WO2014045618A1 - 神経細胞ネットワークの形成及びその利用、並びに神経細胞播種デバイス - Google Patents
神経細胞ネットワークの形成及びその利用、並びに神経細胞播種デバイス Download PDFInfo
- Publication number
- WO2014045618A1 WO2014045618A1 PCT/JP2013/057976 JP2013057976W WO2014045618A1 WO 2014045618 A1 WO2014045618 A1 WO 2014045618A1 JP 2013057976 W JP2013057976 W JP 2013057976W WO 2014045618 A1 WO2014045618 A1 WO 2014045618A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- nerve
- substrate
- suspension
- cells
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/04—Flat or tray type, drawers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/48707—Physical analysis of biological material of liquid biological material by electrical means
- G01N33/48728—Investigating individual cells, e.g. by patch clamp, voltage clamp
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/12—Well or multiwell plates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/38—Caps; Covers; Plugs; Pouring means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/06—Plates; Walls; Drawers; Multilayer plates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M33/00—Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M33/00—Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
- C12M33/04—Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/02—Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0619—Neurons
Definitions
- the “nerve cell” first includes various types of nerve cells such as central nerve cells and peripheral nerve cells. Nerve cells are preferably in a state where no axons or dendrites are projected yet.
- the “neural cell” is secondly a cell that can be differentiated into a neuron, such as an iPS cell or an ES cell, and more preferably in the process of completing differentiation from an iPS cell or ES cell into a neuron. Includes those in a state such as neural stem cells.
- the term “neural cells” includes, thirdly, cells having a property of forming a network between cells and cells capable of differentiating into cells having a property of forming a network between cells.
- the term “neuronal cell body” refers to the main part of a cell excluding protruding parts such as axons and dendrites in the neuron.
- Non-Patent Document 1 a region surrounded by a plurality of protrusions is provided on a Si substrate on which a transistor is arranged, and this is a large collection of peripheral nerve cells of stagnalis. A ganglion is placed to detect changes in nerve cell potential.
- Non-Patent Document 2 a plurality of substantially disk-shaped enclosures (height of about 9 ⁇ m) called “cages” as shown in FIG. 3 are formed on a substrate, and nerve cells are arranged in the central space of each cage.
- a neurochip that extends axons of nerve cells toward nerve cells in adjacent cages through several tunnels provided in the cage.
- the formation of a nerve cell network using mammalian nerve cells has the following problems.
- circular recesses (5 ⁇ m deep) communicated by thin grooves for guiding the extension of axons are provided on the substrate, and nerve cells are arranged in these recesses.
- the movement of nerve cells could be restricted, but on the other hand, many of the nerve cells placed in the recesses died after 2 to 3 days, and a problem was found that a good nerve cell network could not be constructed.
- neurons are sensitive to the culture conditions and conditions in the vicinity of the cells, and when forming a nerve cell network, it is possible to easily recognize the presence of the partner nerve cells with each other. It is estimated that it will be necessary.
- each neuron is accommodated in a recess, and there is a step of 5 ⁇ m on the substrate surface between adjacent neurons, so that it is difficult to confirm the partner cells with each other. Therefore, the formation of a nerve cell network is inhibited, and it is considered that defects such as an increase in the death rate of nerve cells and immature synapse formation occur.
- Non-Patent Document 1 arranges nerve tissue in a region surrounded by a plurality of protrusions, but the target is a giant ganglion of a snail that does not have active mobility. And the mutual space
- Non-Patent Document 2 nerve cells in each cage are surrounded by an uneven structure called a cage having a height of about 9 ⁇ m.
- the cage is provided with a tunnel for axon extension having a width of 10 ⁇ m and a height of 1 ⁇ m, but it is difficult for nerve cells in the cage to recognize each other's nerve cells through such a narrow tunnel. Therefore, Non-Patent Documents 1 and 2 cannot solve the above-mentioned problems, and there is no suggestion of a solution means.
- a method of forming a neuronal cell network premised on high-throughput screening applications how to seed neurons is also an important technique. For example, when forming a network having 100 measurement points and 25 cell fixing parts around the measurement points, the cell bodies of a predetermined number of nerve cells in a total of 2500 cell fixing parts in a short time, Usually it is necessary to sow within 1 hour.
- Non-Patent Documents 1 and 2 do not disclose a nerve cell seeding system for efficiently seeding nerve cells in many cell colonies.
- the first is a very small cell fixing part. Therefore, it is difficult to sow accurately, and secondly, sowing efficiency is extremely inferior, which is unrealistic.
- the configuration of the first invention for solving the above-described problem is that a cell fixing part surrounded by a plurality of protrusions is formed on a flat substrate that can be filled with a cell culture medium.
- a culture apparatus for forming a neural cell network which satisfies the conditions (3) to (3).
- (1) A wide interval is set between the plurality of protrusions constituting the cell fixing portion as long as the cell body of the nerve cell is not passed.
- the inner diameter of the cell fixing portion defined by the plurality of protrusions is a size that can accommodate a cell body of one to several nerve cells. “Several” means 2 to 10, more preferably 2 to 6, and further preferably 3 to 5.
- the substrate surface constituting the bottom surface of the cell fixing portion includes at least one of the following (A) and (B).
- a fine through-hole for sucking a medium by a suction device provided at the lower part of the substrate surface and having a hole diameter that does not allow nerve cells to pass therethrough is provided.
- “one to several neuronal cell bodies” means one or more and 10 or less, more preferably 1 or more and 5 or less neuronal cell bodies. To do.
- the configuration of the second invention for solving the above problem is a culture apparatus for forming a neural cell network, wherein the culture apparatus according to the first invention corresponds to any one of the following (1) to (3).
- a cell fixing portion as a selection region is formed on the substrate, and one to several nerve cells as selection cells are arranged in the cell fixing portion, and other nerve cells are simply seeded on the substrate.
- the (2) A plurality of cell fixing portions are formed on the substrate with appropriate mutual intervals, and one to several nerve cells are arranged in these cell fixing portions, and one of the cell fixing portions is a nerve. Used as a selection area where cells are placed.
- a nerve in which the cell fixing part is dispersed and formed at an appropriate position so that a plurality or a plurality of units of the nerve cell network corresponding to (1) or (2) can be formed on the substrate.
- FIG. 4 (b) shows a plan view of the main part on the substrate in the culture apparatus according to (2) of the second invention, and a plurality of cell fixing portions 13 are formed on the substrate with appropriate mutual intervals.
- Each cell fixing unit 13 is provided with a nerve cell 11 (actually one to several nerve cells), and one of the cell fixing unit 13 is used as a selection region.
- a network is formed by these nerve cells 11.
- the unit of the nerve cell network as shown in FIG. 4 (a) or FIG. 4 (b) is an independent network unit. A plurality or a large number are formed dispersed at appropriate positions on the substrate.
- a configuration of a third invention for solving the above-described problems is the planar patch clamp device in which the culture apparatus for forming a nerve cell network is a nerve cell network in the first invention or the second invention, (1)
- the substrate is an electrically insulating substrate, and the fine through hole is provided to communicate the surfaces on both sides of the substrate surface constituting the bottom surface of the cell fixing portion of the electrically insulating substrate, and (2) the fine through hole
- Each of the first surface side of the nerve cell network forming side and the second surface side opposite thereto are a liquid reservoir for holding the conductive liquid as the cell culture medium, and An electrode portion disposed so as to be energized with respect to the conductive liquid; and (3) a liquid reservoir portion on the first surface side is a liquid reservoir portion for nerve cells fixed on the cell fixing portion, It is a culture apparatus for forming a nerve cell network.
- the electrode portions on the first surface side and the second surface side are the following (a) to (c):
- a culture apparatus for forming a neural cell network comprising elements.
- C An electrode solution in which the noble metal chloride NmCl and the alkali metal chloride are dissolved in a saturated concentration, which is filled in the electrode container.
- the structure of the fifth invention for solving the above problem is that, in any one of the first to fourth inventions, the culture apparatus for forming a neural cell network is used for any of the following purposes (A) to (C):
- A Used for measurement and analysis of nerve cell ion channel current in a nerve cell network.
- B At least Ca imaging analysis, imaging analysis by labeling synaptophysin or synapsin as a marker of presynaptic site, imaging analysis by labeling of MAP2 as a dendritic marker, and FM1-43 for labeling endosomes and exosomes Alternatively, it is used for imaging analysis including imaging analysis by FM4-64.
- C Used in a high-throughput screening system for neural cell networks.
- the configuration of a sixth invention for solving the above-described problem is that, in the fifth invention, when the culture apparatus for forming a neural cell network is used for the imaging analysis described in (B), the following (D) to A culture device for forming a neural cell network, comprising one or more elements of (F).
- D) A light receiving device for light emitted from nerve cells is provided on the substrate.
- E) An irradiation device for irradiating light to nerve cells or the substrate surface is installed on the substrate.
- the irradiation device of (E) is equipped with a light collecting system for irradiating light only to a predetermined single nerve cell.
- a seventh aspect of the invention for solving the above-described problems is that a nerve cell under culture for any purpose of research using the nerve cell network-forming culture apparatus according to any one of the first to sixth inventions.
- a method for forming a cellular network comprising: (1) seeding neurons on the flat substrate filled with cell culture medium; (2) One to several nerve cells per cell fixing part by sucking a liquid medium from the extracellular matrix forming substance of the cell fixing part and / or by sucking a liquid medium from the fine through-hole on the bottom surface of the cell fixing part Arranging and fixing (3) While the movement of the nerve cells fixed on the cell fixing portion is restricted by the plurality of protrusions, the distance between the plurality of protrusions is used to recognize the existence of the partner nerve cell and thereby axons or dendrites Forming a synaptic junction between nerve cells; A method of forming a neural network.
- the configuration of an eighth invention for solving the above problem is that, in the method for forming a nerve cell network according to the seventh invention, when the nerve cells are seeded in the step (1), the glial cells are combined with portions other than the cell fixing portion. A method of forming a neural cell network.
- the structure of the ninth invention for solving the above-mentioned problem is that the apparatus is installed on a flat device substrate that can be filled with a cell culture medium in a culture device for forming a nerve cell network or a planar patch clamp device using this culture device.
- a nerve cell seeding device for seeding nerve cells in a large number of cell fixing parts surrounded by a plurality of protrusions on a substrate The board-shaped device body that can be installed on the apparatus substrate has a width that covers the large number of cell fixing parts in the installed state, and the flat bottom surface has a plurality of protrusions in the large number of cell fixing parts.
- the device body includes (1) a suspension supply port for supplying a nerve cell suspension in which nerve cells are suspended at a constant density, and (2) the suspension supply inside the device body. A number of fine suspension channels extending in a branched manner from the mouth; and (3) each of the nerve cell suspensions opened at the bottom of the device body at the end of each suspension channel. Suspension injection port for injecting into the cell fixing part, Is a device for seeding nerve cells.
- a configuration of a twelfth aspect of the invention for solving the above problem is that the culture apparatus for forming a neural cell network in the nerve cell seeding device according to any of the ninth to eleventh aspects of the invention forms the neural cell network according to the first aspect of the invention.
- a nerve cell seeding device, wherein the planar patch clamp device according to any one of the ninth to eleventh inventions is the planar patch clamp device according to the third invention.
- the device body in the nerve cell seeding device comprises the culture apparatus for forming a nerve cell network or the planar patch clamp apparatus.
- a nerve cell seeding device further comprising a second suspension channel for injecting the nerve cell suspension into a region other than the cell fixing part in the apparatus substrate.
- the nerve cell arranged here has a plurality of protrusions. Random movement is restricted by the part. Therefore, random movement of nerve cells is restricted.
- the inside and outside of the cell fixing part are on the same flat substrate surface, and there is no step (unevenness) between them.
- a wide space is set between the plurality of protrusions in the cell fixing portion as long as the cell body of the nerve cell is not allowed to pass therethrough, and this space portion is an open space above, and is disclosed in Non-Patent Document 2. It is not a narrow tunnel space. Therefore, the nerve cells arranged in the cell fixing part can easily recognize each other's nerve cells to form a network, and the synaptic junction between the axon and the dendrite using the interval between the protrusions. A good neural network based on formation can be constructed.
- the cell fixing part has one to several nerve cell bodies. Is placed and fixed.
- nerve cells particularly iPS cells and the like
- clusters clusters
- signal transmission between the nerve cells is simplified and network function analysis becomes easier.
- the cell body of 1 to several nerve cells is arranged and fixed in the cell fixing portion, so that both of the above requirements can be satisfied in a balanced manner.
- the culture apparatus for forming a neural cell network according to the first invention When the culture apparatus for forming a neural cell network according to the first invention is used, it is possible to survive the nerve cells for a long period of 4 weeks or more and maintain an active nerve cell network.
- the substrate surface constituting the bottom surface of the cell fixing part is coated with an extracellular matrix showing adhesion to nerve cells, and / or for cell culture medium suction by a suction device provided at the bottom of the substrate.
- a fine through-hole having a hole diameter that does not allow nerve cells to pass therethrough is provided. Therefore, at the time of seeding of the nerve cells, the cell body of one to several nerve cells is surely arranged and fixed at the cell fixing portion that becomes the node of the mesh in the mesh-like nerve cell network.
- a nerve cell network as shown in FIG. 4A a nerve cell network forming culture apparatus for forming a nerve cell network as shown in FIG. 4B, and a substrate.
- a plurality or a number of these neuronal network units can be formed. Accordingly, a culture apparatus for high-throughput analysis of neural cell networks is also provided.
- a planar patch clamp device is a multi-point measurement system that consists of a plurality of patch clamp devices on an electrically insulating solid substrate such as a silicon chip.
- a fine through-hole for measuring current is provided.
- the “fine through-hole for cell culture medium suction by the suction device provided at the lower portion of the substrate” defined in (3) (a) in the first aspect is the ion channel current. Used as a fine through hole for measurement.
- the conventional planar patch clamp device has a problem that it cannot be applied to cells that require culture such as nerve cells because it does not have a cell culture function.
- life span of cells to be measured is as short as 1 hour or 30 minutes under non-culture conditions, it can be used only for limited applications such as drug discovery screening, and the functional analysis of cells using pipette patch clamps. Application to etc. was difficult. Furthermore, it has been difficult to carry and trap cells well in the fine through-holes provided on the substrate.
- the nerve cell network-forming culture device according to the first or second invention is used as a planar patch clamp device for a nerve cell network, thereby It is possible to provide a planar patch clamp device which is intended for a nerve cell network and whose life of a nerve cell to be measured is significantly extended. If the culture apparatus for forming a nerve cell network defined in (3) of the second invention is used, high-throughput screening can be performed on the nerve cell network.
- planar patch clamp device as in the third aspect of the invention also has the following problems.
- the fluctuation of the applied membrane potential as described above is This is mainly due to fluctuations in the interface potential between the surface of the AgCl / Ag electrode and the solution surrounding it, and fluctuations in the liquid-liquid interface potential.
- a noble metal chloride NmCl layer for example, AgCl layer
- the surface layer of the noble metal Nm for example, silver Ag
- the culture apparatus for forming a neural cell network according to the fifth invention is used for the imaging analysis described in (C), the above-described light receiving device (D), (E) Since it has one or more elements of the irradiation system and the light condensing system of (F), first, in many cases, non-contact and non-destructive measurement is possible, so analysis can be performed without hindering the function of the nerve cell network. Second, because of optical measurement, analysis can be performed at high speed. Third, even if a plurality of nerve cells (cell clusters) are arranged in the cell fixing part, the single nerve cell is accurately obtained by the light collecting system of (F). The effect that it can excite and can be analyzed precisely is obtained.
- the cell body of 1 to several nerve cells can be reliably arranged and fixed in the cell fixing part. More specifically, the cell body can be arranged and fixed on the fine through hole of the cell fixing portion.
- each cell fixing portion corresponds to a size that can accommodate the cell body of one to several nerve cells, one to several nerve cells are surely arranged in each cell fixing portion.
- the These nerve cells are restricted in random movement by a plurality of protrusions constituting the cell fixing portion.
- the nerve cells arranged in the cell fixing part have a plurality of protrusions constituting the cell fixing part Through the interval between the parts, the partner nerve cells that should form a network can be easily recognized from each other. Therefore, it is possible to construct a favorable neural cell network based on the formation of a synaptic junction between an axon and a dendrite using the interval between the protrusions while the nerve cell is maintained in an active survival state.
- the seventh invention it is possible to satisfactorily form a nerve cell network between one nerve cell or several nerve cell clusters arranged and fixed in each cell fixing portion.
- the neurons form a stable network with a probability of almost 100%, and the culture can be continued for a long period of 4 weeks or longer. Therefore, this is a very useful technique for producing a high-throughput screening element for a neural cell network.
- the nerve cells when the nerve cells are seeded in the step (1) of the seventh invention, the nerve cells are seeded inside and outside the selected area and the glial cells are seeded outside the selected area. Therefore, as known from literature such as “FW Pfrieger et al., Science 277 (1997) 1684-1687”, glial cells exist in the vicinity of synapses and come into contact with neurons, so that the maturation of the nerve cell network It is possible to construct a nerve cell network with higher degree of function and more uniform in space and time.
- a nerve cell seeding device for efficiently seeding nerve cells in a large number of cell fixing portions in a culture apparatus for forming a nerve cell network or a planar patch clamp apparatus using the culture apparatus. . Therefore, in the formation of a neural cell network premised on high-throughput screening applications, a means for solving an important problem of how to seed neurons is provided.
- the board-like device body of this device has (1) a suspension supply port for supplying a neuronal cell suspension from the outside, and (2) a branch extending from this suspension supply port.
- the nerve cell seeding device is installed on a flat device substrate that can be filled with a cell culture medium in a culture device for forming a neural cell network or a planar patch clamp device. Accordingly, the nerve cell suspension is injected from above into the cell fixing part. Therefore, it does not hinder the formation of a nerve cell network in the planar direction on the device substrate.
- the nerve cell seeding device on the device substrate of the nerve cell network forming culture device or the planar patch clamp device, but when it is detachably installed, it is removed after the nerve cell seeding. Then, in the culture of neurons after seeding, it will not interfere with the supply of oxygen and carbon dioxide, and will not interfere with observation of the network from the top or administration of chemicals.
- the board-shaped device body is formed by joining the upper board provided with the suspension supply port and the lower board provided with the suspension injection port, and at least one joining surface of both boards Since the grooves constituting the suspension flow path are formed, processing for forming a large number of fine and bent suspension flow paths inside the device body is easy.
- the processing method for configuring the suspension flow path is not limited to this.
- substrate which this inventor made as an experiment is shown.
- the structure on the Si substrate disclosed in Non-Patent Document 1 is shown.
- the structure of the cage disclosed in Non-Patent Document 2 is shown.
- the conceptual top view of the principal part of the culture apparatus for nerve cell network formation which concerns on (1) and (2) of 2nd invention is shown. Sectional drawing of 1st Example is shown.
- summary of 2nd Example is shown.
- An outline of the fourth embodiment will be described.
- summary of 5th Example is shown.
- An outline of the sixth embodiment will be shown.
- summary of the nerve cell seeding device main body in 7th Example is shown.
- the technical field of the present invention relates to the technical field of forming a nerve cell network while culturing nerve cells in a stable state. In addition, it belongs to the technical field of measuring the ion channel current on the cell surface. Further, the present invention relates to the field of applying stimulation to cells by current injection or voltage application. Furthermore, the present invention also belongs to a high-throughput screening technology field in which ion channel current is measured, current is injected into cells, or voltage is applied to provide stimulation. Furthermore, the present invention also belongs to various imaging technology fields such as Ca imaging targeting nerve cells or nerve cell networks.
- a nerve cell consists of a cell body that is the main body of the cell, and axons and dendrites that extend from the cell body.
- the type of nerve cell is not limited, but first, various types of nerve cells such as central nerve cells and peripheral nerve cells are exemplified, and in particular, those in which no axons or dendrites are projected yet are preferable. Second, for example, cells such as iPS cells and ES cells that can be differentiated into nerve cells, more preferably neural stem cells that are in the process of completing differentiation from iPS cells or ES cells to neurons, etc. Are illustrated.
- the nerve cells are preferably animal nerve cells, particularly mammalian nerve cells including humans.
- the cell body size in these nerve cells is usually less than 20 ⁇ m, more specifically about 3 to 18 ⁇ m.
- the neuronal network is a structural unit consisting of a pair of neurons, a trigger cell that transmits a signal and a follower cell that receives the trigger cell.
- the inventor of the present application has found that the probability of cell death increases when there is a level difference of about the size of the cell in the height of the surface where the trigger cell and the follower cell exist.
- a flat substrate that can be filled with a cell culture medium is, for example, a configuration described with respect to a planar patch clamp device described later.
- a plurality of or many cell fixing portions are set on the substrate in accordance with the constitutions (1) to (3) of the second invention.
- a neuron network a pair of neurons of a trigger cell and a follower cell is a basic unit. Therefore, in the case of a configuration in which an ion channel current is received by a follower cell using a spontaneous firing of a neuron as a selection region, Even if there is only one cell fixing part, it can operate as a functional analysis element.
- the mutual interval between the cell fixing portions as the selection region differs depending on the type of the nerve cell network and cannot be defined uniformly, but can be, for example, about 50 to 500 ⁇ m.
- the shape of the plurality of protrusions constituting the cell fixing part is not limited, for example, a fence or a pile-like protrusion is preferable.
- the height of the protrusion is not limited, but generally a height of about 10 ⁇ m that can effectively restrict random movement of nerve cells is preferable. For example, in the mouse cerebral cortex and hippocampal nerve cells, the height is about 5 to 10 ⁇ m. preferable.
- the cell fixing part has the following conditions (1) to (3).
- a tunnel structure is substantially formed, which is not preferable. In the tunnel structure, even if synapse formation is possible in the tunnel, imaging observation at this synapse becomes impossible.
- the inner diameter of the cell fixing portion formed by the plurality of protrusions is a size that can accommodate the cell body of one to several nerve cells.
- the inner diameter of the cell fixing part is appropriately set according to the size of the cell body of the nerve cell and the number of cell bodies in the cell fixing part.
- the inner diameter of the cell fixing part is preferably about 10 to 25 ⁇ m. If the inner diameter of the cell fixing part is excessively larger than the size of the cell body, an excessive number of cell bodies may be arranged in one selected region, and the inner diameter of the cell fixing part is 50% or more than the size of the cell body. If it is small, the cell body may not be stably arranged in the cell fixing part.
- the substrate surface constituting the bottom surface of the cell fixing portion is provided with at least one of the following elements (a) and (b).
- a fine through-hole for medium suction by a suction device provided at the lower part of the substrate surface and having a hole diameter that does not allow nerve cells to pass therethrough is provided.
- the extracellular matrix-forming substance (a) is a substance that fixes the nerve cells on the bottom surface of the cell fixing part by showing adhesion to the nerve cells, and its constituent material As polylysine, collagen (type I, type II, type IV), fibronectin, laminin, proteoglycan (versican, decorin, etc.), proteoglycan (aggrecan), link protein, entactin, tenascin, proteoglycan [chondroitin sulfate proteoglycan, heparan sulfate proteoglycan (Such as perlecan), keratan sulfate proteoglycan, dermatan sulfate proteoglycan], hyaluronic acid (a type of glycosaminoglycan), elastin, fibrin, gelatin, matrigel and the like.
- collagen type I, type II, type IV
- fibronectin laminin
- proteoglycan versican, decorin,
- the fine through-hole for aspirating the cell culture medium in (a) sucks the cell culture medium with a suction device on the lower side of the substrate, so that one to several nerve cells arranged in the cell fixing part are placed on the bottom surface of the cell fixing part.
- the pore diameter is fixed so as not to allow nerve cells to pass through, for example, about 1 to 3 ⁇ m.
- Planar patch clamp device One of the effective uses of the culture apparatus for forming a nerve cell network is a planar patch clamp apparatus for a nerve cell network.
- the planar patch clamp is a planar substrate type patch clamp device that enables multipoint measurement of cell ion channel current by configuring a plurality of patch clamp devices on a solid substrate such as a silicon chip, A fine through hole for measuring an ion channel current is provided in a cell arrangement portion of each patch clamp device.
- the conventional general planar patch clamp device does not have a cell culture function, there is a problem that it cannot be applied to cells such as nerve cells that require culture.
- the life span of cells to be measured is as short as 1 hour or 30 minutes under non-culture conditions, it can be used only for limited applications such as drug discovery screening, and the functional analysis of cells using pipette patch clamps. Application to etc. was difficult. Furthermore, it has been difficult to carry and trap cells well in the fine through-holes provided on the substrate.
- planar patch clamp device of the present invention has a further function of culturing nerve cells than the planar patch clamp device of the general configuration described above, and is effective in noise current during ion channel current measurement. It is a device that can suppress and stably position cells.
- the characteristic configuration of this device is to apply a cell fixing force to the opening for fixing nerve cells in a minute through hole provided in the substrate, and to energize the electrodes on the surface portions on both sides of the through hole in the substrate.
- a liquid reservoir is provided, and the liquid reservoir can be filled with a conductive liquid (for example, a cell culture solution).
- nerve cells can be easily trapped at the position of the fine through-hole, and ion channel activity can be measured over a sufficient time under the cell culture conditions. .
- the culture apparatus for forming a nerve cell network is configured as follows (1) to (3).
- the substrate is an electrically insulating substrate, and the fine through-holes that communicate the surfaces on both sides of the electrically insulating substrate are provided.
- the liquid reservoir on the first surface side is a liquid reservoir for nerve cells fixed on the cell fixing part.
- a fine through-hole that communicates the first surface side (surface side on which cells are arranged) and the second surface side, which are both surfaces of the electrically insulating substrate, is provided.
- a substrate made of glass, ceramics, plastic or the like can be preferably used.
- a silicon substrate SOI substrate
- a silicon substrate having a structure in which a silicon layer on the first surface side, an intermediate silicon oxide layer, and a silicon layer on the second surface side are sequentially stacked is preferable.
- a silicon substrate having such a laminated structure since a highly insulating intermediate layer exists between two silicon layers, a high resistance state can be established when an ion channel of a measurement target cell is closed, and background noise can be reduced. .
- the number of through-holes provided in the substrate is not limited, but is preferably a plurality to a large number, for example, 2 to a few tens or more.
- the inner diameter of the fine through-hole is preferably an inner diameter (for example, about 1 to 3 ⁇ m) that allows liquid to pass but does not allow nerve cells to pass, but is not limited to these inner diameters.
- a liquid reservoir for holding the conductive liquid on the first surface side and the second surface side of the through-hole, respectively, and the conductive liquid in the liquid reservoir are energized.
- positioned possible is provided.
- the configuration of the liquid reservoir is not limited as long as it satisfies the requirement that “the conductive liquid can be held and the electrode unit can be energized with respect to the conductive liquid”.
- the spacer member and the plate member are respectively stacked on the first surface side and the second surface side of the substrate, and the spacer member can be formed by providing a notch in a region corresponding to the through hole of the substrate. .
- the spacer member and the plate member on the first surface side are preferably made of a light-impermeable material, and the spacer member and the plate member on the second surface side are preferably made of a light-transmissive material. .
- the liquid reservoir itself is liquid-tight and can be opened or closed with a liquid passage for introducing or discharging a conductive liquid (a conductive liquid that is a cell culture medium in which nerve cells are dispersed). With an opening.
- the liquid reservoir on the first surface side of the substrate can be closed by covering the top of the liquid reservoir with a lid member such as a cover glass, and if necessary, the lid member can be removed to open the liquid reservoir.
- the planar patch clamp device includes electrode portions having a novel configuration on the first surface side and the second surface side, which will be described later in the section of “Electrode Portion Structure in the Planar Patch Clamp Device”.
- the liquid reservoir on the first surface side is made of a light-impermeable material, respectively, and a main liquid reservoir for arranging cells and an electrode portion on the first surface side It is also preferable to have a configuration comprising a secondary liquid reservoir in which is disposed and a narrow liquid passage for communicating these liquid reservoirs.
- the liquid reservoir on the second surface side communicates with a liquid passage for introducing and discharging the conductive liquid, and the electrode portion on the second surface side is disposed in the liquid passage. It is also preferable to do.
- the liquid reservoir on the first surface side corresponds to the above-described selected area of nerve cells. Accordingly, a plurality or a plurality of liquid reservoirs on the first surface side are set on the substrate with an appropriate two-dimensional mutual spacing, and each of the liquid reservoirs on the first surface side is surrounded by a plurality of protrusions.
- a cell fixing unit is configured.
- the liquid reservoirs on the second surface side are also set at positions corresponding to the liquid reservoirs on the first surface side, and the liquid reservoirs on the first surface side and the second surface side are communicated with each other through the fine through holes of the substrate. .
- the liquid reservoir on the second surface side communicates with the liquid suction device.
- Negative pressure is also applied to the part.
- This fine through-hole corresponds to the fine through-hole for cell culture medium suction on the bottom surface of the cell fixing portion described above as (a).
- an extracellular matrix-forming substance having a cell fixing force is attached to the periphery of the opening on the first surface side in the fine through hole. This corresponds to (a) the coating of the extracellular matrix forming substance on the bottom surface of the cell fixing portion described above.
- the electrode portions on the first surface side and the second surface side include the following elements (a) to (c).
- An electrode container in which at least a part of a container wall that comes into contact with the conductive liquid introduced into the liquid reservoir is made of an inorganic porous material.
- the kind of noble metal Nm in the above electrode part structure is not limited, but silver Ag and platinum Pt are preferable, and silver Ag is particularly preferable. Therefore, as the noble metal chloride NmCl, silver chloride AgCl and platinum chloride AgCl are preferable, and silver chloride AgCl is particularly preferable.
- the alkali metal chloride is not limited, but potassium chloride KCl is preferable.
- the inorganic porous material constituting at least part of the container wall is preferably porous glass or porous ceramics.
- the electrode in the electrode part is (1) or (2) below.
- MAP2 which is at least a Ca imaging analysis, a synaptophysin or synapsin marker which is a marker of a presynaptic site, and a dendritic marker using a culture device for planarization of a neural network or a planar patch clamp device according to the present invention
- imaging analysis such as imaging analysis by labeling and imaging analysis by FM1-43 or FM4-64 that label endosomes and exosomes can be performed.
- Ca imaging refers to the phenomenon in which Ca ions (a dye that emits fluorescence when combined with Ca ions) are introduced into neurons in advance and Ca ions flow into the cell body when action potentials are generated in neurons. This method captures the ion channel current of the cell by observing the fluorescence generated when the action potential is generated or propagated.
- a nerve cell network is configured using nerve cells into which a Ca probe has been introduced. For example, by injecting current or applying a voltage to a single nerve cell among them, the Ca in a plurality or many nerve cells is formed. Measurement by imaging can be performed.
- a single nerve cell (first nerve cell) constituting a nerve cell network is selected and stimulated by current injection or voltage application to generate an action potential. It is possible to measure by Ca imaging how a cell propagates to a neighboring neuron (second neuron) through the cell network and further propagates from the second neuron to a third neuron adjacent thereto. .
- the measurement unit can be made very small, so that it is easy to increase the number of channels.
- Synaptophysin and synapsin are synaptic vesicle membrane proteins and are markers of the presynaptic site, but these dyes can be bound to these antibodies by using an antigen-antibody reaction. Thus, the synaptic site can be labeled.
- MAP2 is a marker of dendrites, but a dendrite site can be labeled by adding a dye to this antibody and allowing it to react.
- the apparatus preferably includes the following optical system elements.
- a light receiving device for light emitted from a nerve cell is placed on the first surface side of the substrate of the device.
- an irradiation device for irradiating the nerve cells or the substrate surface with a laser beam or the like is installed on the first surface side of the substrate of the device. It is particularly preferable that the irradiation apparatus is further equipped with a light collecting system for irradiating light only to a predetermined single cell.
- non-contact and non-destructive optical measurement can be performed, analysis can be performed without hindering the nerve cell network function, analysis can be performed at high speed, and the light collection system can be used for simple and accurate analysis.
- One neuron can be excited and analyzed precisely.
- the nerve cell seeding device is installed on a flat device substrate that can be filled with a cell culture medium in a culture device for forming a nerve cell network or a planar patch clamp device using this culture device. This is for seeding nerve cells in a large number of cell fixing parts surrounded by the protrusions.
- the “culture device for forming a neural cell network” means that as long as a large number of cell fixing portions surrounded by a plurality of protrusions are formed on a flat device substrate that can be filled with a cell culture medium.
- the configuration is not limited.
- the “planar patch clamp device” is also a device that uses a culture device for forming a neural cell network, and is a large number of cell fixing portions surrounded by a plurality of protrusions on a flat device substrate that can be filled with a cell culture medium. As long as it is formed, the configuration is not limited.
- the “culture apparatus for forming a nerve cell network” is the culture apparatus for forming a nerve cell network according to the above-described embodiment, and the “planar patch clamp apparatus” is according to the above-described embodiment. It is a planar patch clamp device of the present invention.
- the device body has a board-like form that can be set on the device substrate of a culture device for forming a nerve cell network or a planar patch clamp device.
- the board shape means a thin plate shape or a thick plate shape, and in many cases also means that the planar shape is a rectangle (square or rectangle).
- the culture device for forming a neural cell network or the planar patch clamp device can be installed on the device substrate, and the bottom surface is at the top of a plurality of protrusions in many cell fixing portions on the device substrate. As long as the bottom surface is flat so that the bottom surface is large enough to cover a large number of cell fixing parts when installed on the device substrate, a specific form of “board shape” Is not limited.
- the “board-shaped” device body basically, a device body having a planar shape and an area (area) corresponding to the device substrate of the nerve cell network forming culture device or the planar patch clamp device is convenient.
- the planar shape of the device body is not limited to a rectangular shape, and may be a circle, an ellipse, or any other irregular shape, and the thickness can be, for example, about several mm to several cm.
- the area of the bottom surface of the device body preferably corresponds to the area of the device substrate, but can be freely selected, for example, from about 2 to 3 cm 2 to about several tens of cm 2 or larger.
- the area of the device main body and the area of the device substrate corresponding thereto are preferably set as appropriate in consideration of factors such as the number of cell fixing portions in the device substrate and the degree of integration of microfabrication described later in the device main body.
- the constituent material of the device body is not limited, an inorganic material such as glass or an organic material such as plastic can be preferably exemplified. In particular, it is preferable to use a transparent material.
- the board-shaped device body is preferably formed by closely bonding an upper board provided with a suspension supply port and a lower board provided with a suspension injection port, and at least one of the upper board and the lower board.
- channel which comprises a suspension flow path in a joining surface is preferable.
- the cross-sectional shape of the groove may be a semicircle or a rectangle. In this case, after joining the upper board and the lower board, as a result, the groove constitutes the suspension flow path.
- a suspension channel having a circular cross section is formed as a result.
- the device body includes (1) a suspension supply port for supplying a nerve cell suspension in which nerve cells are suspended at a constant density, and (2) the suspension supply inside the device body.
- a number of fine suspension channels extending in a branched manner from the mouth; and (3) each of the nerve cell suspensions opened at the bottom of the device body at the end of each suspension channel.
- a suspension inlet for injecting into the cell fixing part is provided.
- each suspension injection port is positioned accurately corresponding to each cell fixing portion. It is necessary.
- the device body made of a transparent material, or a culture apparatus or planar for forming a nerve cell network It is also preferable to display an alignment mark (marker) on the apparatus substrate of the patch clamp apparatus.
- the number of fine suspension channels (2) below and the suspension injection ports (3) below are set to a large number. In such a case, it is preferable to disperse suspension supply ports in the device body at appropriate locations and provide them at a plurality of locations from the viewpoint that they can be easily communicated with each other in terms of channel design.
- the nerve cell suspension can be supplied to each with separate injectors, but the proximal end is split into a single pipe and the distal end is branched into multiple pipes.
- the base end side of the connecting pipe can be connected to a single injector or the like, and the plurality of pipes on the front end side can be connected to a plurality of suspension supply ports, respectively.
- the suspension channel (2) can be a fine channel having an inner diameter of about 50 ⁇ m to 500 ⁇ m, for example.
- the cross-sectional shape of the suspension channel may be circular, semicircular, rectangular, or the like.
- This suspension channel is basically formed along a substantially planar direction in the device body.
- a number of suspension channels are extended from the suspension supply port in a branched manner.
- As a form of the branch a large number of suspension channels are directly connected to the suspension supply port.
- branching and extending one or a few small trunk-like suspension channels are branched from the suspension supply port, and these trunk-like suspension channels are sequentially
- a branch-like suspension channel connected to a large number of suspension inlets is branched.
- the linear distance from the suspension supply port to each suspension injection port is not necessarily the same depending on the set position of the suspension injection port.
- the length from the suspension supply port (1) to the suspension injection port (3) in a number of suspension channels is substantially reduced. It is very preferable to set them to the same.
- a detour for adjusting the length of the channel This can be dealt with by intentionally setting the road portion.
- a second suspension supply port having a configuration similar to the above (1) can be provided at an appropriate number of locations on the board-like device body.
- the second suspension supply port may pass through to the bottom surface of the device body as it is without passing through the fine suspension flow path system, or a plurality of similar suspensions (2) may be used. After branching to the second suspension flow path, it may be connected to the second suspension inlet similar to the above (3), which is opened on the bottom surface of the device body.
- the plurality of second suspension channels may not be set to substantially the same length.
- a culture apparatus for forming a neural cell network is configured as a culture type planar patch clamp apparatus that is an ion channel biosensor.
- the substrate 14 is sandwiched between a first surface side and a second surface side by a pair of spacers 16 and 17.
- the constituent materials of the spacers 16 and 17 are not limited, but for the spacer 16 on the first surface side, it is preferable to use an elastic light-impermeable material such as silicon rubber or PDMS (polydimethylesiloxane). .
- PDMS polydimethylesiloxane
- a light transmissive material can be preferably used for the spacer 17 on the second surface side.
- a circular notch 19 is provided in a portion corresponding to the fine through hole 15 of the substrate 14, and therefore the opening on the second surface side in the fine through hole 15 is the notch 19. Is open. Therefore, this notch 19 is also provided at one place or a plurality of to many places corresponding to the cell fixing part 13 and the fine through-hole 15 (for convenience of illustration, only one notch 19 is shown).
- the substrate 14 and the pair of spacers 16 and 17 are entirely tightened by a pair of strong plates 20 and 21.
- the material of the plates 20 and 21 is not particularly limited as long as the material can withstand autoclaving at about 120 ° C.
- a light-impermeable material can be preferably used for the plate 20 on the first surface side.
- a light transmissive material can be preferably used for the plate 21 on the second surface side.
- the central portion of the plate 20 on the first surface side has, for example, a circular cut of the same size as the culture space 18 at a position corresponding to the culture space 18 in the spacer 16 on the first surface side.
- a notch is provided.
- a recess-shaped step portion having a thin plate thickness is formed on the periphery of the notch portion, and a lid member (not shown) such as a cover glass is provided on the step portion. You may comprise so that opening of the notch part in can be opened and closed.
- the main liquid reservoir 22 is formed on the first surface side.
- the liquid reservoir 23 on the second surface side is formed by closing the opening of the notch 19 in the spacer 17 on the second surface side with the plate 21.
- the main liquid reservoir 22 on the first surface side and the liquid reservoir portion 23 on the second surface side communicate with each other through the fine through hole 15.
- the main liquid reservoir 22 constitutes a first region of the liquid reservoir on the first surface side.
- the main liquid reservoir 22 communicates with a sub liquid reservoir 25 constituting a second region of the liquid reservoir on the first surface side through a narrow liquid passage 24 provided in the spacer 16.
- the auxiliary liquid reservoir 25 is formed by a hole provided in common for the spacer 16 and the plate 20.
- an electrode portion 28 on the first surface side which will be described later, is disposed.
- the nerve cell 11 When the conductive liquid in which the nerve cells 11 are dispersed is introduced into the main liquid reservoir 22, if the conductive liquid in the liquid reservoir 23 is aspirated by an appropriate liquid suction device connected to the drainage passage 27, the fine liquid is obtained. The conductive liquid in the main liquid reservoir 22 is also sucked through the through hole 15. By such an operation, the nerve cell 11 can be effectively arranged in the cell fixing portion 13 (that is, the opening position of the fine through hole 15) shown in FIG.
- a fine hole can be formed in the cell membrane of the nerve cell 11 in the part in contact with the fine through hole 15 by the suction pressure.
- a cell membrane perforating antibiotic solution such as nystatin or amphotericin B is also supplied from the introduction fluid passage 26 to the liquid reservoir 23 on the second surface side.
- nystatin or amphotericin B is also supplied from the introduction fluid passage 26 to the liquid reservoir 23 on the second surface side.
- an extracellular substance having a cell fixing force is provided at the periphery of the opening part on the first surface side of the fine through hole 15 of the substrate 14.
- the matrix-forming substance 30 can also be attached.
- a predetermined ion channel is expressed in the nerve cell 11, and when a stimulating substance that opens the ion channel is added to the liquid reservoir on the first surface side, the ion channel opens, and the first surface side A channel current corresponding to the applied voltage flows between the electrode portion 28 and the electrode portion 29 on the second surface side. At this time, if there is a gap between the cell membrane of the nerve cell 11 and the substrate 14, the seal resistance is lowered and a leak current is superimposed on the channel current.
- the membrane potential includes the induced voltage due to electromagnetic waves existing in the space, the interface potential between the electrode metal surface and the buffer solution surrounding it, and the liquid / liquid interface potential. Since they are superimposed, the leakage current fluctuates correspondingly due to fluctuations in induction noise and interface potential. For this reason, the ion channel current appears as noise of baseline fluctuation.
- a cylindrical electrode container 31 made of Pyrex (registered trademark) glass having an inner diameter of 1 mm is filled with an electrode solution 32 in which KCl and AgCl are dissolved at a saturated concentration.
- the KCl concentration is 3.3M / L
- AgCl is about 1.1mM / L.
- the saturation concentration is about 3.3 M / L at room temperature.
- the AgCl / Ag electrode 33 accommodated in the electrode container 31 the surface of the silver wire is coated with AgCl.
- Such an AgCl / Ag electrode 33 can be formed by applying AgCl powder on the surface of the silver wire, or by immersing the silver wire in a bleaching agent containing sodium hypochlorite. It can also be produced by electroplating in a KCl solution.
- the tip of the electrode container 31 is closed with an inorganic porous material 34 such as porous glass or porous ceramics.
- an inorganic porous material 34 such as porous glass or porous ceramics.
- Vycor glass Cornning
- the tip of the inorganic porous material 34 constituting a part of the container wall of the electrode container 31 is immersed in a conductive liquid (cell culture solution or buffer solution).
- a conductive liquid cell culture solution or buffer solution.
- the KCl concentration in the conductive liquid is several millimoles, the effect of the inorganic porous material 34 allows the inside and outside of the electrode container 31 to be electrically connected, while the electrode solution 32 and the outside of the container are outside.
- the large KCl concentration difference between the inside and outside of the container is kept constant, so that the interface potential of the AgCl / Ag electrode 33 and the liquid / liquid interface potential are constant. Retained.
- the base end portion of the electrode container 31 is sealed with a sealing material, and the electrode pin 35 protrudes therefrom.
- the first surface side and the second surface side electrode portions 28 and 29 can be arranged to provide a liquid on the first surface side. Since the reservoir is formed by the light-impermeable spacer 16 and the plate 20, the irradiation light irradiated to the main liquid reservoir 22 causes the AgCl / Ag of the electrode portions 28 and 29 on the first surface side and the second surface side. There is no irradiation of the electrode.
- the nerve cell 11 is arranged in the main liquid reservoir 22, and the potassium ion concentration of the conductive liquid outside the cell is as low as several mM, so that the influence of KCl leaking from the electrode portion is suppressed although it is a small amount. Therefore, in the liquid reservoir portion on the first surface side, in addition to the main liquid reservoir 22, a secondary liquid reservoir 25 is formed, and the main liquid reservoir 22 and the secondary liquid reservoir 25 are narrowly passed with a width of 1 mm or less. They are connected by a road 24.
- FIG. 1 A second embodiment is shown in FIG. This second embodiment and the following third embodiment will describe the main points of the first embodiment in more detail. Although the part numbers in these embodiments are different from those in the first embodiment, those having the same part names have substantially the same configuration.
- the surface of the Si substrate 1 is coated with a negative photoresist SU8 with a thickness of 8 to 10 ⁇ m by a spinner, and developed by a normal process using a photomask prepared in advance.
- a negative photoresist SU8 with a thickness of 8 to 10 ⁇ m by a spinner, and developed by a normal process using a photomask prepared in advance.
- An example is shown in FIGS. 6A and 6B.
- fixed part 13 which consists of a some fence-shaped projection part 12 shown as was formed.
- the protrusions in this case are square pillars having a bottom surface of 10 ⁇ m ⁇ 10 ⁇ m and a height of 8 to 10 ⁇ m, and the mutual interval between the protrusions is 8 to 10 ⁇ m.
- the diameter of the cell body of mouse and rat cerebral cortex and hippocampal neurons is usually around 10 ⁇ m at the time of seeding and 15 to 20 ⁇ m at the time of colonization.
- the cell 3 does not move out of the cell fixing unit 2. However, the cell culture medium moves inside and outside the cell fixing unit 2, and there is no problem in culturing the cells in the cell fixing unit 2.
- the shape of the protrusion may be a cylinder or an elliptical column, or a spherical solid.
- the arrangement of the nerve cell 3 by the cell fixing part 13 composed of a plurality of protrusions 12 is useful in the formation and use of a nerve cell network.
- a network is formed with the nerve cell 3 outside the cell fixing unit 13.
- the neuron 3 releases the neurotransmitter from the tip of the axon and extends the axon in search of the partner to be bound, and the receiving neuron 3 also receives this neurotransmitter and receives the tree. Stretch out the protrusions to form synaptic junctions.
- the feature of the present invention is that the neuron 3 in the cell fixing unit 13 and the neuron 3 outside the cell fixing unit 13 exist on the same flat surface of the substrate 1, so that communication between the neurons is not hindered.
- the stable culture is continued and a stable network is formed.
- the nerve cells 3 arranged inside the cell fixing part 2 could be cultured for one month or more.
- the inner diameter of the cell fixing portion 13 can be easily changed as shown in FIGS. 6 (a) and 6 (b).
- the inner diameter is set to an inner diameter at which a plurality (relatively many) of nerve cells 3 can be arranged to enable stable culture of the nerve cell network for a long period of time, or one or more that facilitates functional analysis of the network. It is determined by the optimal number of neurons (cluster size) based on consideration of whether the inner diameter is such that a small number of neurons 3 can be arranged. For example, 1 to 4 clusters are good for relatively strong rat cerebral cortical neurons, but more cell bodies are used for stable culture in relatively fragile iPS cells and neurospheres that are differentiated and derived from them.
- FIG. 7A the figure indicated by the circled “c” in the lower right part of FIG. 7A is an enlarged partial view of the vicinity of the fine through-hole 4 in the central part of the cell fixing part 2.
- a fine through-hole 4 having a diameter of 1 to several ⁇ m is formed in a substrate 1 made of Si, plastic, ceramics, glass, etc., and a neuron 3 is placed on the fine through-hole 4.
- the upper and lower portions are each filled with a predetermined buffer solution, and the upper electrode 7 and the lower electrode 8 are provided.
- the lower electrode 8 is connected to the current amplifier 5.
- a fine hole is made in the cell membrane of the nerve cell 3 in contact with the fine through-hole 4 to form a whole cell state in which the inside of the nerve cell 3 and the buffer solution reservoir on the lower side of the substrate 1 are electrically connected.
- a buffer solution in which antibiotics such as nystatin and amphotericin are dissolved is poured into the lower reservoir, and these antibiotics are embedded in the cell membrane so that the cell and the lower reservoir are electrically connected.
- antibiotics such as nystatin and amphotericin
- the extracellular matrix-forming substance 9 it is effective to apply the extracellular matrix-forming substance 9 to the surface of the substrate 1 around the fine through-hole 4 in order to keep the nerve cells 3 alive for a long time.
- Many extracellular matrix-forming substances 9 are known, but poly-L-lysine, laminin and the like are well known.
- the seeding of the nerve cells 3 in this system is particularly effective by using a micropipette 6 as shown in the figure because it is necessary to definitely seed a single cell or a plurality of cells inside the cell fixing part 2. It is.
- the suspension of nerve cells 3 is transferred from the micropipette 6 at a predetermined speed to the cell fixing portion.
- a predetermined negative pressure is applied to the lower reservoir, and the nerve cells 3 can be efficiently arranged on the fine through-holes 4 as shown in FIG.
- the negative pressure is increased too much, the neuron 3 will die, so it is necessary to set an appropriate pressure for each cell type.
- FIG. 7B a suction experiment was performed using HEK293 cells, and it was confirmed that the nerve cells 3 were not damaged if the negative pressure was 2 kPa.
- a predetermined membrane potential (usually ⁇ 80 to +80 mV) is applied to the nerve cell 3 above the fine through-hole 4 by the upper electrode 7 and the lower electrode 8, and the ion channel current flowing in the nerve cell 3 due to spontaneous ignition or the like is generated. Observation is performed in the whole cell mode (arrow symbol “a” in FIG. 7A). In this case, inflow of Ca ions due to spontaneous firing of peripheral nerve cells 3 and synaptic currents such as Na + , K + , Cl ⁇ received by neurotransmitters are observed (KSWilcox et al., Synapse 18 (1994). 128-151), thereby obtaining information on the state of axons and the state of nerve cells 3.
- a predetermined current is injected into the nerve cell 3 above the fine through-hole 4 from the upper electrode 7 and the lower electrode 8 or a voltage is applied (arrow symbol “b” in FIG. 7A) to the nerve cell 3.
- a voltage is applied (arrow symbol “b” in FIG. 7A) to the nerve cell 3.
- Ca ion flows into the stimulated nerve cell 3. Therefore, the fluorescence of the Ca probe (arrow symbol “d1” in FIG. 7A) is observed, and the generated action potential propagates to the surrounding nerve cell 3 and the Ca probe of the surrounding nerve cell 3 emits light.
- the arrow symbol “d2” in FIG. 7A) is generated. By observing this emission, signal propagation can be confirmed. That is, information about the signal propagation characteristics of the neural cell network can be obtained.
- a laser beam having a wavelength of 470 to 480 nm is condensed on a single neuron 3 that exists in the vicinity of the neuron 3 above the microscopic through-hole 4 (in the cell fixing part 2) and expresses channelrhodopsin.
- Irradiation (arrow symbol “e” in FIG. 7A) generates an action potential in this single neuron 3.
- this action potential signal is propagated through the network to the nerve cell 3 on the fine through hole, the Ca channel is opened, and Ca ion inflow is induced.
- the ion channel current can be observed by the upper electrode 7 and the lower electrode 8 that apply a membrane potential to the nerve cell 3 on the fine through-hole that has been previously in the whole cell mode.
- the signal propagation characteristics of the nerve cell network can be measured at a single cell level and analyzed in detail.
- the structure shown in FIG. 7A composed of the combination of the cell fixing portion 2 and the fine through-hole 4 operates as an element if there is at least one place. If a large number of such structures are formed on the substrate 1, it operates as a high-throughput screening apparatus.
- an element is configured with one (total two) structure shown in FIG. 7A corresponding to the trigger cell and the follower cell.
- a system of a combination of the fine through hole 4 and the cell fixing portion 2 shown in FIG. 7A is formed at a plurality of locations on the substrate 1.
- the action potentials of nerve cells 3 (trigger cells) on some of the fine through holes 4 are generated by current injection or voltage application. Then, it is conceivable to analyze the propagation of the action potential to the nerve cell 3 (follower cell) on the other fine through hole 4 by recording the ion channel current in the follower cell in the whole cell mode. In these apparatuses, it is extremely important to place the nerve cells 3 by designating the position, and it is obvious that the present invention that can form a stable nerve cell network while designating the position is extremely useful.
- FIGS. 8 (a) and 8 (b) A fourth embodiment is shown in FIGS. 8 (a) and 8 (b).
- a cell fixing part 2 consisting of 12 cylinders having a diameter of about 10 ⁇ m and a height of about 8 ⁇ m, which is shown in a small circle in FIG. 8A, which is a plan view, is formed on the surface of the Si substrate.
- Neurons 3 collected from the cerebral cortex were seeded, and after 14 days of culture, the formation of a neuronal network was confirmed by a fluorescence microscope. After exchanging the medium with a predetermined buffer solution, the Ca probe called Oregon Green Bapta-1 was mixed in this buffer solution, and after about 2 hours, the buffer solution was replaced with a solution containing no Ca probe, and the nerve was examined with a fluorescence microscope. Cell 3 was observed.
- a fifth embodiment is shown in FIG.
- a cell fixing portion composed of a plurality of protrusions is used as a negative photoresist so as to surround the fine through-hole of the culture type planar patch clamp element configured using the Si substrate. It formed by the method of.
- the nerve cells collected from the cerebral cortex of the rat fetus are seeded in the same manner as in the fourth embodiment, and after 14 days in culture, the nerve cells in the cell fixing part are arranged on the fine through-holes, and It was confirmed that the nerve cells formed a network with surrounding nerve cells.
- FIG. 9A shows the dependence of the current on the membrane potential.
- 40 mV-TTX is a current observed when the membrane potential is 40 mV
- TTX tetrodotoxin
- the membrane potential changes from-to + the direction of the current waveform changes from down (-) to up (+)
- signal propagation from spontaneously igniting neurons and the synaptic current in the case of spontaneous release of neurotransmitters Show features.
- These waveforms reflect the characteristics of the network, and the waveform changes depending on the antagonist or agonist drug. Since the area occupied by the cell fixing part and the fine through hole is very small, multipoint measurement of about 100 points is easy, and multipoint measurement necessary for high-throughput screening is easily possible.
- the sixth embodiment relates to an improved embodiment of the cell fixing unit 13.
- a cell fixing portion 13 surrounded by a plurality of protrusions 12 is formed on the substrate surface above the opening on the first surface side of the fine through hole, as in the first embodiment.
- the nerve cell 11 is arranged in the cell fixing portion 13.
- An outer cell fixing portion 36 surrounded by a larger number of protrusions 12 is formed outside the plurality of protrusions 12 that constitute the cell fixing portion 13 in a ring shape. That is, the sixth embodiment is characterized in that the ring constituted by the protrusions 12 has a double ring structure of the cell fixing part 13 and the outer cell fixing part 36.
- the cell fixing portion 13 which is a region surrounded by the inner ring has a fine through hole, and one or several nerve cells 11 are fixed in this region, and the nerve cell 11 is surely placed on the fine through hole. Exists. At the same time, a large number of neurons 11 are also seeded in the outer cell fixing part 36, which is a region between the inner ring and the outer ring. Therefore, a nerve cell network is formed not only between the nerve cells 11 inside the cell fixing part 13 but also between the nerve cells 11 of the cell fixing part 13 and the nerve cells 11 of the outer cell fixing part 36.
- iPS cells are unstable in a single cell, and stable culture cannot be performed unless a large number of cells are gathered.
- nerve cells there is an advantage that one nerve cell can be firmly fixed on a fine through-hole and can be stably cultured for a long period of time.
- the seventh embodiment relates to the nerve cell seeding device of the present invention.
- the device body of the nerve cell seeding device is installed on the device substrate of the nerve cell network forming culture device or planar patch clamp device according to the above-described embodiment, and a large number of cell colonies surrounded by a plurality of protrusions on the device substrate This is for seeding the cells with nerve cells.
- Suspension constituting a first suspension channel system for supplying a nerve cell suspension in which nerve cells are suspended at a constant density to one end side of the central portion of the upper surface of the upper board 41.
- the liquid supply port 43 is opened.
- a second suspension supply port 43a constituting the second suspension flow path system is opened at the other end side of the central portion of the upper surface.
- the first suspension channel system includes the suspension supply port according to the ninth to twelfth inventions, the suspension channel, and the suspension injection port.
- FIG. 11 (b) A bottom view (bottom view) of the upper board 41 is shown in FIG.
- a single suspension channel 44 is shown in FIG. 11 (b), actually, as can be seen from FIG. 12 (a), a plurality of suspension channels 44 are provided from the suspension supply port 43 shown at the bottom of the figure.
- the suspension channel 44 is extended in a branched manner. These suspension channels 44 are adjusted so that their channel lengths are close to each other by providing an extra detour in an appropriate portion.
- suspension channel 44 is simply indicated by a thick solid line for convenience of illustration.
- a second suspension channel 44a described later shown in these drawings is also simply indicated by a thick solid line.
- FIG. 12B conceptually shows a top view (plan view) of the substrate 1 of the culture device for forming a neuronal network or the planar patch clamp device, and the upper surface of the substrate 1 is surrounded by a plurality of protrusions. Further, five fixing unit setting areas in which a large number of cell fixing units 2 (represented by simple single dots) are collectively set are shown. FIG. 12B also shows a second suspension inlet 45a, which will be described later. These are actually formed on the lower board 42 and formed on the substrate 1. Although not shown, this is shown in order to clearly show the positional relationship with the five fixing unit setting areas.
- FIG. 12 (a) Assuming that the device body 40 of the nerve cell seeding device is placed on the substrate 1, the explanation based on FIG. 12 (a) will be added in relation to FIG. 12 (b).
- a plurality of suspension channels 44 extending in a branched manner from the supply port 43 are respectively located immediately above five fixing unit setting areas where a large number of cell fixing units 2 on the substrate 1 are collectively set. At that position, five injection port setting portions 46 communicating with a number of suspension injection ports 45 provided on the lower board 42 are formed.
- FIG. 13 shows an enlarged view of the inlet setting unit 46.
- the suspension channel 44 is branched into five vertically oriented channels, and these five branched channels are provided on the lower board 42, respectively. It communicates with a number of suspension inlets 45. That is, as shown in FIG. 12B, five cell fixing portions 2 are formed in the vertical direction in five fixing portion setting areas on the substrate 1, and five cell fixing portions are formed in each one of the strips. 2 is included, but the five vertical channels of the suspension channel 44 are located completely corresponding to all the cell fixing portions 2, and the lower board 42 The suspension injection port 45 is formed so as to completely correspond to all the cell fixing portions 2.
- the inner diameter of the suspension injection port 45 is substantially the same as or slightly larger than the size of the internal region of the cell fixing part 2, but is smaller than the outer shape of the cell fixing 2 including the protrusion 12. Therefore, the protrusion 12 is configured not to enter the suspension injection port 45.
- the second suspension channel system is a suspension channel system for injecting a nerve cell suspension into a region other than the cell fixing portion in the device substrate according to the thirteenth aspect of the invention.
- Each of the second suspension inlets 45a is indicated by a broken line in FIG. 12A, but is indicated by a solid line in FIG. 12B.
- FIG. 11B The structural relationship among the second suspension supply port 43a, the second suspension channel 44a, and the second suspension inlet 45a is shown in FIG. 11B for the first suspension channel system. This is the same as in the case of the suspension supply port 43, the suspension channel 44, and the suspension injection port 45. However, in the second suspension channel system, the channel lengths of the plurality of second suspension channels 44a may be different, and the second suspension inlet 45a is configured as shown in FIG. As shown in FIG. 6B, the substrate 1 is open to a region other than the cell fixing portion.
- the second suspension channel 44a and the second suspension channel are supplied. Nerve cells are seeded in the region other than the cell fixing portion on the substrate 1 through the liquid injection port 45a.
- the device main body 40 has a device main body 40 for seeding the outer cell fixing unit 36 with nerve cells.
- a third suspension channel (not shown) for seeding nerve cells in the outer cell fixing part 36 may be formed. It can.
- nerve cells can be seeded in the outer cell fixing part 36 using the suspension flow path 44.
- a nerve cell suspension having a predetermined concentration is injected into each cell fixing unit 2 using the first suspension channel system provided in the device body 40 of the nerve cell seeding device.
- fixed part 2 is smaller than the dimension of the cell body of the nerve cell at the time of seeding, and the medium liquid (for example, culture solution of a nerve cell) of a nerve cell suspension is easy. Since it is wide enough to flow out, by introducing a nerve cell suspension into the cell fixing part 2 from above, the nerve cell stays inside the cell fixing part 2 even though the medium liquid flows out and is seeded there.
- the shape of the cell body of a nerve cell often differs greatly at the time of seeding and in culture. Also, the shape of the cell body is not a perfect circle but an elongated ellipse.
- the mutual interval between the protrusions 12 is set to be smaller than the smaller one of the minimum dimension of the cell body at the time of seeding (dimension in the short axis direction) and the minimum dimension of the cell body during culture, and
- the medium solution of the nerve cell suspension needs to be formed as large as possible so that the medium liquid can easily flow out or the axon and dendrites of the nerve cell can easily enter and exit the cell fixing part 2. There is.
- FIG. 14 the distribution of the maximum dimension value (major axis dimension) at the time of sowing of a large number of neuronal cell bodies in the rat hippocampus is shown in the left graph, and the distribution of the minimum dimension value (minor axis dimension) is shown. Shown on the right graph. As shown in FIG. 14, the minimum dimension of the cell body at the time of seeding was about 7.5 ⁇ m.
- FIG. 15 the distribution of the maximum dimension value (dimension in the major axis direction) at the time of culturing the cell body is shown in the left graph, and the distribution of the minimum dimension value (dimension in the minor axis direction) is shown on the right side. Shown in the graph. As shown in FIG. 15, the cell bodies became elongated at the time of culture, and the minimum size of the cell bodies was about 8 ⁇ m.
- FIG. 16 is an optical micrograph showing the state of nerve cells on the fourth day of culture, and the four large circles in the photograph are the four protrusions 12 constituting the cell fixing part 2, and are outlined solid lines.
- the outline shown by represents the nerve cell.
- nerve cells are going to enter the cell fixing portion 2 from the outside through the gaps between the protruding portions 12. As a result, this nerve cell could not invade and retreated after a while.
- the gap between the protrusions 12 is 11 ⁇ m, and the dimension of the nerve cell body in the short axis direction is 8.5 ⁇ m. Therefore, in the case of FIG. 16, it is safer to make the gap between the protrusions 12 a little narrower.
- the ninth embodiment relates to a method for preparing a rat nerve cell suspension used for seeding.
- This suspension was prepared as follows. Specifically, cerebral cortex or hippocampus was collected from the brains of 17-18 day old Wistar Rat fetuses and subjected to enzyme treatment (37 ° C., 20 minutes) using a 0.25% Trypsin solution to separate the tissues. Next, a cell suspension of 1.0 ⁇ 10 7 cells / ml was prepared using a serum-containing medium using Minimum Essential Medium (MEM) as a basic medium. Then, this cell suspension was introduced into a cell fixing portion using a microchannel or a microinjector and seeded.
- MEM Minimum Essential Medium
- the tenth example relates to the preparation of iPS cells to be seeded. That is, 201B7, a human induced pluripotent stem cell (iPS cell) strain, was obtained from CELL BANK of RIKEN (Japan), and STO cell-derived cells that had been subjected to inactivation treatment with mitomycin C ( SNL) were cultured as feeder cells. Feeder cells refer to other cells that play a role in assisting iPS cell self-renewal.
- mammalian cell culture medium (DMEM / F12 medium) containing KSR, L-glutamine, non-essential amino acids, and 2-mercaptoethanol, which are alternative sera, and recombinant human basic fibroblast growth factor (bFGF) was added immediately before use.
- the feeder cells were seeded at a concentration of 3 ⁇ 10 4 cells / cm 2 on a 6 cm dish coated with a feeder cell, and one day later, iPS cells were seeded on the feeder cells.
- IPS cells in good condition have a well-defined colony and a high internal cell density.
- iPS cells are usually subcultured once every 3 to 4 days. After the 3rd to 4th passages, the cells were transferred from the on-feeder culture to a 6-cm dish whose surface was coated with gelatin or matrigel for the purpose of inducing differentiation into motor neurons, and transferred to feeder-less culture. .
- the differentiation induction medium is a DMEM / F12 medium supplemented with glucose, glutamine, insulin, transferrin, progesterone, putrescine, and selenium chloride.
- suspension culture was performed at a density of 5 ⁇ 10 4 cells / ml for 2 days.
- Daily suspension culture was performed. Thereafter, the medium was replaced with a differentiation induction medium supplemented with FGF2 (20 ng / ml) and SHH-N (30 nM), and cultured for 7 days. By this treatment, the cell morphology became neural stem cells.
- the present invention provides a culture apparatus for forming a nerve cell network that can constitute a good nerve cell network while restricting the movement of nerve cells that are alive in the cell culture medium, and means for using the same.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Neurology (AREA)
- Clinical Laboratory Science (AREA)
- Immunology (AREA)
- Electromagnetism (AREA)
- Neurosurgery (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Virology (AREA)
Abstract
Description
又、「神経細胞の細胞体」とは、神経細胞における軸索や樹状突起のような突出部分を除いた細胞の本体部分を言う。
上記課題を解決するための第1発明の構成は、細胞培地を充填可能な平坦な基板上に、複数の突起部で囲まれた細胞定着部を形成し、この細胞定着部が下記(1)~(3)の条件を備えている、神経細胞ネットワーク形成用培養装置である。
(1)細胞定着部を構成する複数の突起部間には、神経細胞の細胞体を通過させない限りにおいて広い間隔が設定されている。
(2)複数の突起部により規定される細胞定着部の内径が、1~数個の神経細胞の細胞体を収容できるサイズである。「数個」とは、2~10個、より好ましくは2~6個、更に好ましくは3~5個である。
(3)細胞定着部の底面を構成する基板面には、以下の(ア)及び(イ)の内の少なくとも一方の要素を備える。
(ア)細胞外マトリクス形成物質をコーティングしている。
(イ)前記基板面の下部に設けた吸引装置による培地吸引用の微細貫通孔であって、神経細胞を通過させない孔径のものを設けている。
なお、上記の第1発明において、「1~数個の神経細胞の細胞体」とは、1個以上で10個以下、より好ましくは1個以上で5個以下の神経細胞の細胞体を意味する。
上記課題を解決するための第2発明の構成は、前記第1発明に係る培養装置が以下(1)~(3)のいずれかに該当する、神経細胞ネットワーク形成用培養装置である。
(1)前記基板上に選択領域としての細胞定着部が形成され、この細胞定着部に選択細胞としての神経細胞が1~数個配置されると共に、他の神経細胞は単に基板上に播種される。
(2)前記基板上に複数の細胞定着部が適宜な相互間隔をもって形成され、これらの細胞定着部には神経細胞が1~数個配置されると共に、その内の1の細胞定着部が神経細胞を配置した選択領域として用いられる。
(3)前記基板上に上記(1)又は(2)に該当する神経細胞ネットワークのユニットを複数ないし多数形成できるように、上記の細胞定着部を適宜な位置に分散して形成させた、神経細胞ネットワークのハイスループット解析用培養装置。
上記課題を解決するための第3発明の構成は、前記第1発明又は第2発明において、神経細胞ネットワーク形成用培養装置が神経細胞ネットワークを対象とするプレーナーパッチクランプ装置であって、
(1)前記基板が電気絶縁性基板であって、その電気絶縁性基板の細胞定着部の底面を構成する基板面の両側の表面を連通させる前記微細貫通孔を設け、(2)微細貫通孔の第一表面側である神経細胞ネットワーク形成側と、その反対側である第二表面側にはそれぞれ、前記細胞培地である導電性液体を保持するための液溜部と、該液溜部の導電性液体に対して通電可能に配置された電極部とを設け、(3)第一表面側の液溜部が前記細胞定着部に定着された神経細胞用の液溜部とされている、神経細胞ネットワーク形成用培養装置である。
上記課題を解決するための第4発明の構成は、前記第3発明に係るプレーナーパッチクランプ装置において、前記第一表面側及び第二表面側の電極部が以下の(a)~(c)の要素を備える、神経細胞ネットワーク形成用培養装置である。
(a)前記液溜部に導電性液体が導入された際にその導電性液体に接することとなる容器壁の少なくとも一部が無機多孔質材料で構成されている電極容器。
(b)上記の電極容器内に収容された、貴金属Nmの表層部にその貴金属の塩化物NmCl層を形成した電極。
(c)上記の電極容器内に充填された、前記貴金属の塩化物NmCl及びアルカリ金属塩化物が飽和濃度で溶解した電極溶液。
上記課題を解決するための第5発明の構成は、前記第1発明~第4発明のいずれかにおいて、神経細胞ネットワーク形成用培養装置が以下(A)~(C)のいずれかの目的に使用されるものである、神経細胞ネットワーク形成用培養装置である。
(A)神経細胞ネットワークにおける神経細胞イオンチャンネル電流の計測・解析に用いる。
(B)少なくとも、Caイメージング解析、前シナプス部位のマーカーであるsynaptophysin又は synapsinの標識によるイメージング解析、樹状突起のマーカーであるMAP2の標識によるイメージング解析、及び、エンドソームやエキソソームを標識するFM1-43又はFM4-64によるイメージング解析を包含するイメージング解析に用いる。
(C)神経細胞ネットワークのハイスループットスクリーニングシステムに用いる。
上記課題を解決するための第6発明の構成は、前記第5発明において、神経細胞ネットワーク形成用培養装置が(B)に記載のイメージング解析に用いるものである場合に、更に下記(D)~(F)の1以上の要素を備える、神経細胞ネットワーク形成用培養装置である。
(D)前記基板の上部に、神経細胞が発する光の受光装置を設置している。
(E)前記基板の上部に、神経細胞あるいは基板表面に光を照射する照射装置を設置している。
(F)上記(E)の照射装置は、所定の単一の神経細胞にのみ光を照射ための集光系を装備している。
上記課題を解決するための第7発明の構成は、第1発明~第6発明のいずれかに記載の神経細胞ネットワーク形成用培養装置を用いて、任意の研究目的のもとに培養下の神経細胞ネットワークを形成させる方法であって、
(1)細胞培地充填下の前記平坦な基板上に神経細胞を播種する工程と、
(2)細胞定着部の細胞外マトリクス形成物質により、及び/又は、細胞定着部の底面の微細貫通孔から液体培地を吸引することにより、一つの細胞定着部ごとに1~数個の神経細胞を配置・定着させる工程と、
(3)細胞定着部に定着した神経細胞の移動を複数の突起部により制約しつつ、複数の突起部の間隔部分により相互に相手の神経細胞の存在を認識させて軸索又は樹状突起による神経細胞間のシナプス接合を形成させる工程と、
を含む、神経細胞ネットワーク形成方法である。
上記課題を解決するための第8発明の構成は、前記第7発明の神経細胞ネットワーク形成方法において、(1)の工程で神経細胞を播種する際、併せてグリア細胞を細胞定着部以外の部分に播種する、神経細胞ネットワーク形成方法である。
上記課題を解決するための第9発明の構成は、神経細胞ネットワーク形成用培養装置又はこの培養装置を利用したプレーナーパッチクランプ装置における細胞培地を充填可能な平坦な装置基板上に設置して、装置基板における複数の突起部で囲まれた多数の細胞定着部に神経細胞を播種するための神経細胞播種デバイスであって、
前記装置基板上への設置が可能なボード状のデバイス本体が、その設置状態において前記多数の細胞定着部を覆う広さを持つと共に、その平坦な底面が多数の細胞定着部における複数の突起部の頂端に接するようになっており、
デバイス本体には、(1)神経細胞を一定密度で懸濁させた神経細胞懸濁液を外部から供給するための懸濁液供給口と、(2)デバイス本体の内部において前記懸濁液供給口から分枝状に延設させた多数の微細な懸濁液流路と、(3)前記各懸濁液流路の端末においてデバイス本体の底面に開口した、神経細胞懸濁液を前記各細胞定着部に注入するための懸濁液注入口と、
を設けた、神経細胞播種デバイスである。
上記課題を解決するための第10発明の構成は、前記第9発明に係る神経細胞播種デバイスにおいて、多数の前記懸濁液流路が実質的に同一の長さに設定され、かつ、神経細胞ネットワーク形成用培養装置又はプレーナーパッチクランプ装置の装置基板上に前記神経細胞播種デバイスを設置した際に個々の前記懸濁液注入口が個々の前記細胞定着部に正確に対応して位置するように設計されている、神経細胞播種デバイスである。
上記課題を解決するための第11発明の構成は、前記第9発明又は第10発明に係る神経細胞播種デバイスにおけるボード状のデバイス本体が、前記懸濁液供給口を設けた上部ボードと前記懸濁液注入口を設けた下部ボードとを密着状態で接合させてなり、かつ、上部ボードと下部ボードの少なくとも一方の接合面に前記懸濁液流路を構成する溝を形成している、神経細胞播種デバイスである。
上記課題を解決するための第12発明の構成は、前記第9発明~第11発明のいずれかに係る神経細胞播種デバイスにおける神経細胞ネットワーク形成用培養装置が第1発明に記載の神経細胞ネットワーク形成用培養装置であり、及び/又は、前記第9発明~第11発明のいずれかに係るプレーナーパッチクランプ装置が第3発明に記載のプレーナーパッチクランプ装置である、神経細胞播種デバイスである。
上記課題を解決するための第13発明の構成は、前記第9発明~第12発明のいずれかに係る神経細胞播種デバイスにおけるデバイス本体が、前記神経細胞ネットワーク形成用培養装置又は前記プレーナーパッチクランプ装置の装置基板における前記細胞定着部以外の領域に対して前記神経細胞懸濁液を注入するための第2懸濁液流路を更に備えている、神経細胞播種デバイスである。
第1発明の神経細胞ネットワーク形成用培養装置においては、平坦な基板上に形成された、複数の突起部で囲まれた細胞定着部を備えるので、ここに配置された神経細胞は、複数の突起部によりランダムな移動を制約される。従って、神経細胞のランダムな移動が制約される。
第2発明によって、図4(a)に示すような神経細胞ネットワークや、図4(b)に示すような神経細胞ネットワークを形成するための神経細胞ネットワーク形成用培養装置が提供され、更に、基板上には、これらの神経細胞ネットワークのユニットを複数ないし多数形成できる。従って、神経細胞ネットワークのハイスループット解析用培養装置も提供される。
プレーナーパッチクランプ装置とは、シリコンチップのような電気絶縁性の固体基板上に複数のパッチクランプ装置を構成して多点計測を可能にし、各パッチクランプ装置の細胞配置部位にはそれぞれ、イオンチャンネル電流を計測するための微細な貫通孔を設けたものである。第3発明のプレーナーパッチクランプ装置においては、前記第1発明における(3)の(イ)に規定する「基板の下部に設けた吸引装置による細胞培地吸引用の微細貫通孔」が、イオンチャンネル電流計測用の微細な貫通孔として用いられる。
ところで、上記第3発明のようなプレーナーパッチクランプ装置においても、次に述べるような課題がある。
第5発明によれば、第1発明~第4発明の神経細胞ネットワーク形成用培養装置を、(A)神経細胞ネットワークにおける神経細胞イオンチャンネル電流の計測・解析、(B)少なくとも、Caイメージング解析、前シナプス部位のマーカーであるsynaptophysin又は synapsinの標識によるイメージング解析、樹状突起のマーカーであるMAP2の標識によるイメージング解析、及び、エンドソームやエキソソームを標識するFM1-43又はFM4-64によるイメージング解析を包含するイメージング解析、(C)神経細胞ネットワークのハイスループットスクリーニングシステム、のいずれかに用いることができる。
第6発明によれば、前記第5発明の神経細胞ネットワーク形成用培養装置が(C)に記載のイメージング解析に用いるものである場合に、更に上記した(D)の受光装置、(E)の照射装置、(F)の集光系の1以上の要素を備えるので、第1に多くの場合に非接触かつ非破壊での計測が可能となるため神経細胞ネットワーク機能を阻害することなく解析でき、第2に光計測であるため高速で解析でき、第3に細胞定着部に複数の神経細胞(細胞クラスター)が配置されていても(F)の集光系により正確に単一の神経細胞を励起して精密に解析できると言う効果が得られる。
第7発明の神経細胞ネットワーク形成方法によれば、第1発明~第6発明のいずれかに記載の神経細胞ネットワーク形成用培養装置を用いて、前記した(1)~(3)の工程を行う。
第8発明によれば、上記第7発明の(1)の工程で神経細胞を播種する際、神経細胞を選択領域内と選択領域外とに播種すると共にグリア細胞を選択領域外に播種する。よって「F.W. Pfrieger et al., Science 277(1997)1684-1687」等の文献により知られるように、シナプスの近傍にグリア細胞が存在し神経細胞に接触することになるので、神経細胞ネットワークの成熟度が高まり、時空間的に機能がより均一な神経細胞ネットワークを構成できる。
第9発明によれば、神経細胞ネットワーク形成用培養装置又はこの培養装置を利用したプレーナーパッチクランプ装置における多数の細胞定着部に効率的に神経細胞を播種するための神経細胞播種デバイスが提供される。よって、ハイスループットスクリーニング応用を前提とした神経細胞ネットワークの形成において、いかにして神経細胞を播種するかという重要な問題の解決手段が提供される。
第10発明によれば、多数の前記懸濁液流路が実質的に同一の長さに設定されているので、装置基板上の多数の細胞定着部に対する神経細胞の播種が正確に同時に完了する。このことは、換言すれば、神経細胞懸濁液における神経細胞の分散密度を調節した上で、懸濁液供給口から供給する神経細胞懸濁液の液量を制御すれば、個々の細胞定着部への神経細胞懸濁液の注入量(ひいては播種される神経細胞の個数)をほぼ正確にコントロールできると言う効果を意味し、しかも、多数の細胞定着部において播種される神経細胞の個数をほぼ均一に制御できると言う効果も意味する。これらの効果は、ハイスループットスクリーニング応用を前提とした神経細胞ネットワークの形成において、重大な効果であると言うことができる。
第11発明によれば、ボード状のデバイス本体が懸濁液供給口を設けた上部ボードと懸濁液注入口を設けた下部ボードとを接合させてなり、両者のボードの少なくとも一方の接合面に懸濁液流路を構成する溝を形成しているので、デバイス本体の内部に微細かつ屈曲された形態の懸濁液流路を多数構成するための加工が容易である。但し、懸濁液流路を構成するための加工方法は、このようなものに限定されない。
第12発明によれば、神経細胞ネットワーク形成用培養装置が第1発明に記載のものであり、及び/又は、プレーナーパッチクランプ装置が第3発明に記載のものであると言う、神経細胞播種デバイスの具体的かつ好適な実施形態が提供される。
神経細胞ネットワーク形成用培養装置やプレーナーパッチクランプ装置の装置基板における細胞定着部のみに神経細胞を播種したのでは、装置基板における神経細胞の全体的な固体数が不足するため、神経細胞ネットワークが良好に形成されないことも多い。この問題を解決するため、第13発明によれば、デバイス本体が、装置基板における前記細胞定着部以外の領域に対して神経細胞懸濁液を注入するための第2懸濁液流路を更に備えている。そのため、装置基板における細胞定着部以外の領域に対しても適宜に神経細胞懸濁液を注入して神経細胞を播種することができるので、神経細胞ネットワークが特に良好に形成される。
2 細胞定着部
3 神経細胞
4 微細貫通孔
5 電流増幅器
6 マイクロピペット
7 上部電極
8 下部電極
9 細胞外マトリックス形成物質
11 神経細胞
12 突起部
13 細胞定着部
14 基板
15 微細貫通孔
16 スペーサー
17 スペーサー
18 培養スペース
19 切欠き部
20 プレート
21 プレート
22 主液溜
23 液溜部
24 通液路
25 副液溜
26 導入用通液路
27 排出用通液路
28 電極部
29 電極部
30 細胞外マトリックス形成物質
31 電極容器
32 電極溶液
33 AgCl/Ag電極
34 無機多孔質材料
35 電極ピン
36 外側細胞定着部
40 デバイス本体
41 上部ボード
42 下部ボード
43 懸濁液供給口
43a 第2懸濁液供給口
44 懸濁液流路
44a 第2懸濁液流路
45 懸濁液注入口
45a 第2懸濁液注入口
46 注入口設定部
本発明の技術分野は、神経細胞を安定した状態で培養しつつ神経細胞ネットワークを形成させる技術分野に関する。又、細胞表面のイオンチャンネル電流を計測する技術分野に属する。更に、細胞に電流注入あるいは電圧印加により刺激を与えることを行う分野に関する。更に、イオンチャンネル電流を計測あるいは細胞に電流を注入し、あるいは電圧を印加して刺激を与えるタイプのハイスループットスクリーニング技術分野にも属する。更に、神経細胞あるいは神経細胞ネットワークを対象とするCaイメージングその他の種々のイメージング技術分野にも属する。
神経細胞は、細胞の本体である細胞体とこの細胞体から伸長される軸索及び樹状突起からなる。神経細胞の種類は限定されないが、第1に、中枢神経細胞、末梢神経細胞等の各種の神経細胞が例示され、特に、未だ軸索や樹状突起を突出させていない状態のものが好ましい。又、第2に、例えばiPS細胞やES細胞のように神経細胞に分化可能な細胞、より好ましくは、iPS細胞やES細胞から神経細胞への分化の完成途上にある神経幹細胞等の状態にあるものが例示される。更に、第3に、細胞相互間にネットワークを形成する性質を持つ細胞、及び、細胞相互間にネットワークを形成する性質を持つ細胞に分化が可能な細胞が例示される。神経細胞としては、動物の神経細胞、特にヒトを包含する哺乳動物の神経細胞が好ましい。これらの神経細胞における細胞体のサイズは、通常は20μm未満であり、より具体的には3~18μm程度である。
本発明の神経細胞ネットワーク形成用培養装置は、細胞培地(特に好ましくは液体培地)を充填可能な平坦な基板上に、複数の突起部で囲まれた細胞定着部を形成している。
神経細胞ネットワーク形成用培養装置の有効な利用例の一つが神経細胞ネットワークを対象とするプレーナーパッチクランプ装置である。
生命体を構成する細胞の表面には種々の膜タンパク質が配置されており、細胞表面の特定サイトへの化学物質(リガンド等の信号伝達物質)の結合や電気あるいは光の刺激(ゲートトリガー)により膜タンパク質の開口部であるチャンネルが開閉し、細胞膜の外側と内側の間でのイオンや化学物質の輸送が制御されている。この制御を行うイオンチャンネルは生体系の信号伝達に関わる重要な膜タンパク質であり、その機能計測や機能に関連する薬品の開発においてはチャンネルタンパク質の電気的変化、即ちイオンチャンネル電流の計測が求められる。
これに対して、本発明のプレーナーパッチクランプ装置は、上記した一般的な構成のプレーナーパッチクランプ装置に比較して、更に神経細胞の培養機能を持ち、イオンチャンネル電流計測時における雑音電流の有効な抑制と細胞の安定的な位置決めが可能な装置である。即ち、この装置の特徴的な構成は、基板に設けた微細な貫通孔における神経細胞定着用開口部に細胞固定力を付与し、かつ、基板における貫通孔の両側の表面部には電極に通電可能な液溜部を設け、この液溜部に導電性液体(例えば細胞培養液)を充填できる点にある。このプレーナーパッチクランプ装置によれば、神経細胞を微細貫通孔の位置に容易にトラップすることができ、しかも、細胞の培養条件下において十分な時間をかけてイオンチャンネル活性の測定を行うことができる。
従って、本発明に係るプレーナーパッチクランプ装置では、その電気絶縁性の基板における両側の表面である第一表面側(細胞を配置する表面側)と第二表面側とを連通させる微細な貫通孔を設けている。
更に、上記のプレーナーパッチクランプ装置においては、前記第一表面側及び第二表面側の電極部が以下の(a)~(c)の要素を備えることが好ましい。
本発明に係る神経細胞ネットワーク形成用培養装置あるいはプレーナーパッチクランプ装置を用いて、少なくとも、Caイメージング解析、前シナプス部位のマーカーであるsynaptophysin又は synapsinの標識によるイメージング解析、樹状突起のマーカーであるMAP2の標識によるイメージング解析、及び、エンドソームやエキソソームを標識するFM1-43又はFM4-64によるイメージング解析等の各種のイメージング解析を行うことができる。
Caイメージングとは、神経細胞に予めCaプローブ(Caイオンと結合して蛍光を発する色素)を導入しておき、神経細胞に活動電位が発生した時に細胞体にCaイオンが流入する現象を蛍光として捉える方法であり、その細胞のイオンチャンネル電流を活動電位の発生時あるいは活動電位の伝搬時に生じる蛍光の観察により行い解析することができる。
Synaptophysinやsynapsinはシナプスベシクルの膜たんぱく質であり、前シナプス部位のマーカーであるが、これらの抗体に色素を結合させ、抗原抗体反応を利用してこれらのたんぱく質に色素を結合させることができる、これにより、シナプス部位を標識することができる。
MAP2は樹状突起のマーカーであるが、この抗体に色素を付加し、反応させることにより、樹状突起部位を標識することができる。
FM1-43やFM4-64は細胞膜に可逆的に入り、細胞膜を透過せず、細胞膜に結合したときにのみ蛍光を発するという特徴を有し、エンドソームやエキソソームを標識することができる。細胞の生命機能を維持して標識できるという特徴を有する。
本発明に係る神経細胞ネットワーク形成用培養装置あるいはプレーナーパッチクランプ装置を用いて上記の各種のイメージング解析を行うに当たり、装置には以下の光学系要素を備えることが好ましい。
本発明に係る神経細胞播種デバイスは、神経細胞ネットワーク形成用培養装置又はこの培養装置を利用したプレーナーパッチクランプ装置における、細胞培地を充填可能な平坦な装置基板上に設置して、装置基板における複数の突起部で囲まれた多数の細胞定着部に神経細胞を播種するためのものである。
第1実施例に係る装置を図5に示す。この装置は、神経細胞ネットワーク形成用培養装置を、イオンチャンンネルバイオセンサーである培養型のプレーナーパッチクランプ装置として構成したものである。
第2実施例を図6に示す。この第2実施例及び次の第3実施例は第1実施例における要点を更に詳しく述べるものである。これらの実施例における部品番号は第1実施例とは異なるが、同じ部品名のものは実質的に同じ構成である。
第3実施例を図7に基づいて説明する。同図において、図7(A)の右下部分の「c」の丸囲いに示す図は、細胞定着部2の中央部の微細貫通孔4付近の断面を拡大した部分図である。培養型プレーナーパッチクランプは、Siやプラスチック、セラミックス、ガラスなどの基板1に直径1~数μmの微細貫通孔4を形成し、この微細貫通孔4の上に神経細胞3を置き、基板1の上部、下部をそれぞれ所定の緩衝液で満たし、かつ上部電極7、下部電極8を設置した構成である。下部電極8は電流増幅器5に連絡されている。
微細貫通孔4の上の神経細胞3に所定の膜電位(通常-80~+80mV)を上部電極7、下部電極8により印加しておき、自然発火などにより神経細胞3内に流れるイオンチャンネル電流をホールセルモードにより観測する(図7(A)における矢印記号「a」)。この場合、周辺の神経細胞3の自然発火によるCaイオンの流入や、神経伝達物質を受けてのNa+、K+、Cl-などのシナプス電流が観測され(K.S.Wilcox et al., Synapse 18 (1994) 128-151)、これにより軸索の状態や神経細胞3の状態に関する情報を得ることができる。
微細貫通孔4の上の神経細胞3に上部電極7、下部電極8より所定の電流を注入し、あるいは電圧を印加(図7(A)における矢印記号「b」)して、神経細胞3に刺激を与え、活動電位を発生させる。これにより、刺激を受けた神経細胞3にCaイオンが流入する。そのため、Caプローブの蛍光(図7(A)における矢印記号「d1」)が観測されると共に、発生した活動電位が周辺の神経細胞3に伝搬して当該周辺の神経細胞3のCaプローブの発光(図7(A)における矢印記号「d2」)を生じさせる。この発光を観測することにより、信号の伝搬を確認することができる。すなわち神経細胞ネットワークの信号伝搬特性についての情報を得ることができる。
微細貫通孔4の上(細胞定着部2内)の神経細胞3の付近に存在し、かつ、チャンネルロドプシンを発現している単一の神経細胞3に470~480nmのレーザー光を集光して照射(図7(A)における矢印記号「e」)して、この単一の神経細胞3に活動電位を発生させる。そうすると、この活動電位信号がネットワークを通して微細貫通孔上の神経細胞3に伝搬され、Caチャンネルが開いて、Caイオンの流入が誘起される。その結果、あらかじめホールセルモードとなっている微細貫通孔上の神経細胞3に膜電位を印加している上部電極7、下部電極8により、イオンチャンネル電流を観測できる。第三の動作モードによれば、神経細胞ネットワークの信号伝搬特性を単一細胞レベルで測定し詳細に解析できる。
前記の第一~第三の動作モードにおいては、細胞定着部2と微細貫通孔4の組み合わせからなる図7(A)に示す構造は、最低で1ケ所あれば素子として動作する。そして、この構造を基板1上に多数構成すれば、ハイスループットスクリーニング装置として動作する。これに対して、以下の第四の動作モードでは、前記のトリガー細胞とフォロワー細胞に対応してそれぞれ一つ(合計二つ)の図7(A)に示す構造体をもって素子が構成される。
第4実施例を図8(a)、(b)に示す。平面写真である図8(a)において小さな円形で示される、直径約10μm、高さ約8μmの円柱12本からなる細胞定着部2をSi基板の表面に形成し、17日齢のラット胎仔の大脳皮質から採取した神経細胞3を播種し、14日間培養後に神経細胞ネットワークの形成を蛍光顕微鏡により確認した。培地を所定の緩衝液に交換したのち、この緩衝液にオレゴングリーンBapta-1というCaプローブを混入し、約2時間後再び、緩衝液をCaプローブを含まない液に交換して蛍光顕微鏡で神経細胞3を観察した。
第5実施例を図9に示す。Si基板を用いて構成した培養型プレーナーパッチクランプ素子の微細貫通孔を囲むように、複数の突起部からなる細胞定着部を、ネガティブホトレジストを用いて、第2実施例~第4実施例と同様の方法で形成した。ラット胎仔の大脳皮質から採取した神経細胞を第4実施例と同様な手法で播種し、培養14日後に細胞定着部の中の神経細胞が微細貫通孔の上に配置されていること、及び、当該神経細胞が周辺の神経細胞とネットワークを形成していることを確認した。
第6実施例は細胞定着部13の改良実施例に関する。図10に示すように、微細貫通孔の第一表面側の開口部上の基板面には、第1実施例の場合と同様に複数の突起部12で囲まれた細胞定着部13が形成され、この細胞定着部13には神経細胞11が配置されている。そして細胞定着部13をリング状に構成する複数の突起部12の外側に、更に多くの突起部12で囲まれた外側細胞定着部36が形成されている。即ち、第6実施例では、突起部12で構成されるリングが、細胞定着部13と、外側細胞定着部36との二重リング構造となっているのが特徴である。
第7実施例は、本発明の神経細胞播種デバイスに関する。神経細胞播種デバイスのデバイス本体は、上記の実施例に係る神経細胞ネットワーク形成用培養装置又はプレーナーパッチクランプ装置の装置基板上に設置し、装置基板における複数の突起部で囲まれた多数の細胞定着部に神経細胞を播種するためのものである。
第1懸濁液流路系は、前記の第9発明~第12発明に係る懸濁液供給口と、懸濁液流路と、懸濁液注入口からなる。
第2懸濁液流路系は、前記第13発明に係る、装置基板における細胞定着部以外の領域に対して神経細胞懸濁液を注入するための懸濁液流路系であって、図11(a)に示す第2懸濁液供給口43aと、この第2懸濁液供給口43aから図12(a)に示すように分枝状に延設させた複数の第2懸濁液流路44aと、これらの第2懸濁液流路44aの各端末において下部ボード42に形成した第2懸濁液注入口45aからなる。それぞれの第2懸濁液注入口45aは、図12(a)においては破線で示すが、図12(b)においては実線で示す。
以上のように、神経細胞播種デバイスのデバイス本体40に設けた第1懸濁液流路系を利用し、各細胞定着部2に対して所定の濃度の神経細胞懸濁液を注入する。そして細胞定着部2の複数の突起部12の相互間隔が、播種時の神経細胞の細胞体の寸法より小さく、かつ、神経細胞懸濁液の媒体液(例えば神経細胞の培養液)が容易に流出できるよう十分に広いので、細胞定着部2に対して上部より神経細胞懸濁液を導入することで、媒体液が流出するも神経細胞は細胞定着部2の内部に留まり、そこに播種される。
第9実施例は、播種に用いるラット神経細胞懸濁液の調製方法に関する。この懸濁液の調製は以下のように行った。即ち、17~18日齢のWistar Rat胎児の脳から大脳皮質または海馬を採取し、0.25%の Trypsin溶液を用いた酵素処理(37℃、20分間)を経て組織をばらばらにした。次に、Minimum Essential Medium (MEM)を基本培地とした血清含有の培地を用いて1.0×107cells/mlの細胞懸濁液を調製した。そして、この細胞懸濁液をマイクロ流路もしくはマイクロインジェクターを用いて細胞定着部に導入して播種した。
第10実施例は、播種するiPS細胞の調製に関する。即ち、独立行政法人 理化学研究所(日本国)のCELL BANKよりヒト人工多能性幹細胞(iPS細胞)株である201B7を入手し、マイトマイシンCにより増殖能を不活性化処理したSTO細胞由来細胞(SNL)をフィーダー細胞として培養した。フィーダー細胞は、iPS細胞の自己複製を補助する役割を果たす他の細胞を意味する。
日間の浮遊培養を行った。更にその後、FGF2(20ng/ml)、SHH-N(30nM) を添加した分化誘導培地に交換し、7 日間培養した。この処理により細胞の形態は神経幹細胞となった。
Claims (13)
- 細胞培地を充填可能な平坦な基板上に、複数の突起部で囲まれた細胞定着部を形成し、この細胞定着部が下記(1)~(3)の条件を備えていることを特徴とする神経細胞ネットワーク形成用培養装置。
(1)細胞定着部を構成する複数の突起部間には、神経細胞の細胞体を通過させない限りにおいて広い間隔が設定されている。
(2)複数の突起部により規定される細胞定着部の内径が、1~数個の神経細胞の細胞体を収容できるサイズである。
(3)細胞定着部の底面を構成する基板面には、以下の(ア)及び(イ)の内の少なくとも一方の要素を備える。
(ア)細胞外マトリクス形成物質をコーティングしている。
(イ)前記基板面の下部に設けた吸引装置による培地吸引用の微細貫通孔であって、神経細胞を通過させない孔径のものを設けている。 - 前記培養装置が以下(1)~(3)のいずれかに該当することを特徴とする請求項1に記載の神経細胞ネットワーク形成用培養装置。
(1)前記基板上に選択領域としての細胞定着部が形成され、この細胞定着部に選択細胞としての神経細胞が1~数個配置されると共に、他の神経細胞は単に基板上に播種される。
(2)前記基板上に複数の細胞定着部が適宜な相互間隔をもって形成され、これらの細胞定着部には神経細胞が1~数個配置されると共に、その内の1の細胞定着部が神経細胞を配置した選択領域として用いられる。
(3)前記基板上に上記(1)又は(2)に該当する神経細胞ネットワークのユニットを複数ないし多数形成できるように、上記の細胞定着部を適宜な位置に分散して形成させた、神経細胞ネットワークのハイスループット解析用培養装置。 - 前記神経細胞ネットワーク形成用培養装置が神経細胞ネットワークを対象とするプレーナーパッチクランプ装置であって、
(1)前記基板が電気絶縁性基板であって、その電気絶縁性基板の細胞定着部の底面を構成する基板面の両側の表面を連通させる前記微細貫通孔を設け、(2)微細貫通孔の第一表面側である神経細胞ネットワーク形成側と、その反対側である第二表面側にはそれぞれ、前記細胞培地である導電性液体を保持するための液溜部と、該液溜部の導電性液体に対して通電可能に配置された電極部とを設け、(3)第一表面側の液溜部が前記細胞定着部に定着された神経細胞用の液溜部とされていることを特徴とする請求項1又は請求項2に記載の神経細胞ネットワーク形成用培養装置。 - 前記プレーナーパッチクランプ装置において、前記第一表面側及び第二表面側の電極部が以下の(a)~(c)の要素を備えることを特徴とする請求項3に記載の神経細胞ネットワーク形成用培養装置。
(a)前記液溜部に導電性液体が導入された際にその導電性液体に接することとなる容器壁の少なくとも一部が無機多孔質材料で構成されている電極容器。
(b)上記の電極容器内に収容された、貴金属Nmの表層部にその貴金属の塩化物NmCl層を形成した電極。
(c)上記の電極容器内に充填された、前記貴金属の塩化物NmCl及びアルカリ金属塩化物が飽和濃度で溶解した電極溶液。 - 前記神経細胞ネットワーク形成用培養装置が以下(A)~(C)のいずれかの目的に使用されるものであることを特徴とする請求項1~請求項4のいずれかに記載の神経細胞ネットワーク形成用培養装置。
(A)神経細胞ネットワークにおける神経細胞イオンチャンネル電流の計測・解析に用いる。
(B)少なくとも、Caイメージング解析、前シナプス部位のマーカーであるsynaptophysin又は synapsinの標識によるイメージング解析、樹状突起のマーカーであるMAP2の標識によるイメージング解析、及び、エンドソームやエキソソームを標識するFM1-43又はFM4-64によるイメージング解析を包含するイメージング解析に用いる。
(C)神経細胞ネットワークのハイスループットスクリーニングシステムに用いる。 - 前記神経細胞ネットワーク形成用培養装置が(B)に記載のイメージング解析に用いるものである場合に、更に下記(D)~(F)の1以上の要素を備えることを特徴とする請求項5に記載の神経細胞ネットワーク形成用培養装置。
(D)前記基板の上部に、神経細胞が発する光の受光装置を設置している。
(E)前記基板の上部に、神経細胞あるいは基板表面に光を照射する照射装置を設置している。
(F)上記(E)の照射装置は、所定の単一の神経細胞にのみ光を照射するための集光系を装備している。 - 請求項1~請求項6のいずれかに記載の神経細胞ネットワーク形成用培養装置を用いて、任意の研究目的のもとに培養下の神経細胞ネットワークを形成させる方法であって、
(1)細胞培地充填下の前記平坦な基板上に神経細胞を播種する工程と、
(2)細胞定着部の細胞外マトリクス形成物質により、及び/又は、細胞定着部の底面の微細貫通孔から液体培地を吸引することにより、一つの細胞定着部ごとに1~数個の神経細胞を配置・定着させる工程と、
(3)細胞定着部に定着した神経細胞の移動を複数の突起部により制約しつつ、複数の突起部の間隔部分により相互に相手の神経細胞の存在を認識させて軸索又は樹状突起による神経細胞間のシナプス接合を形成させる工程と、
を含むことを特徴とする神経細胞ネットワーク形成方法。 - 前記神経細胞ネットワーク形成方法において、(1)の工程で神経細胞を播種する際、併せてグリア細胞を細胞定着部以外の部分に播種することを特徴とする請求項7に記載の神経細胞ネットワーク形成方法。
- 神経細胞ネットワーク形成用培養装置又はこの培養装置を利用したプレーナーパッチクランプ装置における細胞培地を充填可能な平坦な装置基板上に設置して、装置基板における複数の突起部で囲まれた多数の細胞定着部に神経細胞を播種するための神経細胞播種デバイスであって、
前記装置基板上への設置が可能なボード状のデバイス本体が、その設置状態において前記多数の細胞定着部を覆う広さを持つと共に、その平坦な底面が多数の細胞定着部における複数の突起部の頂端に接するようになっており、
デバイス本体には、(1)神経細胞を一定密度で懸濁させた神経細胞懸濁液を外部から供給するための懸濁液供給口と、(2)デバイス本体の内部において前記懸濁液供給口から分枝状に延設させた多数の微細な懸濁液流路と、(3)前記各懸濁液流路の端末においてデバイス本体の底面に開口した、神経細胞懸濁液を前記各細胞定着部に注入するための懸濁液注入口と、
を設けたことを特徴とする神経細胞播種デバイス。 - 前記神経細胞播種デバイスにおいて、多数の前記懸濁液流路が実質的に同一の長さに設定され、かつ、神経細胞ネットワーク形成用培養装置又はプレーナーパッチクランプ装置の装置基板上に前記神経細胞播種デバイスを設置した際に個々の前記懸濁液注入口が個々の前記細胞定着部に正確に対応して位置するように設計されていることを特徴とする請求項9に記載の神経細胞播種デバイス。
- 前記ボード状のデバイス本体が、前記懸濁液供給口を設けた上部ボードと前記懸濁液注入口を設けた下部ボードとを密着状態で接合させてなり、かつ、上部ボードと下部ボードの少なくとも一方の接合面に前記懸濁液流路を構成する溝を形成していることを特徴とする請求項9又は請求項10に記載の神経細胞播種デバイス。
- 前記神経細胞ネットワーク形成用培養装置が請求項1に記載の神経細胞ネットワーク形成用培養装置であり、及び/又は、前記プレーナーパッチクランプ装置が請求項3に記載のプレーナーパッチクランプ装置であることを特徴とする請求項9~請求項11のいずれかに記載の神経細胞播種デバイス。
- 前記デバイス本体が、前記神経細胞ネットワーク形成用培養装置又は前記プレーナーパッチクランプ装置の装置基板における前記細胞定着部以外の領域に対して前記神経細胞懸濁液を注入するための第2懸濁液流路系を更に備えていることを特徴とする請求項9~請求項12のいずれかに記載の神経細胞播種デバイス。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201502017SA SG11201502017SA (en) | 2012-09-19 | 2013-03-21 | Formation and use of neuronal network, and neuron seeding device |
JP2014536618A JP6047579B2 (ja) | 2012-09-19 | 2013-03-21 | 神経細胞ネットワークの形成及びその利用、並びに神経細胞播種デバイス |
US14/429,035 US9829477B2 (en) | 2012-09-19 | 2013-03-21 | Formation and use of neuronal network, and neuron seeding device |
DK13838905.1T DK2899262T3 (en) | 2012-09-19 | 2013-03-21 | CREATION AND USE OF NEURON NETWORKS AND NEURO EDUCATION DEVICES |
CN201380048253.XA CN104640971B (zh) | 2012-09-19 | 2013-03-21 | 神经细胞网络的形成及其利用、以及神经细胞播种器件 |
KR1020157006609A KR102027808B1 (ko) | 2012-09-19 | 2013-03-21 | 신경세포 네트워크의 형성과 그 이용, 및 신경세포 파종 디바이스 |
EP13838905.1A EP2899262B1 (en) | 2012-09-19 | 2013-03-21 | Formation and use of neuronal network, and neuron seeding device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012205561 | 2012-09-19 | ||
JP2012-205561 | 2012-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014045618A1 true WO2014045618A1 (ja) | 2014-03-27 |
Family
ID=50340951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057976 WO2014045618A1 (ja) | 2012-09-19 | 2013-03-21 | 神経細胞ネットワークの形成及びその利用、並びに神経細胞播種デバイス |
Country Status (9)
Country | Link |
---|---|
US (1) | US9829477B2 (ja) |
EP (1) | EP2899262B1 (ja) |
JP (1) | JP6047579B2 (ja) |
KR (1) | KR102027808B1 (ja) |
CN (1) | CN104640971B (ja) |
DK (1) | DK2899262T3 (ja) |
SG (1) | SG11201502017SA (ja) |
TW (1) | TWI598830B (ja) |
WO (1) | WO2014045618A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015030201A1 (ja) | 2013-08-30 | 2015-03-05 | 独立行政法人科学技術振興機構 | プレーナーパッチクランプ装置及びプレーナーパッチクランプシステム |
WO2016088243A1 (ja) * | 2014-12-05 | 2016-06-09 | 株式会社ニコン | 判定装置、観察システム、観察方法、そのプログラム、細胞の製造方法、および細胞 |
EP3098298A4 (en) * | 2014-01-24 | 2017-09-13 | Japan Science and Technology Agency | Cell-seeding and -culturing device |
JPWO2021095393A1 (ja) * | 2019-11-14 | 2021-05-20 | ||
WO2024079699A1 (en) * | 2022-10-13 | 2024-04-18 | Neural Automations Ltd. | Micro-electrode arrays for electrical interfacing |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160311699A1 (en) | 2015-04-21 | 2016-10-27 | Chris Burseth | Device and system to improve asepsis in dental apparatus |
KR101979145B1 (ko) * | 2018-01-30 | 2019-05-15 | 서강대학교산학협력단 | 신경줄기세포 배양용 미세유체칩 및 이의 용도 |
CN112513631A (zh) * | 2018-08-03 | 2021-03-16 | 奥林巴斯株式会社 | 细胞检查装置和细胞检查方法 |
JP2020110117A (ja) * | 2019-01-15 | 2020-07-27 | 株式会社島津製作所 | 細胞処理容器及び細胞処理装置 |
KR102512332B1 (ko) | 2019-12-24 | 2023-03-22 | 광운대학교 산학협력단 | 신경세포의 신호전달 학습이 가능한 바이오닉 뉴럴 인공지능 프로세서 |
US20210301240A1 (en) * | 2020-03-30 | 2021-09-30 | Ricoh Company, Ltd. | Cell-containing container and method for producing same |
KR102512331B1 (ko) | 2020-05-06 | 2023-03-22 | 광운대학교 산학협력단 | 신경세포의 신호 전달 체계를 이용하여 비정형적 연산의 출력이 가능한 바이오닉 뉴럴 인공지능 프로세서 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0775547A (ja) * | 1993-09-07 | 1995-03-20 | Bio Material Kenkyusho:Kk | 培養基質 |
JP2004166692A (ja) * | 2002-10-28 | 2004-06-17 | Matsushita Electric Ind Co Ltd | 一体型電極及び当該一体型電極を備える細胞固定化器 |
WO2005001018A1 (ja) * | 2003-06-27 | 2005-01-06 | Matsushita Electric Industrial Co., Ltd. | 薬理測定装置およびシステム並びにそれに用いるウェル容器 |
WO2005116242A1 (ja) * | 2004-05-31 | 2005-12-08 | Matsushita Electric Industrial Co., Ltd. | 医薬品安全性試験方法及び医薬品安全性試験システム |
WO2007116978A1 (ja) * | 2006-04-06 | 2007-10-18 | Inter-University Research Institute Corporation National Institutes Of Natural Sciences | イオンチャンネル活性測定用平面基板型パッチクランプ素子、パッチクランプ素子作製用基板、及びその製造方法 |
JP2009204407A (ja) * | 2008-02-27 | 2009-09-10 | National Institutes Of Natural Sciences | パッチクランプ素子用基板、平面基板型パッチクランプ素子及び細胞イオンチャンネル活性測定方法 |
JP2010227012A (ja) * | 2009-03-27 | 2010-10-14 | Seiko Epson Corp | がん細胞捕捉デバイス |
JP2010227087A (ja) * | 2009-09-08 | 2010-10-14 | Seiko Epson Corp | 細胞処理デバイス、細胞処理カートリッジおよび体液処理システム |
JP4567936B2 (ja) * | 2000-03-16 | 2010-10-27 | 株式会社セルシード | 細胞培養用支持体材料、細胞の共培養方法およびそれより得られる共培養細胞シート |
JP2011500119A (ja) * | 2007-10-11 | 2011-01-06 | アンセルム(アンスチチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル) | 組織工学用多孔質足場の調製方法 |
JP2011193758A (ja) * | 2010-03-18 | 2011-10-06 | National Institute Of Advanced Industrial Science & Technology | 薬剤感受性試験用バイオチップ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7270730B2 (en) * | 2000-08-04 | 2007-09-18 | Essen Instruments, Inc. | High-throughput electrophysiological measurement system |
EP1372828A4 (en) * | 2001-03-24 | 2008-10-29 | Aviva Biosciences Corp | BIOCHIPS WITH ION TRANSPORTATION STRUCTURES AND USE METHOD |
TW200415524A (en) * | 2002-10-24 | 2004-08-16 | Univ Duke | Binary prediction tree modeling with many predictors and its uses in clinical and genomic applications |
US20040209352A1 (en) | 2002-10-28 | 2004-10-21 | Nobuhiko Ozaki | Integrated electrode and cell immobilization device equipped with the integrated electrode |
US8323955B1 (en) * | 2003-03-05 | 2012-12-04 | Sandia Corporation | Micromachined patch-clamp apparatus |
JP4950426B2 (ja) * | 2005-02-17 | 2012-06-13 | 株式会社日立製作所 | 神経細胞の培養方法、神経細胞培養基材および神経細胞システムの製造方法 |
JP4895345B2 (ja) * | 2005-10-25 | 2012-03-14 | セイコーインスツル株式会社 | 生細胞観察用セル |
CN101629143B (zh) | 2008-12-02 | 2011-09-21 | 中国科学院上海微系统与信息技术研究所 | 用于高通量药物筛选的微流控细胞阵列芯片、方法及应用 |
EP2383576B1 (en) * | 2010-04-28 | 2013-04-03 | Imec | Micro-electrode grid array for top and bottom recording from samples |
-
2013
- 2013-03-21 EP EP13838905.1A patent/EP2899262B1/en active Active
- 2013-03-21 CN CN201380048253.XA patent/CN104640971B/zh active Active
- 2013-03-21 DK DK13838905.1T patent/DK2899262T3/en active
- 2013-03-21 KR KR1020157006609A patent/KR102027808B1/ko active IP Right Grant
- 2013-03-21 JP JP2014536618A patent/JP6047579B2/ja active Active
- 2013-03-21 WO PCT/JP2013/057976 patent/WO2014045618A1/ja active Application Filing
- 2013-03-21 SG SG11201502017SA patent/SG11201502017SA/en unknown
- 2013-03-21 US US14/429,035 patent/US9829477B2/en active Active
- 2013-04-10 TW TW102112687A patent/TWI598830B/zh not_active IP Right Cessation
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0775547A (ja) * | 1993-09-07 | 1995-03-20 | Bio Material Kenkyusho:Kk | 培養基質 |
JP4567936B2 (ja) * | 2000-03-16 | 2010-10-27 | 株式会社セルシード | 細胞培養用支持体材料、細胞の共培養方法およびそれより得られる共培養細胞シート |
JP2004166692A (ja) * | 2002-10-28 | 2004-06-17 | Matsushita Electric Ind Co Ltd | 一体型電極及び当該一体型電極を備える細胞固定化器 |
WO2005001018A1 (ja) * | 2003-06-27 | 2005-01-06 | Matsushita Electric Industrial Co., Ltd. | 薬理測定装置およびシステム並びにそれに用いるウェル容器 |
WO2005116242A1 (ja) * | 2004-05-31 | 2005-12-08 | Matsushita Electric Industrial Co., Ltd. | 医薬品安全性試験方法及び医薬品安全性試験システム |
WO2007116978A1 (ja) * | 2006-04-06 | 2007-10-18 | Inter-University Research Institute Corporation National Institutes Of Natural Sciences | イオンチャンネル活性測定用平面基板型パッチクランプ素子、パッチクランプ素子作製用基板、及びその製造方法 |
JP2009156572A (ja) * | 2006-04-06 | 2009-07-16 | National Institutes Of Natural Sciences | イオンチャンネルタンパク質バイオセンサー |
JP2011500119A (ja) * | 2007-10-11 | 2011-01-06 | アンセルム(アンスチチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル) | 組織工学用多孔質足場の調製方法 |
JP2009204407A (ja) * | 2008-02-27 | 2009-09-10 | National Institutes Of Natural Sciences | パッチクランプ素子用基板、平面基板型パッチクランプ素子及び細胞イオンチャンネル活性測定方法 |
JP2010227012A (ja) * | 2009-03-27 | 2010-10-14 | Seiko Epson Corp | がん細胞捕捉デバイス |
JP2010227087A (ja) * | 2009-09-08 | 2010-10-14 | Seiko Epson Corp | 細胞処理デバイス、細胞処理カートリッジおよび体液処理システム |
JP2011193758A (ja) * | 2010-03-18 | 2011-10-06 | National Institute Of Advanced Industrial Science & Technology | 薬剤感受性試験用バイオチップ |
Non-Patent Citations (6)
Title |
---|
F.W. PFRIEGER ET AL., SCIENCE, vol. 277, 1997, pages 1684 - 1687 |
G. ZECK ET AL., PNAS, vol. 98, 2001, pages 10457 - 10462 |
J. ERICKSON ET AL., J. NEUROSCI. METHODS, vol. 175, 2008, pages 1 - 16 |
K.S. WILCOX ET AL., SYNAPSE, vol. 18, 1994, pages 128 - 151 |
See also references of EP2899262A4 |
ZECK, G. ET AL.: "Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip", PNAS, vol. 98, no. 18, 2001, pages 10457 - 10462, XP002305989 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015030201A1 (ja) | 2013-08-30 | 2015-03-05 | 独立行政法人科学技術振興機構 | プレーナーパッチクランプ装置及びプレーナーパッチクランプシステム |
JPWO2015030201A1 (ja) * | 2013-08-30 | 2017-03-02 | 国立研究開発法人科学技術振興機構 | プレーナーパッチクランプ装置及びプレーナーパッチクランプシステム |
US9977009B2 (en) | 2013-08-30 | 2018-05-22 | Japan Science And Technology Agency | Planar patch clamp device and planar patch clamp system |
EP3098298A4 (en) * | 2014-01-24 | 2017-09-13 | Japan Science and Technology Agency | Cell-seeding and -culturing device |
US10208284B2 (en) | 2014-01-24 | 2019-02-19 | Japan Science And Technology Agency | Cell-seeding and -culturing device |
WO2016088243A1 (ja) * | 2014-12-05 | 2016-06-09 | 株式会社ニコン | 判定装置、観察システム、観察方法、そのプログラム、細胞の製造方法、および細胞 |
JPWO2021095393A1 (ja) * | 2019-11-14 | 2021-05-20 | ||
WO2021095393A1 (ja) * | 2019-11-14 | 2021-05-20 | Nok株式会社 | 細胞外電位測定装置 |
JP7231168B2 (ja) | 2019-11-14 | 2023-03-01 | Nok株式会社 | 細胞外電位測定装置 |
US11946847B2 (en) | 2019-11-14 | 2024-04-02 | Nok Corporation | Extracellular potential measurement device |
WO2024079699A1 (en) * | 2022-10-13 | 2024-04-18 | Neural Automations Ltd. | Micro-electrode arrays for electrical interfacing |
Also Published As
Publication number | Publication date |
---|---|
TWI598830B (zh) | 2017-09-11 |
EP2899262A1 (en) | 2015-07-29 |
JPWO2014045618A1 (ja) | 2016-08-18 |
SG11201502017SA (en) | 2015-05-28 |
DK2899262T3 (en) | 2017-10-02 |
TW201413603A (zh) | 2014-04-01 |
KR102027808B1 (ko) | 2019-10-02 |
EP2899262B1 (en) | 2017-08-09 |
KR20150056551A (ko) | 2015-05-26 |
US9829477B2 (en) | 2017-11-28 |
CN104640971A (zh) | 2015-05-20 |
EP2899262A4 (en) | 2016-04-27 |
CN104640971B (zh) | 2017-03-15 |
US20150233890A1 (en) | 2015-08-20 |
JP6047579B2 (ja) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6047579B2 (ja) | 神経細胞ネットワークの形成及びその利用、並びに神経細胞播種デバイス | |
JP7100096B2 (ja) | 血液脳関門のマイクロ流体モデル | |
US10150947B2 (en) | Nanotube structures, methods of making nanotube structures, and methods of accessing intracellular space | |
Unal et al. | Micro and nano-scale technologies for cell mechanics | |
US20180057788A1 (en) | Development of spinal cord on a microfluidic chip | |
JP6624933B2 (ja) | 細胞播種培養装置 | |
US20150140581A1 (en) | Microfluidic device for generating neural cells to simulate post-stroke conditions | |
US20170370908A1 (en) | Brain in vitro models, devices, systems, and methods of use thereof | |
Mukherjee | Microfluidic Platforms for Localized Electroporation Mediated Cell Manipulation and Analysis | |
WO2023081229A1 (en) | Microfluidic well plates and related methods | |
Milano | The influence of the fibrillar tumor microenvironment on the cell-cell contact response of migrating cancer cells | |
Caicedo | Design, Fabrication and Optimization of Microfluidic Chambers for Neurobiology Research |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13838905 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014536618 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157006609 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013838905 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14429035 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |