WO2014044196A1 - 一种烃油加氢处理方法 - Google Patents

一种烃油加氢处理方法 Download PDF

Info

Publication number
WO2014044196A1
WO2014044196A1 PCT/CN2013/083791 CN2013083791W WO2014044196A1 WO 2014044196 A1 WO2014044196 A1 WO 2014044196A1 CN 2013083791 W CN2013083791 W CN 2013083791W WO 2014044196 A1 WO2014044196 A1 WO 2014044196A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrocarbon oil
oil
reactor
pores
Prior art date
Application number
PCT/CN2013/083791
Other languages
English (en)
French (fr)
Inventor
李华
刘建平
佘喜春
贺晓军
李庆华
陈庆岭
江磊
曾志煜
刘呈立
杨清贫
Original Assignee
中国石油化工股份有限公司
湖南长岭石化科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210360982.6A external-priority patent/CN103657463B/zh
Priority claimed from CN201210357221.5A external-priority patent/CN103666546B/zh
Priority claimed from CN201210357165.5A external-priority patent/CN103666545B/zh
Priority claimed from CN201210357174.4A external-priority patent/CN103666547B/zh
Priority to BR112015006344-6A priority Critical patent/BR112015006344B1/pt
Priority to JP2015532291A priority patent/JP6395709B2/ja
Application filed by 中国石油化工股份有限公司, 湖南长岭石化科技开发有限公司 filed Critical 中国石油化工股份有限公司
Priority to EP13838513.3A priority patent/EP2899252B1/en
Priority to SG11201502233XA priority patent/SG11201502233XA/en
Priority to KR1020157010329A priority patent/KR101838579B1/ko
Priority to DK13838513.3T priority patent/DK2899252T3/en
Priority to RU2015114768/04A priority patent/RU2596828C1/ru
Priority to US14/430,499 priority patent/US9862896B2/en
Publication of WO2014044196A1 publication Critical patent/WO2014044196A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/22Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with hydrogen dissolved or suspended in the oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/004Sparger-type elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/002Apparatus for fixed bed hydrotreatment processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to a hydrocarbon oil hydrotreating process. Background technique
  • No. 6,428,686 discloses a hydrotreating process which comprises: mixing fresh feedstock oil with a diluent and a large amount of hydrogen, and the resulting mixture is separated from the excess gas by a gas-liquid separation device, and then introduced into the reactor to be contacted with the catalyst and added. Hydrogen reaction.
  • the diluent is a substance having a relatively high solubility to hydrogen (for example, a recycled hydrocracking product or an isomerized product), thereby increasing the hydrogen carrying capacity of the hydrocarbon oil, thereby eliminating the need for circulating hydrogen .
  • the main processes of the liquid-solid two-phase hydrogenation method for hydrocarbon oil disclosed in CN101280217A and CN101787305A are as follows: mixing fresh feedstock oil, circulating oil and supersaturated hydrogen, and the obtained mixture is subjected to gas-liquid separation in a gas-liquid separation device. Into the hydrogenation reactor, contact with the catalyst to carry out the reaction.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a hydrocarbon oil hydrotreating process which is capable of dispersing hydrogen gas highly efficiently and dissolving in a hydrocarbon oil at a faster rate even without using a diluent or circulating oil. .
  • the invention provides a hydrocarbon oil hydrotreating method, the method comprising the following steps:
  • the pores have an average pore diameter of from 1 to 1000 nm. More preferably, the ratio of the number of pores having a pore diameter in the range of 50 to 500 nm to the total number of pores is 95% or more.
  • hydrogen is injected into the hydrocarbon oil through a mixing device to obtain a hydrocarbon oil containing hydrogen
  • the mixing device includes at least one liquid passage for containing the hydrocarbon oil and At least one gas passage for accommodating the hydrogen gas, wherein the liquid passage and the gas passage are adjacent by a member, at least a portion of the member is a perforated region, and the perforated region has the average pore diameter Nano-sized pores, the hydrogen gas being injected into the hydrocarbon oil through the pores having an average pore size of nanometer size.
  • the porosity of the apertured region is preferably from 5 to 28%.
  • the reactor is a tubular reactor, and the ratio of the length to the inner diameter of the tubular reactor is preferably 5-50: 1, the tubular reactor The inner diameter is preferably from 20 to 1000 mm.
  • Hydrogen is injected into the hydrocarbon oil in the mixing device, and the obtained hydrogen-containing hydrocarbon oil is sent to the tubular reactor to be contacted with the catalyst having hydrogenation catalysis under liquid phase hydrotreating conditions, Under the conditions of no diluent or circulating oil, a lower or even better hydrogenation effect is obtained with the existing hydrotreating process.
  • the hydrotreating is one or more of hydrodeolefinization, hydrodesulfurization, hydrodenitrogenation, hydrodeoxygenation, and hydrodemetallization.
  • the hydrocarbon oil is preferably one or more of gasoline, reformate-forming oil, jet fuel, and diesel.
  • the amount of hydrogen injected is preferably 0.1-4 times the saturated dissolved amount of hydrogen in the hydrocarbon oil, and the saturated dissolved amount is a saturated dissolved amount under liquid phase hydrotreating conditions. .
  • FIG. 1 is a schematic structural view for explaining an embodiment of a mixing apparatus used in a hydrocarbon oil hydrotreating method according to the present invention
  • Figure 2 is a schematic view showing the structure of another embodiment of a mixing apparatus used in the hydrocarbon oil hydrotreating method according to the present invention.
  • Figure 3 is a schematic view showing the structure of still another embodiment of the mixing apparatus used in the hydrocarbon oil hydrotreating method according to the present invention.
  • Figure 4 is a schematic cross-sectional view showing a preferred embodiment of a member having a perforated region in a mixing device used in a hydrocarbon oil hydrotreating method according to the present invention
  • Figure 5 is a preferred embodiment of a hydrocarbon oil hydrotreating process in accordance with the present invention.
  • Figure 6 is a diagram for explaining an embodiment in which a plurality of hydrogenation reactors are connected in series in a hydrocarbon oil hydrotreating process according to the present invention
  • Figure 7 is a diagram for explaining an embodiment in which a plurality of hydrogenation reactors are connected in parallel in a hydrocarbon oil hydrotreating method according to the present invention
  • Fig. 8 is for explaining a part I in Fig. 5.
  • Fig. 9 is a photograph of the hydrogen-carrying aviation kerosene obtained in Experimental Example 1 in a steady state (i.e., in a stable time).
  • Fig. 10 is a photograph showing the hydrogen-carrying aviation kerosene obtained in Comparative Experimental Example 1 in a steady state. detailed description
  • the invention provides a hydrocarbon oil hydrotreating method, the method comprising the following steps:
  • the pores having an average pore diameter of a nanometer size may have an average pore diameter of usually from 1 nm to 100 nm, preferably from 30 nm to 100 nm, more preferably from 30 nm to 800 nm, still more preferably from 50 nm to 500 nm.
  • the average pore size is determined by scanning electron microscopy.
  • the ratio of the number of pores in the range of 50-500 nm to the total number of pores is 95% or more, for example, 96-98%.
  • Hydrogen can be injected into the stationary hydrocarbon oil, or hydrogen can be injected into the flowing hydrocarbon oil. Hydrogen is preferably injected into the hydrocarbon oil in a flowing state, so that hydrogen can be injected into the hydrocarbon oil while transporting the hydrocarbon oil, thereby obtaining further improved production efficiency.
  • the hydrogen injection rate is V1 and is expressed by g_h - ⁇ m - 2 (indicating the total amount of hydrogen per unit area per unit time per unit area).
  • Vl / v 2 0.005 - 0.06, so that not only a good hydrogen dispersion and dissolution effect but also a high production efficiency can be obtained.
  • the rate of hydrogen injection into the hydrocarbon oil can generally be O.O00lOOOOkg'l ⁇ m- 2 .
  • Hydrogen gas can be injected into the hydrocarbon oil through pores having an average pore diameter of nanometer size by various methods.
  • hydrogen is injected into the hydrocarbon oil through a mixing device comprising at least one liquid passage for containing the hydrocarbon oil and at least one for containing the a gas passage of hydrogen gas, wherein the liquid passage and the gas passage are adjacent by a member, at least a portion of the member is a perforated region, and the perforated region has a pore having an average pore diameter of a nanometer, Hydrogen is injected into the hydrocarbon oil through the pores having an average pore size of nanometer size.
  • liquid passage means a space capable of accommodating hydrocarbon oil
  • gas passage means a space capable of accommodating hydrogen gas
  • the positional relationship between the liquid passage and the gas passage is not particularly limited as long as the liquid passage and the gas passage are adjacent to each other by the member.
  • the gas passage 2 is located within the liquid passage 1, and the inner wall of the member 3 constitutes the gas passage 2.
  • the gas passage 2 is located on one side of the liquid passage 1, and the liquid passage 1 and the gas passage 2 are separated by the member 3.
  • the gas passage 2 surrounds the outside of the liquid passage 1, and the gas passage 2 and the liquid passage 1 are separated by a member 3.
  • At least a portion of the member is a perforated region that extends along a length of the member.
  • the apertured region covers the entire member (ie, the liquid channel and the gas channel are adjacent by a member having the hole having the average pore size of nanometer size, and the supplementary hydrogen gas is passed through the hole Injected into the reforming oil).
  • the pored region has pores having an average pore diameter of nanometers such that hydrogen gas is injected into the hydrocarbon oil through the pores having an average pore diameter of nanometers.
  • the porosity of the porous region is preferably 5-28%, which enables the foot to be The amount of hydrogen is better dispersed and dissolved in the hydrocarbon oil.
  • the porosity of the porous region is more preferably from 10 to 25%.
  • the porosity refers to the percentage of the pore volume in the pored region occupying the total volume of the pore region, which is determined by a nitrogen adsorption method.
  • the member may be a member capable of allowing hydrogen contained in the gas passage to pass through the pore having an average pore size of nanometer size into the hydrocarbon oil accommodated in the liquid passage.
  • the member is formed of a porous material, wherein the pores have an average pore size of nanometer size.
  • the member includes a substrate and a porous film attached to the substrate, the substrate having a through hole, and the porous film may be located in a hydrocarbon oil of the substrate and contained in the liquid passage
  • the surface of the contact may also be located on a surface of the substrate that is in contact with hydrogen contained in the gas passage.
  • the porous membrane is located on a surface of the substrate that is in contact with a hydrocarbon oil contained in the liquid passage.
  • the pores in the porous membrane have an average pore size of nanometer size.
  • the average pore diameter of the through holes in the substrate is not particularly limited as long as it can pass a gas.
  • the via holes on the substrate have an average pore size of a micron size (i.e., greater than ⁇ to ⁇ ) or a nanometer size (i.e., 1 nm to 1000 nm).
  • the member is preferably a pipe, more preferably a film tube (i.e., a porous pipe having a through hole to which a porous film is attached, and an inner wall and/or an outer wall of the porous pipe).
  • the film tube may be a common various inorganic film tube (for example, an inorganic ceramic film tube) or an organic film tube.
  • the tube or membrane tube can be used in conjunction with a housing. That is, the pipe or membrane tube is placed in a casing with a space between the outer wall of the pipe or membrane tube and the inner wall of the casing.
  • the space formed by the inner wall of the duct or the membrane tube is the liquid passage for accommodating the hydrocarbon oil
  • the space formed by the outer wall of the duct or the membrane tube and the inner wall of the casing is the gas for accommodating hydrogen gas.
  • the space formed by the inner wall of the pipe or the membrane tube is the gas passage for accommodating hydrogen gas
  • the outer wall of the pipe or membrane tube forms a space with the inner wall of the casing for accommodating the hydrocarbon oil.
  • the space formed by the inner wall of the duct or the membrane tube is the liquid passage for accommodating the hydrocarbon oil, and the space formed by the outer wall of the duct or the membrane tube and the inner wall of the casing is for accommodating hydrogen gas.
  • the gas passage is the space formed by the inner wall of the duct or the membrane tube.
  • the tube or membrane tube may have one of the liquid passages, or a plurality of the liquid passages may be formed.
  • Figure 4 schematic diagram of the cross section of the pipe
  • the inner wall of the duct 4 forms a plurality of (for example 4-20) liquid passages 1 which are parallel to each other.
  • the plurality of liquid passages are plural, the plurality of liquid passages are preferably evenly distributed.
  • the housing may be various members having a hollow structure and at least one opening, the opening being in communication with a hydrogen gas source or a hydrocarbon oil storage tank to introduce hydrogen or hydrocarbon oil into the inner wall of the housing A space formed with an outer wall of the duct (ie, the gas passage or the liquid passage).
  • the member may be prepared by a conventional method or commercially available, and will not be described herein.
  • the amount of hydrogen gas to be injected can be appropriately selected depending on the amount of saturated hydrogen dissolved in the hydrocarbon oil.
  • the amount of hydrogen injected into the hydrocarbon oil may be 0.01 to 4 times, preferably the saturation, of the saturated dissolved amount of hydrogen in the hydrocarbon oil under liquid phase hydrotreating conditions.
  • the amount of dissolution is 0.5-3 times.
  • the saturated dissolved amount refers to the number of grams of hydrogen dissolved in 100 g of hydrocarbon oil under liquid phase hydrotreating conditions.
  • Hydrogen gas may be injected into the hydrocarbon oil at a time, or hydrogen may be injected into the hydrocarbon oil in portions.
  • Examples of the fractional injection of hydrogen into the hydrocarbon oil include: When the hydrotreating is divided into a plurality of stages that are continuously carried out and the hydrogenation product obtained in the previous stage is used as a feed for the next stage of hydrotreating, the hydrocarbon oil material can be introduced. Hydrogen is injected into the hydrocarbon oil material prior to each stage of hydrotreating.
  • the process of the present invention is capable of dissolving hydrogen in a highly dispersed manner and dissolving it in a hydrocarbon oil at a faster rate.
  • the hydrotreating method of the present invention ensures that the hydrogen carrying amount of the hydrocarbon oil satisfies the requirements of the hydrogenation treatment even if a large amount of hydrogen is not injected into the hydrocarbon oil.
  • the total amount of hydrogen injected into the hydrocarbon oil may be from 0.1 to 4 times the chemical hydrogen consumption of the hydrocarbon oil, preferably from 0.2 to 2 times the chemical hydrogen consumption of the hydrocarbon oil, more preferably the chemical of the hydrocarbon oil.
  • the hydrogen consumption is 0.5-1.5 times.
  • the temperature and pressure of the hydrocarbon oil are not particularly limited and may be a conventional choice in the art.
  • the temperature and pressure of the hydrocarbon oil are the temperature and pressure at which the hydrocarbon oil is contacted with a catalyst having catalytic hydrogenation.
  • the reactor is preferably a tubular reactor.
  • the tubular reactor refers to a reactor having a large aspect ratio, for example; the ratio of the length to the inner diameter of the tubular reactor may be 5-50:1.
  • the inner diameter of the tubular reactor can be conventionally selected, for example from 20 to 1000 mm.
  • the use of a tubular reactor on the one hand reduces the volume of the reactor and on the other hand hydrogen is passed through the mixing device described above, in particular when the component is a pipe, such as a membrane tube.
  • the mixing device is directly disposed on the inlet pipe of the reactor to realize the mixed hydrogen in the hydrocarbon oil transportation process, thereby further improving the production efficiency.
  • the hydrotreating may be carried out in a plurality of reactors, and the plurality of reactors may be connected in series or in parallel, or may be a combination of series and parallel.
  • the series connection means that the hydrocarbon material output from the previous reactor is the feed to the next reactor;
  • the parallel connection means that there is no material exchange between the reactors.
  • the hydrotreating method of the present invention hydrogen is injected into the hydrocarbon oil by using the mixing device described above to obtain a hydrocarbon oil containing hydrogen, and the hydrocarbon oil containing hydrogen is fed to the reactor, and the mixing device is used.
  • the inner diameter of the outlet 0 of the hydrocarbon oil containing hydrogen gas is ri
  • the hydrocarbon oil may be various hydrocarbon oils which are commonly used in the art and which are required to be subjected to hydrotreating, for example, the hydrocarbon oil may be gasoline, reformed oil, jet fuel and diesel.
  • the hydrotreating may be various hydrotreating processes common in the art, particularly preferably hydrorefining, for example, hydrodealkylation, hydrodesulfurization, hydrodenitrogenation.
  • hydrorefining for example, hydrodealkylation, hydrodesulfurization, hydrodenitrogenation.
  • hydrodeoxygenation and hydrodemetallization One or more of hydrodeoxygenation and hydrodemetallization.
  • the catalyst having catalytic hydrogenation may be various catalysts having catalytic hydrogenation which are commonly used in the art, and the type of the catalyst having catalytic hydrogenation may be hydrogenated according to The type and nature of the treated hydrocarbon oils are appropriately selected according to the conventional knowledge in the art and will not be described herein.
  • the catalyst having catalytic hydrogenation can be used in a conventional amount.
  • the liquid hour volume space velocity of the hydrocarbon oil may be 0.5-20 h - the method of the present invention is capable of highly dispersing and dissolving hydrogen in the hydrocarbon oil, and the obtained hydrogen gas is contained.
  • the hydrocarbon oil has good stability, and hydrogen does not easily escape from the hydrocarbon oil. Therefore, in the method of the present invention, the liquid hour volumetric space velocity of the hydrocarbon oil can be even 6-20 h - hydrotreating at such a high space velocity, not only can achieve higher production efficiency, but still obtain good hydrogenation. effect.
  • the liquid phase hydrotreating conditions can be conventionally selected in the art in accordance with the process of the present invention.
  • the liquid phase hydrotreating conditions include: the temperature may be from 120 to 500 ° C, preferably from 150 to 450 ° C; and the gauge pressure may be from 1 to 20 MPa, preferably from 2 to 15 MPa.
  • various methods commonly used in the art can be used to make the liquid hydrocarbon oil in the hydrogenation reactor as a continuous phase, which will not be described herein.
  • FIG. 5 shows a preferred embodiment of the method according to the invention.
  • hydrogen gas 7 is injected and dissolved in the hydrocarbon oil 8 in the mixing device 5, and the hydrogen-carrying hydrocarbon oil is introduced into the hydrogenation reactor (preferably a tubular reactor) 6 and a catalyst having catalytic hydrogenation.
  • the hydrogenation reactor preferably a tubular reactor
  • a catalyst having catalytic hydrogenation a catalyst having catalytic hydrogenation.
  • the mixing device may be disposed at the inlet end of the first hydrogenation reactor along the flow direction of the hydrocarbon oil; or as shown in Fig. 6, in each hydrogenation reactor A mixing device 5 is provided at the inlet end of 6.
  • Figure 8 is a view for explaining a portion I of Figure 5 showing the connection relationship between the mixing device 5 and the hydrogenation reactor 6.
  • the mixing device 5 includes a gas passage 2 and a liquid passage 1, and the gas passage 2 and the liquid passage 1 are adjacent by a member 3, wherein the member 3 has a perforated region in the entire length direction, The pore region has a pore having an average pore diameter of nanometers, and the inner wall of the member 3 forms a liquid passage 1, and the outer wall of the member 3 and the inner wall of the casing 9 constitute a gas passage 2, and both ends of the gas passage 2 are closed, and the casing 9 has hydrogen gas An opening (not shown) in which the gas source is connected.
  • the mixing device 5 is connected to the inlet line 10 of the hydrogenation reactor 6.
  • the hydrocarbon oil enters the hydrogenation reactor 6 through the liquid passage 1, and when the hydrocarbon oil passes through the liquid passage 1, the hydrogen in the gas passage 2 is injected into the hydrocarbon oil through the member 3, and then dissolved in the hydrocarbon oil;
  • the hydrogen-carrying hydrocarbon oil is then introduced into the hydrogenation reactor 6 to carry out a hydrogenation reaction in the presence of a catalyst having catalytic hydrogenation.
  • the mixing device 5 can be connected to the inlet line 10 in various ways, for example: a flange can be provided at each end of the mixing device 5 (one of the flanges 11 is shown in Fig. 8), each corresponding to The flange of the inlet line 10 is sealed (as shown in Figure 8, the flange 11 at one end of the mixing device is sealingly connected to the flange 12 on the inlet line 10); the other end of the inlet line 10 is passed The flange 13 is connected to the flange 14 of the inlet end 15 of the hydrogenation reactor 6.
  • the hydrocarbon oil can be made to have a higher hydrogen carrying capacity even without the aid of a diluent or a circulating oil, and thus the hydrocarbon oil hydrotreating method according to the present invention has higher production efficiency;
  • Hydrogen can be quickly and efficiently dispersed and dissolved in hydrocarbon oil.
  • the mixture of hydrocarbon oil and hydrogen can be directly sent to the hydrogenation reactor for hydrotreating without gas-liquid separation;
  • the hydrogen-containing hydrocarbon oil obtained by the method of the present invention has good stability, and the amount of hydrogen dissolved in the hydrocarbon oil can satisfy the demand of the hydrotreating process;
  • the process of the present invention enables a hydrotreating effect comparable to or better than that of the existing hydrotreating process without using a diluent or circulating oil at a lower hydrogen consumption.
  • the average pore diameter was measured by a scanning electron microscope, the pore size distribution was measured by a mercury intrusion method, and the porosity was measured by a nitrogen gas adsorption method.
  • the total sulfur content and nitrogen content in the diesel oil were determined by gas chromatography, and the cetane number of the diesel oil was determined by the method specified in GB 386-64.
  • the thiol sulfur content in aviation kerosene was measured by the method specified in GB 1792-1988, and the total sulfur content in aviation kerosene was determined by the method specified in GB/T 380-1977.
  • the test was carried out in the apparatus shown in Fig. 5, wherein the hydrogenation reactor 6 in Fig. 5 was replaced by a glass tube having an inner diameter of 34 mm and a length of 1500 mm, and the liquid material outlet (inner diameter of 34 mm) of the mixing device and the glass tube The lower end is connected by a flange (34 mm internal diameter).
  • the mixing device 5 includes a pipe formed of a porous material (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., having an outer diameter of 25.4 mm, a cross section of the pipe as shown in Fig. 4, and 19 pipes uniformly distributed on the pipe.
  • a porous material commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., having an outer diameter of 25.4 mm, a cross section of the pipe as shown in Fig. 4, and 19 pipes uniformly distributed on the pipe.
  • each liquid passage has an inner diameter of 3.3 mm, an average pore diameter of the pores on the wall of the tube is 50 nm, a pore having a pore diameter in the range of 50 to 55 nm accounts for 98% of the total pores, and a porosity of 20%) and
  • a casing inner diameter of 40 mm used in conjunction with the pipe, the space formed by the outer wall of the pipe and the inner wall of the casing is a gas passage.
  • Hydrogen gas was injected into the aviation kerosene according to the conditions listed in Table 1, and the average gas content was measured. The results are shown in Table 1, wherein the height of the hydrostatic column formed in the glass tube without the hydrogen kerosene was 200 mm. After filling the glass tube with hydrogen aviation kerosene, the time required to reduce the average gas content of the hydrogen-carrying kerosene in the glass tube by 50% was monitored to determine the stabilization time of the hydrogen-bearing aviation kerosene. The results are listed in Table 1.
  • Figure 9 shows a photograph of a hydrogen-carrying aviation kerosene in a steady state (i.e., in a stable time).
  • Comparative experiment example 1 Hydrogen gas was injected into the water in the same manner as in Experimental Example 1, except that in the mixing apparatus, the average pore diameter of the through holes in the pipe wall of the pipe formed of the porous material was 5 ⁇ m. The average gas holdup obtained and the stability of the hydrogen-carrying aviation kerosene are listed in Table 1.
  • Figure 10 shows a photograph of a hydrogen-carrying aviation kerosene in a steady state (i.e., in a stable time). Comparative experiment example 2
  • ⁇ ⁇ injection rate of hydrogen, calculated as g'h- ⁇ m- 2 v 2 : flow rate of hydrocarbon oil, as shown in the results of Table 1 in kg'h-m- 2 , using the method of the present invention
  • the hydrogen gas is injected into the hydrocarbon oil, and the obtained hydrocarbon oil has a higher hydrogen content; and the obtained hydrogen-containing hydrocarbon oil has higher stability, thereby being able to supply a sufficient amount of hydrogen for the subsequent hydrogenation process.
  • the hydrogen-containing hydrocarbon oil obtained by the method of the present invention is in an emulsion state in a stable state, indicating that hydrogen gas is uniformly dissolved and dispersed in the hydrocarbon oil.
  • a large amount of macroscopic bubbles are present in the hydrogen-containing hydrocarbon oil obtained by injecting hydrogen into a hydrocarbon oil through a pore having an average pore diameter of 5 ⁇ m, and these bubbles are easily broken, so that the stabilization time in the hydrocarbon oil is short.
  • Examples 1-9 are used to illustrate a hydrocarbon oil hydrotreating process in accordance with the present invention.
  • the second-line diesel as a feedstock oil is mixed with hydrogen in the first mixing device, and then the hydrogen-carrying feedstock is fed to the first tubular fixed-bed reactor (tubular fixed bed reaction).
  • the inner diameter of the device is 28 mm, a catalyst bed is arranged in the tubular reactor, and the catalyst has a height-to-diameter ratio of 9), which is in contact with the catalyst having catalytic hydrogenation under the conditions shown in Table 2;
  • the two mixing devices inject hydrogen into the product output from the first hydrogenation reactor, the obtained hydrogen-carrying mixture is sent to the second tubular fixed bed reactor through a pipe having an inner diameter of 28 mm (tube fixed bed reaction)
  • the inner diameter of the device was 28 mm, and a catalyst bed was provided in the tubular reactor.
  • the catalyst was packed in an aspect ratio of 9) and contacted with a catalyst having catalytic hydrogenation under the conditions shown in Table 2. Continuous operation for 1000 hours.
  • the properties of the feedstock oil and the hydrogenation product from the second hydrogenation reactor
  • the temperature is 365 ° C and the pressure is 4.5 MPa;
  • the hydrogen injection amount of each mixing device is: 0.18 parts by weight of hydrogen (100 parts by weight) of the raw material is injected with respect to 100 parts by weight of the raw material oil.
  • the chemical hydrogen consumption of the oil was 0.27 parts by weight.
  • the saturated dissolved amount of hydrogen in the feedstock oil was 0.18% by weight);
  • the injection rate of hydrogen was 62 g_h-m- 2 , and hydrogen gas
  • the injection rate (in g_h-m- 2 ) is proportional to the flow rate of the feedstock (in kg_h- ⁇ m- 2 ) of 0.03.
  • the mixing device consists of a pipe made of porous material (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., with an outer diameter of 25.4 mm, the pipe cross section is shown in Figure 4, and there are 19 liquid channels evenly distributed on the pipe, each liquid
  • the inner diameter of the channel is 3.3 mm
  • the average pore diameter of the pores in the tube wall is 50 nm
  • the pore diameter in the range of 50-55 nm accounts for 98% of the total pores
  • the porosity is 20%
  • Hydrotreating was carried out in the same manner as in Example 1, except that the mixing device 5 was not used, but instead of the hydrogen mixing device (thickness: 250 mm) by a barrier formed by loading a Mmm type 0 porcelain ring, Hydrogen is injected into the mixture of fresh feedstock oil and circulating oil through the barrier layer (the amount of the circulating oil is 200 parts by weight relative to 100 parts by weight of the fresh feedstock oil, and the amount of hydrogen injected is 0.54 parts by weight), and then the resulting mixture is obtained. Injection hydrogenation reaction Hydrotreating is carried out in the vessel. The conditions of the hydrotreating and the properties of the obtained hydrogenated product are shown in Table 2. Comparative example 2
  • Hydrotreating was carried out in the same manner as in Comparative Example 1, except that the amount of hydrogen injected was 0.18 parts by weight with respect to 100 parts by weight of fresh raw oil.
  • the hydrotreating was carried out in the same manner as in Example 1, except that the through-holes in the pipe wall of the pipe formed of the porous material in the mixing device had an average pore diameter of 5 ⁇ m, a porosity of 35%, and a pore diameter of 5-5.5.
  • the ratio of the pores in the range of ⁇ to the total pores was 95% (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd.).
  • the properties of the obtained hydrogenation product are shown in Table 2. Table 2
  • the product obtained by the hydrotreatment of the process of the present invention still has a higher cetane number while having a lower sulfur nitrogen content.
  • Comparative Example 1 Although the hydrogenation effect of Comparative Example 1 was comparable to that of Example 1, in Comparative Example 1, 200 parts by weight of circulating oil was required per 100 parts by weight of the raw material oil feed, so that the ratio of 1 unit was obtained under the same apparatus scale. The treatment amount of time was only 1/3 of that of Example 1; in Comparative Example 1, the amount of hydrogen gas injected was 0.54 parts by weight with respect to 100 parts by weight of the stock oil, which was three times that of Example 1. Therefore, Comparative Example 1 required the same hydrogenation effect as in Example 1 at a low throughput and high hydrogen consumption.
  • Example 2 The hydrocarbon oil was hydrotreated in the same manner as in Example 1, except that:
  • the mixing device includes a membrane tube (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., the outer diameter is 25.4 mm, the average pore diameter of the through hole on the substrate is ⁇ , the average pore diameter of the through hole on the porous membrane is 250 nm, and the pore diameter is 250- The ratio of the pores in the 260 nm range to the total pores is 95%, the porosity is 25%) and a shell used in conjunction with the tube (the inner diameter is 40 mm); the porous membrane is located on the outer wall of the membrane tube;
  • the cross section is as shown in FIG. 4, and there are 7 liquid passages uniformly distributed, and the inner diameter of each liquid passage is 6 mm ; the space formed by the outer wall of the membrane tube and the inner wall of the casing is a gas passage;
  • the temperature is 365 ° C and the pressure is 5.5 MPa; the amount of hydrogen injected is 0.20 parts by weight relative to 100 parts by weight of the raw material diesel (the chemical hydrogen consumption of 100 parts by weight of the raw material diesel is 0.36 by weight)
  • the saturated dissolved amount of hydrogen in the raw material diesel oil was 0.18% by weight
  • hydrotreating was carried out; the hydrogen injection rate was 123 g_h- ⁇ m- 2 , the ratio of hydrogen injection rate (in g_h-m- 2 ) to the feedstock diesel flow rate (in kg_h-m- 2 ) is 0.048.
  • the hydrocarbon oil was hydrotreated in the same manner as in Example 1, except that:
  • the mixing device includes a membrane tube (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., the outer diameter is 25.4 mm, the average pore diameter of the through hole on the substrate is ⁇ , the average pore diameter of the through hole on the porous membrane is 500 nm, and the pore diameter is 500.
  • the ratio of pores in the range of -550 nm to the total pores is 95%, the porosity is 25%) and a shell used in conjunction with the tube (inner diameter 40 mm); the porous membrane is located on the inner wall of the membrane tube, the transverse direction of the tube
  • the cross section is as shown in Fig.
  • the liquid passage of the mixing device has a temperature of 355 ° C and a pressure of 8.0 MPa; the amount of hydrogen injected is 0.25 parts by weight with respect to 100 parts by weight of the feedstock oil (the chemical hydrogen consumption of 100 parts by weight of the feedstock oil is 0.36 by weight) In the hydrorefining conditions shown in Table 4, the saturated dissolved amount of hydrogen in the feedstock oil is 0.18% by weight); the injection rate of hydrogen is 120 g_h- ⁇ m- 2 , and the injection rate of hydrogen (in g_h-m) - 2 ) the ratio of the flow rate of the feedstock oil (in kg_h-m- 2 ) is 0.033;
  • the catalyst having hydrogenation catalysis is a catalyst commercially available from Sinopec Institute of Petrochemical Technology under the designation RS-1000;
  • the liquid passage of the mixing device has a temperature of 260 Torr and a pressure of 2.0 MPa; and the amount of hydrogen injected is 0.025 parts by weight with respect to 100 parts by weight of the feedstock oil (the chemical hydrogen consumption of 100 parts by weight of the feedstock oil is 0.02 by weight)
  • the saturated dissolved amount of hydrogen in the stock oil was 0.05% by weight.
  • the injection rate of hydrogen gas was 614 g_h - ⁇ m - 2 , and the ratio of the injection rate of hydrogen (in g_h - ⁇ m - 2 ) to the flow rate of the feedstock oil (in kg 'h m - 2 ) was 0.004.
  • the mixing device includes a pipe formed of a porous material (commercially purchased from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., The outer diameter is 25.4mm, the cross section of the pipe is shown in Figure 4. There are 19 liquid channels evenly distributed on the pipe. The inner diameter of each liquid channel is 3.3mm, the average hole diameter of the through hole on the pipe wall is 50nm, and the hole diameter is 50. The ratio of the pores in the range of -55 nm to the total pores is 95%, the porosity is 20%) and a shell (the inner diameter is 40 mm) used in conjunction with the pipe, and the space formed by the outer wall of the pipe and the inner wall of the casing is Gas passage.
  • the inner diameter of the outlet for discharging the hydrocarbon oil containing hydrogen on the mixing device was 40 mm.
  • Aerospace kerosene was subjected to hydrorefining in the same manner as in Example 4, except that the mixing device 5 was not used, but a separator having a thickness of 250 mm formed by loading a D3 mm type 0 porcelain ring was used as a mixture.
  • the device introduces hydrogen into a mixture of fresh aviation kerosene and recycled aviation kerosene (relative to 100 parts by weight of fresh aviation kerosene, the amount of recycled aviation kerosene is 200 parts by weight, and the amount of injected hydrogen is 0.075 parts by weight) and then the resulting carrier
  • the hydrogen mixture is separated from the excess gas in the gas-liquid separation device, and then injected into the hydrogenation reactor for hydrorefining.
  • Table 5 Comparative example 5
  • the aviation kerosene was hydrotreated by the same method as in Example 4 except that the average pore diameter of the through holes in the pipe wall of the pipe formed of the porous material in the mixing device was 5 ⁇ m, the porosity was 35%, and the pore diameter was at The ratio of pores in the range of 5-5.5 ⁇ to total pores was 95% (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd.).
  • Table 5 The properties of the obtained hydrogenation product are shown in Table 5.
  • Comparative Example 4 200 parts by weight of circulating oil was required per 100 parts by weight of the raw material oil feed, so that the treatment amount per unit time was only 1/3 of that of Example 4 under the same apparatus scale; Comparative Example 4 In the above, the amount of hydrogen gas injected was 0.075 parts by weight with respect to 100 parts by weight of the stock oil, which was three times that of Example 4. Therefore, the hydrogen consumption of Comparative Example 4 was high and the amount of treatment was low.
  • the mixing device includes a membrane tube (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., the outer diameter is 25.4 mm, the average pore diameter of the through hole on the substrate is ⁇ , the average pore diameter of the through hole on the porous membrane is 250 nm, and the pore diameter is 250- The ratio of the pores in the 260 nm range to the total pores is 95%, the porosity is 25%) and a shell (the inner diameter is 40 mm) used in conjunction with the tube; the porous membrane is located on the outer wall of the membrane tube;
  • the cross section is as shown in FIG. 4, and there are 7 liquid passages uniformly distributed, and the inner diameter of each liquid passage is 6 mm ; the space formed by the outer wall of the membrane tube and the inner wall of the casing is a gas passage;
  • the liquid passage of the mixing device has a temperature of 260 V and a pressure of 2.0 MPa; the amount of hydrogen injected is 0.04 parts by weight with respect to 100 parts by weight of the feedstock oil (the chemical hydrogen consumption of 100 parts by weight of the feedstock oil is 0.02 parts by weight, Under the hydrorefining conditions shown in Table 6, the saturated dissolved amount of hydrogen in the feedstock oil was 0.05% by weight); the injection rate of hydrogen was 1560 g_h-m- 2 , and the injection rate of hydrogen (in g_h-m- 2) The ratio of the flow rate of the feedstock oil (in kg_h-m- 2 ) is 0.01;
  • the mixing device includes a membrane tube (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., the outer diameter is 25.4 mm, the average pore diameter of the through hole on the substrate is ⁇ , the average pore diameter of the through hole on the porous membrane is 500 nm, and the pore diameter is 500.
  • the ratio of pores in the range of -550 nm to the total pores is 95%, the porosity is 25%) and a shell used in conjunction with the tube (inner diameter 40 mm); the porous membrane is located on the inner wall of the membrane tube, the transverse direction of the tube
  • the cross section is as shown in FIG. 4, and 19 liquid passages having an inner diameter of 3.3 mm are evenly distributed; the space formed by the outer wall of the membrane tube and the inner wall of the casing is a gas passage;
  • the liquid passage of the mixing device has a temperature of 280 ° C and a pressure of 4 MPa; the amount of hydrogen injected is 0.05 parts by weight with respect to 100 parts by weight of the stock oil (the chemical hydrogen consumption of 100 parts by weight of the stock oil is 0.05 parts by weight) Under the hydrorefining conditions shown in Table , the saturated dissolved amount of hydrogen in the feedstock oil is 0.05% by weight); the injection rate of hydrogen is 1960g'h-m- 2 , and the injection rate of hydrogen (in g'h) - m- 2 ) and the ratio of the flow rate of the feedstock oil (in kg'h-m- 2 ) is 0.007;
  • the catalyst used was a catalyst commercially available from Sinopec Fushun Petrochemical Research Institute under the designation FH-UDS; hydrorefining was carried out under the conditions listed in Table 7.
  • the catalytic reforming mixture outputted from the reforming reactor is injected into a reforming product gas-liquid separation tank for gas-liquid separation, and reforming oil is obtained from the bottom of the separation tank.
  • the temperature in the separation tank was 40 ° C and the pressure was 0.7 MPa; based on the total amount of the reformed oil obtained, the reformed oil contained 0.01% by weight of dissolved hydrogen.
  • the hydrogen-reformed oil is sent to a tubular fixed-bed reactor through a pipe having an inner diameter of 40 mm (the inner diameter of the tubular reactor is 65 mm, the aspect ratio is 30; and the catalyst reactor is provided with a catalyst bed layer, The catalyst bed had an aspect ratio of 25) and was contacted with a catalyst having catalytic hydrogenation under the conditions shown in Table 8.
  • the aromatic hydrocarbon content of the obtained hydrogenated product and the bromine index are shown in Table 9.
  • the mixing device comprises a pipe formed of a porous material (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., the outer diameter is 25.4 mm, the cross section of the pipe is as shown in Fig. 4, and 19 liquid channels are uniformly distributed, each liquid
  • the inner diameter of the channel is 3.3 mm
  • the average pore diameter of the through hole on the tube wall is 50 nm
  • the ratio of the pores in the range of 50-55 nm to the total pores is 95%
  • the porosity is 20%
  • a casing inner diameter of 40 mm
  • the space formed by the outer wall of the pipe and the inner wall of the casing is a gas passage
  • the inner diameter of the outlet for outputting the hydrocarbon oil containing hydrogen gas on the mixing device is 40 mm;
  • the temperature is 160 ° C and the pressure is 1.8 MPa;
  • the catalyst used for catalytic hydrogenation is a catalyst commercially available from Sinopec Fushun Petrochemical Research Institute under the designation HDO-18.
  • the reformed oil was hydrotreated in the same manner as in Example 7, except that:
  • the temperature in the gas-liquid separation tank is 40 ° C, and the pressure is 0.3 MPa, based on the total amount of the reformed oil obtained, the reformed oil contains 0.01% by weight of dissolved hydrogen;
  • the mixing device comprises a membrane tube (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., the outer diameter is 25.4 mm, the average pore diameter of the through hole on the substrate is ⁇ , and the average pore diameter of the through hole on the porous membrane is 250 nm, a hole with a pore size in the range of 250-260 nm, the ratio of the total pores is 95%, a porosity of 25%) and a shell (40 mm inner diameter) used in conjunction with the tube; the porous membrane is located on the outer wall of the membrane tube
  • the cross section of the membrane tube is as shown in Fig. 4, and a liquid passage is uniformly distributed, and the inner diameter of each liquid passage is 6 mm; the space formed by the outer wall of the membrane tube and the inner wall of the casing is a gas passage;
  • the temperature is 150 ° C and the pressure is 1.5 MPa; the chemistry of 100 parts by weight of the feedstock oil
  • the hydrogen consumption was 0.03 parts by weight.
  • the saturated dissolved amount of hydrogen in the feedstock oil was 0.025% by weight; the injection rate of hydrogen was 2180 g_h- ⁇ m- 2 , and the injection rate of hydrogen was (in terms of g_h-m- 2 )
  • the ratio of the flow rate of the feedstock oil (in kg ⁇ m- 2 ) is 0.007; the catalyst is commercially available from Sinopec Fushun Petrochemical Research Institute under the designation HDO-18.
  • the reformed oil was hydrotreated in the same manner as in Example 7, except that:
  • the mixing device comprises a membrane tube (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd., the outer diameter of the through hole on the outer diameter of 25.4 1 ⁇ substrate is 10 ( ⁇ 1 ⁇ on the porous membrane)
  • the pores have an average pore diameter of 500 1 1 1 ⁇ , a pore having a pore diameter in the range of 500 to 550 nm, a ratio of pores to the total pores of 95%, a porosity of 25%, and a shell for use with the pipe (inner diameter of 40 mm).
  • the porous membrane is located on the inner wall of the membrane tube.
  • the cross section of the pipeline is as shown in Fig. 4. There are 19 liquid passages evenly distributed, and the inner diameter of each liquid passage is 3.3 mm.
  • the outer wall of the membrane tube forms a space with the inner wall of the casing. It is a gas passage.
  • the reformed oil was hydrotreated in the same manner as in Example 9, except that in the mixing apparatus, the average pore diameter of the through holes in the pipe wall of the pipe formed of the porous material was 5 ⁇ m, and the pore diameter was 5-5.5.
  • the ratio of the pores in the range of ⁇ to the total pores was 95%, and the porosity was 35% (commercially available from Beijing Zhongtianyuan Environmental Engineering Co., Ltd.), and the aromatic hydrocarbon content and bromine index of the obtained hydrogenated product are shown in Table 9. Out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种烃油加氢处理方法,包括以下步骤:(1)通过平均孔径为纳米尺寸的孔将氢气注入烃油中,得到含有氢气的烃油;(2)将含有氢气的烃油送入反应器中,在液相加氢处理条件下,与具有加氢催化作用的催化剂接触。本发明的方法即使不借助于稀释剂或循环油,也能将氢气快速高效分散溶解在烃油中,得到具有较高的氢气携带量且稳定的携氢烃油,同时还能获得与现有的加氢处理方法相当甚至更好的加氢处理效果。

Description

一种烃油加氢处理方法
技术领域
本发明涉及一种烃油加氢处理方法。 背景技术
近年来, 随着石油资源的日益匮乏, 原油重质化、 劣质化趋势日趋严重, 由原油 蒸馏所得的中间馏分油的 S、 N、 O和金属含量也相应增加。 然而, 世界各国的法律法 规对各种燃油中的 S、 N、 O和金属含量要求却越来越苛刻。 加氢处理是脱除烃油中8、 N、 0及金属杂质, 改善中间馏分油质量的常用手段。
在传统的滴流床加氢处理工艺中, 为了带走反应热、 抑制催化剂积炭生焦, 需要 大量的循环氢及相应的循环系统, 一方面使得加氢反应装置的体积较为庞大, 另一方面 也提高了加氢反应装置的投资成本及操作能耗。
在滴流床反应器中进行加氢处理时, 氢气需要从气相进入液相, 然后与反应物共 同吸附在催化剂的表面, 从而在催化剂活性中心的作用下进行反应。 氢气的这一传质过 程无疑会对加氢处理工艺的反应速率产生不利影响。
针对传统的滴流床加氢处理工艺的不足, 研究人员开发了液相加氢工艺。
US6428686 公开了一种加氢处理方法, 该方法包括: 将新鲜原料油与稀释剂以及 大量氢气混合, 得到的混合物经气液分离装置分离出多余气体之后, 进入反应器中与催 化剂接触并进行加氢反应。其中,所述稀释剂为对氢气具有相对较高的溶解度的物质(例 如: 循环的加氢裂化产物或异构化产物), 借此提高烃油的氢气携带量, 从而消除对于 循环氢的需求。
CN101280217A和 CN101787305A公开的烃油液固两相加氢方法的主要工艺流程 均为: 将新鲜原料油、 循环油以及过饱和氢气混合, 将得到的混合物在气液分离装置中 进行气液分离后送入加氢反应器中, 与催化剂接触以进行反应。
尽管上述液相加氢方法均消除了对于循环氢的需求, 但是仍然存在以下不足: 需 要使用稀释剂或循环油来提高氢气在原料油中的携带量,这降低了加氢处理装置的新鲜 原料油处理量, 对生产效率产生不利影响。
因此, 亟需一种无需稀释剂或循环油的烃油液相加氢处理工艺, 以简化工艺流程 路线, 降低投资成本和操作费用, 实现高效低耗的工业生产。 发明内容
本发明的目的在于克服现有技术的不足, 提供一种烃油加氢处理方法, 该方法即 使不使用稀释剂或循环油, 也能够将氢气高度分散且以更快的速度溶解在烃油中。
本发明提供了一种烃油加氢处理方法, 该方法包括以下步骤:
( 1 ) 通过平均孔径为纳米尺寸的孔将氢气注入烃油中, 得到含有氢气的烃油;
(2) 将含有氢气的烃油送入反应器中, 在液相加氢处理条件下, 与具有加氢催化 作用的催化剂接触。
在本发明的一种优选的实施方式中, 所述孔的平均孔径为 l-1000nm。 更优选地, 孔径处于 50-500nm范围内的孔的数量占总孔数量的比例为 95%以上。
在本发明的一种优选的实施方式中, 将氢气注入处于流动状态的烃油中, 所述氢 气的流速为 Vl 并以 g'h- ^m- 2 计, 所述烃油的流速为 v2 并以 kg'h- ^m- 2 计, Vl/v2=0.000625-0.09。 这样能够获得进一步提高的氢气分散溶解效果。
在本发明的一种实施方式中, 氢气通过一种混合装置被注入所述烃油中, 以得到 含有氢气的烃油,所述混合装置包括至少一个用于容纳所述烃油的液体通道和至少一个 用于容纳所述氢气的气体通道, 所述液体通道和所述气体通道之间通过一构件邻接, 所 述构件的至少部分为有孔区, 所述有孔区具有所述平均孔径为纳米尺寸的孔, 所述氢气 通过所述平均孔径为纳米尺寸的孔被注入所述烃油中。 所述有孔区的孔隙率优选为 5-28%。
在本发明的方法的一种优选的实施方式中, 所述反应器为管式反应器, 所述管式 反应器的长度与内径的比值优选为 5-50: 1,所述管式反应器的内径优选为 20-1000mm。 将氢气在所述混合装置中注入烃油中, 并将得到的含有氢气的烃油送入管式反应器中在 液相加氢处理条件下, 与具有加氢催化作用的催化剂接触, 能够在不使用稀释剂或循环 油的条件下, 以更低的氢气消耗量, 获得与现有的加氢处理方法相当甚至更好的加氢处 理效果。
在本发明的一种优选的实施方式中, 所述加氢处理为加氢脱烯烃、 加氢脱硫、 加 氢脱氮、 加氢脱氧和加氢脱金属中的一种或多种。 所述烃油优选为汽油、 重整生成油、 喷气燃料和柴油中的一种或多种。在该优选的实施方式中, 注入的氢气的量优选为氢气 在所述烃油中的饱和溶解量的 0.1-4倍, 所述饱和溶解量为在液相加氢处理条件下的饱 和溶解量。 附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与下面的具 体实施方式一起用于解释本发明, 但并不构成对本发明的限制。 在附图中:
图 1 为用于说明根据本发明的烃油加氢处理方法使用的混合装置的一种实施方式 的结构示意图;
图 2 为用于说明根据本发明的烃油加氢处理方法使用的混合装置的另一种实施方 式的结构示意图;
图 3 为用于说明根据本发明的烃油加氢处理方法使用的混合装置的又一种实施方 式的结构示意图;
图 4 为用于说明根据本发明的烃油加氢处理方法使用的混合装置中的具有有孔区 的构件的一种优选的实施方式的横截面示意图;
图 5为根据本发明的烃油加氢处理方法的一种优选的实施方式;
图 6用于说明根据本发明的烃油加氢处理方法中多个加氢反应器串联连接的实施 方式;
图 7用于说明根据本发明的烃油加氢处理方法中多个加氢反应器并联连接的实施 方式; 以及
图 8用于说明图 5中的部分 I。
图 9为实验例 1得到的携氢航空煤油处于稳定状态时 (即处于稳定时间内) 的照 片。
图 10为对比实验例 1得到的携氢航空煤油处于稳定状态时的照片。 具体实施方式
本发明提供了一种烃油加氢处理方法, 该方法包括以下步骤:
( 1 ) 通过平均孔径为纳米尺寸的孔将氢气注入烃油中, 得到含有氢气的烃油;
(2) 将含有氢气的烃油送入反应器中, 在液相加氢处理条件下, 与具有加氢催化 作用的催化剂接触。
本发明中, 所述平均孔径为纳米尺寸的孔的平均孔径一般可以为 lnm至 lOOOnm, 优选为 30nm至 lOOOnm, 更优选为 30nm至 800nm, 进一步优选为 50nm至 500nm。 所 述平均孔径采用扫描电镜法测定。
从进一步提高气体在液体中的分散混合效果, 进而使得气体能够更快更均匀地分 散在液体中的角度出发, 孔径处于 50-500nm 范围内的孔的数量占总孔数量的比例为 95%以上, 例如 96-98%
可以将氢气注入为静止的烃油中, 也可以将氢气注入处于流动状态的烃油中。 优 选将氢气注入处于流动状态的烃油中,这样能够在输运烃油的同时,将氢气注入烃油中, 从而获得进一步提高的生产效率。在将氢气注入处于流动状态的烃油中时, 所述氢气的 注入速度为 Vl并以 g_h- ^m- 2 (表示在单位时间内,通过单位面积上孔的氢气的总量)计, 所述烃油的流速为 v2并以 kg ^m- 2 (表示单位时间内通过单位截面的烃油的质量)计, νι/ν2=0.000625-0.09 , 这样能够获得进一步提高的氢气分散溶解效果。 优选地, Vl/v2=0.005-0.06, 这样不仅能够获得好的氢气分散溶解效果, 而且能够获得较高的生产 效率。
氢气注入烃油的速度一般可以为 O.OOOl^OOOkg'l^m— 2
可以采用各种方法将氢气通过平均孔径为纳米尺寸的孔注入所述烃油中。
在本发明的一种优选实施方式中, 氢气通过一种混合装置被注入所述烃油中, 所 述混合装置包括至少一个用于容纳所述烃油的液体通道和至少一个用于容纳所述氢气 的气体通道, 所述液体通道和所述气体通道之间通过一构件邻接, 所述构件的至少部分 为有孔区, 所述有孔区具有所述平均孔径为纳米尺寸的孔, 所述氢气通过所述平均孔径 为纳米尺寸的孔被注入所述烃油中。
本发明中, 术语 "液体通道"是指能够容纳烃油的空间; 术语 "气体通道"是指 能够容纳氢气的空间。
所述液体通道和所述气体通道之间的位置关系没有特别限定, 只要所述液体通道 与所述气体通道之间通过所述构件邻接即可。 在一种实施方式中, 如图 1所示, 气体通 道 2位于液体通道 1之内, 构件 3的内壁构成气体通道 2。 在另一种实施方式中, 如图 2所示, 气体通道 2位于液体通道 1的一侧, 且液体通道 1与气体通道 2通过构件 3而 隔开。 在一种优选的实施方式中, 如图 3所示, 气体通道 2围绕在液体通道 1的外侧, 气体通道 2和液体通道 1之间通过构件 3而隔开。
所述构件的至少部分为有孔区, 所述有孔区沿所述构件的长度方向延伸。 优选地, 所述有孔区覆盖整个构件(即, 所述液体通道和所述气体通道之间通过具有所述平均孔 径为纳米尺寸的孔的构件邻接, 所述补充氢气通过所述孔而被注入到所述重整生成油 中)。 所述有孔区具有所述平均孔径为纳米尺寸的孔, 以使氢气通过所述具有平均孔径 为纳米尺寸的孔被注入所述烃油中。 所述有孔区的孔隙率优选为 5-28%, 这样能够将足 量的氢气更好地分散并溶解在烃油中。 所述有孔区的孔隙率更优选为 10-25%。 所述孔 隙率是指有孔区中的孔隙体积占有孔区的总体积的百分数, 采用氮气吸附法方法测定。
所述构件可以为各种能够使容纳于所述气体通道内的氢气通过所述平均孔径为纳 米尺寸的孔而进入容纳于所述液体通道内的烃油中的构件。在一个实例中, 所述构件由 多孔材料形成, 其中的孔的平均孔径为纳米尺寸。 在另一个实例中, 所述构件包括基体 以及附着在所述基体上的多孔膜, 所述基体具有通孔, 所述多孔膜可以位于所述基体的 与容纳于所述液体通道内的烃油接触的表面上,也可以位于所述基体的与容纳于所述气 体通道内的氢气接触的表面上。优选地, 所述多孔膜位于所述基体的与容纳于所述液体 通道内的烃油接触的表面上。所述多孔膜中的孔的平均孔径为纳米尺寸。 所述基体上的 通孔的平均孔径没有特别限定, 只要能够通过气体即可。 优选地, 所述基体上的通孔的 平均孔径为微米尺寸 (即, 大于 Ιμηι至 ΙΟΟΟμηι) 或纳米尺寸 (即, lnm至 1000nm)。
所述构件优选为管道, 更优选为膜管 (即, 将具有通孔的多孔管道作为基体, 所 述多孔管道的内壁和 /或外壁上附着有所述多孔膜)。 所述膜管可以为常见的各种无机膜 管 (例如: 无机陶瓷膜管) 或有机膜管。
在实际操作过程中, 在所述构件为管道或膜管时, 所述管道或膜管可以与一壳体 配合使用。 即, 将所述管道或膜管置于一壳体中, 并使所述管道或膜管的外壁与所述壳 体的内壁之间存在空间。所述管道或膜管的内壁形成的空间为用于容纳烃油的所述液体 通道,所述管道或膜管的外壁与所述壳体的内壁形成的空间为用于容纳氢气的所述气体 通道; 或者, 所述管道或膜管的内壁形成的空间为用于容纳氢气的所述气体通道, 所述 管道或膜管的外壁与所述壳体的内壁形成的空间为用于容纳烃油的所述液体通道。优选 地, 所述管道或膜管的内壁形成的空间为用于容纳烃油的所述液体通道, 所述管道或膜 管的外壁与所述壳体的内壁形成的空间为用于容纳氢气的所述气体通道。
在所述构件为管道或膜管时, 所述管道或膜管可以具有一个所述液体通道, 也可 以形成多个所述液体通道。 从进一步提高根据本发明的方法的效率 (即, 在相同的时间 内将更大量的氢气溶解于烃油中)的角度出发, 如图 4 (为所述管道的横截面的示意图) 所示, 所述管道 4的内壁形成多个(例如 4-20个)相互平行的液体通道 1。 在所述液体 通道为多个时, 该多个液体通道优选均匀分布。
根据本发明, 所述壳体可以为各种具有中空结构和至少一个开口的构件, 所述开 口与氢气气源或烃油储罐连通, 以将氢气或烃油导入由所述壳体的内壁与所述管道的外 壁形成的空间 (即, 所述气体通道或所述液体通道) 中。 所述构件可以采用常规方法制备, 也可以商购得到, 本文不再赘述。 根据本发明的加氢处理方法, 所述氢气的注入量可以根据氢气在所述烃油中的饱 和溶解量进行适当的选择。根据本发明的加氢处理方法, 注入烃油中的氢气的量可以为 在液相加氢处理条件下, 氢气在所述烃油中的饱和溶解量的 0.01-4倍, 优选为所述饱和 溶解量的 0.5-3倍。 所述饱和溶解量是指在液相加氢处理条件下, 溶解于 100克烃油中 的氢气的克数。
可以将氢气一次注入烃油中, 也可以将氢气分次注入烃油中。 将氢气分次注入烃 油的实例包括: 当加氢处理分为连续进行的多个阶段且前一阶段得到的加氢产物作为下 一阶段加氢处理的进料时, 可以在烃油物料进入每一阶段的加氢处理前, 将氢气注入烃 油物料中。 本发明的方法能够将氢气高度分散且以更快的速度溶解于烃油中。 因此, 本 发明的加氢处理方法即使不向烃油中大量注入氢气,也能确保烃油的氢气携带量满足加 氢处理的要求。根据本发明,注入烃油中的氢气的总量可以为烃油的化学氢耗量的 0.1-4 倍, 优选为烃油的化学氢耗量的 0.2-2倍, 更优选为烃油的化学氢耗量的 0.5-1.5倍。
可以采用本领域常用的各种方法来确定氢气在烃油中的饱和溶解量以及烃油的化 学氢耗量, 本文不再赘述。
根据本发明的加氢处理方法, 将氢气注入烃油中时, 对于烃油的温度和压力没有 特别限定, 可以为本领域的常规选择。 优选地, 烃油的温度和压力为将烃油与具有催化 加氢作用的催化剂进行接触时的温度和压力。
根据本发明的加氢处理方法, 所述反应器优选为管式反应器。 所述管式反应器是 指具有较大长径比的反应器, 例如; 管式反应器的长度与内径的比值可以为 5-50: 1。 根据本发明, 所述管式反应器的内径可以为常规选择, 例如可以为 20-1000mm。 与釜式 反应器相比, 采用管式反应器一方面能够减少反应器的体积, 另一方面在通过前文所述 的混合装置 (特别是在所述构件为管道, 如膜管时)将氢气注入烃油中时, 直接将所述 混合装置设置在反应器的入口管路上即可在烃油输运过程中实现混合氢气,进一步提高 了生产效率。
根据本发明的加氢处理方法, 在所述加氢处理可以在多个反应器中进行, 多个反 应器之间可以为串联连接, 也可以为并联连接, 还可以为串联与并联的组合。 所述串联 连接是指前一个反应器输出的烃物料为下一个反应器的进料;所述并联连接是指反应器 之间没有物料交换。在多个反应器为串联连接时, 优选在每个反应器前根据进入该反应 器的烃油物流的化学氢耗量, 向烃油物流中注入氢气。 根据本发明的加氢处理方法, 在采用前文所述的混合装置将氢气注入烃油, 以得 到含有氢气的烃油, 并将含有氢气的烃油送入反应器时, 所述混合装置上用于输出含有 氢气的烃油的出口 0的内径为 ri, 所述反应器上用于输入含有氢气的烃油的入口 I的内 径为 r2, n/r2=0.6-l o 连接所述出口 0和所述入口 I的管的内径为 r3, n/r3=0.85-1.5。 这 样含有氢气的烃油在输运过程中更为稳定, 从而能够获得更好的加氢效果。
根据本发明的加氢处理方法, 所述烃油可以为本领域常用的各种需要进行加氢处 理的烃油, 例如: 所述烃油可以为汽油、 重整生成油、 喷气燃料和柴油。
根据本发明的加氢处理方法, 所述加氢处理可以为本领域常见的各种加氢处理过 程, 特别优选为加氢精制, 例如可以为加氢脱烯烃、 加氢脱硫、 加氢脱氮、 加氢脱氧和 加氢脱金属中的一种或多种。
根据本发明的加氢处理方法, 所述具有催化加氢作用的催化剂可以为本领域常用 的各种具有催化加氢作用的催化剂,所述具有催化加氢作用的催化剂的种类可以根据进 行加氢处理的烃油的种类和性质, 根据本领域的常规知识进行适当的选择, 本文不再赘 述。
根据本发明的方法, 具有催化加氢作用的催化剂的用量可以为常规用量。 具体地, 加氢处理在固定床反应器中进行时, 烃油的液时体积空速可以为 0.5-20h- 本发明的方 法能够将氢气高度分散并溶解在烃油中, 并且得到的含有氢气的烃油的稳定性较好, 氢 气不易从烃油中逸出。 因此, 本发明的方法, 烃油的液时体积空速甚至可以为 6-20h- 在这样的高空速下进行加氢处理, 不仅能够获得更高的生产效率, 而且仍然能够获得良 好的加氢效果。
根据本发明的方法, 所述液相加氢处理条件可以为本领域的常规选择。 一般地, 所述液相加氢处理条件包括: 温度可以为 120-500°C, 优选为 150-450°C ; 以表压计, 压 力可以为 l-20MPa, 优选为 2-15MPa。 另夕卜, 可以采用本领域常用的各种方法使得加氢 反应器中, 液态的烃油作为连续相, 本文不再赘述。
图 5 所示是根据本发明的方法的一种优选的实施方式。 在该实施方式中, 在混合 装置 5中将氢气 7注入并溶解于烃油 8中, 携氢烃油进入加氢反应器(优选为管式反应 器) 6中与具有催化加氢作用的催化剂接触, 从而进行加氢反应。 根据该实施方式, 可 以设置多个加氢反应器, 多个加氢反应器之间可以为串联连接, 也可以为并联连接。 在 多个加氢反应器串联连接时, 沿烃油的流动方向, 可以将混合装置设置在第一个加氢反 应器的入口端;也可以如图 6所示,在每个加氢反应器 6的入口端设置一个混合装置 5。 在多个加氢反应器并联连接时, 可以仅设置一个混合装置, 将烃油与氢气混合, 然后将 得到的混合物分别送入并联连接的多个加氢反应器中; 也可以如图 7所示在每个加氢反 应器 6的入口端设置一个混合装置 5。
图 8用于说明图 5中的部分 I,显示了混合装置 5与加氢反应器 6之间的连接关系。 如图 8所示, 所述混合装置 5包括气体通道 2与液体通道 1, 气体通道 2与液体通道 1 之间通过构件 3邻接, 其中, 构件 3在整个长度方向上均具有有孔区, 有孔区具有平均 孔径为纳米尺寸的孔, 构件 3的内壁形成液体通道 1, 构件 3的外壁与壳体 9的内壁构 成气体通道 2,气体通道 2的两端封闭,壳体 9上具有与氢气气源连通的开口(未示出)。 该混合装置 5连接在加氢反应器 6的入口管路上 10。 实际操作时, 烃油通过液体通道 1 而进入加氢反应器 6中, 在烃油通过液体通道 1时, 将气体通道 2内的氢气通过构件 3 注入烃油中, 进而溶解在烃油中; 携氢烃油随后进入加氢反应器 6中在具有催化加氢作 用的催化剂的存在下进行加氢反应。
可以采用各种方式将混合装置 5连接在入口管路 10上, 例如: 可以在混合装置 5 的两端各设置一个法兰盘(图 8示出了其中一个法兰盘 11 ), 各自与相应的入口管路 10 上的法兰盘密封连接(如图 8所示, 混合装置一端的法兰盘 11与入口管路 10上的法兰 盘 12密封连接); 入口管路 10的另一端通过法兰盘 13与加氢反应器 6的入口端 15的 法兰盘 14相连。
与现有的烃油液相加氢处理方法相比, 根据本发明的烃油加氢处理方法具有以下 优势:
( 1 ) 即使不借助于稀释剂或循环油, 也能够使烃油具有较高的氢气携带量, 因而 根据本发明的烃油加氢处理方法具有更高的生产效率;
(2)氢气能够快速高效分散溶解于烃油中, 烃油与氢气的混合物无需进行气液分 离, 即可直接送入加氢反应器中进行加氢处理;
(3 )根据本发明的方法得到的含有氢气的烃油的稳定性好, 分散溶解在烃油中的 氢气的量能够满足加氢处理过程的需求;
(4)本发明的方法能够在不使用稀释剂或循环油的条件下, 以更低的氢气消耗量, 获得与现有的加氢处理方法相当甚至更好的加氢处理效果。
以下结合实施例和对比例详细说明本发明。
以下实施例和对比例中, 采用扫描电镜来测定平均孔径, 采用汞压入法方法测定 孔径分布, 采用氮气吸附法方法测定孔隙率。 以下实施例和对比例中, 采用气相色谱法测定柴油中的总硫含量、 氮含量, 采用 GB 386-64中规定的方法测定柴油的十六烷值。
以下实施例和对比例中, 采用 GB 1792-1988中规定的方法测定航空煤油中的硫醇 硫含量, 采用 GB/T 380-1977中规定的方法测定航空煤油中的总硫含量。
以下实施例和对比例中, 压力均以表压计。
实验例 1-5和对比实验例 1-2中, 参照刘燕等公开的(气泡细化过程中气含率的实 验研究, 过程工程学报, 第 9卷增刊 1 : 第 97-101页, 2009年 6月) 体积膨胀法测定 平均气含率,即根据通气前后的液面高度差计算出平均气含率。具体测试方法如下所述。
在图 5所示的装置中进行测试, 其中, 图 5中的加氢反应器 6用内径为 34mm、 长 度为 1500mm的玻璃管代替, 混合装置的液体物料出口 (内径为 34mm) 与玻璃管的下 端通过一法兰盘 (内径为 34mm) 连接。
测试时, 在混合装置 5 中将氢气与烃油混合, 然后送入玻璃管中, 并测定玻璃管 中的液面的高度 (计为 H2 ) ; 将没有携带氢气的等量同种烃油送入玻璃管中, 并测定玻 璃管中的液面的高度 (计为 H ), 通过以下公式计算平均气含率: 平均气含率 (% = H2 ~ Hl x \00% o
H\ 实验例 1
该实验例中, 混合装置 5 包括由多孔材料形成的管道 (商购自北京中天元环境工 程有限责任公司, 外径为 25.4mm, 管道横截面如图 4所示, 管道上均匀分布有 19个液 体通道, 每个液体通道的内径为 3.3mm, 管壁上的孔的平均孔径为 50nm, 孔径处于 50-55nm范围内的孔的占总孔的比例为 98%, 孔隙率为 20% )和与该管道配合使用的一 个壳体 (内径为 40mm), 管道的外壁与壳体的内壁形成的空间为气体通道。
按照表 1列出的条件将氢气注入航空煤油中, 测定平均气含率, 结果在表 1 中列 出, 其中, 没有携带氢气的航空煤油在玻璃管中形成的静液柱的高度为 200mm。 携氢 航空煤油充满玻璃管后,监测以玻璃管中的携氢航空煤油的平均气含率下降 50%所需要 的时间, 从而确定携氢航空煤油的稳定时间, 结果在表 1中列出。 图 9所示为处于稳定 状态 (即处于稳定时间内) 的携氢航空煤油的照片。 对比实验例 1 采用与实验例 1 相同的方法将氢气注入水中, 不同的是, 混合装置中, 由多孔材 料形成的管道的管壁上的通孔的平均孔径为 5μηι。得到的平均气含率以及携氢航空煤油 的稳定性在表 1中列出。 图 10所示为处于稳定状态 (即处于稳定时间内) 的携氢航空 煤油的照片。 对比实验例 2
采用与实施例 1 相同的方法将氢气注入水中, 不同的是, 混合装置中的由多孔材 料形成的管道用由 Φ3ηηη的 0型瓷环装填形成的厚度为 250mm的隔层代替。得到的平 均气含率以及携氢航空煤油的稳定性在表 1中列出。 实验例 2
采用与实验例 1 相同的方法将氢气注入航空煤油中, 不同的是, 将氢气注入航空 煤油中的条件不同。 得到的平均气含率以及携氢航空煤油的稳定性在表 1中列出。 表 1
Figure imgf000012_0001
νι : 氢气的注入速度, 以 g'h— ^m— 2计 v2: 烃油的流速, 以 kg'h— m— 2计 从表 1 的结果可以看出, 采用本发明的方法将氢气注入烃油中, 得到的烃油具有 更高的氢气含量; 并且, 得到的含氢烃油具有更高的稳定性, 从而能够为后续的加氢过 程提供足量的氢气。
从图 9可以看出, 由本发明的方法得到的含氢烃油在稳定状态时呈乳液状, 说明 氢气均匀地溶解并分散在烃油中。 相反, 如图 10所示, 将氢气通过平均孔径为 5μηι的 孔注入烃油中得到的含氢烃油中存在大量肉眼可见的气泡, 这些气泡易于破裂, 因而在 烃油中的稳定时间短。 实施例 1-9用于说明根据本发明的烃油加氢处理方法。
实施例 1
采用图 6所示的方法, 将作为原料油的常二线柴油与氢气在第一个混合装置中混 合, 然后将携氢原料油送入第一个管式固定床反应器 (管式固定床反应器的内径为 28mm, 管式反应器中设置有 1 个催化剂床层, 催化剂装填的高径比为 9) 中, 在表 2 所示的条件下与具有催化加氢作用的催化剂接触;通过第二个混合装置向第一个加氢反 应器中输出的产物中注入氢气后,将得到的携氢混合物通过内径为 28mm的管道送入第 二个管式固定床反应器 (管式固定床反应器的内径为 28mm, 管式反应器中设置有 1个 催化剂床层, 催化剂装填的高径比为 9) 中, 在表 2所示的条件下与具有催化加氢作用 的催化剂接触。 连续运行 1000小时。 原料油和第二个加氢反应器输出的加氢产物的性 质在表 2中示出。
其中, 混合装置的液体通道中, 温度为 365 °C, 压力为 4.5MPa; 每个混合装置的 氢气注入量为: 相对于 100重量份的原料油, 注入 0.18重量份的氢气 (100重量份原料 油的化学氢耗量为 0.27重量份,在表 2所示的加氢精制条件下,氢气在原料油中的饱和 溶解量为 0.18重量%);氢气的注入速度为 62g_h- m- 2,氢气的注入速度(以 g_h- m- 2计) 与原料油的流速 (以 kg_h- ^m- 2计) 的比值为 0.03。
具有催化加氢作用的催化剂为商购自中石化抚顺石油化工研究院的牌号为 FH-UDS的催化剂。
混合装置包括由多孔材料形成的管道(商购自北京中天元环境工程有限责任公司, 外径为 25.4mm, 管道横截面如图 4所示, 管道上均匀分布有 19个液体通道, 每个液体 通道的内径为 3.3mm, 管壁上的孔的平均孔径为 50nm, 孔径处于 50-55nm范围内的孔 的占总孔的比例为 98%, 孔隙率为 20% ) 和与该管道配合使用的一个壳体 (内径为 40mm), 管道的外壁与壳体的内壁形成的空间为气体通道。混合装置上用于输出含有氢 气的烃油的出口的内径为 28mm。 对比例 1
采用与实施例 1相同的方法进行加氢处理, 不同的是, 不使用混合装置 5, 而是通 过由(Mmm的 0型瓷环装填形成的隔层代替混氢装置 (厚度为 250mm), 将氢气通过 该隔层注入新鲜原料油和循环油的混合物中 (相对于 100重量份新鲜原料油, 循环油的 量为 200重量份, 注入的氢气的量为 0.54重量份), 然后将得到的混合物注入加氢反应 器中进行加氢处理。 加氢处理的条件以及得到的加氢产物的性质在表 2中示出。 对比例 2
采用与对比例 1相同的方法进行加氢处理, 不同的是, 相对于 100重量份新鲜原 料油, 注入的氢气的量为 0.18重量份。
得到的加氢产物的性质在表 2中示出。 对比例 3
采用与实施例 1 相同的方法进行加氢处理, 不同的是, 混合装置中由多孔材料形 成的管道的管壁上的通孔的平均孔径为 5μηι, 孔隙率为 35%, 孔径处于 5-5.5μηι范围内 的孔的占总孔的比例为 95% (商购自北京中天元环境工程有限责任公司)。 得到的加氢 产物的性质在表 2中示出。 表 2
Figure imgf000014_0001
从表 2 的数据可以看出, 采用本发明的方法进行加氢处理得到的产物在具有更低 的硫氮含量的同时, 仍然具有较高的十六烷值。
尽管对比例 1的加氢效果与实施例 1相当, 但是, 对比例 1中, 每 100重量份原 料油进料需要使用 200重量份循环油, 因此在装置规模相同的条件下, 对比例 1单位时 间的处理量仅为实施例 1的 1/3 ; 对比例 1中, 相对于 100重量份原料油, 氢气的注入 量为 0.54重量份, 为实施例 1的 3倍。 因此, 对比例 1需要在低的处理量和高的氢耗量 下才能获得与实施例 1相同的加氢效果。 实施例 2 采用与实施例 1相同的方法对烃油进行加氢处理, 不同的是:
混合装置包括膜管 (商购自北京中天元环境工程有限公司, 外径为 25.4mm, 基体 上的通孔的平均孔径为 ΙΟΟμηι , 多孔膜上的通孔的平均孔径为 250nm, 孔径处于 250-260nm范围内的孔的占总孔的比例为 95%, 孔隙率为 25%)和与该管道配合使用的 一个壳体 (内径为 40mm); 多孔膜位于膜管的外壁上; 膜管的横截面如图 4所示, 均 匀分布有 7个液体通道, 每个液体通道的内径为 6mm; 膜管的外壁与壳体的内壁形成 的空间为气体通道;
混合装置的液体通道中, 温度为 365 °C, 压力为 5.5MPa; 相对于 100重量份的原 料柴油,注入的氢气的量为 0.20重量份(100重量份原料柴油的化学氢耗量为 0.36重量 份, 在表 3所示的加氢精制条件下, 氢气在原料柴油中的饱和溶解量为 0.18重量%), 在表 3示出的条件下, 进行加氢处理; 氢气的注入速度为 123g_h- ^m- 2, 氢气的注入速度 (以 g_h- m- 2计) 与原料柴油的流速 (以 kg_h- m- 2计) 的比值为 0.048。
原料柴油和得到的加氢产物的性质在表 3中示出。 表 3
Figure imgf000015_0001
实施例 3
采用与实施例 1相同的方法对烃油进行加氢处理, 不同的是:
混合装置包括膜管 (商购自北京中天元环境工程有限责任公司, 外径为 25.4mm, 基体上的通孔的平均孔径为 ΙΟΟμηι, 多孔膜上的通孔的平均孔径为 500nm, 孔径处于 500-550nm范围内的孔的占总孔的比例为 95%, 孔隙率为 25%)和与该管道配合使用的 一个壳体 (内径为 40mm); 多孔膜位于膜管的内壁上, 管道的横截面如图 4所示, 均 匀分布有 19个液体通道, 每个液体通道的内径为 3.3mm; 膜管的外壁与壳体的内壁形 成的空间为气体通道; 混合装置的液体通道中, 温度为 355°C, 压力为 8.0MPa; 相对于 100重量份的原 料油, 注入的氢气的量为 0.25重量份 (100重量份原料油的化学氢耗量为 0.36重量份, 在表 4所示的加氢精制条件下, 氢气在原料油中的饱和溶解量为 0.18重量%); 氢气的 注入速度为 120g_h- ^m- 2,氢气的注入速度(以 g_h- m- 2计)与原料油的流速(以 kg_h- m- 2 计) 的比值为 0.033;
具有加氢催化作用的催化剂为商购自中石化石油化工科学研究院的牌号为 RS-1000的催化剂;
在表 4示出的条件下, 进行加氢处理。
原料柴油和得到的加氢产物的性质在表 4中示出。 表 4
Figure imgf000016_0001
实施例 4
采用图 5 所示的方法, 通过混合装置向作为原料油的航空煤油中注入氢气, 将携 氢航空煤油通过内径为 40mm的管道送入管式固定床反应器 (内径为 65mm, 管式固定 床反应器中设置有 1个催化剂床层催化剂装填高径比为 25 )中,在表 5所示的条件下与 具有催化加氢作用的催化剂(商购自中石化抚顺石油化工研究院, 牌号为 RSS-2)接触。 原料航空煤油和得到的加氢产物的性质在表 5中示出。
其中, 混合装置的液体通道中, 温度为 260Ό, 压力为 2.0MPa; 相对于 100重量 份的原料油, 注入的氢气的量为 0.025重量份 (100重量份原料油的化学氢耗量为 0.02 重量份, 在表 5所示的加氢精制条件下, 氢气在原料油中的饱和溶解量为 0.05重量%)。 氢气的注入速度为 614g_h- ^m- 2, 氢气的注入速度 (以 g_h- ^m- 2计) 与原料油的流速 (以 kg'h m-2计) 的比值为 0.004。
混合装置包括由多孔材料形成的管道(商购自北京中天元环境工程有限责任公司, 外径为 25.4mm, 管道横截面如图 4所示, 管道上均匀分布有 19个液体通道, 每个液体 通道的内径为 3.3mm, 管壁上的通孔的平均孔径为 50nm, 孔径处于 50-55nm范围内的 孔的占总孔的比例为 95%, 孔隙率为 20%) 和与该管道配合使用的一个壳体 (内径为 40mm), 管道的外壁与壳体的内壁形成的空间为气体通道。混合装置上用输出含有氢气 的烃油的出口的内径为 40mm。 对比例 4 采用与实施例 4相同的方法对航空煤油进行加氢精制, 不同的是, 不使用混合装 置 5, 而是通过由 D3mm的 0型瓷环装填形成的厚度为 250mm的隔层作为混合装置将 氢气通入新鲜航空煤油和循环航空煤油的混合物中 (相对于 100重量份新鲜航空煤油, 循环航空煤油的量为 200重量份, 注入的氢气的量为 0.075重量份) 然后将得到的携氢 混合物在气液分离装置中分离出过量的气体后, 注入加氢反应器中进行加氢精制。 得到 的加氢产物的性质在表 5中示出。 对比例 5
采用与对比例 4相同的方法对航空煤油进行加氢精制, 不同的是, 相对于 100重 量份新鲜航空煤油, 注入的氢气的量为 0.025重量份。 得到的加氢产物的性质在表 5中 示出。 对比例 6
采用与实施例 4相同的方法对航空煤油进行加氢精制, 不同的是, 混合装置中由 多孔材料形成的管道的管壁上的通孔的平均孔径为 5μηι, 孔隙率为 35%, 孔径处于 5-5.5μηι范围内的孔占总孔的比例为 95% (商购自北京中天元环境工程有限责任公司)。 得到的加氢产物的性质在表 5中示出。 表 5
加氢 反应压力 /MPa 2.0
精制 反应温度 /°c 260
条件 航空煤油的体积空速 /h-1 6.0
航空 原料油 实施例 4 对比例 4 对比例 5 对比例 6 煤油 密度 (20°C ) /g · cm"3 0.8063 0.8061 0.8046 0.8059 0.8058 的性 总硫含量 /μ§ · g 1 953 97 54 297 251 质 硫醇硫含量 · g"1 113 2 6 23 11 从表 5 的数据可以看出, 采用本发明的方法进行加氢处理得到的产物的硫醇硫含 量更低, 同时还具有较高的总硫含量。
并且, 对比例 4中, 每 100重量份原料油进料需要使用 200重量份循环油, 因此 在装置规模相同的条件下, 单位时间的处理量仅为实施例 4的 1/3 ; 对比例 4中, 相对 于 100重量份原料油, 氢气的注入量为 0.075重量份, 为实施例 4的 3倍。 因此, 对比 例 4的氢耗量高, 且处理量低。 实施例 5
采用与实施例 4相同的方法对航空煤油进行加氢精制, 不同的是:
混合装置包括膜管 (商购自北京中天元环境工程有限公司, 外径为 25.4mm, 基体 上的通孔的平均孔径为 ΙΟΟμηι , 多孔膜上的通孔的平均孔径为 250nm, 孔径处于 250-260nm范围内的孔的占总孔的比例为 95%, 孔隙率为 25% )和与该管道配合使用的 一个壳体 (内径为 40mm) ; 多孔膜位于膜管的外壁上; 膜管的横截面如图 4所示, 均 匀分布有 7个液体通道, 每个液体通道的内径为 6mm; 膜管的外壁与壳体的内壁形成 的空间为气体通道;
混合装置的液体通道中, 温度为 260V, 压力为 2.0MPa; 相对于 100重量份的原 料油, 注入的氢气的量为 0.04重量份 (100重量份原料油的化学氢耗量为 0.02重量份, 在表 6所示的加氢精制条件下, 氢气在原料油中的饱和溶解量为 0.05重量%); 氢气的 注入速度为 1560g_h- m- 2,氢气的注入速度(以 g_h- m- 2计)与原料油的流速(以 kg_h- m- 2 计) 的比值为 0.01 ;
在表 6列出的条件下进行加氢精制。
原料油和得到的加氢产物的性质在表 6中示出。 表 6
加氢 反应压力 /MPa 2.0
精制 反应温度 /°c 260
条件 航空煤油的体积空速 /h-1 8.0
航空 原料油 实施例 5 煤油 密度 (20°C ) /g · cm"3 0.8027 0.8026 的性 总硫含量 /μ§ · g 1 841 108 质 硫醇硫含量 · g"1 108 9 实施例 6
采用与实施例 4相同的方法对航空煤油进行加氢精制, 不同的是:
混合装置包括膜管 (商购自北京中天元环境工程有限责任公司, 外径为 25.4mm, 基体上的通孔的平均孔径为 ΙΟΟμηι, 多孔膜上的通孔的平均孔径为 500nm, 孔径处于 500-550nm范围内的孔的占总孔的比例为 95%, 孔隙率为 25%)和与该管道配合使用的 一个壳体 (内径为 40mm); 多孔膜位于膜管的内壁上, 管道的横截面如图 4所示, 均 匀分布有 19个内径为 3.3mm的液体通道; 膜管的外壁与壳体的内壁形成的空间为气体 通道;
混合装置的液体通道中, 温度为 280°C, 压力为 4MPa; 相对于 100重量份的原料 油, 注入的氢气的量为 0.05重量份(100重量份原料油的化学氢耗量为 0.05重量份, 在 表 Ί所示的加氢精制条件下, 氢气在原料油中的饱和溶解量为 0.05重量%); 氢气的注 入速度为 1960g'h- m- 2,氢气的注入速度(以 g'h- m- 2计)与原料油的流速(以 kg'h- m- 2 计) 的比值为 0.007;
使用的催化剂为商购自中石化抚顺石油化工研究院的牌号为 FH-UDS的催化剂; 在表 7列出的条件下进行加氢精制。
得到的加氢产物的性质在表 7中示出。 表 7
Figure imgf000019_0001
实施例 7
( 1 ) 如图 5所示, 将重整反应器中输出的催化重整混合物注入重整产物气液分离 罐中进行气液分离, 从分离罐的罐底得到重整生成油。 其中, 分离罐中的温度为 40°C, 压力为 0.7MPa; 以得到的重整生成油的总量为基准, 该重整生成油含有 0.01重量%的 溶解氢。
(2) 通过混合装置向作为原料油的重整生成油中注入补充氢气 (100重量份原料 油的化学氢耗量为 0.03重量份,在表 8所示的加氢精制条件下,氢气在原料油中的饱和 溶解量为 0.025重量%)。氢气的注入速度为 2435g_h- ^m- 2, 氢气的注入速度(以 ^m- 2 计) 与原料油的流速 (以 kg ^m- 2计) 的比值为 0.006。 将携氢重整生成油通过内径为 40mm的管道送入管式固定床反应器 (管式反应器的内径为 65mm, 长径比为 30; 管式 反应器中设置有 1个催化剂床层, 催化剂床层的高径比为 25 )中, 在表 8所示的条件下 与具有催化加氢作用的催化剂接触。得到的加氢产物的芳烃含量以及溴指数在表 9中示 出。
其中, 混合装置包括由多孔材料形成的管道 (商购自北京中天元环境工程有限公 司, 外径为 25.4mm, 管道的横截面如图 4所示, 均匀分布有 19个液体通道, 每个液体 通道的内径为 3.3mm, 管壁上的通孔的平均孔径为 50nm, 孔径处于 50-55nm范围内的 孔的占总孔的比例为 95%, 孔隙率为 20% ) 和与该管道配合使用的一个壳体 (内径为 40mm) , 管道的外壁与壳体的内壁形成的空间为气体通道; 混合装置上用输出含有氢气 的烃油的出口的内径为 40mm;
混合装置的液体通道中, 温度为 160°C, 压力为 1.8MPa; 采用的具有催化加氢作 用的催化剂为商购自中石化抚顺石油化工研究院的牌号为 HDO-18的催化剂。
( 3 )将得到的加氢产物注入脱轻组分塔中,脱除加氢处理得到的混合物中 C5以下 组分, 得到脱轻组分油在换热器中与重整生成油进行换热之后, 注入脱重塔中脱除 C8 以上组分, 在塔顶得到用于芳烃抽提的原料。 实施例 8
采用与实施例 7相同的方法对重整生成油进行加氢处理, 不同的是:
步骤 (1 ) 中, 气液分离罐中的温度为 40°C, 压力为 0.3MPa, 以得到的重整生成 油的总量为基准, 该重整生成油含有 0.01重量%的溶解氢;
步骤 (2 ) 中, 混合装置包括膜管 (商购自北京中天元环境工程有限公司, 外径为 25.4mm, 基体上的通孔的平均孔径为 ΙΟΟμηι, 多孔膜上的通孔的平均孔径为 250nm, 孔径处于 250-260nm范围内的孔的占总孔的比例为 95%,孔隙率为 25%)和与该管道配 合使用的一个壳体 (内径为 40mm) ; 多孔膜位于膜管的外壁上; 膜管的横截面如图 4 所示, 均匀分布有 Ί个液体通道, 每个液体通道的内径为 6mm; 膜管的外壁与壳体的 内壁形成的空间为气体通道;
混合装置的液体通道中, 温度为 150°C, 压力为 1.5MPa; 100重量份原料油的化学 氢耗量为 0.03重量份,在表 8所示的加氢精制条件下,氢气在原料油中的饱和溶解量为 0.025重量%; 氢气的注入速度为 2180g_h- ^m- 2, 氢气的注入速度 (以 g_h- m- 2计) 与原 料油的流速 (以 kg ^m- 2计) 的比值为 0.007; 催化剂为商购自中石化抚顺石油化工研 究院的牌号为 HDO-18的催化剂。
得到的加氢产物的芳烃含量以及溴指数在表 9中示出。 实施例 9
采用与实施例 7相同的方法对重整生成油进行加氢处理, 不同的是:
步骤 (2) 中, 混合装置包括膜管 (商购自北京中天元环境工程有限责任公司, 外 径为 25.41^^基体上的通孔的平均孔径为10(^1^多孔膜上的通孔的平均孔径为500111^ 孔径处于 500-550nm范围内的孔的占总孔的比例为 95%,孔隙率为 25%)和与该管道配 合使用的一个壳体 (内径为 40mm); 多孔膜位于膜管的内壁上, 管道的横截面如图 4 所示, 均匀分布有 19个液体通道, 每个液体通道的内径为 3.3mm; 膜管的外壁与壳体 的内壁形成的空间为气体通道。
得到的加氢产物的芳烃含量以及溴指数在表 9中示出。 对比例 7
采用与实施例 9相同的方法对重整生成油进行加氢处理, 不同的是, 混合装置中, 由多孔材料形成的管道的管壁上的通孔的平均孔径为 5μηι, 孔径处于 5-5.5μηι范围内的 孔的占总孔的比例为 95%, 孔隙率为 35% (商购自北京中天元环境工程有限责任公司), 得到的加氢产物的芳烃含量以及溴指数在表 9中示出。 表 8 工艺条件 实施例 7 实施例 8 实施例 9 对比例 7 反应压力/ MPa 1.8 1.5 1.8 1.8 反应温度 /°c 160 150 160 160 重整生成油体积空速 /h-1 20 15 10 10 补充氢气的量 /重量% 0.015 0.02 0.02 0.02 表 9 烃油性质 原料油 实施例 7 实施例 8 实施例 9 对比例 7 密度 (20°C)/g · cm- 3 0.799 0.799 0.799 0.801 0.803 芳烃含量 /重量0 /o 75.01 74.71 74.7 74.67 75.04 溴指数 /mgBr/100g 2300 3.5 33 46 112 从表 9 的结果可以看出, 采用本发明的方法对重整生成油进行加氢精制, 芳烃基 本无损失, 并且得到的加氢精制油的溴含量低。 以上详细描述了本发明的优选实施方式, 但是, 本发明并不限于上述实施方式中 的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型, 这些简单变型均属于本发明的保护范围。
此外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只要其不违背本 发明的思想, 其同样应当视为本发明所公开的内容。

Claims

权利要求
1、 一种烃油加氢处理方法, 该方法包括以下步骤:
( 1 ) 通过平均孔径为纳米尺寸的孔将氢气注入烃油中, 得到含有氢气的烃油; ( 2) 将含有氢气的烃油送入反应器中, 在液相加氢处理条件下, 与具有加氢催化 作用的催化剂接触。
2、 根据权利要求 1所述的方法, 其中, 所述孔的平均孔径为 l-1000nm。
3、 根据权利要求 2所述的方法, 其中, 孔径处于 50-500nm范围内的孔的数量占总 孔数量的比例为 95%以上。
4、 根据权利要求 1 所述的方法, 其中, 将氢气注入处于流动状态的烃油中, 所述 氢气注入速度为 Vl 并以 g'h- ^m- 2计, 所述烃油的流速为 v2并以 kg'h- ^m- 2计, ¥^¥2=0.000625-0.09。
5、根据权利要求 1-4中任意一项所述的方法, 其中, 氢气通过一种混合装置被注入 所述烃油中, 以得到含有氢气的烃油, 所述混合装置包括至少一个用于容纳所述烃油的 液体通道和至少一个用于容纳所述氢气的气体通道, 所述液体通道和所述气体通道之间 通过一构件邻接, 所述构件的至少部分为有孔区, 所述有孔区具有所述平均孔径为纳米 尺寸的孔, 所述氢气通过所述平均孔径为纳米尺寸的孔被注入所述烃油中。
6、 根据权利要求 5所述的方法, 其中, 所述有孔区的孔隙率为 5-28%。
7、 根据权利要求 1 所述的方法, 其中, 所述反应器为固定床反应器, 烃油的体积 空速为 0.5-20h- 所述液相加氢处理条件包括: 温度为 120-500°C ; 以表压计, 压力为 l-20MPa。
8、 根据权利要求 1或 7所述的方法, 其中, 所述反应器为管式反应器。
9、根据权利要求 7所述的方法,其中,所述管式反应器的长度与内径的比值为 5-50: l o
10、 根据权利要求 9所述的方法, 其中, 所述管式反应器的内径为 20-1000mm。
11、 根据权利要求 1所述的方法, 其中, 所述加氢处理为加氢脱烯烃、 加氢脱硫、 加氢脱氮、 加氢脱氧和加氢脱金属中的一种或多种。
12、 根据权利要求 1或 11所述的方法, 其中, 所述烃油为汽油、 重整生成油、 喷 气燃料和柴油中的一种或多种。
13、 根据权利要求 12所述的方法, 其中, 注入的氢气的量为氢气在所述烃油中的 饱和溶解量的 0.1-4倍, 所述饱和溶解量为在液相加氢处理条件下的饱和溶解量。
PCT/CN2013/083791 2012-09-21 2013-09-18 一种烃油加氢处理方法 WO2014044196A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/430,499 US9862896B2 (en) 2012-09-21 2013-09-18 Hydrocarbon oil hydrotreating method
RU2015114768/04A RU2596828C1 (ru) 2012-09-21 2013-09-18 Способ и устройство гидрообработки углеводородного масла
DK13838513.3T DK2899252T3 (en) 2012-09-21 2013-09-18 Hydrocarbon Oil Hydrocarbon Process and Device
KR1020157010329A KR101838579B1 (ko) 2012-09-21 2013-09-18 탄화수소유의 수소처리 방법
JP2015532291A JP6395709B2 (ja) 2012-09-21 2013-09-18 炭化水素オイルの水素化処理方法
BR112015006344-6A BR112015006344B1 (pt) 2012-09-21 2013-09-18 método de hidrotratamento de óleo de hidrocarboneto
EP13838513.3A EP2899252B1 (en) 2012-09-21 2013-09-18 Hydrocarbon oil hydrotreating method and apparatus
SG11201502233XA SG11201502233XA (en) 2012-09-21 2013-09-18 Hydrocarbon oil hydrotreating method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201210360982.6A CN103657463B (zh) 2012-09-21 2012-09-21 一种气液混合方法及其应用和气液反应方法
CN201210357221.5 2012-09-21
CN201210357174.4 2012-09-21
CN201210357174.4A CN103666547B (zh) 2012-09-21 2012-09-21 一种烃油加氢处理方法
CN201210357165.5A CN103666545B (zh) 2012-09-21 2012-09-21 一种柴油加氢精制方法
CN201210357165.5 2012-09-21
CN201210360982.6 2012-09-21
CN201210357221.5A CN103666546B (zh) 2012-09-21 2012-09-21 一种航空煤油液相加氢精制方法

Publications (1)

Publication Number Publication Date
WO2014044196A1 true WO2014044196A1 (zh) 2014-03-27

Family

ID=50340585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083791 WO2014044196A1 (zh) 2012-09-21 2013-09-18 一种烃油加氢处理方法

Country Status (9)

Country Link
US (1) US9862896B2 (zh)
EP (1) EP2899252B1 (zh)
JP (1) JP6395709B2 (zh)
KR (1) KR101838579B1 (zh)
BR (1) BR112015006344B1 (zh)
DK (1) DK2899252T3 (zh)
RU (1) RU2596828C1 (zh)
SG (2) SG10201702254UA (zh)
WO (1) WO2014044196A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998081B (zh) * 2018-09-18 2020-12-04 临沂文衡信息技术有限公司 一种柴油精制效率优化方法
CN114105730B (zh) * 2020-08-31 2024-06-11 中国石油化工股份有限公司 1,4-丁炔二醇加氢制备1,4-丁二醇联产1,4-丁烯二醇的方法和系统
CN114890924B (zh) * 2022-06-20 2023-12-01 湖南长炼新材料科技股份公司 一种连续生产二甲基亚砜的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756821A (en) * 1986-02-10 1988-07-12 Institut Francais Du Petrol Method for the liquid phase hydrotreatment of heavy hydrocarbons in the presence of a dispersed catalyst
CN1288777A (zh) * 1999-09-22 2001-03-28 中国科学院大连化学物理研究所 一种膜反应器
US6428686B1 (en) 1997-06-24 2002-08-06 Process Dynamics, Inc. Two phase hydroprocessing
CN101280217A (zh) 2008-06-02 2008-10-08 中国石油化工集团公司 一种烃油液固两相加氢方法
CN101787305A (zh) 2009-01-23 2010-07-28 中国石油化工股份有限公司 一种液相循环加氢处理方法和反应系统
CN102039104A (zh) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 一种反应器和液相加氢工艺方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657112A (en) 1970-06-22 1972-04-18 Texaco Inc Hydrodesulfurization of heavy hydrocarbon oil with hydrogen presaturation
JPS5035523B2 (zh) * 1972-03-31 1975-11-17
SU685661A1 (ru) 1977-08-12 1979-09-15 Институт Нефтехимического Синтеза Им. А.В.Топчиева Способ получени анилина
FR2460990A1 (fr) * 1979-07-09 1981-01-30 Inst Francais Du Petrole Procede et appareil de conversion catalytique d'hydrocarbures
GB9203958D0 (en) * 1992-02-25 1992-04-08 Norske Stats Oljeselskap Catalytic multi-phase reactor
US5646314A (en) 1994-11-16 1997-07-08 Arco Chemical Technology, L.P. Process for titanium silicalite-catalyzed epoxidation
US7569136B2 (en) 1997-06-24 2009-08-04 Ackerson Michael D Control system method and apparatus for two phase hydroprocessing
JP2000256677A (ja) 1999-03-09 2000-09-19 Idemitsu Kosan Co Ltd 軽油の水素化処理方法
US6517706B1 (en) * 2000-05-01 2003-02-11 Petro-Canada Hydrocracking of heavy hydrocarbon oils with improved gas and liquid distribution
CN1173961C (zh) 2001-11-14 2004-11-03 中国石油化工股份有限公司 用于烯烃环氧化的催化剂
FR2850664B1 (fr) * 2003-01-31 2006-06-30 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un reacteur catalytique a membrane selective a l'hydrogene
DE602004009681T2 (de) 2003-05-16 2008-08-14 Velocys, Inc., Plain City Verfahren zur erzeugung einer emulsion durch verwendung einer mikrokanalverfahrentechnologie
CN1247746C (zh) 2003-07-31 2006-03-29 中国石油化工股份有限公司 轻质油品脱硫醇的方法
EP1547676A1 (en) * 2003-12-24 2005-06-29 Corning Incorporated Porous membrane microstructure devices and methods of manufacture
EP1804964A1 (en) 2004-10-01 2007-07-11 Velocys Inc. Multiphase mixing process using microchannel process technology
JP5704786B2 (ja) * 2004-11-16 2015-04-22 ヴェロシス,インク. マイクロチャネル技術を用いる多相反応プロセス
ITMI20051295A1 (it) * 2005-07-08 2007-01-09 Eni Spa Processo per migliorare le qualita' come carburante di miscele idrocarburiche idrotrattate
JP4858902B2 (ja) * 2005-08-10 2012-01-18 新日本理化株式会社 隔膜型水素化触媒を用いた水素化方法、水素化反応装置及び隔膜型水素化触媒
JP2007209973A (ja) 2006-01-13 2007-08-23 Ebara Corp 気液反応装置
CN101274922B (zh) 2007-03-30 2011-01-19 中国石油化工股份有限公司石油化工科学研究院 一种制备环氧丙烷的方法
US9669381B2 (en) 2007-06-27 2017-06-06 Hrd Corporation System and process for hydrocracking
US8021539B2 (en) * 2007-06-27 2011-09-20 H R D Corporation System and process for hydrodesulfurization, hydrodenitrogenation, or hydrofinishing
DE102007059243A1 (de) * 2007-12-07 2009-06-10 Uhde Gmbh Verfahren zur Entschwefelung olefinhaltiger Einsatzstoffe
AU2009302276B2 (en) 2008-10-10 2015-12-03 Velocys Inc. Process and apparatus employing microchannel process technology
CN101724443A (zh) 2008-10-28 2010-06-09 中国石油化工股份有限公司 一种低成本加氢生产清洁燃料的方法
CN101724444A (zh) 2008-10-28 2010-06-09 中国石油化工股份有限公司 一种低成本的加氢工艺方法
JP2012520328A (ja) 2009-03-13 2012-09-06 ユニバーシティ オブ ユタ リサーチ ファウンデーション 流体スパージ型らせん状チャンネルリアクタおよび関連する方法
CN101942319A (zh) 2009-07-09 2011-01-12 中国石油化工股份有限公司抚顺石油化工研究院 一种劣质柴油加氢处理方法
CN101942326B (zh) 2009-07-09 2015-01-14 中国石油化工股份有限公司 一种加氢生产低芳溶剂油的方法
CN101992048A (zh) 2009-08-11 2011-03-30 中国石化集团洛阳石油化工工程公司 一种反应器及其在烃油液固两相加氢中的应用
CN101993719A (zh) 2009-08-11 2011-03-30 中国石化集团洛阳石油化工工程公司 一种烃油加氢方法及其反应器
CN101993721B (zh) 2009-08-25 2016-04-13 中国石油化工股份有限公司 液相循环加氢处理方法和反应系统
CN102041035B (zh) 2009-10-13 2013-01-09 中国石油化工股份有限公司 重整油非临氢脱烯烃方法
FR2953211B1 (fr) 2009-12-01 2013-08-30 Corning Inc Dispositif microfluidique comportant une membrane poreuse
CN201644076U (zh) 2010-04-13 2010-11-24 中国石油化工集团公司 一种液相加氢反应器
CN102311790B (zh) 2010-07-07 2013-12-04 中国石油化工股份有限公司 一种提高混氢量的液相循环加氢处理方法
CN102311791B (zh) 2010-07-07 2013-11-20 中国石油化工股份有限公司 一种强化气液传质的液相循环加氢处理方法
US20140100397A1 (en) * 2011-06-03 2014-04-10 Korea Institute Of Energy Research Hydrocarbon Advancement Method
CN102309932B (zh) 2011-08-23 2013-06-05 神华集团有限责任公司 一种气液混合装置及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756821A (en) * 1986-02-10 1988-07-12 Institut Francais Du Petrol Method for the liquid phase hydrotreatment of heavy hydrocarbons in the presence of a dispersed catalyst
US6428686B1 (en) 1997-06-24 2002-08-06 Process Dynamics, Inc. Two phase hydroprocessing
CN1288777A (zh) * 1999-09-22 2001-03-28 中国科学院大连化学物理研究所 一种膜反应器
CN101280217A (zh) 2008-06-02 2008-10-08 中国石油化工集团公司 一种烃油液固两相加氢方法
CN101787305A (zh) 2009-01-23 2010-07-28 中国石油化工股份有限公司 一种液相循环加氢处理方法和反应系统
CN102039104A (zh) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 一种反应器和液相加氢工艺方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU YAN ET AL.: "Experimental Study on Gas Holdup in Bubble Refining Process", CHINESE JOURNAL OF PROCESS ENGINEERING, vol. 9, no. 1, June 2009 (2009-06-01), pages 97 - 101

Also Published As

Publication number Publication date
EP2899252B1 (en) 2018-03-28
RU2596828C1 (ru) 2016-09-10
SG11201502233XA (en) 2015-05-28
SG10201702254UA (en) 2017-05-30
DK2899252T3 (en) 2018-07-16
US20160152902A1 (en) 2016-06-02
BR112015006344A2 (pt) 2017-07-04
EP2899252A4 (en) 2016-06-29
US9862896B2 (en) 2018-01-09
JP2015531422A (ja) 2015-11-02
KR20150056651A (ko) 2015-05-26
BR112015006344B1 (pt) 2021-02-09
JP6395709B2 (ja) 2018-09-26
EP2899252A1 (en) 2015-07-29
KR101838579B1 (ko) 2018-03-14

Similar Documents

Publication Publication Date Title
RU2609780C2 (ru) Способ и устройство для гидрообработки риформата
US20150165408A1 (en) Fluid-sparged helical channel reactor and associated methods
US9139779B2 (en) Catalyst separation system
CN103861532B (zh) 一种射流曝气三相均质反应器
CN113368594B (zh) 一种液相加氢精制的系统装置及其方法
CN103657463B (zh) 一种气液混合方法及其应用和气液反应方法
JP2014521774A (ja) 溶存水素を含む原料の沸騰床プロセス
WO2014044196A1 (zh) 一种烃油加氢处理方法
CN104927898B (zh) 一种烃油加氢处理方法
RU2681078C1 (ru) Способ и устройство гидрирования тяжелого масла в псевдоожиженном слое
CN109679684B (zh) 一种液相加氢反应系统及方法
CN103666545B (zh) 一种柴油加氢精制方法
Liu et al. Liquid-Phase Hydrogenation of Phenol in an Advanced Gas–Liquid Concurrent Upflow Fixed-Bed Reactor with Membrane Dispersion
CN208583196U (zh) 溶氢器
CN109957416A (zh) 用液料产物循环式逆流反应器的碳氢料加氢反应方法
CN103666547B (zh) 一种烃油加氢处理方法
CN203750518U (zh) 一种射流曝气三相均质反应器
CN112705123A (zh) 一种加氢反应器及加氢方法
CN115093880B (zh) 一种混合气泡流沸腾床渣油加氢工艺及装置
CN114749112B (zh) 一种沸腾床反应器
CN115106023B (zh) 气液两相反应器及其应用和烃油加氢方法
CN103102970B (zh) 劣质汽油馏分加氢处理方法
CN116688875A (zh) 多相反应系统及多相反应的方法
CN117186941A (zh) 一种烃油液相加氢反应装置及方法
CN110536745A (zh) 包括低厚度的催化床的反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14430499

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015006344

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20157010329

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2015114768

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013838513

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112015006344

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150320