WO2014045887A1 - 防振ゴム部材およびその製造方法 - Google Patents

防振ゴム部材およびその製造方法 Download PDF

Info

Publication number
WO2014045887A1
WO2014045887A1 PCT/JP2013/073960 JP2013073960W WO2014045887A1 WO 2014045887 A1 WO2014045887 A1 WO 2014045887A1 JP 2013073960 W JP2013073960 W JP 2013073960W WO 2014045887 A1 WO2014045887 A1 WO 2014045887A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
elastic body
rubber elastic
lubricant
rubber
Prior art date
Application number
PCT/JP2013/073960
Other languages
English (en)
French (fr)
Inventor
中村 順和
浩幸 松村
鈴木 貴久
Original Assignee
東海ゴム工業株式会社
エスティーティー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社, エスティーティー株式会社 filed Critical 東海ゴム工業株式会社
Publication of WO2014045887A1 publication Critical patent/WO2014045887A1/ja
Priority to US14/636,339 priority Critical patent/US9677636B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3605Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • B05D5/086Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers having an anchoring layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/005Ball joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/02Attaching arms to sprung part of vehicle
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/02Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M147/00Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
    • C10M147/02Monomer containing carbon, hydrogen and halogen only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/143Mounting of suspension arms on the vehicle body or chassis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • B60G2204/4104Bushings having modified rigidity in particular directions
    • B60G2204/41042Bushings having modified rigidity in particular directions by using internal cam surfaces

Definitions

  • the present invention relates to a vibration-proof rubber member that is in sliding contact with a counterpart member that vibrates relative to itself and a method for manufacturing the same.
  • a stabilizer bush may be mentioned.
  • the stabilizer bush is fixed to the vehicle body via a bracket.
  • a stabilizer bar is disposed in the holding hole of the stabilizer bush.
  • the stabilizer bar when the vehicle is turning, the outer ring side of the suspension sinks and the inner ring side extends due to centrifugal force. For this reason, the stabilizer bar is twisted. Using the elastic restoring force against the torsion, the stabilizer bar tries to lift the outer ring side of the suspension. In this way, the stabilizer bar keeps the vehicle horizontal.
  • a liner made of PTFE (polytetrafluoroethylene) having a small friction coefficient has been inserted into the holding hole. And the inner peripheral surface of the liner and the outer peripheral surface of the stabilizer bar were brought into sliding contact.
  • PTFE liners are relatively expensive. For this reason, when a PTFE liner is employed, the manufacturing cost of the stabilizer bush increases.
  • Patent Literatures 1 and 2 disclose a stabilizer bush having a rubber elastic body made of self-lubricating rubber, a coating film, and a lubricating film.
  • a holding hole is formed on the radially inner side of the rubber elastic body.
  • a stabilizer bar is disposed in the holding hole.
  • the coating covers the inner peripheral surface of the holding hole.
  • the bleed lubricant contained in the self-lubricating rubber penetrates the coating and oozes out to the surface of the coating, thereby forming a lubricating film.
  • the lubricating film is in sliding contact with the stabilizer bar.
  • the lubricating film is predominantly slidably contacted with the stabilizer bar preliminarily. This reduces the frictional resistance between the stabilizer bush and the stabilizer bar.
  • an object of the present invention is to provide a vibration-insulating rubber member having a low frictional resistance with the counterpart member and having a high abrasion resistance of the coating, and a relatively simple manufacturing method thereof.
  • the vibration-insulating rubber member of the present invention includes a sliding surface that absorbs at least a part of the vibration of the counterpart member and relatively slides against the counterpart member.
  • a rubber elastic body made of self-lubricating rubber which is an anti-vibration rubber member and contains an elastomer and a bleed lubricant, and a slide disposed inside the sliding surface of the surface of the rubber elastic body
  • Solid lubrication that covers at least part of the inner surface and contains one or more functional groups selected from mercapto groups, vinyl groups, epoxy groups, methacryloxy groups, and amino groups, and polytetrafluoroethylene particles and ultrahigh molecular weight polyethylene particles
  • a coating that can be deformed following the deformation of the rubber elastic body, covers at least a part of the surface of the coating, passes through the coating from the rubber elastic body, and enters the surface of the coating Oozing Is formed to include the bleeding lubricant is characterized in that it comprises a lubricating film which forms at least part of the
  • the anti-vibration rubber member of the present invention includes a rubber elastic body, a coating film, and a lubricating film.
  • the coating contains a solid lubricant comprising polytetrafluoroethylene particles and ultra high molecular weight polyethylene particles. By containing ultrahigh molecular weight polyethylene particles, the coating is excellent in wear resistance.
  • Patent Document 3 discloses a rubber molded product having a resin thin layer made of ultrahigh molecular weight polyethylene.
  • the said patent document 4 is disclosing the molded object using ultra high molecular weight polyethylene.
  • ultra high molecular weight polyethylene is excellent in wear resistance.
  • the anti-vibration rubber member coating of the present invention contains polytetrafluoroethylene particles together with ultrahigh molecular weight polyethylene particles.
  • the friction resistance of polytetrafluoroethylene particles is particularly small among solid lubricants. Therefore, by using the polytetrafluoroethylene particles and the ultrahigh molecular weight polyethylene particles in combination, it is possible to improve the wear resistance of the coating while reducing the frictional resistance of the coating against the counterpart member.
  • the lubricating film is formed to include a bleed lubricant that permeates the film from the rubber elastic body and oozes out on the surface of the film. That is, the lubricating film may be formed only from a bleed lubricant exuding from the rubber elastic body, or may be formed including other lubricating components in addition to the bleed lubricant. As will be described in detail later, in order to form micropores in the coating, a bleed lubricant (which may be the same as or different from the bleed lubricant component in the rubber elastic body) is blended in the paint forming the coating. There is a case.
  • the bleed lubricant in the paint is released from the paint at the time of baking, and oozes out on the surface of the coating film during curing.
  • a lubricating film is formed from both the bleeding lubricant that permeates the coating from the rubber elastic body and oozes out on the surface of the coating, and the bleeding lubricant that is released from the coating.
  • the ultra high molecular weight polyethylene particles should have an average particle diameter of 1 ⁇ m or more and 30 ⁇ m or less.
  • the blending amount must be increased in order to ensure the desired wear resistance.
  • the amount of the resin serving as the binder is reduced with respect to the ultrahigh molecular weight polyethylene particles, the adhesion between the coating and the rubber elastic body is lowered. As a result, the film may be easily peeled off from the rubber elastic body.
  • the ultra high molecular weight polyethylene particles have a large particle size, it becomes difficult to form a paint.
  • the unevenness of the film becomes large if the particle diameter is large relative to the film thickness. In addition, the particles easily fall off.
  • the average particle diameter of the ultrahigh molecular weight polyethylene particles is defined as 1 ⁇ m or more and 30 ⁇ m or less.
  • the average particle size of the polytetrafluoroethylene particles is preferably 0.5 ⁇ m or more and 30 ⁇ m or less.
  • the coating film contains the solid lubricant in an amount of 10 parts by mass to 70 parts by mass with respect to 100 parts by mass of the resin. Is good.
  • the content of the solid lubricant is set to 70 parts by mass or less. If the content exceeds 70 parts by mass, the amount of the binder resin with respect to the solid lubricant is reduced, so that the adhesion between the coating and the rubber elastic body is reduced. This is because the film is lowered and the film is easily peeled off. Moreover, it is because solid lubricant itself becomes resistance and there exists a possibility that the frictional resistance of a film may become large. According to this configuration, it is possible to reduce the frictional resistance of the coating against the mating member and improve the wear resistance of the coating while suppressing the peeling of the coating.
  • the ratio of the ultra high molecular weight polyethylene particles contained in the solid lubricant is 100% by mass of the whole solid lubricant. It is better to set it as the structure which is 10 mass% or more and 90 mass% or less of the case. It is more preferable that it is 30 mass% or more and 80 mass% or less.
  • Polytetrafluoroethylene particles mainly serve to reduce the frictional resistance of the coating.
  • Ultra high molecular weight polyethylene particles also have a self-lubricating property, but mainly serve to increase the wear resistance of the coating. According to this configuration, both the friction resistance and the wear resistance of the coating can be brought to satisfactory levels.
  • the coating has a plurality of micropores capable of storing the bleeding lubricant that has oozed from the rubber elastic body. Better to do.
  • the coating has a plurality of micropores capable of storing a bleed lubricant exuding from the rubber elastic body. Therefore, even if the bleeding speed of the bleed lubricant in the self-lubricating rubber exceeds the transmission speed of the film at high temperatures, even if not all of the bleed lubricant that has oozed can penetrate the film, the excess bleedability The lubricant can be stored in the micropores in the coating. For this reason, the bleed lubricant is unlikely to accumulate at the interface between the coating and the rubber elastic body. Therefore, according to the vibration-proof rubber member of this configuration, the coating film is difficult to peel from the rubber elastic body even at high temperatures. That is, the vibration-proof rubber member having this configuration is excellent in durability.
  • the bleed lubricant that has oozed from the rubber elastic body is stored in at least a part of the plurality of micropores. .
  • the bleed lubricant exuding from the rubber elastic body is stored in the coating. That is, even if the amount of bleed lubricant exuded is large, it can remain in the coating, and therefore the bleed lubricant is less likely to accumulate at the interface between the coating and the rubber elastic body. Therefore, the coating is difficult to peel from the rubber elastic body even at high temperatures. Further, even in a portion where the lubricant film is insufficient and the coating film is exposed on the sliding surface, the coating film storing the bleed lubricant is exposed and slidably contacts the mating member. For this reason, the frictional resistance between the mating member becomes smaller.
  • the rubber elastic body has a holding hole in which the counterpart member is disposed, and the sliding inner surface is the holding hole. It is better to have a configuration that is the inner peripheral surface of the.
  • the frictional resistance of the inner peripheral surface of the holding hole with respect to the outer peripheral surface of the counterpart member can be reduced.
  • the torsional torque applied from the outer peripheral surface of the counterpart member to the inner peripheral surface of the holding hole can be reduced.
  • the first method of manufacturing the vibration-insulating rubber member of the present invention is a method of manufacturing the vibration-insulating rubber member having the above-described configuration (1), in which an elastomer, a bleed lubricant, A cross-linking step for producing a rubber elastic body made of self-lubricating rubber, a degreasing step for degreasing a sliding inner surface disposed inside the sliding surface among the surfaces of the rubber elastic body, and a post-degreasing step
  • the sliding inner surface includes a thermosetting resin having one or more kinds of functional groups selected from mercapto groups, vinyl groups, epoxy groups, methacryloxy groups, and amino groups, polytetrafluoroethylene particles, and ultrahigh molecular weight polyethylene particles.
  • the body Lead lubricant was seep to the surface of the coating film after passing through the coating film, and having a firing step of forming a lubricating film comprising the bleeding lubricant on the surface of the coating film.
  • the first manufacturing method of the vibration-proof rubber member of the present invention includes a crosslinking step, a degreasing step, a coating step, and a firing step.
  • a crosslinking step a rubber elastic body is produced by a crosslinking reaction.
  • the degreasing step the bleeding lubricant that has oozed from the sliding inner surface is temporarily removed by degreasing the sliding inner surface.
  • the coating step a paint containing a predetermined thermosetting resin and a solid lubricant is applied to the sliding inner surface from which the bleed lubricant has been removed (including spraying as well as coating with a brush). To do.
  • the paint is cured by heat to form a film on the sliding inner surface of the rubber elastic body.
  • the coating and the rubber elastic body are strongly bonded (chemically bonded) by one or more functional groups selected from a mercapto group, a vinyl group, an epoxy group, a methacryloxy group, and an amino group of the thermosetting resin.
  • the bleed lubricant of the rubber elastic body penetrates the coating and oozes out to the surface of the coating.
  • a lubricating film is formed on the surface of the coating mainly by the bleed lubricant.
  • the vibration-insulating rubber member of the present invention having a low frictional resistance with the mating member and a high wear resistance of the coating is produced relatively easily. be able to.
  • the second method for producing the vibration-insulating rubber member of the present invention is a method for producing the vibration-insulating rubber member having the above-described configuration (5), in which an elastomer, a bleed lubricant, A cross-linking step for producing a rubber elastic body made of self-lubricating rubber, a degreasing step for degreasing a sliding inner surface disposed inside the sliding surface among the surfaces of the rubber elastic body, and a post-degreasing step A solid containing a thermosetting resin having one or more functional groups selected from a mercapto group, a vinyl group, an epoxy group, a methacryloxy group, and an amino group, polytetrafluoroethylene particles, and ultrahigh molecular weight polyethylene particles on the sliding inner surface
  • the difference from the first manufacturing method of (8) is that a micropore forming agent is blended in the coating material for forming the coating film.
  • the micropore forming agent is released from the paint by heat during baking.
  • the firing step a plurality of micropores are formed inside the coating by releasing the micropore forming agent when the coating is cured.
  • a film having a plurality of micropores can be formed relatively easily by blending a micropore forming agent with the paint.
  • the micropore forming agent is released from the paint by heat during baking, but the micropore forming agent and its decomposition product may remain in the cured coating as long as the coating performance is not affected.
  • the micropores can be reliably formed by increasing the release rate of the micropore forming agent during firing higher than the rate at which the bleeding lubricant exudes.
  • the firing temperature and the like may be adjusted together with the selection of the resin for the coating, the micropore forming agent, the elastomer for the rubber elastic body, and the bleed lubricant.
  • the micropores formed in the coating film can store the bleeding lubricant that has oozed out of the rubber elastic body. Therefore, even if the bleeding speed of the bleed lubricant in the self-lubricating rubber exceeds the transmission speed of the film at high temperatures, even if not all of the bleed lubricant that has oozed can penetrate the film, the excess bleedability The lubricant is stored in the micropores in the coating. As a result, the bleed lubricant is less likely to accumulate at the interface between the coating and the rubber elastic body. Therefore, peeling of the film from the rubber elastic body at high temperature can be suppressed.
  • the frictional resistance with the counterpart member is small, the wear resistance of the coating is high, and the coating is formed from the rubber elastic body even at high temperatures.
  • the anti-vibration rubber member of the present invention that is difficult to peel off can be manufactured relatively easily.
  • the micropore forming agent is preferably composed of at least one selected from a bleed lubricant and a foaming agent.
  • a micropore can be formed, without inhibiting formation of a film and a lubricating film.
  • the micropore forming agent is made of a bleed lubricant
  • the lubricant film is the bleed lubricant contained in the rubber elastic body and the microscopic lubricant. It is better to have a structure formed from both pore-forming agents.
  • ⁇ Bleed lubricant is also contained in rubber elastic bodies.
  • the bleed lubricant forms a lubricating film. Therefore, according to this configuration, impurities hardly remain in the coating film or the lubricating film, and the performance of the coating film or the lubricating film is hardly affected.
  • the bleed lubricant used as the micropore forming agent may be the same as or different from the bleed lubricant component in the rubber elastic body.
  • thermosetting resin is preferably a silicone resin.
  • the matrix of the coating is a silicone resin
  • the bleed lubricant as the micropore forming agent is easily removed from the coating. Therefore, it is easy to make the release rate of the micropore forming agent larger than that of the bleeding lubricant that oozes from the rubber elastic body. Thereby, a micropore can be formed reliably.
  • the silicone resin should have a configuration in which a cross-linked structure is less than a straight silicone resin and a modified product thereof and has rubber elasticity. .
  • the crosslinked structure of the silicone resin is sparse, the bleed lubricant as the micropore forming agent is more easily removed from the coating. Therefore, the release rate of the micropore forming agent can be increased, and micropores can be formed more reliably.
  • the micropore forming agent should include at least one kind of the bleed lubricant contained in the rubber elastic body.
  • the bleed lubricant component of the micropore forming agent may be exactly the same as the bleed lubricant component contained in the rubber elastic body, or only a part thereof may overlap. In the case of the latter, the aspect containing a main component (component with much amount) among the components of the bleeding lubricant contained in a rubber elastic body is desirable.
  • the blending amount of the micropore forming agent is 0.5 when the total solid content forming the coating is 100% by mass. It is better to have a constitution of not less than 20% by mass and not more than 20% by mass.
  • the blending amount of the micropore forming agent may be determined in consideration of the micropore formation and the film performance. That is, when there are too many compounding quantities of a micropore formation agent, the volume ratio of the micropores which occupy for a film will become large, and the intensity
  • an anti-vibration rubber member having a low frictional resistance with the counterpart member and a high wear resistance of the coating. Further, according to the present invention, it is possible to provide a relatively simple method for manufacturing the vibration-proof rubber member.
  • FIG. 16 is a cross-sectional view in the XVII-XVII direction of FIG. 15. It is an enlarged view in the frame XVIII of FIG.
  • 1L Stabilizer bush (vibration isolation rubber member), 1R: Stabilizer bush (vibration isolation rubber member), 2L: Bracket, 2R: Bracket, 3R: Stopper (vibration isolation rubber member), 4R: Lower arm bush, 5R: Bracket, 8 : Vehicle, 9: Vehicle.
  • 10L Rubber elastic body, 11L: Film, 12L: Lubricating film, 20L: Bush holding part, 21L: Fixed part, 30R: Disc, 31R: Rubber member body, 32R: Rubber elastic body, 33R: Film, 34R: Lubrication Membrane, 35R: Paint, 40R: Inner cylinder fitting, 41R: Outer cylinder fitting, 42R: Rubber member, 50R: Front wall, 51R: Rear wall, 80: Suspension, 81: Hub unit, 83: Drive shaft, 84R: Lower Suspension arm, 90: suspension, 91: hub unit, 92: steering gear, 93: drive shaft, 95: body.
  • the vibration-proof rubber member of the present invention is embodied as a stopper.
  • FIG. 1 shows a layout of stoppers according to the present embodiment.
  • members such as a suspension 80, a hub unit 81, and a drive shaft 83 are disposed near the front wheel of the vehicle 8.
  • the suspension 80 includes a spring 800R, a shock absorber 801R, a lower suspension arm 84R, and the like.
  • the lower suspension arm 84R is made of steel and has a substantially V-shaped plate shape.
  • a bush accommodating cylinder portion 840R is formed at the front end (one V-shaped end) of the lower suspension arm 84R.
  • the lower arm bush 4R is press-fitted inside the bush housing cylinder portion 840R.
  • the stopper 3R is disposed in front of the lower arm bush 4R.
  • the bracket 5R is made of steel and has a C-shape that opens upward.
  • the bracket 5R is fixed to the body (not shown) of the vehicle 8.
  • the stopper 3R and the bush accommodating cylinder 840R (lower arm bush 4R) are accommodated inside the C-shaped opening of the bracket 5R.
  • the stopper 3R and the lower arm bush 4R are swingably attached to the bracket 5R by a bolt 841R and a nut 842R.
  • the stopper 3R suppresses the bush housing cylindrical portion 840R from being in direct sliding contact with the bracket 5R.
  • the bush accommodating cylinder portion 840R is included in the mating member of the present invention.
  • FIG. 2 shows a cross-sectional view in the axial direction (front-rear direction) in a state where the stopper and the lower arm bushing of the present embodiment are mounted on the bracket.
  • FIG. 3 is a perspective view of the stopper according to the present embodiment.
  • FIG. 4 shows an exploded perspective view of the stopper of the present embodiment.
  • FIG. 5 shows an enlarged view in the frame V of FIG.
  • FIG. 5 is a schematic diagram for explaining the function of the stopper 3R of the present embodiment.
  • the stopper 3R of the present embodiment includes a disk 30R and a rubber member main body 31R.
  • the disk 30R is made of steel and has a ring shape.
  • a bolt insertion hole 300R is formed at the center of the disc 30R.
  • a bolt 841R is inserted into the bolt insertion hole 300R.
  • the rubber member main body 31R includes a rubber elastic body 32R, a coating 33R, and a lubricating film 34R.
  • the rubber elastic body 32R has a ring shape.
  • the rubber elastic body 32R is disposed so as to cover the rear surface and the outer peripheral surface of the disk 30R.
  • the rubber elastic body 32R and the disc 30R are bonded by cross-linking.
  • a plurality of ribs 320R are formed on the rear surface of the rubber elastic body 32R.
  • the plurality of ribs 320R are arranged in a circle.
  • the plurality of ribs 320R are continuous in a dotted line.
  • the surface of the rib 320R is included in the sliding inner surface of the present invention.
  • the surface of the rib 320R has a substantially smooth surface shape with a predetermined curvature.
  • the coating 33R covers the surface of the rubber elastic body 32R.
  • the film 33R has a thickness of about 20 ⁇ m.
  • the lubricating film 34R is liquid and covers the surface of the coating 33R.
  • the rubber elastic body 32R is made of self-lubricating rubber.
  • the rubber elastic body 32R includes a blend rubber (hereinafter simply referred to as “blend rubber”) 321R of NR (natural rubber) and BR (butadiene rubber), and a bleed lubricant 322R.
  • blend rubber hereinafter simply referred to as “blend rubber”
  • NR natural rubber
  • BR butadiene rubber
  • bleed lubricant 322R two types of oleic amides having different melting points are used.
  • the blend rubber 321R is included in the elastomer of the present invention.
  • the coating 33R includes a silicone resin 330R having a mercapto group, polytetrafluoroethylene (PTFE) particles 335R, and ultrahigh molecular weight polyethylene (UHPE) particles 336R.
  • the PTFE particles 335R have a substantially spherical shape with an average particle diameter of about 0.5 ⁇ m.
  • the UHPE particles 336R have a substantially spherical shape with an average particle diameter of about 1 ⁇ m.
  • UHPE has a mass average molecular weight of 2 million.
  • the total content of PTFE particles 335R and UHPE particles 336R (solid lubricant) is 30 parts by mass with respect to 100 parts by mass of silicone resin 330R.
  • the ratio of UHPE particles 336R constituting the solid lubricant is 70% by mass when the total mass of PTFE particles 335R and UHPE particles 336R is 100% by mass.
  • the lubricating film 34R is formed of a bleed lubricant (oleic amide) 322R of the rubber elastic body 32R. That is, the bleed lubricant 322R of the rubber elastic body 32R passes through the coating 33R as indicated by the white arrow in FIG. And it oozes out on the surface of the film 33R. A lubricating film 34R is formed by the bleeding lubricant 322R that has oozed out.
  • the lower arm bush 4R includes an inner cylinder fitting 40R, an outer cylinder fitting 41R, and a rubber member 42R.
  • the inner cylinder fitting 40R is made of steel and has a cylindrical shape. Bolts 841R are inserted through the inner cylinder fitting 40R.
  • the outer cylinder fitting 41R is made of steel and has a cylindrical shape.
  • the outer cylinder fitting 41R is disposed on the radially outer side of the inner cylinder fitting 40R.
  • the outer cylinder fitting 41R is press-fitted into the bush accommodating cylinder portion 840R.
  • the rubber member 42R is made of rubber and is interposed between the inner cylinder fitting 40R and the outer cylinder fitting 41R. The rubber member 42R, the inner cylinder fitting 40R, and the outer cylinder fitting 41R are bonded by cross-linking.
  • the bracket 5R includes a front wall 50R and a rear wall 51R.
  • a bolt insertion hole 500R is formed in the front wall 50R.
  • a bolt insertion hole 510R is formed in the rear wall 51R.
  • the bolt 841R passes through the bolt insertion hole 500R, the bolt insertion hole 300R, the inner cylinder fitting 40R, and the bolt insertion hole 510R.
  • a nut 842R is screwed to the penetrating end (rear end) of the bolt 841R.
  • a predetermined clearance C is secured between the stopper 3R and the bush housing cylinder portion 840R.
  • the bush accommodating cylinder portion 840R may slide forward with respect to the outer peripheral surface of the outer cylinder fitting 41R.
  • the rear surface of the stopper 3R specifically, the surface of the lubricating film 34R covering the vicinity of the top of the rib 320R (the surface of the coating 33R for the portion where the lubricating film 34R is insufficient
  • the front end of the bush housing cylinder portion 840R Relatively touches the surface.
  • FIG. 6 shows an enlarged cross-sectional view of the rubber elastic body after the crosslinking step and before the degreasing step.
  • FIG. 7 the expanded sectional view of the rubber elastic body after a degreasing process and before an application
  • FIG. 8 the expanded sectional view of the rubber elastic body after an application
  • FIG. 9 the expanded sectional view of the rubber elastic body in a baking process is shown.
  • FIG. 10 the expanded sectional view of the stopper of this embodiment after a baking process is shown. 6 to FIG. 10 show portions corresponding to FIG. 5 (in FIG. 6 to FIG. 10, FIG. 5 is shown rotated by 90 °).
  • the composition is prepared by kneading the raw material of the blend rubber 321R, the bleeding lubricant 322R, the crosslinking agent, and the like.
  • the disc 30R (see FIG. 2) is placed in the cavity.
  • the composition is then poured into the mold cavity.
  • the raw material of the blend rubber 321R in the cavity is subjected to a crosslinking reaction by holding the mold at 160 ° C. for 8 minutes.
  • the mold is opened, and the intermediate body in which the rubber elastic body 32R and the disc 30R are cross-linked and bonded is recovered from the cavity.
  • the bleeding lubricant 322R oozes out from the surface of the rubber elastic body 32R.
  • the surface of the rubber elastic body 32R is degreased with IPA (isopropyl alcohol). Then, as shown in FIG. 7, the bleeding lubricant 322R is removed from the surface of the rubber elastic body 32R.
  • IPA isopropyl alcohol
  • the coating 35R is applied to the surface of the clean rubber elastic body 32R.
  • the paint 35R contains a raw material 333R of a silicone resin 330R having a mercapto group, PTFE particles 335R, and UHPE particles 336R.
  • the rubber elastic body 32R coated with the paint 35R is fired at 100 ° C. for 30 minutes.
  • the raw material 333R shown in FIG. 8 is thermally cured.
  • a film 33R is formed on the surface of the rubber elastic body 32R.
  • the bleeding lubricant 322R of the rubber elastic body 32R penetrates the coating 33R.
  • a lubrication film 34R is formed on the surface of the film 33R by the bleeding lubricant 322R that has passed through the film 33R. In this way, the stopper 3R of the present embodiment is manufactured.
  • the lubricating film 34R of the stopper 3R of the present embodiment is in sliding contact with the bush housing cylinder portion 840R.
  • the coating 33R is exposed from the portion and slidably contacts the bush housing cylinder portion 840R. That is, even when the lubricating film 34R is insufficient, the coating 33R is in sliding contact with the bush housing cylinder portion 840R.
  • the coating 33R contains a bleeding lubricant 322R, PTFE particles 335R, and UHPE particles 336R that have oozed from the rubber elastic body 32R. Therefore, the frictional resistance between the coating 33R and the bush accommodating cylinder 840R is small. In addition, the wear resistance of the coating 33R is high. Further, the ratio of the UHPE particles 336R constituting the solid lubricant is 70% by mass. Thereby, the film 33R having desired frictional resistance and wear resistance can be realized.
  • the thickness of the coating 33R is about 20 ⁇ m.
  • the average particle size of PTFE particles 335R is about 0.5 ⁇ m, and the average particle size of UHPE particles 336R is about 1 ⁇ m. Therefore, the surface of the coating 33R is smooth, and the PTFE particles 335R and the UHPE particles 336R are difficult to drop off. Further, since the average particle size is small, the PTFE particles 335R and the UHPE particles 336R are easily dispersed in the raw material 333R. For this reason, it is easy to prepare the paint 35R.
  • the total content of PTFE particles 335R and UHPE particles 336R is 30 parts by mass with respect to 100 parts by mass of silicone resin 330R.
  • the rubber elastic body 32R and the coating 33R are firmly joined by the silicone resin 330R. Accordingly, the coating 33R is hardly peeled off from the rubber elastic body 32R.
  • the stopper 3R of the present embodiment has a small frictional resistance with the bush housing cylinder portion 840R and is excellent in durability.
  • the silicone resin 330R forming the coating 33R has a looser cross-linked structure than the straight silicone resin and its modified product, and has rubber elasticity. For this reason, the bleed lubricant 322R of the rubber elastic body 32R is likely to pass through the coating 33R. Therefore, the lubricating film 34R can be reliably formed on the surface of the coating 33R. Further, since the coating 33R is formed including the silicone resin 330R, the coating 33R is relatively flexible. Therefore, the coating 33R is easily deformed following the deformation of the rubber elastic body 32R.
  • ⁇ Second embodiment> The difference between the stopper of this embodiment and the stopper of the first embodiment is that the coating has micropores. Moreover, the difference between the manufacturing method of the stopper of this embodiment and the manufacturing method of the stopper of 1st embodiment is a point which mix
  • FIG. 11 is a schematic diagram for explaining the function of the stopper according to the present embodiment, as in FIG. 5.
  • the coating 33R includes a silicone resin 330R having a mercapto group, PTFE particles 335R, UHPE particles 336R, and a plurality of minute holes 332R.
  • the plurality of minute holes 332R are dispersed inside the coating 33R.
  • the size of the micropore 332R is estimated to be at the molecular level of the micropore forming agent 334R that formed the micropore 332R.
  • Some of the micro holes 332R are filled with a bleed lubricant 322R that has oozed from the rubber elastic body 32R.
  • the lubricating film 34R is formed by a bleed lubricant 322R of the rubber elastic body 32R and a micropore forming agent 334R in which micropores 332R of the coating 33R are formed.
  • a method for forming the lubricating film 34R will be described in the following method for manufacturing a stopper.
  • the manufacturing method of the stopper of this embodiment has a composition preparation process, a bridge
  • crosslinking process, and a degreasing process it is the same as the manufacturing method of the stopper of 1st embodiment. Therefore, explanation is omitted here.
  • FIG. 12 shows an enlarged cross-sectional view of the rubber elastic body after the coating process and before the firing process.
  • FIG. 13 the expanded sectional view of the rubber elastic body in a baking process is shown.
  • FIGS. 12 and 13 each show a portion corresponding to FIG. 11 (in FIGS. 12 and 13, FIG. 11 is shown rotated by 90 °).
  • the coating 35R is applied to the surface of the clean rubber elastic body 32R.
  • the paint 35R contains a raw material 333R of a silicone resin 330R having a mercapto group, PTFE particles 335R, UHPE particles 336R, and a micropore forming agent 334R.
  • the micropore forming agent 334R is one (a main component having a low melting point) of two kinds of oleic amides used as the bleeding lubricant 322R.
  • the compounding amount of the micropore forming agent 334R is 10% by mass when the solid content of the paint 35R is 100% by mass.
  • the rubber elastic body 32R coated with the paint 35R is fired at 100 ° C. for 30 minutes.
  • the raw material 333R shown in FIG. 12 is thermoset.
  • the film 33R is formed in the surface of the rubber elastic body 32R.
  • the micropore forming agent 334R in the paint 35R is released and oozes out on the surface of the coating 33R.
  • the bleed lubricant 322R of the rubber elastic body 32R also penetrates the coating 33R and oozes out to the surface of the coating 33R.
  • the lubricating film 34R is formed by the micropore forming agent 334R (oleic acid amide) and the bleeding lubricant 322R (oleic acid amide) that have oozed out on the surface of the coating 33R. Further, the micropore 332R is formed in the coating 33R after the micropore forming agent 334R is released. In this way, the stopper 3R of the present embodiment is manufactured.
  • the stopper and the manufacturing method thereof according to the present embodiment have the same functions and effects as those of the stopper according to the first embodiment and the manufacturing method thereof with respect to parts having a common configuration.
  • the coating 33R has a plurality of minute holes 332R.
  • the minute holes 332R can store the bleeding lubricant 322R that has oozed out of the rubber elastic body 32R. For this reason, even if the bleeding speed of the bleeding lubricant 322R in the rubber elastic body 32R exceeds the speed at which it passes through the coating 33R at a high temperature, the excess bleeding lubricant 322R has a minute hole in the coating 33R. Stored in 332R.
  • the bleeding lubricant 322R is unlikely to accumulate at the interface between the coating 33R and the rubber elastic body 32R.
  • the film 33R is difficult to peel from the rubber elastic body 32R even at high temperatures. Therefore, the stopper of this embodiment is excellent in durability.
  • the micropore forming agent 334R is blended with the paint 35R. As shown in FIG. 13, in the baking process, when the coating 35R is cured, the micropore forming agent 334R is released, so that a plurality of micropores 332R can be formed inside the coating 33R.
  • the coating 33R having the plurality of minute holes 332R can be formed relatively easily.
  • the micropore forming agent 334R is one of the two types of oleic amides used as the bleeding lubricant 322R. That is, the micropore forming agent 334R is the same as one of the bleeding lubricants 322R in the rubber elastic body 32R. Therefore, the influence on the rubber elastic body 32R is small, and a stable lubricating film 34R can be formed. Further, impurities hardly remain in the coating 33R and the lubricating film 34R, and their performance is hardly affected. Moreover, the compounding quantity of micropore formation agent 334R is 10 mass% when the solid content of the coating 35R is 100 mass%. Thereby, it is possible to form the minute holes 332R necessary for storing the bleeding lubricant 322R while maintaining the performance of the coating 33R.
  • the vibration-proof rubber member of the present invention is embodied as a stabilizer bush.
  • FIG. 14 is a layout diagram of the stabilizer bushing of the present embodiment.
  • members such as a suspension 90, a hub unit 91, a steering gear 92, and a drive shaft 93 are disposed near the front wheels of the vehicle 9.
  • the suspension 90 includes springs 900L and 900R, shock absorbers 901L and 901R, lower suspension arms 902L and 902R, a stabilizer bar 903, and the like.
  • the stabilizer bar 903 is made of steel and has a long-axis pipe shape that bulges forward in a C-shape.
  • Both ends in the left-right direction of the stabilizer bar 903 are connected to the lower suspension arms 902L and 902R.
  • the left and right two portions of the center portion of the stabilizer bar 903 are connected to the body (not shown) of the vehicle 9 via the stabilizer bushes 1L and 1R and the brackets 2L and 2R.
  • the stabilizer bushes 1L and 1R are interposed between the stabilizer bar 903 and the body of the vehicle 9.
  • the stabilizer bushes 1 ⁇ / b> L and 1 ⁇ / b> R suppress the vibration input from the front wheels from being transmitted to the body of the vehicle 9 via the stabilizer bar 903.
  • the stabilizer bar 903 is included in the counterpart member of the present invention.
  • the left and right stabilizer bushes 1L and 1R have the same configuration.
  • the configuration of the left stabilizer bush 1L will be described, and the description will also serve as the description of the configuration of the right stabilizer bush 1R.
  • FIG. 15 shows a combined perspective view of the stabilizer bush and the bracket of the present embodiment.
  • FIG. 16 the disassembled perspective view of the stabilizer bush and bracket of this embodiment is shown.
  • FIG. 17 shows a cross-sectional view in the XVII-XVII direction of FIG.
  • the stabilizer bush 1L of the present embodiment includes a rubber elastic body 10L, a coating 11L, and a lubricating film 12L.
  • the rubber elastic body 10L has a solid U shape when viewed from the left or right. That is, the upper part of the rubber elastic body 10L has a rectangular shape. The lower part of the rubber elastic body has a semicircular shape.
  • the rubber elastic body 10L includes a holding hole 100L penetrating in the left-right direction.
  • the inner peripheral surface of the holding hole 100L is included in the sliding inner surface of the present invention.
  • the inner peripheral surface of the holding hole 100L has a substantially smooth surface shape with a predetermined curvature. That is, no artificial unevenness is formed on the inner peripheral surface of the holding hole 100L.
  • the outside of the rubber elastic body 10L and the inside of the holding hole 100L communicate with each other through the cutting portion 101L.
  • a stabilizer bar 903 is disposed in the holding hole 100L.
  • the stabilizer bar 903 is inserted into the holding hole 100L from the outside of the rubber elastic body 10L through an opening formed by opening the cutting portion 101L in the vertical direction.
  • a pair of flange portions 104L are formed on the left and right edges of the rubber elastic body 10L. Each of the pair of flange portions 104L has a U-shape that opens upward.
  • the coating 11L has a cylindrical shape.
  • the coating 11L covers the inner peripheral surface of the holding hole 100L.
  • the film thickness (radial thickness) of the coating 11L is about 20 ⁇ m.
  • the lubricating film 12L is liquid and covers the surface (inner peripheral surface) of the coating 11L.
  • the surface of the lubricating film 12L (the surface of the coating 11L when the lubricating film 12L is insufficient) is in contact with the outer peripheral surface of the stabilizer bar 903.
  • FIG. 18 shows an enlarged view in the frame XVIII of FIG.
  • FIG. 18 is a schematic diagram for explaining the functions of the stabilizer bushes 1L and 1R of the present embodiment.
  • Rubber elastic body 10L is made of self-lubricating rubber.
  • the rubber elastic body 10L includes a blend rubber (hereinafter simply referred to as “blend rubber”) 102L of NR and BR, and a bleed lubricant 103L. Two types of oleic amides having different melting points are used as the bleed lubricant 103L.
  • the blend rubber 102L is included in the elastomer of the present invention.
  • the coating 11L includes a silicone resin 110L having a mercapto group, PTFE particles 115L, and UHPE particles 116L.
  • the PTFE particles 115L have a substantially spherical shape with an average particle diameter of about 0.5 ⁇ m.
  • the UHPE particles 116L have a substantially spherical shape with an average particle diameter of about 1 ⁇ m.
  • UHPE has a mass average molecular weight of 2 million.
  • the total content of PTFE particles 115L and UHPE particles 116L (solid lubricant) is 30 parts by mass with respect to 100 parts by mass of silicone resin 110L.
  • the ratio of the UHPE particles 116L constituting the solid lubricant is 70% by mass when the total mass of the PTFE particles 115L and the UHPE particles 116L is 100% by mass.
  • the lubricating film 12L is formed of a bleed lubricant (oleic amide) 103L of the rubber elastic body 10L. That is, the bleed lubricant 103L of the rubber elastic body 10L passes through the coating 11L as shown by the white arrow in FIG. And it oozes out on the surface of the coating 11L. The lubricating film 12L is formed by the bleeding lubricant 103L that has oozed out.
  • the stabilizer bar 903 is twisted around the axis according to the behavior of the vehicle 9 as indicated by the white double-ended arrows.
  • the stabilizer bush 1L is fixed to the body of the vehicle 9 via a bracket 2L described later.
  • the surface of the lubricating film 12 ⁇ / b> L (the surface of the coating 11 ⁇ / b> L when the lubricating film 12 ⁇ / b> L is insufficient) is relatively in sliding contact with the outer peripheral surface of the stabilizer bar 903.
  • bracket structure Next, the structure of the brackets 2L and 2R of this embodiment will be described.
  • the structures of the left and right brackets 2L and 2R are the same.
  • the structure of the left bracket 2L will be described, and the description will also serve as the description of the structure of the right bracket 2R.
  • the bracket 2L of the present embodiment is made of steel and includes a bush holding portion 20L and a pair of fixing portions 21L.
  • the bush holding portion 20L has a U shape that opens upward as viewed from the left or right.
  • a pair of flange portions 200L are formed on both left and right edges of the bush holding portion 20L.
  • a portion between the pair of flange portions 104L in the stabilizer bush 1L is accommodated inside the U-shaped opening of the bush holding portion 20L.
  • the pair of flange portions 200L are in contact with the pair of flange portions 104L from the inner side in the left-right direction. By the contact, it is possible to suppress the stabilizer bush 1L from falling off from the bracket 2L in the left-right direction.
  • Each of the pair of fixed portions 21L has a rectangular plate shape.
  • the pair of fixing portions 21L are connected to both U-shaped ends of the bush holding portion 20L.
  • Each of the pair of fixing portions 21L is formed with a bolt insertion hole 210L.
  • Bolts 211L are respectively inserted from below into the pair of bolt insertion holes 210L.
  • a concave portion 950L and a pair of bolt fastening holes 951L are disposed on the lower surface of the body 95 of the vehicle 9.
  • the internal space of the recess 950L has a rectangular parallelepiped shape.
  • the upper portion of the stabilizer bush 1L is inserted into the recess 950L.
  • the pair of bolt fastening holes 951L are arranged in the front-rear direction of the recess 950L.
  • the bolt 211L passes through the bolt insertion hole 210L and is screwed to the bolt fastening hole 951L.
  • the bracket 2L is fixed to the lower surface of the body 95 by the pair of bolts 211L.
  • the stabilizer bush 1L is sandwiched and fixed between the bracket 2L and the lower surface of the body 95.
  • the rubber elastic body 10L is fixed, the upper portion of the rubber elastic body 10L is compressed and deformed by the tightening margin S (see FIGS. 15 and 16). Due to the tightening allowance S, the stabilizer bush 1L is in pressure contact with the outer peripheral surface of the stabilizer bar 903.
  • the manufacturing method of stabilizer bush 1L, 1R of this embodiment has a composition preparation process, a bridge
  • the stabilizer bushes 1L and 1R and the manufacturing method thereof according to the present embodiment have the same functions and effects as the stopper and the manufacturing method thereof according to the first embodiment with respect to the parts having the same configuration.
  • the lubricant films 12L of the stabilizer bushes 1L and 1R of the present embodiment are in sliding contact with the stabilizer bar 903.
  • the coating 11L is exposed from the portion and is in sliding contact with the stabilizer bar 903. That is, even if the lubricating film 12L is insufficient, the coating 11L is in sliding contact with the stabilizer bar 903.
  • the coating 11L contains a bleed lubricant 103L, PTFE particles 115L, and UHPE particles 116L that have oozed from the rubber elastic body 10L. Therefore, the frictional resistance between the coating 11L and the stabilizer bar 903 is small. In addition, the wear resistance of the coating 11L is high.
  • ⁇ Fourth embodiment> The difference between the stabilizer bush of this embodiment and the stabilizer bush of the third embodiment is that the coating has micropores. Further, the difference between the method for manufacturing the stabilizer bush of the present embodiment and the method for manufacturing the stabilizer bush of the third embodiment is that a micropore forming agent is blended in the coating material for forming the film. In this respect, the method for manufacturing the stabilizer bush according to the present embodiment is the same as the method for manufacturing the stopper according to the second embodiment, except that it is not necessary to insert the disk 30R (see FIG. 2) into the cavity in the bridging process. is there. Therefore, only the differences will be described here.
  • FIG. 19 shows an enlarged view of a portion corresponding to the inside of the frame XVIII of FIG. 17 in the stabilizer bush of the present embodiment.
  • FIG. 19 is a schematic diagram for explaining the function of the stopper of the present embodiment, as in FIG. 19, parts corresponding to those in FIG. 18 are denoted by the same reference numerals.
  • the coating 11L includes a silicone resin 110L having a mercapto group, PTFE particles 115L, UHPE particles 116L, and a plurality of minute holes 112L.
  • the plurality of minute holes 112L are dispersed inside the coating 11L.
  • the size of the micropore 112L is presumed to be the molecular level of the micropore forming agent that formed the micropore 112L.
  • Some of the minute holes 112L are filled with a bleed lubricant 103L that has oozed out of the rubber elastic body 10L.
  • the lubricating film 12L is formed of a bleed lubricant 103L of the rubber elastic body 10L and a micropore forming agent that forms micropores 112L of the coating 11L. That is, in the method for manufacturing the stabilizer bush of this embodiment, a paint containing a raw material for the silicone resin 110L having a mercapto group, PTFE particles 115L, UHPE particles 116L, and a micropore forming agent is used as a rubber elastic body. Apply to 10L surface.
  • the micropore forming agent one of the two types of oleic acid amide used as the bleed lubricant 103L (main component having a low melting point) is used.
  • the micropore forming agent in the paint is released and oozes out on the surface of the coating film 11L.
  • the bleed lubricant 103L of the rubber elastic body 10L also penetrates the coating 11L and oozes out to the surface of the coating 11L.
  • the lubricating film 12L is formed by the micropore forming agent (oleic amide) and the bleeding lubricant (oleic amide) 103L that have oozed out on the surface of the coating 11L.
  • the micropores 112L are formed in the coating 11L.
  • the stabilizer bush of this embodiment and the manufacturing method thereof have the same operational effects as those of the stabilizer bush of the third embodiment and the manufacturing method thereof, and the stopper of the second embodiment and the manufacturing method thereof, with respect to parts having the same configuration. Have.
  • the coating 11L has a plurality of micro holes 112L.
  • the minute holes 112L can store the bleeding lubricant 103L that has oozed out of the rubber elastic body 10L. For this reason, even if the bleeding speed of the bleeding lubricant 103L in the rubber elastic body 10L exceeds the speed at which the coating 11L permeates at a high temperature, the excess bleeding lubricant 103L is indicated by a hatched arrow in FIG. As shown, it is stored in the micro holes 112L in the coating 11L. Therefore, the bleed lubricant 103L is unlikely to accumulate at the interface between the coating 11L and the rubber elastic body 10L.
  • the film 11L is hard to peel from the rubber elastic body 10L even under high temperature. Therefore, the stabilizer bush of this embodiment is excellent in durability. Moreover, according to the manufacturing method of the stabilizer bush of this embodiment, the coating film 11L having the plurality of minute holes 112L can be formed relatively easily.
  • ⁇ Fifth embodiment> The difference between the stabilizer bush of this embodiment and the stabilizer bush of the fourth embodiment is that, when manufacturing the stabilizer bush, a foaming agent is used instead of a bleed lubricant as a micropore forming agent for the coating. It is. Therefore, only the differences will be described here.
  • the manufacturing method of the stabilizer bush of this embodiment has a composition preparation process, a bridge
  • a coating material containing a silicone resin 110L having a mercapto group, PTFE particles 115L, UHPE particles 116L, and micropore forming agents 113L is applied to the surface of the rubber elastic body 10L.
  • a foaming agent is used as the micropore forming agent 113L.
  • the foaming agent comprises a main agent (“Neocerbon (registered trademark) N # 100M” manufactured by Eiwa Chemical Industry Co., Ltd.) and an auxiliary agent (“Cell Paste 101” manufactured by the same company).
  • the compounding amount of the micropore forming agent 113L is 10% by mass (main agent 5% by mass, auxiliary 5% by mass) when the solid content of the coating is 100% by mass.
  • FIG. 20 shows an enlarged cross-sectional view of the rubber elastic body during the firing process.
  • FIG. 20 shows a portion corresponding to FIG.
  • the rubber elastic body 10L coated with the paint is fired at 100 ° C. for 30 minutes.
  • the raw material of the silicone resin 110L having a mercapto group is thermally cured.
  • a film 11L is formed on the surface of the rubber elastic body 10L.
  • the micropore forming agent 113L in the paint is gasified and released from the coating 11L.
  • the bleed lubricant 103L of the rubber elastic body 10L penetrates the coating 11L and oozes out to the surface of the coating 11L. Therefore, the lubricating film 12L is formed only from the bleeding lubricant 103L that has oozed out on the surface of the coating 11L.
  • the micropores 112L are formed in the coating 11L after the micropore forming agent 113L is released. Thus, the stabilizer bush of this embodiment is manufactured.
  • a foaming agent is used as the micropore forming agent 113L.
  • the foaming agent is gasified at the time of firing and is released from the coating 11L being cured. Therefore, the minute holes 112L can be formed without hindering the formation of the coating 11L and the lubricating film 12L. Further, impurities hardly remain in the coating 11L and the lubricating film 12L, and their performance is hardly affected.
  • the compounding quantity of the micropore formation agent 113L is 10 mass% when the solid content of a coating material is 100 mass%. Thereby, the microhole 112L required for storing the bleeding lubricant 103L can be formed while maintaining the performance of the coating 11L.
  • the foaming agent is in the form of a powder. In this case, the size of the micropores 112L can be adjusted by the particle diameter of the powder used and the foaming conditions (temperature, etc.).
  • the material of the elastomer of the rubber elastic body is not particularly limited.
  • NR, BR, IR (isoprene rubber), SBR (styrene butadiene rubber), CR (chloroprene rubber), NBR (nitrile rubber), EPDM (ethylene propylene rubber), IIR (butyl rubber), ACM (acrylic rubber), U (Urethane rubber), silicone rubber, or a blended material thereof can be used.
  • the material of the bleed lubricant of the rubber elastic body is not particularly limited.
  • fatty acid amides unsaturated fatty acid amides (oleic acid amide, erucic acid amide, etc.), saturated fatty acid amides (stearic acid amide, behenic acid amide, etc.)
  • silicone oil polyethylene glycol type surfactants and the like can be used.
  • the material of the coating resin is not particularly limited.
  • a polyester resin, an acrylic resin, a urethane resin, or the like can be used.
  • a silicone resin having a rubber structure and a cross-linking structure that is less sparse than the straight silicone resin and the modified product thereof is used.
  • “Straight silicone resin” refers to a silicone resin containing only methyl groups and a silicone resin containing only methylphenyl groups.
  • modified silicone resin include epoxy-modified silicone resins, alkyd-modified silicone resins, polyester-modified silicone resins, silica-modified silicone resins, and acrylic-modified silicone resins.
  • the silicone resin having “rubber elasticity” include rubber composite silicone resins and rubber elastic silicone resins used for rubber-based coating agents and the like.
  • the functional group of the resin of the coating is not limited to the mercapto group.
  • a vinyl group, an epoxy group, a methacryloxy group, an amino group, or the like can be used.
  • the functional group is preferably selected according to the elastomer material of the rubber elastic body.
  • the solid lubricant to be included in the coating is not limited to PTFE particles and UHPE particles. You may use together particles, such as graphite, molybdenum disulfide, and a fluororesin, with these particles.
  • the fluororesin include PFA (tetrafluoroethylene / perfluoroalkoxy vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PCTFE (polychlorotrifluoroethylene), ETFE (tetrafluoroethylene).
  • ECTFE chlorotrifluoroethylene-ethylene copolymer
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • the content of the solid lubricant is not limited to the above embodiment.
  • the content of the solid lubricant is preferably 10 parts by mass or more, more preferably 20 parts by mass or more with respect to 100 parts by mass of the resin. Moreover, it is desirable that it is 70 mass parts or less with respect to 100 mass parts of resin, More preferably, it is 50 mass parts or less.
  • the particle diameters of the PTFE particles and the UHPE particles may be appropriately determined in consideration of the thickness of the coating.
  • the thickness of the coating is about 5 to 30 ⁇ m
  • PTFE particles having an average particle diameter of 0.5 ⁇ m to 30 ⁇ m and UHPE particles having an average particle diameter of 1 ⁇ m to 30 ⁇ m are suitable.
  • the molecular weight of UHPE should just be 500,000 or more. More than 1.5 million is more preferable.
  • the blending ratio of the PTFE particles and the UHPE particles may be appropriately determined in consideration of the frictional resistance and wear resistance of the coating.
  • the material of the micropore forming agent is not particularly limited.
  • the micropore forming agent is not particularly limited as long as it is released from the paint during baking and does not easily inhibit the formation of a coating film or a lubricating film.
  • the influence on the rubber elastic body is small and a stable lubricating film can be formed.
  • impurities hardly remain, it hardly affects the performance of the coating film and the lubricating film.
  • the moving speed of the bleed lubricant varies depending on the material of the matrix (coating resin, rubber elastic elastomer). For this reason, for example, the release rate of the micropore forming agent can be controlled by selecting a resin.
  • the firing temperature and firing time in the firing step are not particularly limited.
  • the firing temperature and firing time may be appropriately determined in consideration of the type of resin, the release rate of the micropore forming agent, the bleeding rate of the bleeding lubricant, and the like.
  • the size and volume ratio of the micropores formed in the coating are not particularly limited. What is necessary is just to determine suitably considering the balance of the storage function of the bleeding lubricant which oozed out from the rubber elastic body, and the strength and rigidity of the coating.
  • the vibration-insulating rubber member of the present invention is embodied as a stopper for a lower suspension arm and a stabilizer bush.
  • a stopper for an engine mount as disclosed in Japanese Patent Application Laid-Open Nos. 2005-106169 and 2005-249062, and Japanese Patent Application Laid-Open Nos. 2008-89002 and 2008-95785.
  • the anti-vibration rubber member of the present invention may be embodied as a stopper for such a differential mount.
  • the stabilizer bush of the fourth embodiment was used as a sample of the example. That is, the film of the sample of the example contains PTFE particles and UHPE particles as a solid lubricant and has micropores.
  • a stabilizer bushing containing only PTFE particles as a solid lubricant and provided with a coating having micropores was used as a sample of a reference example.
  • grains as a solid lubricant, and is provided with the film which does not have a micropore was used as the sample of a comparative example.
  • the content of PTFE particles is 80 parts by mass with respect to 100 parts by mass of the silicone resin.
  • the PTFE particles used are the same as the PTFE particles in the sample of the example.
  • each sample was fixed to a jig (corresponding to the lower surface of the body 95 of the vehicle 9 of the third embodiment) by the bracket 2L (see FIGS. 15 to 17).
  • a shaft (corresponding to the stabilizer bar 903 of the third embodiment) was inserted into the holding hole 100L of each sample.
  • the shaft was twisted ⁇ 15 ° around the axis.
  • the torque added to a shaft was measured.
  • the frictional resistance between the shaft and the sample is small, the torque applied to the shaft is small.
  • the torque applied to the shaft increases.
  • the shaft was twisted 100,000 times with a twist of ⁇ 15 ° as one time, and the torque was measured at a predetermined number of times.
  • FIG. 21 shows the results of torque measurement.
  • the torque increased as the number of twists increased.
  • the increase width of the torque was smaller than that of the sample of the comparative example.
  • the torque hardly increased even when the twisting was repeated. That is, an increase in frictional resistance between the sample and the shaft was suppressed.
  • the sample film of the example has micropores. For this reason, even if the temperature rises due to repeated torsion and a large amount of bleed lubricant oozes from the rubber elastic body, excess bleed lubricant that cannot penetrate the film is stored in the micropores in the film. The That is, the bleeding lubricant that has oozed out does not easily accumulate at the interface between the coating and the rubber elastic body. Therefore, the coating is difficult to peel off.
  • the coating of the sample of the example also contains UHPE particles. For this reason, the abrasion resistance of the coating is high. Therefore, even if twisting is repeated, the coating is not easily worn and the rubber elastic body is difficult to be exposed. From the above, it is considered that the increase in frictional resistance with the shaft was suppressed in the sample of the example.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Springs (AREA)
  • Lubricants (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 防振ゴム部材(3R)は、エラストマー(321R)と、ブリード性潤滑剤(322R)と、を含有する自己潤滑ゴム製のゴム弾性体(32R)と、ゴム弾性体(32R)の表面のうち摺動面の内側に配置される摺動内面の少なくとも一部を覆い、メルカプト基を持つ樹脂(330R)と、ポリテトラフルオロエチレン粒子(335R)および超高分子量ポリエチレン粒子(336R)を含む固体潤滑剤と、を含有し、ゴム弾性体(32R)の変形に追従して変形可能な被膜(33R)と、被膜(33R)の表面の少なくとも一部を覆い、ゴム弾性体(32R)から被膜(33R)を透過して被膜(33R)の表面に滲み出たブリード性潤滑剤(322R)を含んで形成され、該摺動面の少なくとも一部を形成する潤滑膜(34R)と、を備えてなる。

Description

防振ゴム部材およびその製造方法
 本発明は、自身に対して相対的に振動する相手側部材に摺接する防振ゴム部材およびその製造方法に関する。
 防振ゴム部材の一例として、スタビライザブッシュが挙げられる。スタビライザブッシュは、ブラケットを介して、車両のボディに固定されている。また、スタビライザブッシュの保持孔には、スタビライザバーが配置されている。
 例えば、車両の旋回時においては、遠心力により、サスペンションの外輪側が沈み込み、内輪側が伸長する。このため、スタビライザバーが捩られる。当該捩りに対する弾性復元力を利用して、スタビライザバーは、サスペンションの外輪側を持ち上げようとする。このようにして、スタビライザバーは、車両を水平に保っている。
 スタビライザバーが捩られる際、あるいは捩られたスタビライザバーが弾性復元力により復動する際、スタビライザバー外周面とスタビライザブッシュ内周面とは、相対的に摺動する。摺動時の摩擦抵抗が大きいと、異音(いわゆるスティックスリップ音)が大きくなるおそれがある。また、車両の乗り心地が悪くなるおそれがある。
 この点に鑑み、従来は、保持孔に、摩擦係数が小さいPTFE(ポリテトラフルオロエチレン)製のライナーを挿入していた。そして、ライナーの内周面と、スタビライザバーの外周面と、を摺接させていた。しかしながら、PTFE製のライナーは、比較的高価である。このため、PTFE製のライナーを採用すると、スタビライザブッシュの製造コストが高くなってしまう。
 そこで、PTFE製のライナーを要しないスタビライザブッシュが開発されている。例えば、特許文献1、2には、自己潤滑ゴム製のゴム弾性体と、被膜と、潤滑膜と、を有するスタビライザブッシュが開示されている。ゴム弾性体の径方向内側には、保持孔が形成されている。保持孔には、スタビライザバーが配置されている。被膜は、保持孔の内周面を覆っている。そして、自己潤滑ゴムに含まれるブリード性潤滑剤が、被膜を透過して被膜の表面に滲み出ることにより、潤滑膜が形成されている。潤滑膜は、スタビライザバーに摺接する。仮に、潤滑膜が不足する部分がある場合には、当該部分からブリード性潤滑剤を含有する被膜が表出し、スタビライザバーに摺接する。このように、特許文献1、2に記載されたスタビライザブッシュによると、主位的に潤滑膜が、予備的に被膜が、スタビライザバーに摺接する。これにより、スタビライザブッシュとスタビライザバーとの間の摩擦抵抗が、小さくなる。
国際公開第2010/038746号 国際公開第2010/038749号 特開平2-121814号公報 特開2003-26851号公報
 特許文献1、2に記載されたスタビライザブッシュにおいては、被膜に、固体潤滑剤のポリテトラフルオロエチレン粒子が配合される。摩擦係数が小さいポリテトラフルオロエチレン粒子を含有することにより、スタビライザバーに対する被膜の摩擦抵抗は、小さくなる。これにより、潤滑膜が不足する部分があっても、スタビライザバーとの間の摩擦抵抗を小さくすることができる。しかし、スタビライザバーの摺接により、被膜は徐々に摩耗する。特許文献1、2に記載されたスタビライザブッシュにおいては、被膜の耐摩耗性は満足の行くレベルではない。被膜の摩耗が進むと、ゴム弾性体が表出するおそれがある。こうなると、スタビライザブッシュとスタビライザバーとの間の摩擦抵抗が、大きくなってしまう。
 本発明の防振ゴム部材およびその製造方法は、上記課題に鑑みて完成されたものである。したがって、本発明は、相手側部材との間の摩擦抵抗が小さく、被膜の耐摩耗性が高い防振ゴム部材、およびその比較的簡単な製造方法を提供することを目的とする。
 (1)上記課題を解決するため、本発明の防振ゴム部材は、相手側部材の振動の少なくとも一部を吸収すると共に、該相手側部材に相対的に摺接する摺動面を備えてなる防振ゴム部材であって、エラストマーと、ブリード性潤滑剤と、を含有する自己潤滑ゴム製のゴム弾性体と、該ゴム弾性体の表面のうち前記摺動面の内側に配置される摺動内面の少なくとも一部を覆い、メルカプト基、ビニル基、エポキシ基、メタクリロキシ基、アミノ基から選ばれる一種以上の官能基を持つ樹脂と、ポリテトラフルオロエチレン粒子および超高分子量ポリエチレン粒子を含む固体潤滑剤と、を含有し、該ゴム弾性体の変形に追従して変形可能な被膜と、該被膜の表面の少なくとも一部を覆い、該ゴム弾性体から該被膜を透過して該被膜の表面に滲み出た該ブリード性潤滑剤を含んで形成され、該摺動面の少なくとも一部を形成する潤滑膜と、を備えてなることを特徴とする。
 本発明の防振ゴム部材は、ゴム弾性体と被膜と潤滑膜とを備える。被膜は、ポリテトラフルオロエチレン粒子および超高分子量ポリエチレン粒子を含む固体潤滑剤を含有する。超高分子量ポリエチレン粒子を含有することにより、被膜は耐摩耗性に優れる。
 例えば、上記特許文献3には、超高分子量ポリエチレンからなる樹脂薄層を有するゴム成形品が開示されている。また、上記特許文献4には、超高分子量ポリエチレンを用いた成形体が開示されている。これら特許文献に記載されているように、超高分子量ポリエチレンは、耐摩耗性に優れる。しかし、本発明の防振ゴム部材の被膜に、超高分子量ポリエチレン粒子のみを配合すると、相手部材に対する摩擦抵抗が大きくなってしまう。したがって、超高分子量ポリエチレン粒子のみを配合した場合、所望の摺動性を得ることはできない。この点、本発明の防振ゴム部材の被膜には、超高分子量ポリエチレン粒子と共にポリテトラフルオロエチレン粒子も配合される。ポリテトラフルオロエチレン粒子の摩擦抵抗は、固体潤滑剤の中でも特に小さい。したがって、ポリテトラフルオロエチレン粒子と超高分子量ポリエチレン粒子とを併用することにより、相手側部材に対する被膜の摩擦抵抗を小さくしたまま、被膜の耐摩耗性を向上させることができる。
 潤滑膜は、ゴム弾性体から被膜を透過して被膜の表面に滲み出たブリード性潤滑剤を含んで形成される。すなわち、潤滑膜は、ゴム弾性体から滲み出たブリード性潤滑剤のみから形成されていてもよく、当該ブリード性潤滑剤に加えて他の潤滑成分を含んで形成されてもよい。後に詳しく説明するが、被膜に微小孔を形成するため、被膜を形成する塗料に、ブリード性潤滑剤(ゴム弾性体中のブリード性潤滑剤の成分と同じでも異なっていてもよい)を配合する場合がある。塗料中のブリード性潤滑剤は、焼成時に塗料から放出され、硬化途中の被膜の表面に滲み出てくる。この場合、ゴム弾性体から被膜を透過して被膜の表面に滲み出たブリード性潤滑剤と、塗料から放出されたブリード性潤滑剤と、の両方から潤滑膜が形成される。
 (2)好ましくは、上記(1)の構成において、前記超高分子量ポリエチレン粒子の平均粒子径は、1μm以上30μm以下である構成とする方がよい。
 超高分子量ポリエチレン粒子の粒子径が小さいと、所望の耐摩耗性を確保するために、配合量を多くしなければならない。この場合、超高分子量ポリエチレン粒子に対してバインダーとなる樹脂量が少なくなるため、被膜とゴム弾性体との密着性が低下する。その結果、ゴム弾性体から被膜が剥離しやすくなるおそれがある。一方、超高分子量ポリエチレン粒子の粒子径が大きいと、塗料化が難しくなる。また、厚さが5~30μm程度の被膜を形成しようとした場合、膜厚に対して粒子径が大きいと、被膜の凹凸が大きくなる。加えて、粒子が脱落しやすくなる。このような理由から、本構成においては、超高分子量ポリエチレン粒子の平均粒子径を、1μm以上30μm以下に規定している。また、上記同様の理由から、ポリテトラフルオロエチレン粒子の平均粒子径は、0.5μm以上30μm以下であることが望ましい。
 (3)好ましくは、上記(1)または(2)の構成において、前記被膜は、前記固体潤滑剤を、前記樹脂100質量部に対して10質量部以上70質量部以下含有する構成とする方がよい。
 固体潤滑剤の含有量を10質量部以上としたのは、10質量部未満の場合、所望の耐摩耗性を確保することができないからである。一方、固体潤滑剤の含有量を70質量部以下としたのは、70質量部を超えると、固体潤滑剤に対してバインダーの樹脂量が少なくなるため、被膜とゴム弾性体との密着性が低下して、被膜が剥離しやすくなるからである。また、固体潤滑剤自体が抵抗となり、被膜の摩擦抵抗が大きくなるおそれがあるからである。本構成によると、被膜の剥離を抑制しつつ、相手側部材に対する被膜の摩擦抵抗を小さくし、かつ、被膜の耐摩耗性を向上させることができる。
 (4)好ましくは、上記(1)ないし(3)のいずれかの構成において、前記固体潤滑剤に含まれる前記超高分子量ポリエチレン粒子の割合は、該固体潤滑剤の全体を100質量%とした場合の10質量%以上90質量%以下である構成とする方がよい。30質量%以上80質量%以下であると、より好適である。
 ポリテトラフルオロエチレン粒子は、主に被膜の摩擦抵抗を小さくする役割を果たす。また、超高分子量ポリエチレン粒子は、自己潤滑性も有するが、主に被膜の耐摩耗性を高める役割を果たす。本構成によると、被膜の摩擦抵抗および耐摩耗性の両方を、満足の行くレベルにすることができる。
 (5)好ましくは、上記(1)ないし(4)のいずれかの構成において、前記被膜は、前記ゴム弾性体から滲み出た前記ブリード性潤滑剤を貯留可能な複数の微小孔を有する構成とする方がよい。
 上記特許文献1、2に記載のスタビライザブッシュにおいては、使用時などにおいて温度が上昇すると、自己潤滑ゴム中のブリード性潤滑剤が溶けやすくなる。このため、ゴム弾性体の表面に滲み出る速度が速くなり、ブリード性潤滑油の滲出量が増加する。ブリード性潤滑油の滲出量が、被膜を透過できる量よりも多くなると、余剰分が、被膜とゴム弾性体との界面に溜まってしまう。こうなると、最初はゴム弾性体と被膜とが強固に接合されていても、界面に溜まったブリード性潤滑油により被膜が押し上げられ、ゴム弾性体から被膜が剥離するおそれがある。被膜が剥離すると、スタビライザバー(相手側部材)との間の摩擦抵抗が、大きくなるおそれがある。
 この点、本構成によると、被膜は、ゴム弾性体から滲み出たブリード性潤滑剤を貯留可能な複数の微小孔を有する。したがって、高温下において、自己潤滑ゴム中のブリード性潤滑剤の滲出速度が、被膜の透過速度を上回り、滲み出たブリード性潤滑剤の全てが被膜を透過できなくても、余剰分のブリード性潤滑剤を、被膜中の微小孔に貯留することができる。このため、ブリード性潤滑剤が、被膜とゴム弾性体との界面に溜まりにくい。したがって、本構成の防振ゴム部材によると、高温下においても、被膜がゴム弾性体から剥離しにくい。つまり、本構成の防振ゴム部材は、耐久性に優れる。
 (6)好ましくは、上記(5)の構成において、複数の前記微小孔の少なくとも一部には、前記ゴム弾性体から滲み出た前記ブリード性潤滑剤が貯留されている構成とする方がよい。
 本構成によると、ゴム弾性体から滲み出たブリード性潤滑剤が、被膜中に貯留されている。すなわち、ブリード性潤滑剤の滲出量が多くても、被膜中に留まることができるため、ブリード性潤滑剤が、被膜とゴム弾性体との界面に溜まりにくい。したがって、高温下においても、被膜がゴム弾性体から剥離しにくい。また、摺動面において、潤滑膜が不足して被膜が表出した部分においても、ブリード性潤滑剤を貯留した被膜が表出して、相手側部材に摺接する。このため、相手側部材との間の摩擦抵抗がより小さくなる。
 (7)好ましくは、上記(1)ないし(6)のいずれかの構成において、前記ゴム弾性体は前記相手側部材が配置される保持孔を有しており、前記摺動内面は該保持孔の内周面である構成とする方がよい。
 本構成によると、相手側部材の外周面に対する保持孔の内周面の摩擦抵抗を、小さくすることができる。このため、相手側部材の外周面から保持孔の内周面に加わる捩りトルクを小さくすることができる。
 (8)また、本発明の防振ゴム部材の第一の製造方法は、上記(1)の構成の防振ゴム部材の製造方法であって、架橋反応により、エラストマーと、ブリード性潤滑剤と、を含有する自己潤滑ゴム製のゴム弾性体を作製する架橋工程と、該ゴム弾性体の表面のうち前記摺動面の内側に配置される摺動内面を脱脂する脱脂工程と、脱脂後の該摺動内面に、メルカプト基、ビニル基、エポキシ基、メタクリロキシ基、アミノ基から選ばれる一種類以上の官能基を持つ熱硬化性樹脂と、ポリテトラフルオロエチレン粒子および超高分子量ポリエチレン粒子を含む固体潤滑剤と、を含有する塗料を塗布する塗布工程と、該塗料が塗布された該ゴム弾性体を焼成することにより、該摺動内面に該塗料からなる被膜を形成すると共に、該ゴム弾性体の該ブリード性潤滑剤を該被膜を透過して該被膜の表面に滲み出させ、該被膜の表面に該ブリード性潤滑剤を含む潤滑膜を形成する焼成工程と、を有することを特徴とする。
 本発明の防振ゴム部材の第一の製造方法は、架橋工程と、脱脂工程と、塗布工程と、焼成工程と、を有する。架橋工程においては、架橋反応により、ゴム弾性体を作製する。脱脂工程においては、摺動内面を脱脂することにより、摺動内面から滲み出たブリード性潤滑剤を、一時的に除去する。塗布工程においては、ブリード性潤滑剤が除去された摺動内面に、所定の熱硬化性樹脂および固体潤滑剤を含有する塗料を塗布(刷毛などによる塗布は勿論、スプレーなどによる散布を含む。)する。焼成工程においては、熱により塗料を硬化させ、ゴム弾性体の摺動内面に被膜を形成する。ここで、被膜とゴム弾性体とは、熱硬化性樹脂のメルカプト基、ビニル基、エポキシ基、メタクリロキシ基、アミノ基から選ばれる一種以上の官能基により、強固に接合(化学結合)する。また、ゴム弾性体のブリード性潤滑剤は、被膜を透過して、被膜の表面に滲み出る。主に当該ブリード性潤滑剤により、被膜の表面に潤滑膜を形成する。
 本発明の防振ゴム部材の第一の製造方法によると、相手側部材との間の摩擦抵抗が小さく、被膜の耐摩耗性が高い本発明の防振ゴム部材を、比較的簡単に作製することができる。
 (9)また、本発明の防振ゴム部材の第二の製造方法は、上記(5)の構成の防振ゴム部材の製造方法であって、架橋反応により、エラストマーと、ブリード性潤滑剤と、を含有する自己潤滑ゴム製のゴム弾性体を作製する架橋工程と、該ゴム弾性体の表面のうち前記摺動面の内側に配置される摺動内面を脱脂する脱脂工程と、脱脂後の該摺動内面に、メルカプト基、ビニル基、エポキシ基、メタクリロキシ基、アミノ基から選ばれる一種以上の官能基を持つ熱硬化性樹脂と、ポリテトラフルオロエチレン粒子および超高分子量ポリエチレン粒子を含む固体潤滑剤と、焼成時に放出されることにより被膜に微小孔を形成する微小孔形成剤と、を含有する塗料を塗布する塗布工程と、該塗料が塗布された該ゴム弾性体を焼成することにより、該塗料から該微小孔形成剤を放出させながら該摺動内面に該被膜を形成すると共に、該ゴム弾性体の該ブリード性潤滑剤を該被膜を透過して該被膜の表面に滲み出させ、該被膜の表面に該ブリード性潤滑剤を含む潤滑膜を形成する焼成工程と、を有することを特徴とする。
 本発明の防振ゴム部材の第二の製造方法において、上記(8)の第一の製造方法との相違点は、被膜を形成する塗料に、微小孔形成剤を配合する点である。微小孔形成剤は、焼成時の熱により、塗料から放出される。焼成工程においては、塗料が硬化する際に微小孔形成剤が放出されることにより、被膜内部に複数の微小孔が形成される。
 本発明の防振ゴム部材の第二の製造方法によると、塗料に微小孔形成剤を配合することにより、複数の微小孔を有する被膜を、比較的簡単に形成することができる。微小孔形成剤は、焼成時の熱により塗料から放出されるが、被膜性能に影響しなければ、微小孔形成剤やその分解物が、硬化後の被膜中に残存してもよい。また、焼成時における微小孔形成剤の放出速度を、ブリード性潤滑剤が滲み出す速度よりも大きくすることで、微小孔を確実に形成することができる。この点については、被膜の樹脂、微小孔形成剤、ゴム弾性体のエラストマー、ブリード性潤滑剤の選定と共に、焼成温度などを調整すればよい。
 被膜に形成された微小孔は、ゴム弾性体から滲み出たブリード性潤滑剤を貯留することができる。したがって、高温下において、自己潤滑ゴム中のブリード性潤滑剤の滲出速度が、被膜の透過速度を上回り、滲み出たブリード性潤滑剤の全てが被膜を透過できなくても、余剰分のブリード性潤滑剤は、被膜中の微小孔に貯留される。これにより、ブリード性潤滑剤が、被膜とゴム弾性体との界面に溜まりにくくなる。したがって、高温下における、ゴム弾性体からの被膜の剥離を、抑制することができる。
 このように、本発明の防振ゴム部材の第二の製造方法によると、相手側部材との間の摩擦抵抗が小さく、被膜の耐摩耗性が高く、高温下においてもゴム弾性体から被膜が剥離しにくい本発明の防振ゴム部材を、比較的簡単に製造することができる。
 (10)好ましくは、上記(9)の構成において、前記微小孔形成剤は、ブリード性潤滑剤および発泡剤から選ばれる一種以上からなる構成とする方がよい。
 塗料中のブリード性潤滑剤は、焼成時、硬化途中の被膜の表面に滲み出る。そして、潤滑膜を形成する。また、発泡剤は、焼成時にガス化して、硬化途中の被膜から放出される。いずれも、自身が抜けた後に、微小孔が形成される。このように、本構成によると、被膜や潤滑膜の形成を阻害することなく、微小孔を形成することができる。
 (11)好ましくは、上記(9)の構成において、前記微小孔形成剤は、ブリード性潤滑剤からなり、前記潤滑膜は、前記ゴム弾性体に含有される前記ブリード性潤滑剤、および該微小孔形成剤の両方から形成される構成とする方がよい。
 ブリード性潤滑剤は、ゴム弾性体にも含有されている。ブリード性潤滑剤は、潤滑膜を形成する。よって、本構成によると、被膜や潤滑膜に不純物が残存しにくく、被膜や潤滑膜の性能に影響を及ぼしにくい。なお、微小孔形成剤として用いるブリード性潤滑剤は、ゴム弾性体中のブリード性潤滑剤の成分と、同じでも異なっていてもよい。
 (11-1)好ましくは、上記(11)の構成において、前記熱硬化性樹脂は、シリコーン樹脂である構成とする方がよい。
 被膜のマトリックスがシリコーン樹脂の場合、微小孔形成剤のブリード潤滑剤が、被膜から抜けやすい。よって、微小孔形成剤の放出速度を、ゴム弾性体から滲み出るブリード性潤滑剤の滲出速度よりも、大きくしやすい。これにより、確実に微小孔を形成することができる。
 (11-2)好ましくは、上記(11-1)の構成において、前記シリコーン樹脂は、ストレートシリコーン樹脂およびその変性物よりも架橋構造が疎であって、ゴム弾性を有する構成とする方がよい。
 本構成によると、シリコーン樹脂の架橋構造が疎であるため、微小孔形成剤のブリード潤滑剤が、被膜からさらに抜けやすくなる。したがって、微小孔形成剤の放出速度をより大きくすることができ、より確実に微小孔を形成することができる。
 (12)好ましくは、上記(10)または(11)の構成において、前記微小孔形成剤は、前記ゴム弾性体に含有される前記ブリード性潤滑剤の少なくとも一種を含む構成とする方がよい。
 本構成によると、ゴム弾性体への影響が小さいと共に、安定した潤滑膜を形成することがきる。また、被膜や潤滑膜の性能にも影響を及ぼしにくい。微小孔形成剤のブリード性潤滑剤の成分は、ゴム弾性体に含有されるブリード性潤滑剤の成分と、全く同じでもよく、一部のみが重複していてもよい。後者の場合、ゴム弾性体に含有されるブリード性潤滑剤の成分のうち、主要成分(量が多い方の成分)を含む態様が望ましい。
 (13)好ましくは、上記(9)ないし(12)のいずれかの構成において、前記微小孔形成剤の配合量は、前記被膜を形成する固形分全体を100質量%とした場合の0.5質量%以上20質量%以下である構成とする方がよい。
 微小孔形成剤の配合量は、微小孔の形成と被膜の性能とを考慮して決定すればよい。すなわち、微小孔形成剤の配合量が多すぎると、被膜に占める微小孔の体積割合が大きくなり、被膜自体の強度や剛性が低下してしまう。一方、微小孔形成剤の配合量が少なすぎると、ブリード性潤滑剤を貯留するために必要な分の微小孔を、形成することができない。この点、本構成によると、被膜の性能を維持しながら、所望の微小孔を形成することができる。
 本発明によると、相手側部材との間の摩擦抵抗が小さく、被膜の耐摩耗性が高い防振ゴム部材を提供することができる。また、本発明によると、当該防振ゴム部材の比較的簡単な製造方法を提供することができる。
第一実施形態のストッパの配置図である。 同ストッパおよびロアアームブッシュがブラケットに装着された状態の軸方向断面図である。 同ストッパの斜視図である。 同ストッパの分解斜視図である。 図2の枠V内の拡大図である。 架橋工程後、脱脂工程前のゴム弾性体の拡大断面図である。 脱脂工程後、塗布工程前のゴム弾性体の拡大断面図である。 塗布工程後、焼成工程前のゴム弾性体の拡大断面図である。 焼成工程中のゴム弾性体の拡大断面図である。 焼成工程後のストッパの拡大断面図である。 第二実施形態のストッパにおける図2の枠V内に相当する部分の拡大図である。 塗布工程後、焼成工程前のゴム弾性体の拡大断面図である。 焼成工程中のゴム弾性体の拡大断面図である。 第三実施形態のスタビライザブッシュの配置図である。 同スタビライザブッシュとブラケットとの合体斜視図である。 同スタビライザブッシュとブラケットとの分解斜視図である。 図15のXVII-XVII方向断面図である。 図17の枠XVIII内の拡大図である。 第四実施形態のスタビライザブッシュにおける図17の枠XVIII内に相当する部分の拡大図である。 第五実施形態のスタビライザブッシュの製造工程における、焼成工程中のゴム弾性体の拡大断面図である。 実施例、参考例、および比較例の各サンプルにおけるトルクの測定結果を示すグラフである。
1L:スタビライザブッシュ(防振ゴム部材)、1R:スタビライザブッシュ(防振ゴム部材)、2L:ブラケット、2R:ブラケット、3R:ストッパ(防振ゴム部材)、4R:ロアアームブッシュ、5R:ブラケット、8:車両、9:車両。
10L:ゴム弾性体、11L:被膜、12L:潤滑膜、20L:ブッシュ保持部、21L:固定部、30R:円板、31R:ゴム部材本体、32R:ゴム弾性体、33R:被膜、34R:潤滑膜、35R:塗料、40R:内筒金具、41R:外筒金具、42R:ゴム部材、50R:前壁、51R:後壁、80:サスペンション、81:ハブユニット、83:ドライブシャフト、84R:ロアサスペンションアーム、90:サスペンション、91:ハブユニット、92:ステアリングギヤ、93:ドライブシャフト、95:ボディ。
100L:保持孔、101L:切断部、102L:ブレンドゴム(エラストマー)、103L:ブリード性潤滑剤、104L:フランジ部、110L:シリコーン樹脂、112L:微小孔、113L:微小孔形成剤、115L:PTFE粒子(固体潤滑剤)、116L:UHPE粒子(固体潤滑剤)、200L:フランジ部、210L:ボルト挿通孔、211L:ボルト、300R:ボルト挿通孔、320R:リブ、321R:ブレンドゴム(エラストマー)、322R:ブリード性潤滑剤、330R:シリコーン樹脂、332R:微小孔、333R:原料、334R:微小孔形成剤、335R:PTFE粒子(固体潤滑剤)、336R:UHPE粒子(固体潤滑剤)、500R:ボルト挿通孔、510R:ボルト挿通孔、800R:スプリング、801R:ショックアブソーバ、840R:ブッシュ収容筒部(相手側部材)、841R:ボルト、842R:ナット、900L:スプリング、900R:スプリング、901L:ショックアブソーバ、901R:ショックアブソーバ、902L:ロアサスペンションアーム、902R:ロアサスペンションアーム、903:スタビライザバー(相手側部材)、950L:凹部、951L:ボルト止着孔。
C:クリアランス、S:締め代。
 以下、本発明の防振ゴム部材およびその製造方法の実施の形態について説明する。
 <第一実施形態>
 本実施形態は、本発明の防振ゴム部材を、ストッパとして具現化したものである。
 [ストッパの配置]
 まず、本実施形態のストッパの配置について説明する。図1に、本実施形態のストッパの配置図を示す。図1に示すように、車両8の前輪付近には、サスペンション80、ハブユニット81、ドライブシャフト83などの部材が配置されている。サスペンション80は、スプリング800R、ショックアブソーバ801R、ロアサスペンションアーム84Rなどを備えている。ロアサスペンションアーム84Rは、鋼製であって、略V字板状を呈している。ロアサスペンションアーム84Rの前端(V字一端)には、ブッシュ収容筒部840Rが形成されている。ブッシュ収容筒部840Rの内部には、ロアアームブッシュ4Rが圧入されている。ストッパ3Rは、ロアアームブッシュ4Rの前方に、配置されている。ブラケット5Rは、鋼製であって、上方に開口するC字状を呈している、ブラケット5Rは、車両8のボディ(図略)に固定されている。ストッパ3Rおよびブッシュ収容筒部840R(ロアアームブッシュ4R)は、ブラケット5RのC字開口内部に収容されている。ボルト841Rおよびナット842Rにより、ストッパ3Rおよびロアアームブッシュ4Rは、ブラケット5Rに、揺動可能に取り付けられている。ストッパ3Rは、ブッシュ収容筒部840Rが、ブラケット5Rに、直接的に摺接するのを抑制している。ブッシュ収容筒部840Rは、本発明の相手側部材に含まれる。
 [ストッパの構造]
 次に、本実施形態のストッパ3Rの構造について説明する。図2に、本実施形態のストッパおよびロアアームブッシュがブラケットに装着された状態の軸方向(前後方向)断面図を示す。図3に、本実施形態のストッパの斜視図を示す。図4に、本実施形態のストッパの分解斜視図を示す。図5に、図2の枠V内の拡大図を示す。なお、図5は、本実施形態のストッパ3Rの機能を説明するための、模式図である。図2~図5に示すように、本実施形態のストッパ3Rは、円板30Rと、ゴム部材本体31Rと、を備えている。
 円板30Rは、鋼製であって、リング状を呈している。円板30Rの中央には、ボルト挿通孔300Rが形成されている。ボルト挿通孔300Rの内部には、ボルト841Rが挿通されている。
 ゴム部材本体31Rは、ゴム弾性体32Rと、被膜33Rと、潤滑膜34Rと、を備えている。ゴム弾性体32Rは、リング状を呈している。ゴム弾性体32Rは、円板30Rの後面および外周面を覆うように、配置されている。ゴム弾性体32Rと円板30Rとは、架橋接着されている。ゴム弾性体32Rの後面には、複数のリブ320Rが形成されている。複数のリブ320Rは、円状に並んでいる。また、複数のリブ320Rは、点線状に連なっている。リブ320Rの表面は、本発明の摺動内面に含まれる。リブ320Rの表面は、所定の曲率を持った略平滑面状を呈している。被膜33Rは、ゴム弾性体32Rの表面を覆っている。被膜33Rの膜厚は、約20μmである。潤滑膜34Rは、液状であって、被膜33Rの表面を覆っている。
 [ストッパの材質]
 次に、本実施形態のストッパ3Rの材質について、図5を参照しながら説明する。ゴム弾性体32Rは、自己潤滑ゴム製である。ゴム弾性体32Rは、NR(天然ゴム)とBR(ブタジエンゴム)とのブレンドゴム(以下、単に「ブレンドゴム」と称す。)321Rと、ブリード性潤滑剤322Rと、を備えている。ブリード性潤滑剤322Rとしては、融点が異なる二種類のオレイン酸アミドが用いられている。ブレンドゴム321Rは、本発明のエラストマーに含まれる。
 被膜33Rは、メルカプト基を持つシリコーン樹脂330Rと、ポリテトラフルオロエチレン(PTFE)粒子335Rと、超高分子量ポリエチレン(UHPE)粒子336Rと、を備えている。PTFE粒子335Rは、平均粒子径が約0.5μmの略球状を呈している。UHPE粒子336Rは、平均粒子径が約1μmの略球状を呈している。UHPEの質量平均分子量は、200万である。PTFE粒子335RおよびUHPE粒子336R(固体潤滑剤)の総含有量は、シリコーン樹脂330R100質量部に対して30質量部である。また、固体潤滑剤を構成するUHPE粒子336Rの割合は、PTFE粒子335RおよびUHPE粒子336Rの総質量を100質量%とした場合の、70質量%である。
 潤滑膜34Rは、ゴム弾性体32Rのブリード性潤滑剤(オレイン酸アミド)322Rにより形成されている。すなわち、ゴム弾性体32Rのブリード性潤滑剤322Rは、図5に白抜き矢印で示すように、被膜33Rを透過する。そして、被膜33Rの表面に滲み出る。滲み出たブリード性潤滑剤322Rにより、潤滑膜34Rが形成される。
 [ロアアームブッシュおよびブラケットの構造]
 次に、本実施形態のロアアームブッシュ4Rおよびブラケット5Rの構造について、図2を参照しながら、簡単に説明する。ロアアームブッシュ4Rは、内筒金具40Rと外筒金具41Rとゴム部材42Rとを備えている。内筒金具40Rは、鋼製であって、円筒状を呈している。内筒金具40Rの内部には、ボルト841Rが挿通されている。外筒金具41Rは、鋼製であって、円筒状を呈している。外筒金具41Rは、内筒金具40Rの径方向外側に配置されている。外筒金具41Rは、ブッシュ収容筒部840Rに圧入されている。ゴム部材42Rは、ゴム製であって、内筒金具40Rと外筒金具41Rとの間に介在している。ゴム部材42Rと内筒金具40Rと外筒金具41Rとは、架橋接着されている。
 ブラケット5Rは、前壁50Rと後壁51Rとを備えている。前壁50Rには、ボルト挿通孔500Rが穿設されている。後壁51Rには、ボルト挿通孔510Rが穿設されている。ボルト841Rは、ボルト挿通孔500R、ボルト挿通孔300R、内筒金具40R内部、ボルト挿通孔510Rを貫通している。ボルト841Rの貫通端(後端)には、ナット842Rがねじ止めされている。
 図2に示すように、ストッパ3Rとブッシュ収容筒部840Rとの間には、所定のクリアランスCが確保されている。しかしながら、図5に白抜き矢印で示すように、ブッシュ収容筒部840Rは、外筒金具41Rの外周面に対して、前方に摺動する場合がある。この場合、ストッパ3Rの後面(具体的には、リブ320Rの頂部付近を覆う潤滑膜34Rの表面(潤滑膜34Rが不足する部分については、被膜33Rの表面)は、ブッシュ収容筒部840Rの前端面に、相対的に摺接する。
 [ストッパの製造方法]
 次に、本実施形態のストッパ3Rの製造方法について説明する。本実施形態のストッパ3Rの製造方法は、組成物調製工程と、架橋工程と、脱脂工程と、塗布工程と、焼成工程と、を有している。図6に、架橋工程後、脱脂工程前のゴム弾性体の拡大断面図を示す。図7に、脱脂工程後、塗布工程前のゴム弾性体の拡大断面図を示す。図8に、塗布工程後、焼成工程前のゴム弾性体の拡大断面図を示す。図9に、焼成工程中のゴム弾性体の拡大断面図を示す。図10に、焼成工程後の本実施形態のストッパの拡大断面図を示す。なお、図6~図10に示すのは、いずれも図5に対応する部位である(図6~図10においては、図5を90°回転して示している)。
 組成物調製工程においては、ブレンドゴム321Rの原料、ブリード性潤滑剤322R、架橋剤などを混練することにより、組成物を調製する。
 架橋工程においては、まず、キャビティに円板30R(図2参照)を配置する。次いで、組成物を金型のキャビティに注入する。続いて、160℃で、8分間、金型を保持することにより、キャビティ内のブレンドゴム321Rの原料を架橋反応させる。その後、金型を開き、キャビティから、ゴム弾性体32Rと円板30Rとが架橋接着された、中間体を回収する。図6に示すように、ゴム弾性体32Rの表面には、ブリード性潤滑剤322Rが滲み出る。
 脱脂工程においては、ゴム弾性体32Rの表面を、IPA(イソプロピルアルコール)により、脱脂する。そして、図7に示すように、ゴム弾性体32Rの表面から、ブリード性潤滑剤322Rを除去する。
 塗布工程においては、図8に示すように、清浄なゴム弾性体32Rの表面に、塗料35Rを塗布する。塗料35Rは、メルカプト基を持つシリコーン樹脂330Rの原料333Rと、PTFE粒子335Rと、UHPE粒子336Rと、を含有している。
 焼成工程においては、塗料35Rが塗布されたゴム弾性体32Rを、100℃で、30分間、焼成する。焼成により、図8に示す原料333Rが熱硬化する。そして、図9に示すように、ゴム弾性体32Rの表面に、被膜33Rが形成される。また、図10に白抜き矢印で示すように、ゴム弾性体32Rのブリード性潤滑剤322Rが、被膜33Rを透過する。被膜33Rを透過したブリード性潤滑剤322Rにより、被膜33Rの表面に、潤滑膜34Rが形成される。このようにして、本実施形態のストッパ3Rを製造する。
 [作用効果]
 次に、本実施形態のストッパ3Rおよびその製造方法の作用効果について説明する。本実施形態のストッパ3Rの潤滑膜34Rは、ブッシュ収容筒部840Rに摺接する。また、例えば潤滑膜34Rの一時的な膜切れなどにより、潤滑膜34Rが不足する部分が摺動面にある場合には、当該部分から被膜33Rが表出し、ブッシュ収容筒部840Rに摺接する。すなわち、潤滑膜34Rが不足する場合であっても、被膜33Rがブッシュ収容筒部840Rに摺接する。ここで、被膜33Rは、ゴム弾性体32Rから滲み出たブリード性潤滑剤322R、PTFE粒子335R、およびUHPE粒子336Rを含有する。したがって、被膜33Rとブッシュ収容筒部840Rとの間の摩擦抵抗は小さい。加えて、被膜33Rの耐摩耗性は高い。また、固体潤滑剤を構成するUHPE粒子336Rの割合は、70質量%である。これにより、所望の摩擦抵抗および耐摩耗性を有する被膜33Rを、実現することができる。
 また、被膜33Rの厚さは約20μmである。これに対して、PTFE粒子335Rの平均粒子径は約0.5μm、UHPE粒子336Rの平均粒子径は約1μmである。したがって、被膜33Rの表面は平滑であり、PTFE粒子335RおよびUHPE粒子336Rが脱落しにくい。また、平均粒子径が小さいため、原料333R中に、PTFE粒子335RおよびUHPE粒子336Rを分散させやすい。このため、塗料35Rを調製しやすい。また、PTFE粒子335RおよびUHPE粒子336Rの総含有量は、シリコーン樹脂330R100質量部に対して30質量部である。このため、ゴム弾性体32Rと被膜33Rとは、シリコーン樹脂330Rにより、強固に接合される。したがって、ゴム弾性体32Rから被膜33Rが剥離しにくい。このように、本実施形態のストッパ3Rは、ブッシュ収容筒部840Rとの間の摩擦抵抗が小さく、耐久性に優れる。
 また、被膜33Rを形成するシリコーン樹脂330Rは、ストレートシリコーン樹脂およびその変性物よりも架橋構造が疎であって、ゴム弾性を有している。このため、ゴム弾性体32Rのブリード性潤滑剤322Rが、被膜33Rを透過しやすい。したがって、被膜33Rの表面に、確実に潤滑膜34Rを形成することができる。また、被膜33Rがシリコーン樹脂330Rを含んで形成されているため、比較的被膜33Rが柔軟である。したがって、ゴム弾性体32Rの変形に追従して、被膜33Rが変形しやすい。
 <第二実施形態>
 本実施形態のストッパと、第一実施形態のストッパと、の相違点は、被膜が微小孔を有する点である。また、本実施形態のストッパの製造方法と、第一実施形態のストッパの製造方法と、の相違点は、被膜を形成する塗料に微小孔形成剤を配合する点である。したがって、ここでは相違点についてのみ説明する。
 [ストッパの材質]
 図11に、本実施形態のストッパにおける前出図2の枠V内に相当する部分の拡大図を示す。図11は、図5と同様、本実施形態のストッパの機能を説明するための、模式図である。図11中、図5と対応する部位については、同じ符号で示す。
 被膜33Rは、メルカプト基を持つシリコーン樹脂330Rと、PTFE粒子335Rと、UHPE粒子336Rと、複数の微小孔332Rと、を備えている。複数の微小孔332Rは、被膜33Rの内部に分散されている。微小孔332Rの大きさは、微小孔332Rを形成した微小孔形成剤334Rの分子レベルであると推測される。いくつかの微小孔332Rには、ゴム弾性体32Rから滲み出たブリード性潤滑剤322Rが充填されている。
 潤滑膜34Rは、ゴム弾性体32Rのブリード性潤滑剤322Rと、被膜33Rの微小孔332Rを形成した微小孔形成剤334Rと、により形成されている。潤滑膜34Rの形成方法については、次のストッパの製造方法において説明する。
 [ストッパの製造方法]
 本実施形態のストッパの製造方法は、組成物調製工程と、架橋工程と、脱脂工程と、塗布工程と、焼成工程と、を有している。組成物調製工程、架橋工程、および脱脂工程については、第一実施形態のストッパの製造方法と同じである。したがって、ここでは説明を割愛する。
 図12に、塗布工程後、焼成工程前のゴム弾性体の拡大断面図を示す。図13に、焼成工程中のゴム弾性体の拡大断面図を示す。なお、図12、図13に示すのは、いずれも図11に対応する部位である(図12、図13においては、図11を90°回転して示している)。
 塗布工程においては、図12に示すように、清浄なゴム弾性体32Rの表面に、塗料35Rを塗布する。塗料35Rは、メルカプト基を持つシリコーン樹脂330Rの原料333Rと、PTFE粒子335Rと、UHPE粒子336Rと、微小孔形成剤334Rと、を含有している。微小孔形成剤334Rは、ブリード性潤滑剤322Rとして用いた二種類のオレイン酸アミドのうちの一方(低融点の主要成分)である。微小孔形成剤334Rの配合量は、塗料35Rの固形分を100質量%とした場合の10質量%である。
 焼成工程においては、塗料35Rが塗布されたゴム弾性体32Rを、100℃で、30分間、焼成する。焼成により、図12に示す原料333Rが熱硬化する。そして、図13に示すように、ゴム弾性体32Rの表面に、被膜33Rが形成される。この際、図13に白抜き矢印で示すように、塗料35R中の微小孔形成剤334Rが放出されて、被膜33Rの表面に滲み出る。また、図13にハッチング矢印で示すように、ゴム弾性体32Rのブリード性潤滑剤322Rも、被膜33Rを透過して、被膜33Rの表面に滲み出る。このように、被膜33Rの表面に滲み出た微小孔形成剤334R(オレイン酸アミド)およびブリード性潤滑剤322R(オレイン酸アミド)により、潤滑膜34Rが形成される。また、被膜33Rには、微小孔形成剤334Rが放出された後に、微小孔332Rが形成される。このようにして、本実施形態のストッパ3Rを製造する。
 [作用効果]
 本実施形態のストッパおよびその製造方法は、構成が共通する部分に関しては、第一実施形態のストッパおよびその製造方法と同様の作用効果を有する。また、本実施形態のストッパにおいては、被膜33Rが、複数の微小孔332Rを有する。微小孔332Rは、ゴム弾性体32Rから滲み出たブリード性潤滑剤322Rを、貯留することができる。このため、高温下において、ゴム弾性体32R中のブリード性潤滑剤322Rの滲出速度が、被膜33Rを透過する速度を上回っても、余剰分のブリード性潤滑剤322Rは、被膜33R中の微小孔332Rに貯留される。よって、ブリード性潤滑剤322Rは、被膜33Rとゴム弾性体32Rとの界面に溜まりにくい。これにより、本実施形態のストッパにおいては、高温下においても、被膜33Rがゴム弾性体32Rから剥離しにくい。したがって、本実施形態のストッパは、耐久性に優れる。
 本実施形態のストッパの製造方法においては、塗料35Rに、微小孔形成剤334Rを配合する。図13に示すように、焼成工程において、塗料35Rが硬化する際に、微小孔形成剤334Rが放出されることにより、被膜33R内部に複数の微小孔332Rを形成することができる。このように、本実施形態のストッパの製造方法によると、複数の微小孔332Rを有する被膜33Rを、比較的簡単に形成することができる。
 また、微小孔形成剤334Rは、ブリード性潤滑剤322Rとして用いた二種類のオレイン酸アミドのうちの一方である。つまり、微小孔形成剤334Rは、ゴム弾性体32R中のブリード性潤滑剤322Rのうちの一つと同じである。このため、ゴム弾性体32Rへの影響が小さいと共に、安定した潤滑膜34Rを形成することがきる。また、被膜33Rや潤滑膜34Rに不純物が残存しにくく、それらの性能にも影響を及ぼしにくい。また、微小孔形成剤334Rの配合量は、塗料35Rの固形分を100質量%とした場合の10質量%である。これにより、被膜33Rの性能を維持しながら、ブリード性潤滑剤322Rを貯留するために必要な微小孔332Rを、形成することができる。
 <第三実施形態>
 本実施形態は、本発明の防振ゴム部材を、スタビライザブッシュとして具現化したものである。
 [スタビライザブッシュの配置]
 まず、本実施形態のスタビライザブッシュの配置について説明する。図14に、本実施形態のスタビライザブッシュの配置図を示す。図14に示すように、車両9の前輪付近には、サスペンション90、ハブユニット91、ステアリングギヤ92、ドライブシャフト93などの部材が配置されている。サスペンション90は、スプリング900L、900R、ショックアブソーバ901L、901R、ロアサスペンションアーム902L、902R、スタビライザバー903などを備えている。スタビライザバー903は、鋼製であって、前方にC字状に膨出する長軸パイプ状を呈している。スタビライザバー903の左右方向両端は、ロアサスペンションアーム902L、902Rに連結されている。スタビライザバー903の中央部分の左右二箇所は、スタビライザブッシュ1L、1R、ブラケット2L、2Rを介して、車両9のボディ(図略)に連結されている。このように、スタビライザブッシュ1L、1Rは、スタビライザバー903と、車両9のボディと、の間に介装されている。スタビライザブッシュ1L、1Rは、前輪から入力される振動が、スタビライザバー903を介して、車両9のボディに伝達されるのを抑制している。スタビライザバー903は、本発明の相手側部材に含まれる。
 [スタビライザブッシュの構造]
 次に、本実施形態のスタビライザブッシュ1L、1Rの構造について説明する。左右二つのスタビライザブッシュ1L、1Rの構成は同じである。以下、左側のスタビライザブッシュ1Lの構成について説明し、当該説明をもって右側のスタビライザブッシュ1Rの構成についての説明を兼ねるものとする。
 図15に、本実施形態のスタビライザブッシュとブラケットとの合体斜視図を示す。図16に、本実施形態のスタビライザブッシュとブラケットとの分解斜視図を示す。図17に、図15のXVII-XVII方向断面図を示す。図15~図17に示すように、本実施形態のスタビライザブッシュ1Lは、ゴム弾性体10Lと、被膜11Lと、潤滑膜12Lと、を備えている。
 ゴム弾性体10Lは、左方向あるいは右方向から見て、中実のU字状を呈している。すなわち、ゴム弾性体10Lの上部分は、長方形状を呈している。ゴム弾性体の下部分は、半円状を呈している。ゴム弾性体10Lは、左右方向に貫通する保持孔100Lを備えている。保持孔100Lの内周面は、本発明の摺動内面に含まれる。保持孔100Lの内周面は、所定の曲率を持った略平滑面状を呈している。すなわち、保持孔100Lの内周面には、人為的な凹凸が形成されていない。ゴム弾性体10Lの外部と保持孔100Lの内部とは、切断部101Lを介して、連通している。保持孔100Lには、スタビライザバー903が配置されている。スタビライザバー903は、切断部101Lを上下方向に開いて形成される開口を介して、ゴム弾性体10Lの外部から保持孔100Lの内部に挿入される。ゴム弾性体10Lの左右両縁には、一対のフランジ部104Lが形成されている。一対のフランジ部104Lは、各々、上方に開口するU字状を呈している。
 被膜11Lは、円筒状を呈している。被膜11Lは、保持孔100Lの内周面を覆っている。被膜11Lの膜厚(径方向厚さ)は、約20μmである。潤滑膜12Lは、液状であって、被膜11Lの表面(内周面)を覆っている。潤滑膜12Lの表面(潤滑膜12Lが不足する場合には被膜11Lの表面)は、スタビライザバー903の外周面に、当接している。
 [スタビライザブッシュの材質]
 次に、本実施形態のスタビライザブッシュ1L、1Rの材質について説明する。図18に、図17の枠XVIII内の拡大図を示す。なお、図18は、本実施形態のスタビライザブッシュ1L、1Rの機能を説明するための、模式図である。
 ゴム弾性体10Lは、自己潤滑ゴム製である。ゴム弾性体10Lは、NRとBRとのブレンドゴム(以下、単に「ブレンドゴム」と称す。)102Lと、ブリード性潤滑剤103Lと、を備えている。ブリード性潤滑剤103Lとしては、融点が異なる二種類のオレイン酸アミドが用いられている。ブレンドゴム102Lは、本発明のエラストマーに含まれる。
 被膜11Lは、メルカプト基を持つシリコーン樹脂110Lと、PTFE粒子115Lと、UHPE粒子116Lと、を備えている。PTFE粒子115Lは、平均粒子径が約0.5μmの略球状を呈している。UHPE粒子116Lは、平均粒子径が約1μmの略球状を呈している。UHPEの質量平均分子量は、200万である。PTFE粒子115LおよびUHPE粒子116L(固体潤滑剤)の総含有量は、シリコーン樹脂110L100質量部に対して30質量部である。また、固体潤滑剤を構成するUHPE粒子116Lの割合は、PTFE粒子115LおよびUHPE粒子116Lの総質量を100質量%とした場合の、70質量%である。
 潤滑膜12Lは、ゴム弾性体10Lのブリード性潤滑剤(オレイン酸アミド)103Lにより形成されている。すなわち、ゴム弾性体10Lのブリード性潤滑剤103Lは、図18に白抜き矢印で示すように、被膜11Lを透過する。そして、被膜11Lの表面に滲み出る。滲み出たブリード性潤滑剤103Lにより、潤滑膜12Lが形成される。
 図18に白抜き両端矢印で示すように、スタビライザバー903は、車両9の挙動に応じて、軸周りに捩られる。一方、スタビライザブッシュ1Lは、後述するブラケット2Lを介して、車両9のボディに固定されている。このため、潤滑膜12Lの表面(潤滑膜12Lが不足する場合には被膜11Lの表面)は、スタビライザバー903の外周面に、相対的に摺接している。
 [ブラケットの構造]
 次に、本実施形態のブラケット2L、2Rの構造について説明する。左右二つのブラケット2L、2Rの構造は同じである。以下、左側のブラケット2Lの構造について説明し、当該説明をもって右側のブラケット2Rの構造についての説明を兼ねるものとする。図15~図17に示すように、本実施形態のブラケット2Lは、鋼製であって、ブッシュ保持部20Lと、一対の固定部21Lと、を備えている。
 ブッシュ保持部20Lは、左方向あるいは右方向から見て、上方に開口するU字状を呈している。ブッシュ保持部20Lの左右両縁には、一対のフランジ部200Lが形成されている。ブッシュ保持部20LのU字開口内部には、スタビライザブッシュ1Lにおける、一対のフランジ部104L間の部分が、収容されている。一対のフランジ部200Lは、一対のフランジ部104Lに、左右方向内側から当接している。当該当接により、ブラケット2Lから、左右方向に、スタビライザブッシュ1Lが脱落するのを、抑制することができる。
 一対の固定部21Lは、各々、長方形板状を呈している。一対の固定部21Lは、ブッシュ保持部20LのU字両端に連なっている。一対の固定部21Lには、各々、ボルト挿通孔210Lが穿設されている。一対のボルト挿通孔210Lには、各々、下方からボルト211Lが挿通されている。一方、車両9のボディ95の下面には、凹部950Lと、一対のボルト止着孔951Lと、が配置されている。凹部950Lの内部空間は、直方体状を呈している。凹部950Lには、スタビライザブッシュ1Lの上部分が挿入されている。一対のボルト止着孔951Lは、凹部950Lの前後方向に配置されている。ボルト211Lは、ボルト挿通孔210Lを貫通して、ボルト止着孔951Lにねじ止めされている。このように、一対のボルト211Lにより、ブラケット2Lがボディ95の下面に固定されている。また、スタビライザブッシュ1Lが、ブラケット2Lと、ボディ95の下面と、の間に、挟持、固定されている。固定される際、ゴム弾性体10Lの上部分は、締め代S(図15、図16参照)の分だけ、圧縮変形する。当該締め代Sにより、スタビライザブッシュ1Lは、スタビライザバー903の外周面に、圧接している。
 [スタビライザブッシュの製造方法]
 本実施形態のスタビライザブッシュ1L、1Rの製造方法は、組成物調製工程と、架橋工程と、脱脂工程と、塗布工程と、焼成工程と、を有している。架橋工程において円板30R(図2参照)をキャビティにインサートする必要がない点以外は、第一実施形態のストッパの製造方法と同様である。したがって、ここでは説明を割愛する。
 [作用効果]
 次に、本実施形態のスタビライザブッシュ1L、1Rおよびその製造方法の作用効果について説明する。本実施形態のスタビライザブッシュ1L、1Rおよびその製造方法は、構成が共通する部分に関しては、第一実施形態のストッパおよびその製造方法と同様の作用効果を有する。
 すなわち、本実施形態のスタビライザブッシュ1L、1Rの潤滑膜12Lは、スタビライザバー903に摺接する。また、例えば潤滑膜12Lの一時的な膜切れなどにより、潤滑膜12Lが不足する部分が摺動面にある場合には、当該部分から被膜11Lが表出し、スタビライザバー903に摺接する。すなわち、潤滑膜12Lが不足する場合であっても、被膜11Lがスタビライザバー903に摺接する。ここで、被膜11Lは、ゴム弾性体10Lから滲み出たブリード性潤滑剤103L、PTFE粒子115L、およびUHPE粒子116Lを含有する。したがって、被膜11Lとスタビライザバー903との間の摩擦抵抗は小さい。加えて、被膜11Lの耐摩耗性は高い。
 <第四実施形態>
 本実施形態のスタビライザブッシュと、第三実施形態のスタビライザブッシュと、の相違点は、被膜が微小孔を有する点である。また、本実施形態のスタビライザブッシュの製造方法と、第三実施形態のスタビライザブッシュの製造方法と、の相違点は、被膜を形成する塗料に微小孔形成剤を配合する点である。この点において、本実施形態のスタビライザブッシュの製造方法は、架橋工程において円板30R(図2参照)をキャビティにインサートする必要がない点以外は、第二実施形態のストッパの製造方法と同様である。したがって、ここでは相違点についてのみ説明する。
 図19に、本実施形態のスタビライザブッシュにおける前出図17の枠XVIII内に相当する部分の拡大図を示す。図19は、図18と同様、本実施形態のストッパの機能を説明するための、模式図である。図19中、図18と対応する部位については、同じ符号で示す。
 被膜11Lは、メルカプト基を持つシリコーン樹脂110Lと、PTFE粒子115Lと、UHPE粒子116Lと、複数の微小孔112Lと、を備えている。複数の微小孔112Lは、被膜11Lの内部に分散されている。微小孔112Lの大きさは、微小孔112Lを形成した微小孔形成剤の分子レベルであると推測される。いくつかの微小孔112Lには、ゴム弾性体10Lから滲み出たブリード性潤滑剤103Lが充填されている。
 潤滑膜12Lは、ゴム弾性体10Lのブリード性潤滑剤103Lと、被膜11Lの微小孔112Lを形成した微小孔形成剤と、により形成されている。すなわち、本実施形態のスタビライザブッシュの製造方法においては、メルカプト基を持つシリコーン樹脂110Lの原料と、PTFE粒子115Lと、UHPE粒子116Lと、微小孔形成剤と、を含有する塗料を、ゴム弾性体10Lの表面に塗布する。微小孔形成剤としては、ブリード性潤滑剤103Lとして用いた二種類のオレイン酸アミドのうちの一方(低融点の主要成分)を、用いる。すると、焼成工程において被膜11Lが形成される際に、塗料中の微小孔形成剤が放出されて、被膜11Lの表面に滲み出る。また、ゴム弾性体10Lのブリード性潤滑剤103Lも、被膜11Lを透過して、被膜11Lの表面に滲み出る。このように、被膜11Lの表面に滲み出た微小孔形成剤(オレイン酸アミド)、およびブリード性潤滑剤(オレイン酸アミド)103Lにより、潤滑膜12Lが形成される。そして、被膜11Lには、微小孔形成剤が放出された後に、微小孔112Lが形成される。
 本実施形態のスタビライザブッシュおよびその製造方法は、構成が共通する部分に関しては、第三実施形態のスタビライザブッシュおよびその製造方法、ならびに第二実施形態のストッパおよびその製造方法と、同様の作用効果を有する。
 また、本実施形態のスタビライザブッシュにおいては、被膜11Lが、複数の微小孔112Lを有する。微小孔112Lは、ゴム弾性体10Lから滲み出たブリード性潤滑剤103Lを、貯留することができる。このため、高温下において、ゴム弾性体10L中のブリード性潤滑剤103Lの滲出速度が、被膜11Lを透過する速度を上回っても、余剰分のブリード性潤滑剤103Lは、図19にハッチング矢印で示すように、被膜11L中の微小孔112Lに貯留される。よって、ブリード性潤滑剤103Lは、被膜11Lとゴム弾性体10Lとの界面に溜まりにくい。これにより、本実施形態のスタビライザブッシュにおいては、高温下においても、被膜11Lがゴム弾性体10Lから剥離しにくい。したがって、本実施形態のスタビライザブッシュは、耐久性に優れる。また、本実施形態のスタビライザブッシュの製造方法によると、複数の微小孔112Lを有する被膜11Lを、比較的簡単に形成することができる。
 <第五実施形態>
 本実施形態のスタビライザブッシュと、第四実施形態のスタビライザブッシュと、の相違点は、スタビライザブッシュを製造する際、被膜の微小孔形成剤として、ブリード性潤滑剤ではなく、発泡剤を使用する点である。したがって、ここでは相違点についてのみ説明する。
 本実施形態のスタビライザブッシュの製造方法は、第四実施形態と同様、組成物調製工程と、架橋工程と、脱脂工程と、塗布工程と、焼成工程と、を有している。塗布工程においては、メルカプト基を持つシリコーン樹脂110Lの原料と、PTFE粒子115Lと、UHPE粒子116Lと、微小孔形成剤113Lと、を含有する塗料を、ゴム弾性体10Lの表面に塗布する。微小孔形成剤113Lとしては、発泡剤を用いる。発泡剤は、主剤(永和化成工業(株)製「ネオセルボン(登録商標)N#100M」)、および助剤(同社製「セルペースト101」)からなる。微小孔形成剤113Lの配合量は、塗料の固形分を100質量%とした場合の10質量%(主剤5質量%、助剤5質量%)である。
 図20に、焼成工程中のゴム弾性体の拡大断面図を示す。なお、図20に示すのは、前出図18に対応する部位である。焼成工程においては、塗料が塗布されたゴム弾性体10Lを、100℃で、30分間、焼成する。焼成により、メルカプト基を持つシリコーン樹脂110Lの原料が熱硬化する。そして、ゴム弾性体10Lの表面に、被膜11Lが形成される。この際、図20に白抜き長矢印で示すように、塗料中の微小孔形成剤113Lは、ガス化して被膜11Lから放出される。一方、図20にハッチング短矢印で示すように、ゴム弾性体10Lのブリード性潤滑剤103Lは、被膜11Lを透過して、被膜11Lの表面に滲み出る。よって、潤滑膜12Lは、被膜11Lの表面に滲み出たブリード性潤滑剤103Lのみから形成される。また、被膜11Lには、微小孔形成剤113Lが放出された後に、微小孔112Lが形成される。このようにして、本実施形態のスタビライザブッシュを製造する。
 本実施形態のスタビライザブッシュの製造方法においては、微小孔形成剤113Lとして、発泡剤を用いる。発泡剤は、焼成時にガス化して、硬化途中の被膜11Lから放出される。したがって、被膜11Lや潤滑膜12Lの形成を阻害することなく、微小孔112Lを形成することができる。また、被膜11Lや潤滑膜12Lに不純物が残存しにくく、それらの性能にも影響を及ぼしにくい。また、微小孔形成剤113Lの配合量は、塗料の固形分を100質量%とした場合の10質量%である。これにより、被膜11Lの性能を維持しながら、ブリード性潤滑剤103Lを貯留するために必要な微小孔112Lを、形成することができる。また、発泡剤は粉末状を呈している。この場合、用いる粉末の粒子径や発泡条件(温度など)により、微小孔112Lの大きさを、調整することもできる。
 <その他>
 以上、本発明の防振ゴム部材およびその製造方法の実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
 例えば、ゴム弾性体のエラストマーの材質は、特に限定されない。例えば、NR、BR、IR(イソプレンゴム)、SBR(スチレンブタジエンゴム)、CR(クロロプレンゴム)、NBR(ニトリルゴム)、EPDM(エチレンプロピレンゴム)、IIR(ブチルゴム)、ACM(アクリルゴム)、U(ウレタンゴム)、シリコーンゴムあるいはこれらのブレンド材などを用いることができる。
 また、ゴム弾性体のブリード性潤滑剤の材質も、特に限定されない。例えば、脂肪酸アミド(不飽和脂肪酸アミド(オレイン酸アミド、エルカ酸アミドなど)、飽和脂肪酸アミド(ステアリン酸アミド、ベヘニン酸アミドなど))、シリコーンオイル、ポリエチレングリコール型界面活性剤などを用いることができる。
 被膜の樹脂の材質は、特に限定されない。シリコーン樹脂の他、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂などを用いることができる。上記実施形態においては、ストレートシリコーン樹脂およびその変性物よりも架橋構造が疎であって、ゴム弾性を有するシリコーン樹脂を用いた。「ストレートシリコーン樹脂」とは、メチル基のみを含むシリコーン樹脂、およびメチルフェニル基のみを含むシリコーン樹脂をいう。また、「ストレートシリコーン樹脂の変性物」としては、エポキシ変性シリコーン樹脂、アルキッド変性シリコーン樹脂、ポリエステル変性シリコーン樹脂、シリカ変性シリコーン樹脂、アクリル変性シリコーン樹脂などが挙げられる。また、「ゴム弾性を有する」シリコーン樹脂としては、ゴム系コーティング剤などに用いられるゴム複合シリコーン樹脂、ゴム弾性シリコーン樹脂などが挙げられる。
 また、被膜の樹脂の官能基も、メルカプト基に限定されない。例えば、ビニル基、エポキシ基、メタクリロキシ基、アミノ基などを用いることができる。官能基は、ゴム弾性体のエラストマーの材質に応じて、選定されることが望ましい。
 また、被膜に含有させる固体潤滑剤は、PTFE粒子、UHPE粒子のみに限定されない。これらの粒子と共に、黒鉛、二硫化モリブデン、フッ素樹脂などの粒子を併用してもよい。フッ素樹脂としては、例えば、PFA(テトラフルオロエチレン・パーフルオロアルコキシビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、ETFE(テトラフルオロエチレン・エチレン共重合体)、ECTFE(クロロトリフルオロエチレン・エチレン共重合体)、PVDF(ポリビニリデンフロライド)、PVF(ポリビニルフロライド)などを用いることができる。
 固体潤滑剤の含有量については、上記実施形態に限定されない。固体潤滑剤の含有量は、樹脂100質量部に対して10質量部以上、より好適には20質量部以上であることが望ましい。また、樹脂100質量部に対して70質量部以下、より好適には50質量部以下であることが望ましい。
 また、PTFE粒子およびUHPE粒子の粒子径については、被膜の厚さ等を考慮して、適宜決定すればよい。例えば、被膜の厚さが5~30μm程度の場合には、平均粒子径が0.5μm以上30μm以下のPTFE粒子、平均粒子径が1μm以上30μm以下のUHPE粒子が好適である。また、UHPEの分子量は、50万以上であればよい。150万以上が、より好適である。PTFE粒子およびUHPE粒子の配合比率は、被膜の摩擦抵抗および耐摩耗性を考慮して、適宜決定すればよい。
 微小孔形成剤の材質は、特に限定されない。微小孔形成剤は、焼成時に塗料から放出され、被膜や潤滑膜の形成を阻害しにくいものであればよい。上記第二、第四実施形態のように、ゴム弾性体のブリード性潤滑剤と同じ成分を含む場合には、ゴム弾性体への影響が小さいと共に、安定した潤滑膜を形成することがきる。また、不純物が残存しにくいため、被膜や潤滑膜の性能にも影響を及ぼしにくい。また、マトリックス(被膜の樹脂、ゴム弾性体のエラストマー)の材質により、ブリード性潤滑剤の移動速度は異なる。このため、例えば樹脂の選定により、微小孔形成剤の放出速度を、制御することができる。
 また、焼成工程における焼成温度や焼成時間は、特に限定されない。焼成温度や焼成時間については、樹脂の種類、微小孔形成剤の放出速度、ブリード性潤滑剤の滲出速度などを考慮して、適宜決定すればよい。
 また、被膜に形成される微小孔の大きさ、体積割合などについても、特に限定されない。ゴム弾性体から滲み出たブリード性潤滑剤の貯留機能と、被膜の強度や剛性と、のバランスを考慮して、適宜決定すればよい。
 また、上記実施形態においては、本発明の防振ゴム部材をロアサスペンションアーム用のストッパ、スタビライザブッシュとして具現化した。しかしながら、例えば、特開2005-106169号公報、特開2005-249062号公報に開示されているようなエンジンマウント用のストッパ、特開2008-89002号公報、特開2008-95785号公報に開示されているようなデフマウント用のストッパとして、本発明の防振ゴム部材を具現化してもよい。
 以下、本発明の防振ゴム部材について行ったトルク測定試験について説明する。
 <サンプル>
 第四実施形態のスタビライザブッシュ(前出図19参照)を、実施例のサンプルとした。すなわち、実施例のサンプルの被膜は、固体潤滑剤としてPTFE粒子およびUHPE粒子を含有すると共に、微小孔を有する。これに対して、固体潤滑剤としてPTFE粒子のみを含有し、微小孔を有する被膜を備えるスタビライザブッシュを、参考例のサンプルとした。また、固体潤滑剤としてPTFE粒子のみを含有し、微小孔を有しない被膜を備えるスタビライザブッシュを、比較例のサンプルとした。参考例および比較例のサンプルの被膜中、PTFE粒子の含有量は、シリコーン樹脂100質量部に対して80質量部である。また、使用したPTFE粒子は、実施例のサンプルにおけるPTFE粒子と同じである。
 <試験方法>
 まず、各サンプルを、ブラケット2Lにより、ジグ(第三実施形態の車両9のボディ95の下面に相当)に固定した(前出図15~図17参照)。次に、各サンプルの保持孔100Lに、シャフト(第三実施形態のスタビライザバー903に相当)を挿通した。それから、トルクレンチを用いて、シャフトを軸周りに±15°捩った。そして、シャフトに加わるトルクを測定した。シャフトとサンプルとの間の摩擦抵抗が小さい場合、シャフトに加わるトルクは小さくなる。反対に、シャフトとサンプルとの間の摩擦抵抗が大きい場合、シャフトに加わるトルクは大きくなる。±15°の捩りを1回として、シャフトを10万回捩り、所定の回数にてトルクを測定した。
 <試験結果>
 図21に、トルクの測定結果を示す。図21に示すように、比較例のサンプルにおいては、捩り回数の増加と共にトルクが増加した。また、参考例のサンプルにおいては、比較例のサンプルよりも、トルクの増加幅が小さくなった。これに対して、実施例のサンプルにおいては、捩りを繰り返しても、トルクはほとんど増加しなかった。つまり、サンプルとシャフトとの間の摩擦抵抗の増加が抑制された。
 実施例のサンプルの被膜は、微小孔を有する。このため、捩りを繰り返すことにより温度が上昇し、ゴム弾性体からブリード性潤滑剤が多量に滲み出ても、被膜を透過できない余剰分のブリード性潤滑剤は、被膜中の微小孔に貯留される。つまり、滲み出たブリード性潤滑剤が、被膜とゴム弾性体との界面に溜まりにくい。よって、被膜が剥離しにくい。また、実施例のサンプルの被膜は、PTFE粒子に加えてUHPE粒子も含有する。このため、被膜の耐摩耗性は高い。よって、捩りを繰り返しても、被膜が摩耗しにくく、ゴム弾性体が表出しにくい。以上より、実施例のサンプルにおいては、シャフトとの間の摩擦抵抗の増加が抑制されたと考えられる。

Claims (13)

  1.  相手側部材の振動の少なくとも一部を吸収すると共に、該相手側部材に相対的に摺接する摺動面を備えてなる防振ゴム部材であって、
     エラストマーと、ブリード性潤滑剤と、を含有する自己潤滑ゴム製のゴム弾性体と、
     該ゴム弾性体の表面のうち前記摺動面の内側に配置される摺動内面の少なくとも一部を覆い、メルカプト基、ビニル基、エポキシ基、メタクリロキシ基、アミノ基から選ばれる一種以上の官能基を持つ樹脂と、ポリテトラフルオロエチレン粒子および超高分子量ポリエチレン粒子を含む固体潤滑剤と、を含有し、該ゴム弾性体の変形に追従して変形可能な被膜と、
     該被膜の表面の少なくとも一部を覆い、該ゴム弾性体から該被膜を透過して該被膜の表面に滲み出た該ブリード性潤滑剤を含んで形成され、該摺動面の少なくとも一部を形成する潤滑膜と、
    を備えてなることを特徴とする防振ゴム部材。
  2.  前記超高分子量ポリエチレン粒子の平均粒子径は、1μm以上30μm以下である請求項1に記載の防振ゴム部材。
  3.  前記被膜は、前記固体潤滑剤を、前記樹脂100質量部に対して10質量部以上70質量部以下含有する請求項1または請求項2に記載の防振ゴム部材。
  4.  前記固体潤滑剤に含まれる前記超高分子量ポリエチレン粒子の割合は、該固体潤滑剤の全体を100質量%とした場合の10質量%以上90質量%以下である請求項1ないし請求項3のいずれかに記載の防振ゴム部材。
  5.  前記被膜は、前記ゴム弾性体から滲み出た前記ブリード性潤滑剤を貯留可能な複数の微小孔を有する請求項1ないし請求項4のいずれかに記載の防振ゴム部材。
  6.  複数の前記微小孔の少なくとも一部には、前記ゴム弾性体から滲み出た前記ブリード性潤滑剤が貯留されている請求項5に記載の防振ゴム部材。
  7.  前記ゴム弾性体は前記相手側部材が配置される保持孔を有しており、前記摺動内面は該保持孔の内周面である請求項1ないし請求項6のいずれかに記載の防振ゴム部材。
  8.  請求項1に記載の防振ゴム部材の製造方法であって、
     架橋反応により、エラストマーと、ブリード性潤滑剤と、を含有する自己潤滑ゴム製のゴム弾性体を作製する架橋工程と、
     該ゴム弾性体の表面のうち前記摺動面の内側に配置される摺動内面を脱脂する脱脂工程と、
     脱脂後の該摺動内面に、メルカプト基、ビニル基、エポキシ基、メタクリロキシ基、アミノ基から選ばれる一種類以上の官能基を持つ熱硬化性樹脂と、ポリテトラフルオロエチレン粒子および超高分子量ポリエチレン粒子を含む固体潤滑剤と、を含有する塗料を塗布する塗布工程と、
     該塗料が塗布された該ゴム弾性体を焼成することにより、該摺動内面に該塗料からなる被膜を形成すると共に、該ゴム弾性体の該ブリード性潤滑剤を該被膜を透過して該被膜の表面に滲み出させ、該被膜の表面に該ブリード性潤滑剤を含む潤滑膜を形成する焼成工程と、
    を有することを特徴とする防振ゴム部材の製造方法。
  9.  請求項5に記載の防振ゴム部材の製造方法であって、
     架橋反応により、エラストマーと、ブリード性潤滑剤と、を含有する自己潤滑ゴム製のゴム弾性体を作製する架橋工程と、
     該ゴム弾性体の表面のうち前記摺動面の内側に配置される摺動内面を脱脂する脱脂工程と、
     脱脂後の該摺動内面に、メルカプト基、ビニル基、エポキシ基、メタクリロキシ基、アミノ基から選ばれる一種以上の官能基を持つ熱硬化性樹脂と、ポリテトラフルオロエチレン粒子および超高分子量ポリエチレン粒子を含む固体潤滑剤と、焼成時に放出されることにより被膜に微小孔を形成する微小孔形成剤と、を含有する塗料を塗布する塗布工程と、
     該塗料が塗布された該ゴム弾性体を焼成することにより、該塗料から該微小孔形成剤を放出させながら該摺動内面に該被膜を形成すると共に、該ゴム弾性体の該ブリード性潤滑剤を該被膜を透過して該被膜の表面に滲み出させ、該被膜の表面に該ブリード性潤滑剤を含む潤滑膜を形成する焼成工程と、
    を有することを特徴とする防振ゴム部材の製造方法。
  10.  前記微小孔形成剤は、ブリード性潤滑剤および発泡剤から選ばれる一種以上からなる請求項9に記載の防振ゴム部材の製造方法。
  11.  前記微小孔形成剤は、ブリード性潤滑剤からなり、
     前記潤滑膜は、前記ゴム弾性体に含有される前記ブリード性潤滑剤、および該微小孔形成剤の両方から形成される請求項9に記載の防振ゴム部材の製造方法。
  12.  前記微小孔形成剤は、前記ゴム弾性体に含有される前記ブリード性潤滑剤の少なくとも一種を含む請求項10または請求項11に記載の防振ゴム部材の製造方法。
  13.  前記微小孔形成剤の配合量は、前記被膜を形成する固形分全体を100質量%とした場合の0.5質量%以上20質量%以下である請求項9ないし請求項12のいずれかに記載の防振ゴム部材の製造方法。
PCT/JP2013/073960 2012-09-21 2013-09-05 防振ゴム部材およびその製造方法 WO2014045887A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/636,339 US9677636B2 (en) 2012-09-21 2015-03-03 Anti-vibration rubber member and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-208169 2012-09-21
JP2012208169A JP5993681B2 (ja) 2012-09-21 2012-09-21 防振ゴム部材およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/636,339 Continuation US9677636B2 (en) 2012-09-21 2015-03-03 Anti-vibration rubber member and production method thereof

Publications (1)

Publication Number Publication Date
WO2014045887A1 true WO2014045887A1 (ja) 2014-03-27

Family

ID=50341204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073960 WO2014045887A1 (ja) 2012-09-21 2013-09-05 防振ゴム部材およびその製造方法

Country Status (3)

Country Link
US (1) US9677636B2 (ja)
JP (1) JP5993681B2 (ja)
WO (1) WO2014045887A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3025524B1 (fr) * 2014-09-05 2018-02-16 Centre Technique Des Industries Mecaniques Materiau composite autolubrifiant
US9931902B2 (en) * 2015-04-16 2018-04-03 Toyota Jidosha Kabushiki Kaisha Stabilizer bushing and stabilizer-bar mounting device
CN108200488B (zh) * 2016-12-08 2022-06-03 林球有限公司 用于音响器材的防振装置及具有防振装置的音响器材架
US11209065B2 (en) * 2017-08-09 2021-12-28 Vibracoustic Usa, Inc. Low torsion bushing and assembly
CN110181886B (zh) * 2019-05-29 2021-02-12 明阳科技(苏州)股份有限公司 一种薄壁粘接自润滑板材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002016A (ja) * 2004-06-17 2006-01-05 Nachi Fujikoshi Corp 耐摩耗摺動用被膜及び同被膜形成部材
JP2007170454A (ja) * 2005-12-20 2007-07-05 Mitsuboshi Belting Ltd Vリブドベルト
JP2007255635A (ja) * 2006-03-24 2007-10-04 Mitsuboshi Belting Ltd 摩擦伝動ベルト
WO2010038746A1 (ja) * 2008-09-30 2010-04-08 東海ゴム工業株式会社 防振ゴム部材およびその製造方法
WO2010038749A1 (ja) * 2008-09-30 2010-04-08 東海ゴム工業株式会社 スタビライザブッシュ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880318A (en) * 1987-01-21 1989-11-14 Tokai Rubber Industries, Ltd. Slidable vibration-isolating rubber member
JPH02121814A (ja) 1988-10-31 1990-05-09 Toyoda Gosei Co Ltd 樹脂薄層を有するゴム成形品の成形方法
US4916749A (en) * 1989-04-20 1990-04-10 The Pullman Company Elastomeric bushing and method of manufacturing the same
CN1072333C (zh) * 1995-07-14 2001-10-03 株式会社Ntn 轴承装置
US5984283A (en) * 1996-03-29 1999-11-16 Toyoda Gosei Co., Ltd. Vibration-damping rubber in suspension of vehicle
US6245836B1 (en) * 1998-04-22 2001-06-12 Oiles Corporation Lubricating coating compound, sliding structure combining two sliding members in which lubricating coating compound is applied to one of the sliding members, and slide bearing apparatus using the same
FR2783291B1 (fr) * 1998-09-16 2000-12-08 Stephanois Rech Mec Organes de guidage glissants, lubrifies a la graisse, a bas coefficient de frottement et a duree de vie amelioree
US6474631B2 (en) * 2000-03-16 2002-11-05 Toyo Tire & Rubber Co., Ltd. Stabilizer bushing
US6569816B2 (en) * 2000-08-18 2003-05-27 Ntn Corporation Composition having lubricity and product comprising the composition
JP2003026851A (ja) 2001-07-13 2003-01-29 Mitsui Chemicals Inc 含浸体、該含浸体を含むポリオレフィン組成物およびその製造方法、並びに該組成物から得られる成形体
JP5780639B2 (ja) * 2011-06-30 2015-09-16 住友理工株式会社 防振ゴム部材およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002016A (ja) * 2004-06-17 2006-01-05 Nachi Fujikoshi Corp 耐摩耗摺動用被膜及び同被膜形成部材
JP2007170454A (ja) * 2005-12-20 2007-07-05 Mitsuboshi Belting Ltd Vリブドベルト
JP2007255635A (ja) * 2006-03-24 2007-10-04 Mitsuboshi Belting Ltd 摩擦伝動ベルト
WO2010038746A1 (ja) * 2008-09-30 2010-04-08 東海ゴム工業株式会社 防振ゴム部材およびその製造方法
WO2010038749A1 (ja) * 2008-09-30 2010-04-08 東海ゴム工業株式会社 スタビライザブッシュ

Also Published As

Publication number Publication date
JP5993681B2 (ja) 2016-09-14
JP2014062598A (ja) 2014-04-10
US20150167767A1 (en) 2015-06-18
US9677636B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
JP5780639B2 (ja) 防振ゴム部材およびその製造方法
JP4842401B2 (ja) スタビライザブッシュ
JP4792539B2 (ja) 防振ゴム部材およびその製造方法
JP5993681B2 (ja) 防振ゴム部材およびその製造方法
US7367551B2 (en) Elastomeric bush bearing with improved torsion characteristic
KR20130014238A (ko) 자동차용 스태빌라이저 바의 마운트 부시
US20080277847A1 (en) Bushing having self-lubricating overmold
JP7121860B2 (ja) 車体ダンパーブレース
US20200047578A1 (en) Dual compound elastomer bushing for vehicle suspension component
JP2006242289A (ja) 防振ブッシュ
JPH1151099A (ja) ゴムブッシュ
US20090243173A1 (en) Combination bearing with bush bearing
JP5302868B2 (ja) 防振ブッシュ付きスタビライザバー及びその製造方法
JP2008051193A (ja) ストラットマウント
JP2525210B2 (ja) 球面摺動型ブッシュ組立体
JP2007092912A (ja) スタビライザーブッシュ及びスタビライザーブッシュの取付構造
JPH11210794A (ja) ゴムブッシュ
JPH0320574Y2 (ja)
KR102309067B1 (ko) 차량 또는 기계장치의 안티롤 바 마운팅용 베어링형 부시
JPH059925Y2 (ja)
KR20120015195A (ko) 자동차용 스테빌라이저 바의 마운트 부시
JP2009073360A (ja) スタビライザブッシュ付きスタビライザバー及びその製造方法
JP2008256101A (ja) 防振ブッシュ
JP2007232189A (ja) 防振ブッシュ
JP2015121295A (ja) トルクロッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838753

Country of ref document: EP

Kind code of ref document: A1