチウムイオン電池の開発が精力的に進められている。
 第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求されている。
 現在、高出力蓄電素子としては、電極に活性炭を用いた電気二重層キャパシタが開発されており、耐久性(特に、サイクル特性及び高温保存特性)が高く、0.5~1kW/L程度の出力特性を有する。これら電気二重層キャパシタは、上記高出力が要求される分野で最適な蓄電素子と考えられてきたが、そのエネルギー密度は、1~5Wh/L程度に過ぎず、実用化には出力持続時間が足枷となっている。
 一方、現在ハイブリッド電気自動車で採用されているニッケル水素電池は、電気二重層キャパシタと同等の高出力を実現し、かつ160Wh/L程度のエネルギー密度を有している。しかしながら、そのエネルギー密度及び出力をより一層高めるとともに、高温での安定性をさらに改善し、耐久性を高めるための研究が精力的に進められている。
 また、リチウムイオン電池においても、高出力化に向けての研究が進められている。
 例えば、放電深度(すなわち、素子の放電容量の何%を放電した状態かをあらわす値)50%において3kW/Lを超える高出力が得られるリチウムイオン電池が開発されているが、そのエネルギー密度は、100Wh/L以下であり、リチウムイオン電池の最大の特徴である高エネルギー密度を敢えて抑制した設計となっている。また、その耐久性(特にサイクル特性及び高温保存特性)については電気二重層キャパシタに比べ劣る。そのため、実用的な耐久性を持たせるためには放電深度が0~100%の範囲よりも狭い範囲でしかリチウムイオン電池を使用できない。そのため実際に使用できる容量はさらに小さくなり、耐久性をより一層向上させるための研究が精力的に進められている。
 別の例としては、従来のポリオレフィン製微多孔膜と同等又はそれよりも低い膜抵抗を有すると共に、高気孔率(「高空孔率」ともいう。)、すなわち、高出力特性をも有するポリオレフィン(例えば、ポリエチレンなど)製微多孔膜、及びそのポリオレフィン製微多孔膜を備える非水電解液系二次電池が提案されている(以下、特許文献1参照)。
 上記の様に高出力密度、高エネルギー密度、及び耐久性を兼ね備えた蓄電素子の実用化が強く求められているが、上述した既存の蓄電素子には一長一短がある。そのため、これらの技術的要求を充足する新たな蓄電素子が求められており、有力な候補としてリチウムイオンキャパシタと呼ばれる蓄電素子の開発が近年盛んである。
 リチウムイオンキャパシタは、リチウムイオンを含有した電解質を含む非水系電解液を使用する蓄電素子(すなわち、非水系リチウム型蓄電素子)の一種であって、正極においては電気二重層キャパシタと同様の陰イオンの吸着・脱着による非ファラデー反応、負極においてはリチウムイオン電池と同様のリチウムイオンの吸蔵・放出によるファラデー反応によって充放電を行う蓄電素子である。
 上述のように、正極・負極の双方において非ファラデー反応による充放電を行う電気二重層キャパシタにおいては、出力特性に優れるがエネルギー密度が小さい。一方、正極・負極の双方においてファラデー反応による充放電を行う二次電池であるリチウムイオン電池においては、エネルギー密度に優れるが、出力特性に劣る。リチウムイオンキャパシタは、正極では非ファラデー反応、負極ではファラデー反応による充放電を行うことによって、優れた出力特性と高いエネルギー密度との両立を狙う新たな蓄電素子である。
 リチウムイオンキャパシタを用いる用途としては、鉄道又は建機、自動車用蓄電が挙げられる。これらの用途では、作動環境が過酷なため、優れた温度特性を有する必要がある。具体的には、低温時での高い入出力特性、又は高温時での高いサイクル寿命特性である。このようなリチウムイオンキャパシタとしては、例えば、正極活物質層と正極集電体とを有する正極と、負極活物質層と負極集電体とを有する負極と、正極と負極の間に介在するセパレータと、非水系電解液、及び外装体からなるリチウムイオンキャパシタであって、正極活物質層が活性炭を含有し、負極活物質層がリチウムイオン吸蔵可能炭素材料を含有し、該セパレータは膜厚が15μm以上50μm以下、かつセパレータの液抵抗が2.5Ωcm2以下であることを特徴とするリチウムイオンキャパシタが提案されている(以下、特許文献2参照)。
特開2012-72263号公報 特開2005-39139号公報
 リチウムイオン電池においては、セパレータとして使用されているポリオレフィン製微多孔膜は、電池内で起こる電気化学反応が暴走した等の理由によって、該微多孔膜の融点程度の高温となった時に孔を閉塞せしめること(シャットダウン)によってさらなる電気化学反応の進行を抑制する機能が意図されたものである。しかしながら、高温の油の中に該電池を落下させた場合等、電気化学反応をシャットダウンしたにもかかわらずさらに高温になることを抑止できない環境下では、該微多孔膜が溶融変形(メルトダウン)して当該電池の負極電極体と正極電極体とが短絡することを防止することは困難であった。
 これに対して、リチウムイオンキャパシタは、リチウムイオン電池と比較するとエネルギー密度が低いこともあり、電気化学反応が暴走したとしてもポリオレフィン製微多孔膜のシャットダウン機能によって防止する必要性はないと考えられていたため、主としてより高温でもメルトダウンすることのない紙セパレータが使用されてきた。
 しかしながら、本発明者らは、リチウムイオンキャパシタにおいても、条件によっては破裂又は発火の可能性があることを見出した。そして、リチウムイオンキャパシタの大容量化・高出力化が進むほど、破裂や発火を防止する必要性が高くなると考えられる。
 したがって、本発明が解決しようとする課題は、高エネルギー密度、高出力、及び高安全性を有するリチウムイオンキャパシタを提供することである。
 本発明者らは、前記課題を解決するため鋭意研究し実験を重ねた結果、特定の条件を満たすセパレータをリチウムイオンキャパシタに採用することにより、異常高温時の初期に積極的にメルトダウン状態として電極積層体を短絡させ放電させることで、さらに高温になって外装体が開封し電解液がガスとして噴出した場合の安全性をより高めることができ、高エネルギー密度、高出力、及び高安全性を両立させることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりのものである。
 [1]炭素材料を負極活物質として含む負極活物質層が負極集電体に設置されている負極電極体;
 ポリエチレンを含むポリオレフィン樹脂から成るセパレータ;及び
 炭素材料又は炭素化合物材料のいずれかから成る正極活物質を含む正極活物質層が正極集電体に設置されている正極電極体;
を積層して成る電極積層体;並びに
 リチウムイオン含有電解質を含む非水系電解液;
を、外装体に収納して含むリチウムイオンキャパシタであって、
 該セパレータを非拘束状態で1時間に亘って100℃に保ったときに、該セパレータの熱収縮率が、第一の方向では3%以上10%以下であり、かつ、第一の方向と直交する第二の方向では2%以上10%以下であり、
 該正極電極体の正極活物質層の面積又は該負極電極体の負極活物質層の負極面積のいずれか大なる電極面積と該セパレータの面積とが、(セパレータ面積)>(電極面積)の関係にあり、かつ、
 上面視における、該セパレータの第一の方向と平行となる任意の直線において、該任意の直線における該電極面積と該セパレータとが重なる部分の長さをAとし、該電極面積と該セパレータが重ならない部分の長さをL、L’とした時、L、L’のいずれかが最も短くなるような任意の直線のL又はL’を下記式(1):
   X=(L又はL’/(A/2))×100
に代入して求めたXと、上面視における、該セパレータの第二の方向と平行となる任意の直線において、該任意の直線における該電極面積と該セパレータとが重なる部分の長さをBとし、該電極面積と該セパレータが重ならない部分の長さをL、L’とした時、L、L’のいずれかが最も短くなるような任意の直線のL又はL’を下記式(2):
   X=(L又はL’/(A/2))×100
に代入して求めたXが、いずれも、0.5以上8.0以下である、
ことを特徴とする前記リチウムイオンキャパシタ。
 [2]前記セパレータの孔径が、0.01μm~0.1μmであり、かつ孔数が、100個/μm~250個/μmである、前記[1]に記載のリチウムイオンキャパシタ。
 [3]前記セパレータのメチルエチルカーボネートをプローブ分子として測定し、算出したブルッグマン指数が、2.0~3.0である、前記[1]又は[2]に記載のリチウムイオンキャパシタ。
 [4]前記セパレータの膜厚が、5μm以上35μm以下であり、かつ空孔率が、30%~75%である、前記[1]~[3]のいずれかに記載のリチウムイオンキャパシタ。
 [5]前記セパレータは、ポリエチレンから成る、前記[1]~[4]のいずれかに記載のリチウムイオンキャパシタ。
 [6]静電容量が1000F以上である、前記[1]~[5]のいずれかに記載のリチウムイオンキャパシタ。
 [7]前記負極活物質は、活性炭の表面に炭素材料を被着させることにより形成され、かつ、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とするとき、
  0.010≦Vm1≦0.250、
  0.001≦Vm2≦0.200、及び
  1.5≦Vm1/Vm2≦20.0を満たす複合多孔性材料である、前記[1]~[6]のいずれかに記載のリチウムイオンキャパシタ。
 [8]前記正極活物質は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、
  0.3<V1≦0.8、及び
  0.5≦V2≦1.0を満たし、かつBET法により測定される比表面積が1500m/g以上3000m/g以下である活性炭である、前記[1]~[7]のいずれかに記載のリチウムイオンキャパシタ。
 [9]炭素材料を負極活物質として含む負極活物質層が負極集電体に設置されている負極電極体;
 ポリエチレンを含むポリオレフィン樹脂から成るセパレータ;及び
 炭素材料、炭素化合物材料のいずれかからなる正極活物質を含む正極活物質層が正極集電体に設置されている正極電極体;
を積層して成る電極積層体;並びに
 リチウムイオン含有電解質を含む非水系電解液;
を、外装体に収納して含むリチウムイオンキャパシタであって、
 該リチウムイオンキャパシタを30℃以下の温度から5℃/分で昇温する環境下において加熱したときに、該リチウムイオンキャパシタは、120℃以上150℃以下の範囲に短絡開始温度及び完全短絡温度を有し、そして該短絡開始温度と該完全短絡温度の差が20℃以下であることを特徴とする前記リチウムイオンキャパシタ。
 本発明に係るリチウムイオンキャパシタは、高エネルギー密度、高出力、及び高安全性を兼ね備える。
正極電極体の正極活物質層の面積又は負極電極体の負極活物質層の負極面積のいずれかである電極面積とセパレータの面積との関係を説明する概略図である。 本発明の実施形態におけるリチウムイオンキャパシタと従来のリチウムイオンキャパシタの加熱試験結果を比較するためのグラフである。 マージンの概念を説明する概略図である。
 以下、本発明の実施形態につき詳細に説明する。
 一般に、リチウムイオンキャパシタ(以下「キャパシタ」ともいう。)は、正極電極体、セパレータ、負極電極体、電解液及び外装体を主な構成要素とするが、本発明の実施の形態では、ポリエチレンを含むポリオレフィン樹脂から成るセパレータが使用される。以下、各構成要素について詳細に説明する。
<正極電極体>
 本発明のキャパシタに用いられる正極電極体は、正極集電体上に正極活物質層を設けたものである。正極集電体は金属箔であることが好ましく、さらに好ましくは、1~100μmの厚みのアルミニウム箔である。
 正極活物質層は正極活物質と結着剤を含有し、必要に応じて導電性フィラーを含有する。正極活物質としては、活性炭が好ましく使用される。
 活性炭の種類及びその原料には特に制限はないが、高容量(すなわち高エネルギー密度)と高出力特性(すなわち、高出力密度)とを両立させるために、活性炭の細孔を最適に制御することが好ましい。具体的には、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)としたとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつBET法により測定される比表面積が1500m2/g以上4000m2/g以下である活性炭が好ましい。
 メソ孔量V1は、正極材料を蓄電素子に組み込んだときの出力特性を大きくする点で、0.3cc/gより大きい値であることが好ましく、また、蓄電素子の容量の低下を抑える点から、0.8cc/g以下であることが好ましい。また上記V1は、より好ましくは0.35cc/g以上0.7cc/g以下、さらに好ましくは、0.4cc/g以上0.6cc/g以下である。
 一方、マイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5cc/g以上であることが好ましく、また、活性炭の嵩を抑え、電極としての密度を増加させ、単位体積あたりの容量を増加させるという点から、1.0cc/g以下であることが好ましい。また上記V2は、より好ましくは、0.6cc/g以上1.0cc/g以下、さらに好ましくは、0.8cc/g以上1.0cc/g以下である。
 また、マイクロ孔量V2に対するメソ孔量V1の比(V1/V2)は、0.3≦V1/V2≦0.9の範囲であることが好ましい。すなわち、高容量を得ながら出力特性の低下を抑えることができる程度に、マイクロ孔量に対するメソ孔量の割合を大きくするという点から、V1/V2が0.3以上であることが好ましく、また、高出力特性を得ながら容量の低下を抑えることができる程度に、メソ孔量に対するマイクロ孔量の割合を大きくするという点から、V1/V2は0.9以下であることが好ましい。また、より好ましいV1/V2の範囲は、0.4≦V1/V2≦0.7、さらに好ましいV1/V2の範囲は、0.55≦V1/V2≦0.7である。
 本発明において、マイクロ孔量及びメソ孔量は以下のような方法により求められる値である。すなわち、試料を500℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。このときの脱着側の等温線を用いて、マイクロ孔量はMP法により、メソ孔量はBJH法により算出する。
 MP法とは、「t-プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、M.Mikhail, Brunauer, Bodorにより考案された方法である(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。また、BJH法は一般的にメソ孔の解析に用いられる計算方法で、Barrett, Joyner, Halendaらにより提唱されたものである(E. P. Barrett, L. G. Joyner and P. Halenda, J. Amer. Chem. Soc., 73, 373(1951))。
 活性炭の平均細孔径は、出力を最大にする点から、17Å以上であることが好ましく、18Å以上であることがより好ましく、20Å以上であることが最も好ましい。また容量を最大にする点から、25Å以下であることが好ましい。本明細書で記載する平均細孔径とは、液体窒素温度における各相対圧力下での窒素ガスの各平衡吸着量を測定して得られる重量あたりの全細孔容積をBET比表面積で除して求めたものを指す。
 活性炭のBET比表面積は、1500m2/g以上3000m2/g以下であることが好ましく、1500m2/g以上2500m2/g以下であることがより好ましい。BET比表面積が1500m2/g以上の場合には、良好なエネルギー密度が得られ易く、一方、BET比表面積が3000m2/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる傾向がある。
 上記のような特徴を有する活性炭は、例えば以下に説明するような原料及び処理方法を用いて得ることができる。
 本発明の実施形態では、活性炭の原料として用いられる炭素源は、特に限定されるものではなく、例えば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バガス、廃糖蜜等の植物系原料;泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタール等の化石系原料;フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等の各種合成樹脂;ポリブチレン、ポリブタジエン、ポリクロロプレン等の合成ゴム;その他合成木材、合成パルプ等、及びそれらの炭化物が挙げられる。これらの原料の中でも、ヤシ殻、木粉等の植物系原料、及びそれらの炭化物が好ましく、ヤシ殻炭化物が特に好ましい。
 これらの原料を上記活性炭とするための炭化及び賦活の方式としては、例えば固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の既知の方式を採用できる。
 これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガス等の不活性ガス、又はこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、400~700℃(好ましくは450~600℃)程度で30分~10時間程度に亘って焼成する方法が挙げられる。
 上記炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて焼成するガス賦活法が好ましく用いられる。このうち、賦活ガスとして、水蒸気又は二酸化炭素を使用する方法が好ましい。
 この賦活方法では、賦活ガスを0.5~3.0kg/h(好ましくは0.7~2.0kg/h)の割合で供給しながら、上記炭化物を3~12時間(好ましくは5~11時間、さらに好ましくは6~10時間)かけて800~1000℃まで昇温して賦活するのが好ましい。
 さらに、上記炭化物の賦活処理に先立ち、あらかじめ上記炭化物を1次賦活してもよい。この1次賦活では、通常、炭素材料を水蒸気、二酸化炭素、酸素等の賦活ガスを用いて、900℃未満の温度で焼成してガス賦活することができる。
 上記炭化方法における焼成温度及び焼成時間と、上記賦活方法における賦活ガス供給量及び昇温速度及び最高賦活温度とを適宜組み合わせることにより、本発明の実施形態において使用できる、上記の特徴を有する活性炭を製造することができる。
 活性炭の平均粒径は、1~20μmであることが好ましい。本明細書で記載する平均粒径とは、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径(すなわち、50%径(Median径))を指す。
 上記平均粒径が1μm以上であると、活物質層の密度が高いために電極体積当たりの容量が高くなる傾向がある。一方で、平均粒径が20μm以下であると、高速充放電には適合し易くなる傾向がある。さらに、上記平均粒径は、好ましくは2~15μmであり、更に好ましくは3~10μmである。
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、スチレン-ブタジエン共重合体などを使用することができる。正極活物質層における結着剤の混合量は、正極活物質に対して3~20質量%が好ましく、5~15質量%の範囲がさらに好ましい。
 上記正極活物質層には、活性炭及び結着剤以外に、必要に応じて正極活物質よりも導電性の高い導電性炭素質材料からなる導電性フィラーを混合することができる。このような導電性フィラーとしては、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維、黒鉛、これらの混合物などが好ましい。正極活物質層における導電性フィラーの混合量は、正極活物質に対して0~20質量%が好ましく、1~15質量%の範囲がさらに好ましい。導電性フィラーは高入力の観点からは混合したほうが好ましいが、混合量が20質量%よりも多いと正極活物質層における正極活物質の含有量が少なくなるために、体積あたりのエネルギー密度が低下するので好ましくない。正極活物質層の厚みは、通常50~200μm程度である。
 正極電極体は、正極活物質と結着剤(必要に応じて導電性フィラー)とを溶媒に分散させたペーストを作成し、このペーストを正極集電体上に塗布し、乾燥し、必要に応じてプレスすることにより得られる。塗布方法を例示すれば、バーコート法、転写ロール法、Tダイ法、スクリーン印刷法などをあげることができ、ペーストの物性と塗布厚に応じた塗布方法を適宜選択できる。
<負極電極体>
 本発明のキャパシタに用いられる負極電極体は、負極集電体上に負極活物質層を設けたものである。負極集電体は金属箔であることが好ましく、さらに好ましくは1~100μmの厚みの銅箔である。
 負極活物質層は負極活物質と結着剤を含有し、必要に応じて導電性フィラーを含有する。負極活物質は、リチウムイオンを吸蔵放出できる炭素材料である。また、負極集電体には、この炭素材料に加えて、リチウムチタン複合酸化物、導電性高分子等の、リチウムイオンを吸蔵放出する他の材料が含まれることができる。炭素材料としては、例えば、難黒鉛性カーボン、易黒鉛性カーボン、複合多孔性材料等を挙げることができる。
 負極活物質は、さらに好ましくは、活性炭の表面に炭素材料を被着させて成る複合多孔性材料であって、該複合多孔性材料におけるBJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)としたとき、0.010≦Vm1≦0.250、0.001≦Vm2≦0.200、及び1.5≦Vm1/Vm2≦20.0を満たす材料である。
 上記負極活物質は、1種類のみで使用するか、又は2種以上を混合して使用してもよい。
 上記複合多孔性材料は、例えば、活性炭と炭素材料前駆体とを共存させた状態で、これらを熱処理することにより得ることができる。
 上記の複合多孔性材料の原料に用いる活性炭に関し、得られる複合多孔性材料が所望の特性を発揮する限り、活性炭を得るための原材料に特に制限はなく、石油系、石炭系、植物系、高分子系等の各種の原材料から得られた市販品を使用することができる。特に、平均粒径が1μm以上15μm以下の活性炭粉末を用いることが好ましい。該平均粒径は、より好ましくは、2μm以上10μm以下である。なお上記平均粒径の測定方法は、上述の正極活物質である活性炭の平均粒径に用いる測定方法と同様である。
 一方、上記の複合多孔性材料の原料に用いる炭素材料前駆体とは、熱処理することにより、活性炭に炭素材料を被着させることができる、固体、液体、又は溶剤に溶解可能な有機材料であり、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、フェノール樹脂等の合成樹脂等を挙げることができる。これらの炭素材料前駆体の中でも、安価であるピッチを用いることが製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。例えば、石油系ピッチとしては、原油の蒸留残査、流動性接触分解残査(デカントオイル等)、サーマルクラッカーに由来するボトム油、ナフサクラッキングの際に得られるエチレンタール等が例示される。
 上記ピッチを用いる場合、複合多孔性材料は、活性炭の表面でピッチの揮発成分又は熱分解成分を熱反応させることによって、該活性炭に炭素材料を被着させることにより得られる。この場合、200~500℃程度の温度において、ピッチの揮発成分又は熱分解成分の活性炭細孔内への被着が進行し、400℃以上で該被着成分が炭素材料となる反応が進行する。熱処理時のピーク温度は得られる複合多孔性材料の特性、熱反応パターン、熱反応雰囲気等により適宜決定されるものであるが、400℃以上であることが好ましく、より好ましくは450℃~1000℃であり、さらに好ましくは500~800℃程度のピーク温度である。また、熱処理時のピーク温度を維持する時間は、30分間~10時間であればよく、好ましくは1時間~7時間、より好ましくは2時間~5時間である。例えば、500~800℃程度のピーク温度で2時間~5時間に亘って熱処理する場合、活性炭表面に被着している炭素材料は多環芳香族系炭化水素になっているものと考えられる。
 上記の複合多孔性材料の製造方法は、例えば、炭素材料前駆体から揮発した炭化水素ガスを含む不活性雰囲気中で活性炭を熱処理し、気相で炭素材料を被着させる方法が挙げられる。また、活性炭と炭素材料前駆体とを予め混合し熱処理する方法、又は溶媒に溶解させた炭素材料前駆体を活性炭に塗布して乾燥させた後に熱処理する方法も可能である。
 複合多孔性材料は、活性炭の表面に炭素材料を被着させたものであるが、活性炭の細孔内部に炭素材料を被着させた後の細孔分布が重要であり、メソ孔量及びマイクロ孔量により規定できる。本発明においては、特に、メソ孔量及びマイクロ孔量の絶対値と共に、メソ孔量/マイクロ孔量の比率が重要である。すなわち、本発明の一態様において、上記の複合多孔性材料におけるBJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)としたとき、0.010≦Vm1≦0.250、0.001≦Vm2≦0.200、かつ1.5≦Vm1/Vm2≦20.0であることが好ましい。
 メソ孔量Vm1については、0.010≦Vm1≦0.225がより好ましく、0.010≦Vm1≦0.200が更に好ましい。マイクロ孔量Vm2については、0.001≦Vm2≦0.150がより好ましく、0.001≦Vm2≦0.100が更に好ましい。メソ孔量/マイクロ孔量の比率については、1.5≦Vm1/Vm2≦15.0がより好ましく、1.5≦Vm1/Vm2≦10.0が更に好ましい。メソ孔量Vm1が上限以下(Vm1≦0.250)であれば、リチウムイオンに対する高い充放電効率が維持でき、メソ孔量Vm1及びマイクロ孔量Vm2が下限以上(0.010≦Vm1、0.001≦Vm2)であれば、高出力特性が得られる。
 また、孔径の大きいメソ孔内ではマイクロ孔よりもイオン伝導性が高い為、高出力特性を得るためにはメソ孔量が必要であり、一方、孔径の小さいマイクロ孔内では、蓄電素子の耐久性に悪影響を及ぼすとされる水分等の不純物が脱着し難い為、高耐久性を得るためにはマイクロ孔量を制御する必要があると考えられる。したがって、メソ孔量とマイクロ孔量との比率の制御が重要であり、下限以上(1.5≦Vm1/Vm2)の場合、すなわち炭素材料が活性炭のメソ孔よりもマイクロ孔に多く被着し、被着後の複合多孔性材料のメソ孔量が多く、マイクロ孔量が少ない場合に、高エネルギー密度、高出力特性かつ高耐久性(サイクル特性、フロート特性等)が得られる。メソ孔量とマイクロ孔量との比率が上限以下(Vm1/Vm2≦20.0)の場合、高出力特性が得られる。
 本発明において、上記のメソ孔量Vm1及びマイクロ孔量Vm2の測定方法は、先述した正極活物質における測定方法と同様である。
 本発明の一態様においては、上述のように、活性炭の表面に炭素材料を被着した後のメソ孔量/マイクロ孔量の比率が重要である。本発明で規定する細孔分布範囲の複合多孔性材料を得る為には、原料に用いる活性炭の細孔分布が重要である。
 負極活物質としての複合多孔性材料の形成に用いる活性炭においては、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)としたとき、0.050≦V1≦0.500、0.005≦V2≦1.000、かつ0.2≦V1/V2≦20.0であることが好ましい。
 メソ孔量V1については、0.050≦V1≦0.350がより好ましく、0.100≦V1≦0.300が更に好ましい。マイクロ孔量V2については、0.005≦V2≦0.850がより好ましく、0.100≦V2≦0.800が更に好ましい。メソ孔量/マイクロ孔量の比率については、0.22≦V1/V2≦15.0がより好ましく、0.25≦V1/V2≦10.0が更に好ましい。活性炭のメソ孔量V1が0.500以下である場合及びマイクロ孔量V2が1.000以下である場合、上記本発明の一態様の複合多孔性材料の細孔構造を得る為には適量の炭素材料を被着させれば足りるので、細孔構造を制御し易くなる傾向がある。一方、活性炭のメソ孔量V1が0.050以上である場合及びマイクロ孔量V2が0.005以上である場合、V1/V2が0.2以上である場合、及びV1/V2が20.0以下である場合は、該活性炭の細孔分布から上記本発明の一態様の複合多孔性材料の細孔構造が容易に得られる傾向がある。
 本発明における複合多孔性材料の平均粒径は1μm以上10μm以下であることが好ましい。下限については、より好ましくは2μm以上であり、更に好ましくは2.5μm以上である。上限については、より好ましくは6μm以下であり、更に好ましくは4μm以下である。平均粒径が1μm以上10μm以下であれば良好な耐久性が保たれる。上記の複合多孔性材料の平均粒径の測定方法は、上述の正極活物質の活性炭の平均粒径に用いる測定方法と同様である。
 上記の複合多孔性材料において、水素原子/炭素原子の原子数比(以下、H/Cともいう。)は、0.05以上0.35以下であることが好ましく、0.05以上0.15以下であることがより好ましい。H/Cが0.35以下である場合には、活性炭表面に被着している炭素材料の構造(典型的には多環芳香族系共役構造)が十分に発達するので、容量(エネルギー密度)及び充放電効率が高くなるため好ましい。一方、H/Cが0.05以上である場合には、炭素化が過度に進行することはないため十分なエネルギー密度を得られる。なお、H/Cは元素分析装置により測定される。
 また、通常、上記複合多孔性材料は、原料の活性炭に由来するアモルファス構造を有するとともに主に被着した炭素材料に由来する結晶構造を有する。X線広角回折法によると、該複合多孔性材料は、高い出力特性を発現するためには結晶性が低い構造が好ましく、充放電における可逆性を保つには結晶性が高い構造が好ましいという観点から、(002)面の面間隔d002が3.60Å以上4.00Å以下であり、このピークの半価幅から得られるc軸方向の結晶子サイズLcが8.0Å以上20.0Å以下であるものが好ましく、d002が3.60Å以上3.75Å以下であり、このピークの半価幅から得られるc軸方向の結晶子サイズLcが11.0Å以上16.0Å以下であるものがより好ましい。
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、スチレン-ブタジエン共重合体などを使用することができる。負極活物質層における結着剤の混合量は、負極活物質に対して3~20質量%が好ましく、5~15質量%の範囲がさらに好ましい。
 上記負極活物質層には、上記リチウムイオン吸蔵可能炭素材料及び結着剤以外に、必要に応じて負極活物質より導電性の高い炭素質材料からなる導電性フィラーを混合することができる。該導電性フィラーとしては、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、これらの混合物をあげることができる。該導電性フィラーの混合量は、負極活物質に対して0~20質量%が好ましく、1~15質量%の範囲がさらに好ましい。導電性フィラーは高入力の観点からは混合したほうが好ましいが、混合量が20質量%よりも多いと負極活物質層における負極活物質の含有量が少なくなるために、体積あたりのエネルギー密度が低下するので好ましくない。
 負極電極体は、リチウムイオン吸蔵可能炭素材料と結着剤(必要に応じ、導電性フィラー)とを溶媒に分散させたペーストを作成し、このペーストを負極集電体上に塗布し、乾燥し、必要に応じてプレスすることにより得られる。塗布方法としては、正極電極体と同様の方法が使用可能であり、ペーストの物性と塗布厚に応じた塗布方法を適宜選択できる。上記負極活物質層の厚みは、通常50~200μm程度である。
 本発明のキャパシタに用いられる負極活物質には、予めリチウムをドープしておくことができる。リチウムをドープしておくことにより、キャパシタの初期効率、容量および出力特性を制御することが可能である。ドープ量は負極活物質が吸蔵できるリチウムイオンの30~100%の範囲であり、より好ましくは40~80%の範囲である。
 負極活物質にリチウムイオンを予めドープする方法は、本発明では特に制限しないが、公知の方法を用いることができる。例えば、負極活物質を電極に成型した後、該負極電極体を作用極、金属リチウムを対極に使用し、非水系電解液を組み合わせた電気化学セルを作製し、電気化学的にリチウムイオンをドープする方法が挙げられる。また、該負極電極体に金属リチウム箔を圧着し、非水系電解液に入れることで負極活物質にリチウムイオンをドープすることも可能である。
<セパレータ>
 本発明のキャパシタに用いられるセパレータは、正極電極体と負極電極体が直接電気的に接触しないように絶縁すると共に、その内部の空隙に電解液を保持して電極間のリチウムイオンの伝導経路を形成する役割を担う。本実施形態では、セパレータは、ポリエチレンを含むポリオレフィン樹脂から成り、そしてセパレータを非拘束状態で1時間に亘って100℃に保ったときに、セパレータの熱収縮率が、第一の方向では3%以上10%以下であり、かつ第一の方向と直交する第二の方向では2%以上10%以下である。セパレータの熱収縮率は、より好ましくは、第一の方向では4%以上9%以下であり、第二の方向では3%以上9%以下であり、さらに好ましくは、第一の方向では5%以上8%以下であり、第二の方向では3.5%以上5%以下である。
 第一の方向をMD方向(シート状に製膜されたセパレータをロールに巻き取るときの進行方向であり、「長手方向」ともいう)とし、第二の方向をTD方向(MD方向と直交する方向であり、「幅方向」又は「短手方向」ともいう)とするのが、セパレータの製造が容易となるので好ましい実施態様である(以降、第一の方向をMD、第二の方向をTDと表記する場合がある。)。本明細書では、「非拘束状態」とは、対象が固定されていない状態を意味し、例えば、シート状態のセパレータをそのままオーブンに入れることを意味する。この熱収縮率は、下記実施例に記載の方法に準じて測定される。
 更に、本発明の該正極電極体の正極活物質層の面積又は該負極電極体の負極活物質層の負極面積のいずれか大なる電極面積と該セパレータの面積とが、(セパレータ面積)>(電極面積)であり、且つ、上面視における、該セパレータの第一の方向と平行となる任意の直線において、該任意の直線における該電極面積と該セパレータとが重なる部分の長さをAとし、該電極面積と該セパレータが重ならない部分の長さをL、L’とした時、L、L'のいずれかが最も短くなるような任意の直線のL又はL'を下記式(1):
   X=(L又はL'/(A/2))×100
に代入して求めたXと、
上面視における、該セパレータの第二の方向と平行となる任意の直線において、該任意の直線における該電極面積と該セパレータとが重なる部分の長さをBとし、該電極面積と該セパレータが重ならない部分の長さをL、L’とした時、L、L'のいずれかが最も短くなるような任意の直線のL又はL'を下記式(2):
   X=(L又はL'/(A/2))×100
に代入して求めたXがいずれも0.5以上8.0以下である。
 図1により、Xを求めるためのA、L1、L1’について説明する。1は、セパレータを示し、2は、該正極電極体の正極活物質層の面積又は該負極電極体の負極活物質層の負極面積のいずれか大なる方の電極、3は、2の電極における集電体(活物質層は塗布されていない部位)を示している。Xについても同様である。
 X及びXは好ましくは2.0以上6.0以下であり、更に好ましくは3.0以上5.0以下である。
 図3により、本発明における「マージン」の概念を説明する。
 (1)着目点
 マージンを、電極からはみ出したセパレータの幅(L1、L2、L3、L4)と電極幅(A、A)との割合で規定した。
 最も短い幅のマージン部分(L)が、最も早く加熱により電極の内側に縮み、短絡を生じることになる。(L1<L3<L2<L4)。そこで、最も短い幅のマージン部分(L)を様々な形状に対応する特定方法とした。
 (2)特定方法
 まず、セパレータの方向を特定する。セパレータには製造上,MD方向、TD方向が存在し、流通品も分解して加熱し、熱収縮状態から方向が特定できる。よって、MD方向,TD方向で特定することとした。ここで、MD方向=第一方向、TD方向=第二方向とした。
 次いで、マージンを規定した。上記特定された方向に並行な任意の線を想定し、電極の幅(A、A)、セパレータのはみ出し幅(L1、L2、L3、L4)を特定し、セパレータのはみ出し幅が最も短いL1を用いてマージンを規定した。
 マージン=[L1/(A/2)]×100(%)
 電極幅を(A/2)を基準とすることで「AとL、L」、「AとL、L」の熱収縮の割合を均等化した。
 ラミネートフィルム外装体を使用した密閉型の蓄電素子は、電解液の沸点を大幅に超える異常高温状態に長時間さらされると、電解液が気化して圧力により外装体が開封する。このようなセパレータは、異常高温状態の継続によりキャパシタ内の電解液が気化してその圧力により外装体を開封させる前にキャパシタを短絡させることができるので、キャパシタを破裂及び発火から防ぎ、安全性を向上させる観点から好ましい。ここで「破裂」とは、外装体の開封時に電極積層体が破壊されて電解液とともに飛散する状態をいう。
 リチウムイオン電池のセパレータにおいては、異常高温時にシャットダウンさせることは必要であるが、さらに高温になることによりメルトダウンして正極電極体と負極電極体とが短絡することは可能な限り避ける必要がある。そのため、熱収縮率が低くメルトダウンし難いセパレータが使用されてきた。一方、リチウムイオンキャパシタのセパレータにおいては、異常高温時にシャットダウンさせる必要性はないと考えられてきたのでシャットダウンせず、さらに高温になってもメルトダウンもしない紙セパレータが使用されてきた。しかしながら、本発明者は、リチウムイオンキャパシタにおいても、高容量・高出力化を進めると破裂・発火のリスクがあり、それを防止するには、異常高温時にシャットダウンすると、ほぼ同時にメルトダウンさせる機能が有効であることを見出した。すなわち、上記のような熱収縮率を有し、かつポリエチレンを含むポリオレフィン樹脂から成るセパレータは、異常高温時に短時間でメルトダウンすることで、異常高温状態の継続による外装体の開封時に、破裂及び発火することなく安全にキャパシタを短絡させ、安全性を向上させることができるので好ましいことを見出したのである。
 以上より、本発明のセパレータの熱収縮率は、第一の方向では3%以上、第二の方向では2%以上であれば、異常高温時に短時間でメルトダウンすることができ、破裂や発火することなく安全にキャパシタを短絡させ、安全性を向上でき、第一の方向では10%以下、第二の方向では10%以下であれば、通常使用温度範囲では短絡することなくキャパシタ機能を維持することができる。
 また、X及びXについては、0.5%以上であれば、通常使用温度範囲では短絡することなくキャパシタ機能を維持することができ、8.0%以下であれば、異常高温時に短時間でメルトダウンすることができ、破裂や発火することなく安全にキャパシタを短絡させ、安全性を向上できる。
 本実施形態では、セパレータは微多孔膜であることが好ましく、そして微多孔膜の突刺強度(絶対強度)は、200g以上であることが好ましく、300g以上であることがより好ましい。突刺強度を200g以上とすることは、キャパシタ用のセパレータとして微多孔膜を使用する場合において、キャパシタに備えられる電極材等の鋭利部が微多孔膜に突き刺さった際にも、ピンホールや亀裂の発生を低減し得る観点から好ましい。突刺強度の上限として特に制限はないが、1000g以下であることが好ましい。なお、突刺強度は、下記実施例に記載の方法に準拠して測定される。
 本実施形態の微多孔膜の空孔率は、30%~70%が好ましく、より好ましくは、55~70%である。空孔率を30%以上とすることは、微多孔膜をキャパシタのセパレータとして用いた場合に、ハイレート時のリチウムイオンの急速な移動に追従する観点からも好ましい。一方、空孔率を70%以下とすることは、膜強度を向上する観点から好ましく、微多孔膜をキャパシタのセパレータとして用いた場合に自己放電抑制の観点からも好ましい。空孔率は、下記実施例に記載の方法に準拠して測定される。
 また、本実施形態の微多孔膜の交流抵抗は、キャパシタのセパレータとして用いた場合の出力の観点から0.9Ω・cm2以下が好ましく、0.6Ω・cm2以下がより好ましく、0.3Ω・cm2以下が更に好ましい。微多孔膜の交流抵抗は、下記実施例に記載の方法に準拠して測定される。
 なお、上記のような各種特性を備える微多孔膜を形成する手段としては、例えば、押出時のポリオレフィンの濃度、ポリオレフィンにおけるポリエチレン及びポリプロピレンなど各種ポリオレフィンの配合比率、ポリオレフィンの分子量、延伸倍率、抽出後の延伸及び緩和操作を最適化する方法が挙げられる。
 また、セパレータのMD方向及びTD方向における熱収縮率は、熱固定時の延伸温度、倍率を最適化することで調整することができる。
 また、微多孔膜の態様は、単層体の態様であっても積層体の態様であってもよい。
 次に、本実施形態の微多孔膜の製造方法について、例示的に説明する。ただし、得られる微多孔膜が、上記微多孔膜であれば、本実施形態の製造方法は、ポリマーの種類、溶媒の種類、押出方法、延伸方法、抽出方法、開孔方法、熱固定・熱処理方法など、何ら限定されることはない。
 本実施形態の微多孔膜の製造方法は、ポリマーと可塑剤とを、あるいは、ポリマーと可塑剤とフィラーとを溶融混練し成形する工程と、延伸工程と、可塑剤(及び必要に応じてフィラー)抽出工程と、熱固定工程とを含むことが、透過性及び膜強度の物性バランスを適度にコントロールする観点から好ましい。
 より具体的には、例えば、下記(1)~(4):
 (1)ポリオレフィンと、可塑剤と、必要に応じてフィラーとを混練して、混練物を形成する混練工程;
 (2)混練工程の後に混練物を押し出し、単層の又は複数層が積層したシート状に成形して冷却固化させるシート成形工程;
 (3)シート成形工程の後、必要に応じて可塑剤及び/又はフィラーを抽出し、更にシート(シート状成形体)を一軸以上の方向へ延伸する延伸工程;
 (4)延伸工程の後、必要に応じて可塑剤及び/又はフィラーを抽出し、更に熱処理を行う後加工工程;
の各工程を含む微多孔膜の製造方法を用いることができる:
 上記(1)の混練工程において用いられるポリオレフィンは、ポリエチレンを必須成分として含む。ポリオレフィンは、1種のポリエチレンからなるものであってもよく、複数種のポリオレフィンを含むポリオレフィン組成物であってもよい。
 ポリオレフィンとしては、例えばポリエチレン、ポリプロピレン、ポリ-4-メチル-1-ペンテンが挙げられ、これらを2種類以上ブレンドした混合物として用いてもよい。以下、ポリエチレンを「PE」、ポリプロピレンを「PP」と略記することがある。
 ポリオレフィンの粘度平均分子量(Mv)は、好ましくは5万~300万、より好ましくは15万~200万である。粘度平均分子量が5万以上であることにより、高強度な微多孔膜を得られる傾向となり好ましく、300万以下であることにより、押出工程を容易にさせる効果が得られる傾向となり好ましい。粘度平均分子量は、下記実施例に記載の方法に準拠して測定される。
 また、ポリオレフィンの融点は、好ましくは100~165℃、より好ましくは110~140℃である。融点が100℃以上であることにより高温環境下での機能が安定する傾向となり好ましく、165℃以下であることにより、高温時のメルトダウンの発生又はヒューズ効果が得られる傾向となり好ましい。なお、融点は、示差走査熱量(DSC)測定における融解ピークの温度を意味する。また、ポリオレフィンが複数種の混合物として用いられる場合のポリオレフィンの融点は、その混合物のDSC測定において、融解ピーク面積の最も大きいピークの温度を意味する。
 ポリオレフィンとしては、孔の閉塞を抑制しつつ、より高温で熱固定を行うことができるという点から、高密度ポリエチレンを用いることが好ましい。
 このような高密度ポリエチレンのポリオレフィン中に占める割合は、好ましくは5質量%以上であり、より好ましくは10質量%以上である。その割合が5質量%以上であることにより、更に、孔の閉塞を抑制しつつ、より高温で熱固定を行うことができる。一方、高密度ポリエチレンのポリオレフィン中に占める割合は、好ましくは99質量%以下であり、より好ましくは95質量%以下である。その割合が50質量%以下であることにより、微多孔膜が、高密度ポリエチレンによる効果だけでなく、他のポリオレフィンによる効果をもバランス良く併せ持つことができる。
 また、ポリオレフィンとしては、微多孔膜をキャパシタのセパレータとして用いた場合のシャットダウン特性を向上させ、あるいは釘刺し試験の安全性を向上させる観点から、粘度平均分子量(Mv)が10万~30万のポリエチレンを用いることが好ましい。
 このような10万~30万のポリエチレンがポリオレフィン中に占める割合は、好ましくは30質量%以上であり、より好ましくは45質量%以上である。その割合が30質量%以上であることにより、更に、微多孔膜をキャパシタのセパレータとして用いた場合のシャットダウン特性を向上させ、あるいは釘刺し試験の安全性を向上させることができる。一方、10万~30万のポリエチレンがポリオレフィン中に占める割合は、好ましくは100質量%以下であり、より好ましくは95質量%以下である。
 ポリオレフィンとして、メルトダウン温度を制御する観点から、ポリプロピレンを添加して用いてもよい。
 このようなポリプロピレンがポリオレフィン中に占める割合は、好ましくは5質量%以上であり、より好ましくは8質量%以上である。その割合が5質量%以上であることは、高温での耐破膜性を向上させる観点から好ましい。一方、ポリプロピレンがポリオレフィン中に占める割合は、好ましくは20質量%以下であり、より好ましくは18質量%以下である。その割合が20質量%以下であることは、微多孔膜が、ポリプロピレンによる効果だけでなく、他のポリオレフィンによる効果をもバランス良く併せ持つ微多孔膜を実現する観点から好ましい。
 (1)の混練工程において用いられる可塑剤としては、従来、ポリオレフィン製微多孔膜に用いられているものであってもよく、例えば、フタル酸ジオクチル(以下、「DOP」と略記することがある。)、フタル酸ジヘプチル、フタル酸ジブチルのようなフタル酸エステル;アジピン酸エステル及びグリセリン酸エステル等のフタル酸エステル以外の有機酸エステル;リン酸トリオクチル等のリン酸エステル;流動パラフィン;固形ワックス;ミネラルオイルが挙げられる。これらは1種を単独又は2種以上を組み合わせて用いられる。これらの中でも、ポリエチレンとの相溶性を考慮すると、フタル酸エステルが特に好ましい。
 また、(1)の混練工程では、ポリオレフィンと可塑剤とを混練して混練物を形成してもよく、ポリオレフィンと可塑剤とフィラーとを混練して混練物を形成してもよい。後者の場合に用いられるフィラーとしては、有機微粒子及び無機微粒子の少なくとも一方を用いることもできる。
 有機微粒子としては、例えば、変性ポリスチレン微粒子及び変性アクリル酸樹脂粒子が挙げられる。
 無機微粒子としては、例えば、アルミナ、シリカ(珪素酸化物)、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛及び酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン及び窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;ガラス繊維が挙げられる。
 (1)の混練工程におけるポリオレフィンと可塑剤と必要に応じて用いられるフィラーとのブレンド比は特に限定されるものではない。ポリオレフィンの混練物中に占める割合は、得られる微多孔膜の強度と製膜性との面から、25~50質量%が好ましい。また、可塑剤の混練物中に占める割合は、押し出しに適した粘度を得る観点から、30~60質量%が好ましい。フィラーの混練物中に占める割合は、得られる微多孔膜の孔径の均一性を向上させる観点から10質量%以上が好ましく、製膜性の面から40質量%以下が好ましい。
 なお、混練物には、更に必要に応じて、ペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]などのフェノール系、リン系、イオウ系等の酸化防止剤;ステアリン酸カルシウム、ステアリン酸亜鉛等の金属石鹸類;紫外線吸収剤;光安定剤;帯電防止剤;防曇剤;及び着色顔料等の各種添加剤を混合してもよい。
 (1)の混練工程における混練方法に特に制限はなく、従来用いられた方法であってもよい。例えば、混練する順番は、ポリオレフィン、可塑剤及び必要に応じて用いられるフィラーのうちの一部を予め混合したものを、ヘンシェルミキサー、V-ブレンダー、プロシェアミキサー及びリボンブレンダー等の一般的な混合機を用いて予め混合してから、残りの原料と共に更に混練してもよいし、原料の全てを同時に混練してもよい。
 また、混練に用いる装置も特に制限はなく、例えば、押出機、ニーダー等の溶融混練装置を用いて混練することができる。
 (2)のシート成形工程は、例えば、上記混練物を、Tダイ等を介してシート状に押し出し、その押出物を熱伝導体に接触させて冷却固化させる工程である。当該熱伝導体としては、金属、水、空気、及び可塑剤自体を使用できる。また、押出物を一対のロール間で挟み込むことにより冷却固化を行うことは、得られるシート状成形体の膜強度を増加させる観点、及びシート状成形体の表面平滑性を向上させる観点から好ましい。
 (3)の延伸工程は、シート成形工程を経て得られたシート(シート状成形体)を延伸して延伸シートを得る工程である。延伸工程におけるシートの延伸方法としては、ロール延伸機によるMD一軸延伸、テンターによるTD一軸延伸、ロール延伸機とテンターとの組合せ、又はテンターとテンターとの組合せによる逐次二軸延伸、同時二軸テンター又はインフレーション成形による同時二軸延伸が挙げられる。より均一な膜を得るという観点からは、シートの延伸方法は同時二軸延伸であることが好ましい。延伸の際のトータルの面倍率は、膜厚の均一性、並びに引張伸度、空孔率及び平均孔径のバランスの観点より、8倍以上が好ましく、15倍以上がより好ましく、30倍以上が更に好ましい。トータルの面倍率が30倍以上であると、高強度の微多孔膜が得られやすくなる。延伸温度は、高透過性と高温低収縮性とを付与する観点から、121℃以上が好ましく、膜強度の観点からは、135℃以下であることが好ましい。
 (3)の延伸工程における延伸又は(4)の後加工工程における熱処理に先立つ抽出は、抽出溶媒にシート又は延伸シートを浸漬したり、あるいは、抽出溶媒をシート又は延伸シートにシャワーしたりする方法により行なわれる。抽出溶媒は、ポリオレフィンに対して貧溶媒であり、且つ可塑剤及びフィラーに対して良溶媒であると好ましく、沸点がポリオレフィンの融点よりも低いと好ましい。このような抽出溶媒としては、例えば、n-ヘキサン及びシクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン及びフルオロカーボン等のハロゲン化炭化水素;エタノール及びイソプロパノール等のアルコール;アセトン及び2-ブタノン等のケトン類;並びにアルカリ水が挙げられる。抽出溶媒は1種を単独で又は2種以上を組み合わせて用いられる。
 なお、フィラーは、全工程内のいずれかの工程で全量又は一部を抽出されてもよく、最終的に得られる微多孔膜に残存させてもよい。また、抽出の順序、方法及び回数については特に制限はない。
 (4)の後加工工程における熱処理の方法としては、延伸工程を経て得られた延伸シートに対して、テンター及び/又はロール延伸機を用いて、所定の温度で延伸及び/又は緩和操作を行う熱固定方法が挙げられる。緩和操作とは、膜のMD及び/又はTDへ、所定の緩和率で行う縮小操作のことである。緩和率とは、緩和操作後の膜のMD寸法を操作前の膜のMD寸法で除した値、あるいは、緩和操作後のTD寸法を操作前の膜のTD寸法で除した値、あるいは、MD及びTDの双方で緩和した場合は、MDの緩和率とTDの緩和率とを乗じた値のことである。上記所定の温度は、熱収縮率の制御又は膜抵抗の制御の観点より130℃以下であると好ましく、123℃以下であるとより好ましい。一方、延伸性の観点から、上記所定の温度は115℃以上であると好ましい。また、熱収縮率及び透過性の観点より、後加工工程にて、延伸シートをTDへ1.5倍以上に延伸することが好ましく、TDへ1.8倍以上に延伸することがより好ましい。一方、安全性の観点から、延伸シートをTDへ6.0倍以下に延伸することが好ましく、膜強度と透過性のバランスを維持する観点から、4.0倍以下がより好ましい。所定の緩和率は、熱収縮の抑制の観点から、0.9倍以下であると好ましく、しわ発生防止と気孔率及び透過性との観点より、0.6倍以上であると好ましい。緩和操作は、MD及びTDの両方向に行ってもよいが、MD及びTDのいずれか片方だけの緩和操作であってもよい。MD及びTDのいずれか片方だけの緩和操作であっても、その操作方向だけでなく、他方の方向にも、熱収縮率を低減することが可能である。
 得られる微多孔膜の粘度平均分子量は、20万~100万が好ましい。その粘度平均分子量が20万以上であれば、膜の強度が維持されやすく、100万以下であると成形性に優れる。
 また、微多孔膜の膜厚は、安全性の観点から、5μm以上であると好ましく、高出力・高容量密度の観点から35μm以下であると好ましく、より好ましくは25μm以下である。この膜厚は、下記実施例に記載の方法に準じて測定される。
 また、微多孔膜の孔径は、0.01μm~0.1μmであり、かつ孔数は、100~250個/μmであることが好ましい。孔径については、0.01μm以上であると、イオンが十分に拡散できる大きさであり、また0.1μm以下であると、膜表面のラフネスを小さくすることができるため電極が食い込むことによる短絡を防止することができる。孔数については、100個/μm以上であると、イオンが拡散するのに十分な空隙を持つことができ、また250個/μm以下であると、膜の強度を保つことができる。この孔径及び孔数は、下記実施例に記載の方法に準じて測定される。
 また、微多孔膜のメチルエチルカーボネートをプローブ分子として測定し、算出したブルッグマン指数が、2.0~3.0であることが好ましい。ブルッグマン指数とは、メチルエチルカーボネートをプローブ分子としてパルス磁場勾配核磁気共鳴法(PFG-NMR法)より得られる拡散係数(D)を用いて、ε×D=εα×D(ここで、εは膜の空孔率、Dは自由空間中での拡散係数、αはブルッグマン指数を示す)より算出される、空孔率に依存しない膜の孔構造の質を表現する値のことである。したがって、ブルッグマン指数は小さいものほど孔構造がイオン拡散に優れていることになる。本指数が2.0以上であれば膜の強度を保つことができ、また3.0以下であればイオンが拡散するのに十分に適した孔構造を持つことができる。この指数は、下記実施例に記載の方法に準じて測定される。
 なお、微多孔膜の製造方法は、上記(1)~(4)の各工程に加え、積層体を得るための工程として、単層体を複数枚重ね合わせる工程を有することができる。また、その製造方法は、微多孔膜に、電子線照射、プラズマ照射、界面活性剤塗布及び化学的改質などの表面処理を施す工程を有してもよい。
<キャパシタ>
 本発明のキャパシタは、正極電極体と負極電極体とをセパレータを介して積層した電極積層体を作製し、該電極積層体にラミネートフィルム等の外装体を装着して、セパレータの耐熱温度以下の温度に設定された乾燥機によって加熱乾燥し、電解液を注入する方法で作製することができる。あるいは、上記電極積層体を事前に加熱乾燥させた後に外装体を装着して電解液を注入する方法や、積層する前に、各電極体及びセパレータを個別に加熱乾燥させた後に、電極積層体を作製し、外装体を装着し電解液を注入する方法でも構わない。加熱乾燥をさせる時には、減圧条件下で加熱乾燥することが、乾燥時間を短くすることができるのでより好ましい。
 例えば、上記で説明したポリオレフィン樹脂からなるセパレータを本発明のキャパシタに使用する場合は80℃で加熱乾燥すればよい。このような温度条件に設定することで、電解液を注入する前の電極積層体の加熱によって、セパレータに開いている細孔を閉塞させることなく乾燥することができ、キャパシタの出力特性を維持したまま信頼性を向上させることができる。注液前の電極積層体の加熱乾燥によってキャパシタの信頼性が向上する理由の詳細は、明らかではないが、正極や負極に含有される水分量を低減させることができるためと考えられる。
 本発明のリチウムイオンキャパシタは、該リチウムイオンキャパシタを30℃以下の温度から5℃/分で昇温する環境下において加熱したときに、120℃以上150℃以下の範囲に短絡開始温度及び完全短絡温度を有し、該短絡開始温度と該完全短絡温度の差が20℃以下である。そのため、このような異常高温状態が継続したとしても、キャパシタ内の電解液が気化してその圧力により外装体を開封させる前にキャパシタを短絡させることができるので、キャパシタを破裂及び発火から防ぎ、安全性を向上させる観点から好ましい。ここで「破裂」とは、外装体の開封時に電極積層体が破壊されて電解液とともに飛散する状態をいう。該短絡開始温度と該完全短絡温度の差は、15℃以下がより好ましく、10℃以下が更に好ましい。
 ここで、短絡開始温度と完全短絡温度とは、キャパシタの表面温度であり、例えば、該キャパシタの主面の中央部に耐熱性テープで貼り付けられた熱電対によって測定することができる。短絡開始温度とは、上記加熱条件下において電圧曲線が急に減少する開始点の温度を意味し、図2の実施例1-2では点Aが該当する。また、完全短絡温度とは、上記加熱条件下において電圧曲線が始めて0になった点の温度を意味し、図2の実施例1-2では点Bが該当する。
 尚、本発明のキャパシタは、正極電極体と負極電極体とをセパレータを介して捲回した電極体を用いて作製することも可能である。その際、捲回される正極及び負極電極体、セパレータは帯状となっており、この帯状の短手方向にあたるX又はXのいずれか1つのみを規定することができ、このいずれか1つが、0.5以上8.0以下であればよい。
 また、本発明のキャパシタは、静電容量が1000F以上5000F以下であることが好ましい。静電容量が1000F以上であると、キャパシタが蓄える電気量が大きいため、本発明のキャパシタが持つ安全に瞬時に短絡できうる効果がより有効である。また、静電容量が5000F以下であると、セルを効率的に作製することができる。
 本発明のキャパシタに用いられる非水系電解液は、リチウムイオン含有電解質を含む非水系液体であればよい。そのような非水系液体は、溶媒を含んでよく、そのような溶媒としては、例えば、炭酸エチレン(EC)、炭酸プロピレン(PC)に代表される環状炭酸エステル、炭酸ジエチル(DEC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)に代表される鎖状炭酸エステル、γ-ブチロラクトン(γBL)などのラクトン類、ならびにこれらの混合溶媒を用いることができる。
 これら溶媒に溶解する塩としては、LiBF4、LiPF6などのリチウム塩を用いることができる。電解液の塩濃度は、0.5~2.0mol/Lの範囲が好ましい。0.5mol/L以上ではアニオンが十分に存在し、キャパシタの容量が維持される。一方で、2.0mol/L以下では、塩が電解液中で十分に溶解し、電解液の適切な粘度及び伝導度が保たれる。
 電極積層体において、正極電極体に正極端子の一端を電気的に接続し、負極電極体に負極端子の一端を電気的に接続する。具体的には、正極集電体の正極活物質層未塗布領域に正極端子、負極集電体の負極活物質層未塗布領域に負極端子を電気的に接続する。正極端子の材質はアルミニウムであり、負極端子の材質がニッケルメッキされた銅であることが好ましい。
 電極端子は、一般的には略矩形をしており、その一端は電極積層体の集電体と電気的に接続され、他端は使用時に外部の負荷(放電の場合)または電源(充電の場合)と電気的に接続される。ラミネートフィルム外装体の封止部となる、電極端子の中央部には、電極端子とラミネートフィルムを構成する金属箔との短絡を防ぎ、かつ封止密閉性を向上させるためにポリプロピレン等の樹脂製のフィルムが貼りつけられていることが好ましい態様である。
 前述した電極積層体と電極端子との電気的な接続方法は、例えば、超音波溶接法が一般的であるが、抵抗溶接、レーザー溶接等でもよく、限定するものではない。
 また、外装体に使用されるラミネートフィルムは、金属箔と樹脂フィルムを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内層樹脂フィルムから成る3層構成のものが例示される。外層樹脂フィルムは接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分又はガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。また、内層樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、例えば、ポリオレフィン、酸変性ポリオレフィンなどが好適に使用できる。
 以下に、本発明の実施形態を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。なお、セパレータ用微多孔膜の各種物性は下記方法により測定した:
(1)粘度平均分子量(Mv)
 試料の劣化防止のため、デカヒドロナフタリンに、2,6-ジ-t-ブチル-4-メチルフェノールを0.1質量%の濃度となるように溶解させ、これ(以下、「DHN」と略記する。)を試料用の溶媒として用いた。試料をDHNへ0.1質量%の濃度となるように150℃で溶解させて試料溶液を得た。試料溶液を10mL採取し、キャノンフェンスケ粘度計(SO100)により135℃での標線間を通過するのに要する秒数(t)を計測した。また、DHNを150℃に加熱した後、10mL採取し、同様の方法により粘度計の標線間を通過するのに要する秒数(tB)を計測した。得られた通過秒数t、tBを用いて、下記の換算式により極限粘度[η]を算出した。
   [η]=((1.651t/tB-0.651)0.5-1)/0.0834
 求められた[η]より粘度平均分子量(Mv)を算出した。原料のポリエチレン、原料のポリオレフィン組成物及び微多孔膜のMvは下記式により算出した。
   [η]=6.77×10-4Mv0.67
 また、原料のポリプロピレンについては、下記式によりMvを算出した。
   [η]=1.10×10-4Mv0.80
(2)膜厚(μm)
 東洋精機製の微小測厚器であるKBM(商標)を用いて、23±2℃の雰囲気温度にて膜厚を測定した。
(3)空孔率(%)
 10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm3)と質量(g)とを求め、それらと膜密度(g/cm3)とから、下記式を用いて、空孔率を計算した。
   空孔率=(体積-質量/膜密度)/体積×100
 なお、膜密度はポリエチレンを0.95、ポリプロピレンを0.91として、組成の分率から計算した。なお、種々の膜密度として、JIS K-7112の密度勾配管法によって求めた密度を用いることもできる。
(4)熱収縮率(%)
 キャパシタに組み込む前のセパレータの場合、MD及びTDのそれぞれ測定する方向に合わせて、100×50mmに切り取った。その試料片を100℃のオーブン中に非拘束で1時間保持した後、室温にて、MD及びTDのそれぞれの長さを測定した。
   ((加熱前の長さ)-(加熱後の長さ))×100/加熱前の長さ
を熱収縮率とした。
 キャパシタに組み込まれたセパレータの場合、キャパシタを解体しセパレータを取り出した後、電解液溶媒(例えば、メチルエチルカーボネート(MEC)等)で浸漬洗浄をして自然乾燥させた。以降、上記記載と同様にて試験をし、熱収縮率を求めた。
 ここで、仮にセパレータのTD、MD方向が特定できない場合には、上記自然乾燥によって、最も熱収縮した方向をMD方向と決定し、それと垂直な方向をTD方向と決定して本発明における熱収縮率とした。
 尚、取り出したセパレータが帯状(この場合は、電極も帯状となり、電極体は捲回された状態となっている)又は九十九折り状(この場合は、電極は枚葉となり、電極体は積層された状態となっている)で1枚である場合も同様の手法で方向を特定して熱収縮率を特定する。具体的には、マージンとの位置関係を把握した上で、セパレータの一部を切り出し、自然乾燥によって、最も熱収縮した方向をMD方向と決定し、それと垂直な方向をTD方向と決定し、帯状又は九十九折り状のセパレータのMD方向及びTD方向の熱収縮率を決定した。但し、帯状でMD方向の長さがTD方向の長さの4倍より大きい場合に限り、MD方向の規定はせず、TD方向のみの規定とする(Xのみの規定とする)。
 また、取り出したセパレータが枚葉で多数の電極の積層体である場合には、枚葉をそのまま、或いは、マージンとの位置関係を把握した上で一部を切り出し、上記のようにして各セパレータについてMD方向及びTD方向を特定して熱収縮率を決定した。
(5)微多孔膜の孔径(μm)、孔数(個/μm
 キャピラリー内部の流体は、流体の平均自由工程がキャピラリーの孔径より大きいときはクヌーセンの流れに、小さい時はポアズイユの流れに従うことが知られている。そこで、微多孔膜の透気度測定における空気の流れがクヌーセンの流れに、また多孔膜の透水度測定における水の流れがポアズイユの流れに従うと仮定する。
 この場合、多孔膜の孔径d(μm)と曲路率τ(無次元)は、空気の透過速度定数Rgas(m/(m・sec・Pa))、水の透過速度定数Rliq(m/(m・sec・Pa))、空気の分子速度ν(m/sec)、水の粘度η(Pa・sec)、標準圧力P(=101325Pa)、気孔率ε(%)、膜厚L(μm)から、次式を用いて求めることができる。
   d=2ν×(Rliq/Rgas)×(16η/3P)×10
   τ=(d×(ε/100)×ν/(3L×P×Rgas))1/2
 ここで、Rgasは透気度(sec)から次式を用いて求められる。
   Rgas=0.0001/(透気度×(6.424×10-4)×(0.01276×101325))
 また、Rliqは透水度(cm/(cm・sec・Pa))から次式を用いて求められる。
   Rliq=透水度/100
 なお、透水度は次のように求められる。直径41mmのステンレス製の透液セルに、あらかじめアルコールに浸しておいた多孔膜をセットし、該膜のアルコールを水で洗浄した後、約50000Paの差圧で水を透過させ、120sec間経過した際の透水量(cm)より、単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度とした。
 また、νは気体定数R(=8.314)、絶対温度T(K)、円周率π、空気の平均分子量M(=2.896×10-2kg/mol)から次式を用いて求められる。
   ν=((8R×T)/(π×M))1/2
 さらに、孔数B(個/μm)は、次式より求められる。
   B=4×(ε/100)/(π×d2×τ
(6)微多孔膜のブルッグマン指数
 日本電子社製ECA400を用いて、メチルエチルカーボネートをプローブ分子としてパルス磁場勾配核磁気共鳴法(PFG-NMR法)より得られる拡散係数(D)を算出した。ln(E/E0) = -D×(γ2δ2g2(Δ-δ/3))(ここで、E:各測定点でのピーク強度、E0:PFGを与えない場合のピーク強度、γ:核スピンの磁気回転比、δ:PFG照射時間、g:PFG強度、Δ:拡散時間を示す)より得られる直線関係より、ln(E/E0)が-2以上の領域で計算した。次いで、
   ε×D=εα×D
(ここで、εは膜の空孔率、Dは自由空間中での拡散係数、αはブルッグマン指数を示す)よりブルッグマン指数を算出した。
<実施例1-1>
[正極電極体の作製]
 破砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃で3時間炭化処理した。処理後の該炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で該賦活炉内へ投入し、900℃まで8時間かけて昇温した後に取り出し、窒素雰囲気下で冷却して活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行い、活性炭1を得た。島津製作所社製レーザー回折式粒度分布測定装置(SALD-2000J)を用いて平均粒径を測定した結果、4.2μmであった。また、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB-1 AS-1-MP)で、細孔分布を測定した。その結果、BET比表面積は2360m2/g、メソ孔量(V1)は0.52cc/g、マイクロ孔量(V2)は0.88cc/gであった。
 活性炭1を80.8質量部、ケッチェンブラック6.2質量部及びPVDF(ポリフッ化ビニリデン)を10質量部、PVP(ポリビニルピロリドン)を3.0質量部、並びにNMP(N-メチルピロリドン)を混合して、スラリーを得た。次いで、得られたスラリーを厚さ15μmのアルミニウム箔の片面に塗布し、乾燥し、プレスして、活物質層の厚さが55μmの片面正極電極体を得た。同様に、アルミニウム箔の両面に塗布し、乾燥し、プレスして、両面正極電極体を得た。
[負極電極体の作製]
 市販のヤシ殻活性炭について、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB-1 AS-1-MP)で、窒素を吸着質として細孔分布を測定した。比表面積はBET1点法により求めた。また、上述したように、脱着側の等温線を用いて、メソ孔量はBJH法により、マイクロ孔量はMP法によりそれぞれ求めた。その結果、BET比表面積が1,780m2/g、メソ孔量が0.198cc/g、マイクロ孔量が0.695cc/g、V1/V2=0.29、平均細孔径が21.2Åであった。
 このヤシ殻活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)270gを入れたステンレス製バットの上に置き、電気炉(炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、600℃まで8時間で昇温し、同温度で4時間保持することによって行い、続いて自然冷却により60℃まで冷却した後、炉から取り出し、負極材料となる複合多孔性材料1を得た。得られた複合多孔性材料1を上記活性炭1と同様に測定したところ、BET比表面積が262m2/g、メソ孔量(Vm1)が0.1798cc/g、マイクロ孔量(Vm2)が0.0843cc/g、Vm1/Vm2=2.13であった。
 上記複合多孔性材料1を83.4質量部、アセチレンブラックを8.3質量部及びPVDF(ポリフッ化ビニリデン)を8.3質量部、並びにNMP(N-メチルピロリドン)を混合して、スラリーを得た。次いで、得られたスラリーをエキスパンド銅箔の両面に塗布し、乾燥し、プレスして、負極活物質層の厚さが60μmの負極電極体を得た。この両面負極電極体の片面に、複合多孔性材料1の単位重量あたり760mAh/gに相当するリチウム金属箔を貼り付けた。
[セパレータの作製]
 セパレータ1
 純ポリマーとしてMvが25万および70万のポリエチレンのホモポリマーをそれぞれ重量比で50:50の割合で準備した。上記純ポリマー99質量%に酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1.0質量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物を、系内を窒素置換した二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、可塑剤として流動パラフィンを押出機のシリンダーにプランジャーポンプにより注入した。二軸押出機により溶融混練し、押し出される全混合物中に占める流動パラフィンの量比が68質量%(すなわち、ポリマー等混合物(PC)の量比が32質量%)となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数100rpm、吐出量12kg/時とした。
 続いて、得られた溶融混練物を、T-ダイを経て、表面温度40℃に制御された冷却ロール上に押し出してキャストすることにより、厚さ1600μmのゲルシートを得た。
 次に、得られたゲルシートを同時二軸テンター延伸機に導き、二軸延伸を行い、延伸シートを得た。設定延伸条件は、MDの延伸倍率7.0倍、TDの延伸倍率6.1倍、設定温度121℃であった。
 次いで、延伸シートをメチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して、延伸シートから流動パラフィンを抽出除去し、その後、メチルエチルケトンを乾燥除去した。
 次に、メチルエチルケトンを乾燥除去した延伸シートをTDテンターに導き、熱固定を行った。熱固定温度を121℃、TD最大倍率を2.0倍、緩和率を0.90倍とした。こうして得られた微多孔膜セパレータ1の各種特性の評価結果を、組成と共に以下の表1に示す。
[電解液の調製]
 エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とを1:4質量比で混合した溶媒に1mol/lの濃度でLiPFを溶解して得た溶液を電解液として使用した。
[キャパシタの組立]
 得られた片面正極電極体、両面正極電極体、及び両面負極電極体を、100mm×100mmにカットした。次に、最上面と最下面は片面正極電極体を用い、中間部は、両面負極電極体20枚と両面正極電極体19枚とを、微多孔膜セパレータ1を介して交互に積層した後、負極電極体と正極電極体に電極端子を接続して電極積層体とした。この電極積層体をラミネートフィルムからなる外装体内に挿入し、電極端子の端部を引き出した状態で上記電解液を注入して該外装体を密閉し、リチウムイオンキャパシタを組立てた。この時、X及びXはともに1.0であった。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を行った。2Cの電流値で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。次に、キャパシタの一面の中央部に熱電対をポリイミドテープで貼り付け、金属板で挟みリボンヒーターを巻いて加熱媒体に用い、大気雰囲気下の恒温槽内にセッティングした。該リボンヒーターの設定昇温速度は5℃/分とし、キャパシタの電圧と温度とを測定した。短絡開始温度は128℃、完全短絡温度は138℃であり、200℃を超えた時点で、キャパシタは破裂及び発火することなく開封し、ガス噴射はほとんど見られなかった。
 作製したキャパシタを、1.5Cの電流値において定電圧充電時間が1時間確保できる定電流定電圧充電によって3.8Vまで充電し、2.2Vまで同じく1.5Cの電流値において定電流放電を施した。その際の容量と電圧変化より本キャパシタの静電容量は1200Fであることが分かった。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は82%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、55%であった。
<実施例1-2>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 実施例1-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに4.0とすること以外は、実施例1-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は133℃、完全短絡温度は143℃であり、200℃を超えた時点で、キャパシタは破裂及び発火することなく開封し、ガス噴射はほとんど見られなかった。作製したキャパシタの電圧と温度とを測定した。試験結果を図2に示す。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は82%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、55%であった。
<実施例1-3>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 実施例1-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに7.5とすること以外は、実施例1-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は133℃、完全短絡温度は149℃であり、200℃を超えた時点で、キャパシタは破裂及び発火することなく開封し、ガス噴射はほとんど見られなかった。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は82%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、55%であった。
<実施例2-1>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 セパレータ2
 純ポリマーとしてMvが25万のポリエチレンのホモポリマーを準備した。以降、実施例1と同様な手法により、セパレータ2を作製した。ただし、設定延伸条件は、MDの延伸倍率5.0倍、TDの延伸倍率5.0倍、設定温度121℃であった。また、熱固定温度を120℃、TD最大倍率を2.4倍、緩和率を0.85倍とした。こうして得られた微多孔膜セパレータ2の各種特性の評価結果を、組成等と共に表1に示す。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 得られた微多孔膜セパレータ2を用いて、実施例1-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は131℃、完全短絡温度は143℃であり、200℃を超えた時点で、キャパシタは破裂及び発火することなく開封し、ガス噴射はほとんど見られなかった。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は81%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、53%であった。
<実施例2-2>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 実施例2-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに4.0とすること以外は、実施例2-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は132℃、完全短絡温度は145℃であり、200℃を超えた時点で、キャパシタは破裂及び発火することなく開封し、ガス噴射はほとんど見られなかった。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は81%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、53%であった。
<実施例2-3>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 実施例2-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに7.5とすること以外は、実施例2-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は130℃、完全短絡温度は150℃であり、200℃を超えた時点で、キャパシタは破裂及び発火することなく開封し、ガス噴射はほとんど見られなかった。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は81%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、53%であった。
<実施例3-1>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
セパレータ3
 実施例1と同様な手法により、セパレータ3を作製した。ただし、熱固定の緩和率を1.0倍とした(緩和しない)。こうして得られた微多孔膜セパレータ3の各種特性の評価結果を、組成等と共に表1に示す。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 得られた微多孔膜セパレータ3を用いて、実施例1-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は123℃、完全短絡温度は131℃であり、200℃を超えた時点で、キャパシタは破裂及び発火することなく開封し、ガス噴射はほとんど見られなかった。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は84%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、56%であった。
<実施例3-2>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 実施例3-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに4.0とすること以外は、実施例3-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は129℃、完全短絡温度は139℃であり、200℃を超えた時点で、キャパシタは破裂及び発火することなく開封し、ガス噴射はほとんど見られなかった。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は84%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、56%であった。
<実施例3-3>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 実施例3-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに7.5とすること以外は、実施例3-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は130℃、完全短絡温度は144℃であり、200℃を超えた時点で、キャパシタは破裂及び発火することなく開封し、ガス噴射はほとんど見られなかった。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は84%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、56%であった。
<比較例1>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 セルロース紙セパレータ4(各種特性の評価結果を表1に示す。)を用いて、実施例1-2と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、200℃に到達しても短絡開始せず電力を保持したままであり、210℃を超えた時点でキャパシタは破裂及び発火することなく開封したが、弱いガス噴射が認められた。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は78%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、49%であった。
<比較例2-1>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 セパレータ5
 純ポリマーとしてMvが20万のポリプロピレンのホモポリマーを準備した。以降、実施例1と同様な手法により、セパレータ5を作製した。ただし、設定延伸条件は、MDの延伸倍率5.0倍、TDの延伸倍率5.0倍、設定温度130℃であった。また、熱固定温度を140℃、TD最大倍率を1.8倍、緩和率を0.85倍とした。こうして得られた微多孔膜セパレータ5の各種特性の評価結果を、組成等と共に以下の表1に示す。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 得られた微多孔膜セパレータ5を用い、更にX及びXはともに0.3とすること以外は、実施例1-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は175℃、以降徐々に電圧降下が確認されたが完全短絡までには至らず、200℃を越えた時点でキャパシタは破裂及び発火することなく外装体が開封したが、強いガス噴射が認められた。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は67%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、28%であった。
<比較例2-2>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 比較例2-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに4.0とすること以外は、比較例2-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は175℃、以降徐々に電圧降下が確認されたが完全短絡までには至らず、200℃を越えた時点でキャパシタは破裂及び発火することなく外装体が開封したが、強いガス噴射が認められた。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は67%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、28%であった。
<比較例2-3>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 比較例2-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに11とすること以外は、比較例2-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は175℃、以降徐々に電圧降下が確認されたが完全短絡までには至らず、200℃を越えた時点でキャパシタは破裂及び発火することなく外装体が開封したが、強いガス噴射が認められた。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は67%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、28%であった。
<比較例3>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 実施例1-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに11とすること以外は、実施例1-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は140℃、完全短絡温度は175℃であり、200℃を越えた時点でキャパシタは破裂及び発火することなく外装体が開封したが、強いガス噴射が認められた。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は82%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、55%であった。
<比較例4>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 実施例1-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに0.3とすること以外は、実施例1-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は95℃、完全短絡温度は109℃であり、200℃を越えた時点でキャパシタは破裂及び発火することなく外装体が開封したが、ガス噴射が認められた。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は82%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、55%であった。
<比較例5-1>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 セパレータ6
 実施例1と同様な手法により、セパレータ6を作製した。但し、二軸延伸、抽出、乾燥工程までで終了し、熱固定を行わなかった。こうして得られた微多孔膜セパレータ6の各種特性の評価結果を、組成等と共に表1に示す。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 得られた微多孔膜セパレータ6を用い、更にX及びXはともに0.3とすること以外は、実施例1-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は91℃、完全短絡温度は105℃であり、200℃を越えた時点でキャパシタは破裂及び発火することなく外装体が開封したが、ガス噴射が認められた。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は80%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、50%であった。
<比較例5-2>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 比較例5-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに4.0とすること以外は、比較例5-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は93℃、完全短絡温度は107℃であり、200℃を越えた時点でキャパシタは破裂及び発火することなく外装体が開封したが、強いガス噴射が認められた。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は80%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、50%であった。
<比較例5-3>
[正極電極体の作製]
 実施例1-1と同様に作製した。
[負極電極体の作製]
 実施例1-1と同様に作製した。
[セパレータの作製]
 比較例5-1と同様に作製した。
[電解液の調製]
 実施例1-1と同様に作製した。
[キャパシタの組立]
 X及びXはともに11とすること以外は、比較例5-1と同様な条件にて、リチウムイオンキャパシタを組立てた。
[加熱試験と特性評価]
 作製したキャパシタの加熱試験を実施したところ、短絡開始温度は135℃、完全短絡温度は165℃であり、200℃を越えた時点でキャパシタは破裂及び発火することなく外装体が開封したが、強いガス噴射が認められた。
 作製したキャパシタを25℃の環境下で特性評価を行った。1Cの電流量で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、1Cの電流量で2.0Vまで放電した。次に、同上の充電を2時間行った後、300Cの電流値で2.0Vまで放電した。1Cでの放電容量に対する300Cでの放電容量の比率は80%であった。次に、-20℃の環境下で特性評価を行った。上記と同様な充電を行い、200Cの電流量で2.0Vまで放電した。25℃の1Cでの放電容量に対する、-20℃の200Cでの放電容量の比率は、50%であった。
 上記実施例及び比較例から分かるように、本発明のリチウムイオンキャパシタでは、高温時に、熱収縮率が高いセパレータを用いることで、そのメルトダウンにより、安全かつ瞬時に短絡することができ、比較的低温において電力を消費することで熱暴走時の破裂や発火の恐れがない安全なキャパシタの提供が可能である。
Figure JPOXMLDOC01-appb-T000001
 本発明のリチウムイオンキャパシタは、ハイブリット駆動システム向けの蓄電素子等として、好適に利用できる。
 A  セパレータの第一の方向と平行となる任意の直線において、該任意の直線における電極面積とセパレータとが重なる部分の長さ
 L1  電極面積とセパレータが重ならない部分の長さ
 L1’  電極面積とセパレータが重ならない部分の長さ
 1  セパレータ
 2  正極電極体の正極活物質層の面積又は負極電極体の負極活物質層の負極面積のいずれか大なる方の電極
 3  2の電極における集電体(活物質層は塗布されていない部位)

Claims (9)

  1.  炭素材料を負極活物質として含む負極活物質層が負極集電体に設置されている負極電極体;
     ポリエチレンを含むポリオレフィン樹脂から成るセパレータ;及び
     炭素材料又は炭素化合物材料のいずれかから成る正極活物質を含む正極活物質層が正極集電体に設置されている正極電極体;
    を積層して成る電極積層体;並びに
     リチウムイオン含有電解質を含む非水系電解液;
    を、外装体に収納して含むリチウムイオンキャパシタであって、
     該セパレータを非拘束状態で1時間に亘って100℃に保ったときに、該セパレータの熱収縮率が、第一の方向では3%以上10%以下であり、かつ、第一の方向と直交する第二の方向では2%以上10%以下であり、
     該正極電極体の正極活物質層の面積又は該負極電極体の負極活物質層の負極面積のいずれか大なる電極面積と該セパレータの面積とが、(セパレータ面積)>(電極面積)の関係にあり、かつ、
     上面視における、該セパレータの第一の方向と平行となる任意の直線において、該任意の直線における該電極面積と該セパレータとが重なる部分の長さをAとし、該電極面積と該セパレータが重ならない部分の長さをL、L’とした時、L、L’のいずれかが最も短くなるような任意の直線のL又はL’を下記式(1):
       X=(L又はL’/(A/2))×100
    に代入して求めたXと、
    上面視における、該セパレータの第二の方向と平行となる任意の直線において、該任意の直線における該電極面積と該セパレータとが重なる部分の長さをBとし、該電極面積と該セパレータが重ならない部分の長さをL、L’とした時、L、L’のいずれかが最も短くなるような任意の直線のL又はL’を下記式(2):
       X=(L又はL’/(A/2))×100
    に代入して求めたXが、いずれも、0.5以上8.0以下である、
    ことを特徴とする前記リチウムイオンキャパシタ。
  2.  前記セパレータの孔径が、0.01μm~0.1μmであり、かつ孔数が、100個/μm~250個/μmである、請求項1に記載のリチウムイオンキャパシタ。
  3.  前記セパレータのメチルエチルカーボネートをプローブ分子として測定し、算出したブルッグマン指数が、2.0~3.0である、請求項1又は2に記載のリチウムイオンキャパシタ。
  4.  前記セパレータの膜厚が、5μm以上35μm以下であり、かつ空孔率が、30%~75%である、請求項1~3のいずれか1項に記載のリチウムイオンキャパシタ。
  5.  前記セパレータは、ポリエチレンから成る、請求項1~4のいずれか1項に記載のリチウムイオンキャパシタ。
  6.  静電容量が1000F以上である、請求項1~5のいずれか1項に記載のリチウムイオンキャパシタ。
  7.  前記負極活物質は、活性炭の表面に炭素材料を被着させることにより形成され、かつ、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とするとき、
      0.010≦Vm1≦0.250、
      0.001≦Vm2≦0.200、及び
      1.5≦Vm1/Vm2≦20.0を満たす複合多孔性材料である、請求項1~6のいずれか1項に記載のリチウムイオンキャパシタ。
  8.  前記正極活物質は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、
      0.3<V1≦0.8、及び
      0.5≦V2≦1.0を満たし、かつBET法により測定される比表面積が1500m/g以上3000m/g以下である活性炭である、請求項1~7のいずれか1項に記載のリチウムイオンキャパシタ。
  9.  炭素材料を負極活物質として含む負極活物質層が負極集電体に設置されている負極電極体;
     ポリエチレンを含むポリオレフィン樹脂から成るセパレータ;及び
     炭素材料、炭素化合物材料のいずれかからなる正極活物質を含む正極活物質層が正極集電体に設置されている正極電極体;
    を積層して成る電極積層体;並びに
     リチウムイオン含有電解質を含む非水系電解液;
    を、外装体に収納して含むリチウムイオンキャパシタであって、
     該リチウムイオンキャパシタを30℃以下の温度から5℃/分で昇温する環境下において加熱したときに、該リチウムイオンキャパシタは、120℃以上150℃以下の範囲に短絡開始温度及び完全短絡温度を有し、そして該短絡開始温度と該完全短絡温度の差が20℃以下であることを特徴とする前記リチウムイオンキャパシタ。
PCT/JP2013/075159 2012-09-20 2013-09-18 リチウムイオンキャパシタ WO2014046131A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/429,519 US10236133B2 (en) 2012-09-20 2013-09-18 Lithium ion capacitor
KR1020157006617A KR101674843B1 (ko) 2012-09-20 2013-09-18 리튬 이온 캐패시터
CN201380047862.3A CN104620343B (zh) 2012-09-20 2013-09-18 锂离子电容器
EP13839901.9A EP2899730B1 (en) 2012-09-20 2013-09-18 Lithium ion capacitor
JP2014536879A JP6029675B2 (ja) 2012-09-20 2013-09-18 リチウムイオンキャパシタ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012207518 2012-09-20
JP2012-207518 2012-09-20
JP2012-207509 2012-09-20
JP2012207509 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014046131A1 true WO2014046131A1 (ja) 2014-03-27

Family

ID=50341441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075159 WO2014046131A1 (ja) 2012-09-20 2013-09-18 リチウムイオンキャパシタ

Country Status (7)

Country Link
US (1) US10236133B2 (ja)
EP (1) EP2899730B1 (ja)
JP (1) JP6029675B2 (ja)
KR (1) KR101674843B1 (ja)
CN (1) CN104620343B (ja)
TW (1) TWI484514B (ja)
WO (1) WO2014046131A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198164A (ja) * 2014-04-01 2015-11-09 旭化成株式会社 非水系リチウム型蓄電素子
JPWO2014088074A1 (ja) * 2012-12-06 2017-01-05 旭化成株式会社 非水系リチウム型蓄電素子

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102035375B1 (ko) * 2013-10-15 2019-10-22 가부시키가이샤 무라타 세이사쿠쇼 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
JP6871676B2 (ja) * 2015-11-26 2021-05-12 株式会社ジェイテクト 蓄電デバイス及び蓄電デバイスの製造方法
KR101935214B1 (ko) * 2016-01-22 2019-01-03 아사히 가세이 가부시키가이샤 비수계 리튬형 축전 소자
CN108475585B (zh) * 2016-01-22 2020-04-14 旭化成株式会社 非水系锂蓄电元件
EP3544038B1 (en) 2016-11-15 2022-07-20 Kuraray Co., Ltd. Carbonaceous material for electric double layer capacitors and method for producing same
JPWO2018203518A1 (ja) 2017-05-01 2020-03-12 テイカ株式会社 リチウムイオンキャパシタ用正極
KR101885781B1 (ko) * 2017-07-05 2018-08-06 (주)다오코리아 온열 매트
CN108364787B (zh) * 2017-12-29 2020-06-02 安徽铜峰电子股份有限公司 一种耐高温电容器薄膜及其电容器
US20210407741A1 (en) * 2018-12-10 2021-12-30 Panasonic Intellectual Property Management Co., Ltd. Electrochemical device electrode and electrochemical device
CN113140411A (zh) * 2021-06-04 2021-07-20 中南大学 一种高电压锂离子电容器的电解液

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217674A (ja) * 2002-01-25 2003-07-31 Sony Corp 非水電解質電池
JP2005039139A (ja) 2003-07-18 2005-02-10 Asahi Kasei Electronics Co Ltd 非水系リチウム型蓄電素子および製造方法
JP2012074467A (ja) * 2010-09-28 2012-04-12 Asahi Kasei Corp 正極材料及びその製造方法並びに蓄電素子
JP2012072263A (ja) 2010-09-28 2012-04-12 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜
JP2012102199A (ja) * 2010-11-08 2012-05-31 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜、及び蓄電デバイス

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744258A (en) * 1996-12-23 1998-04-28 Motorola,Inc. High power, high energy, hybrid electrode and electrical energy storage device made therefrom
JP4825344B2 (ja) * 2000-06-07 2011-11-30 Fdk株式会社 電池・キャパシタ複合素子
JP2010278455A (ja) * 2003-09-30 2010-12-09 Tdk Corp 電気化学デバイス
CN101031421B (zh) * 2004-10-01 2011-07-27 旭化成电子材料株式会社 聚烯烃微孔膜
KR100686804B1 (ko) * 2005-04-25 2007-02-26 삼성에스디아이 주식회사 초고용량 캐패시터을 구비하는 전극 조립체 및 이를포함하는 리튬 이차 전지
JP5057654B2 (ja) * 2005-05-17 2012-10-24 旭化成イーマテリアルズ株式会社 ポリエチレン製微多孔膜
CN101595541B (zh) * 2006-10-17 2012-02-15 麦斯韦尔技术股份有限公司 用于能量存储装置的电极及其制备方法
CN101861634B (zh) * 2007-11-16 2013-08-07 大阪瓦斯株式会社 非水锂基电存储装置的正极材料
US8248757B2 (en) * 2007-11-16 2012-08-21 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type storage element
US8503162B2 (en) * 2008-01-17 2013-08-06 Fraser W. SEYMOUR Electrode, related material, process for production, and use thereof
JP5297132B2 (ja) 2008-09-26 2013-09-25 旭化成株式会社 非水系リチウム型蓄電素子及びその製造方法
JP2010123287A (ja) * 2008-11-17 2010-06-03 Panasonic Corp 非水電解液および非水電解液二次電池
CN101462381B (zh) * 2009-01-06 2012-06-13 韩伟嘉 聚烯烃微孔隔膜及其制作方法
US20100316912A1 (en) * 2009-06-11 2010-12-16 Tomoegawa Co., Ltd. Separator for power storage device
KR101251437B1 (ko) * 2010-03-23 2013-04-05 데이진 가부시키가이샤 폴리올레핀 미다공막, 비수계 2차 전지용 세퍼레이터, 비수계 2차 전지 및 폴리올레핀 미다공막의 제조 방법
JP5479969B2 (ja) 2010-03-25 2014-04-23 旭化成株式会社 非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子
KR20140018171A (ko) * 2010-07-19 2014-02-12 옵토도트 코포레이션 전기화학 전지용 세퍼레이터
JP2012033399A (ja) * 2010-07-30 2012-02-16 Sanyo Electric Co Ltd 角形二次電池
KR101138477B1 (ko) * 2010-08-31 2012-04-25 삼성전기주식회사 리튬 이온 커패시터 및 이의 제조 방법
US8900755B2 (en) * 2010-09-23 2014-12-02 Nanotek Instruments, Inc. Lithium super-battery with a chemically functionalized disordered carbon cathode
WO2012053256A1 (ja) * 2010-10-19 2012-04-26 Jmエナジー株式会社 リチウムイオンキャパシタ
KR101138584B1 (ko) * 2010-10-21 2012-05-10 삼성전기주식회사 리튬이온 커패시터
JP5975843B2 (ja) * 2011-12-16 2016-08-23 Jfeケミカル株式会社 難黒鉛化性炭素材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
EP2930728B1 (en) * 2012-12-06 2020-02-05 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
EP2950319B1 (en) * 2013-01-22 2020-08-12 Asahi Kasei Kabushiki Kaisha Lithium ion capacitor
CN110644290A (zh) * 2014-09-26 2020-01-03 旭化成株式会社 包含纤维素微细纤维层的薄膜片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217674A (ja) * 2002-01-25 2003-07-31 Sony Corp 非水電解質電池
JP2005039139A (ja) 2003-07-18 2005-02-10 Asahi Kasei Electronics Co Ltd 非水系リチウム型蓄電素子および製造方法
JP2012074467A (ja) * 2010-09-28 2012-04-12 Asahi Kasei Corp 正極材料及びその製造方法並びに蓄電素子
JP2012072263A (ja) 2010-09-28 2012-04-12 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜
JP2012102199A (ja) * 2010-11-08 2012-05-31 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜、及び蓄電デバイス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. C. LIPPENS; J. H. DE BOER, J. CATALYSIS, 1965, pages 4319
E. P. BARRETT; L. G. JOYNER; P. HALENDA, J. AMER. CHEM. SOC., vol. 73, 1951, pages 373
R. S. MIKHAIL; S. BRUNAUER; E. E. BODOR, J. COLLOID INTERFACE SCI., vol. 26, 1968, pages 45

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014088074A1 (ja) * 2012-12-06 2017-01-05 旭化成株式会社 非水系リチウム型蓄電素子
JP2015198164A (ja) * 2014-04-01 2015-11-09 旭化成株式会社 非水系リチウム型蓄電素子

Also Published As

Publication number Publication date
US20150243449A1 (en) 2015-08-27
JPWO2014046131A1 (ja) 2016-08-18
JP6029675B2 (ja) 2016-11-24
CN104620343A (zh) 2015-05-13
US10236133B2 (en) 2019-03-19
EP2899730A4 (en) 2015-10-07
CN104620343B (zh) 2017-09-29
TW201423788A (zh) 2014-06-16
KR20150043479A (ko) 2015-04-22
KR101674843B1 (ko) 2016-11-09
EP2899730B1 (en) 2021-03-31
EP2899730A1 (en) 2015-07-29
TWI484514B (zh) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6029675B2 (ja) リチウムイオンキャパシタ
JP6434311B2 (ja) リチウムイオンキャパシタ
JP6373761B2 (ja) 非水系リチウム型蓄電素子
JP7042589B2 (ja) 負極
KR101811970B1 (ko) 리튬 이온 캐패시터
JP5479969B2 (ja) 非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子
WO2019156090A1 (ja) 非水系リチウム蓄電素子
JP2016042502A (ja) 非水系リチウム型蓄電素子用の負極
JP2018056435A (ja) 非水系リチウム型蓄電素子
JP2015198164A (ja) 非水系リチウム型蓄電素子
JP6931577B2 (ja) 非水系リチウム型蓄電素子
JP6754657B2 (ja) 非水系リチウム型蓄電素子
JP2017085037A (ja) 非水系リチウム型蓄電素子用負極電極体、及びそれを用いた非水系リチウム型蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536879

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157006617

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013839901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14429519

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE