WO2014041882A1 - 荷電粒子線装置及び試料観察方法 - Google Patents

荷電粒子線装置及び試料観察方法 Download PDF

Info

Publication number
WO2014041882A1
WO2014041882A1 PCT/JP2013/068587 JP2013068587W WO2014041882A1 WO 2014041882 A1 WO2014041882 A1 WO 2014041882A1 JP 2013068587 W JP2013068587 W JP 2013068587W WO 2014041882 A1 WO2014041882 A1 WO 2014041882A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
charged particle
particle beam
liquid
diaphragm
Prior art date
Application number
PCT/JP2013/068587
Other languages
English (en)
French (fr)
Inventor
祐介 大南
晋佐 河西
宏征 鈴木
幸太郎 細谷
昌成 振木
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to DE112013003552.9T priority Critical patent/DE112013003552B4/de
Priority to CN201380041393.4A priority patent/CN104520966B/zh
Priority to KR1020147036132A priority patent/KR101675386B1/ko
Priority to US14/420,942 priority patent/US9362083B2/en
Publication of WO2014041882A1 publication Critical patent/WO2014041882A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/182Obtaining or maintaining desired pressure
    • H01J2237/1825Evacuating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • H01J2237/2605Details operating at elevated pressures, e.g. atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support

Definitions

  • the present invention relates to a microscope technique capable of observing a sample in a gas atmosphere under atmospheric pressure or a predetermined pressure.
  • a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like is used.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • a housing for placing a sample is evacuated and the sample atmosphere is evacuated to image the sample.
  • biochemical samples, liquid samples, and the like are damaged or changed in state by vacuum.
  • an SEM device, a sample holding device, and the like that can observe an observation target sample at atmospheric pressure have been developed.
  • These devices in principle, provide a diaphragm or minute through-hole that can transmit an electron beam between an electron optical system and a sample to partition a vacuum state and an atmospheric state. This is common in that a diaphragm is provided between the two.
  • an electron source side of an electron optical column is disposed downward and an objective lens side is disposed upward, and an electron beam is placed on an electron beam exit hole at the end of the electron optical column via an O-ring.
  • An SEM provided with a diaphragm that can pass through is disclosed.
  • the sample to be observed is placed directly on the diaphragm, and a primary electron beam is irradiated from the lower surface of the sample to detect reflected electrons or secondary electrons and perform SEM observation.
  • the sample is held in a space constituted by an annular member and a diaphragm installed around the diaphragm, and the space is filled with a liquid such as water.
  • Patent Document 2 an observation sample is stored in a cylindrical container provided with a diaphragm on the upper surface side through which an electron beam passes, the cylindrical container is provided in a vacuum sample chamber of an SEM, and the vacuum sample chamber is further provided in the cylindrical container.
  • An invention of an environmental cell capable of maintaining the inside of a container in an air atmosphere by connecting a hose from the outside of the container is disclosed.
  • JP 2009-158222 A (US Patent Application Publication No. 2009/0166536) Japanese translation of PCT publication No. 2004-515049 (the specification of international publication 2002/045125)
  • None of the conventional charged particle beam devices provided with a function of observing a sample in a gas atmosphere or in a liquid state can observe the state of introducing and infiltrating a liquid into a dry sample.
  • conventional charged particle beam devices have insufficient means for introducing a liquid or gas near the sample and observing the sample in a gas atmosphere under atmospheric pressure or a predetermined pressure. there were.
  • the present invention has been made in view of such a problem, and allows a sample to be observed in an air atmosphere, a vacuum, or a desired liquid or gas atmosphere, and a desired liquid or gas is placed inside or near the sample.
  • An object of the present invention is to provide a charged particle beam apparatus that can be introduced and extracted.
  • the present application includes a plurality of means for solving the above-described problems.
  • the present application includes an introduction / extraction section for introducing a desired liquid or gas from the lower surface direction or the side surface direction of the sample.
  • the sample is irradiated with a primary charged particle beam in a non-contact state.
  • a charged particle beam apparatus capable of observing a sample in an air atmosphere, in a vacuum, or in a desired liquid or gas atmosphere, and capable of introducing a desired liquid or gas into or near the sample. Can be provided.
  • FIG. 1 is an overall configuration diagram of a charged particle microscope according to Embodiment 1.
  • FIG. 3 illustrates a configuration example of a charged particle microscope according to the first embodiment.
  • FIG. 3 illustrates a configuration example of a charged particle microscope according to the first embodiment.
  • FIG. 3 illustrates a configuration example of a charged particle microscope according to the first embodiment.
  • FIG. 3 illustrates a configuration example of a charged particle microscope according to the first embodiment.
  • FIG. 3 illustrates a configuration example of a charged particle microscope according to the first embodiment.
  • FIG. 3 is an overall configuration diagram of a charged particle microscope according to a second embodiment.
  • FIG. 5 is an overall configuration diagram of a charged particle microscope according to a third embodiment.
  • FIG. 10 is a drawing of a sample stage of a charged particle microscope according to the third embodiment. Explanatory drawing of the sample stage 5 vicinity vicinity. The figure for performing vacuum observation with the charged particle microscope of Example 3.
  • FIG. FIG. 6 illustrates a configuration example of a charged particle microscope according to a fourth embodiment.
  • a charged particle beam microscope will be described as an example of a charged particle beam apparatus.
  • this is merely an example of the present invention, and the present invention is not limited to the embodiments described below.
  • the present invention can also be applied to a scanning electron microscope, a scanning ion microscope, a scanning transmission electron microscope, a combined device of these and a sample processing device, or an analysis / inspection device to which these are applied.
  • atmospheric pressure means an atmospheric atmosphere or a predetermined gas atmosphere, and means an atmospheric pressure or a pressure environment of a slight negative pressure or a pressurized state. Specifically, it is about 10 5 Pa (atmospheric pressure) to about 10 3 Pa.
  • FIG. 1 shows an overall configuration diagram of the charged particle microscope of the present embodiment.
  • a charged particle microscope shown in FIG. 1 mainly includes a charged particle optical column 2, a supporting case (vacuum chamber) 7 connected to the charged particle optical column 2, a sample stage 5 arranged in an atmospheric atmosphere, And a control system for controlling them.
  • the charged particle microscope is used, the charged particle optical column 2 and the inside of the first housing are evacuated by the vacuum pump 4.
  • the start / stop operation of the vacuum pump 4 is also controlled by the control system.
  • only one vacuum pump 4 is shown in the figure, two or more vacuum pumps may be provided. It is assumed that the charged particle optical column 2 and the housing 7 are supported by a base 270 such as a pillar (not shown).
  • the charged particle optical column 2 includes an element such as a charged particle source 8 that generates a charged particle beam, an optical lens 1 that focuses the generated charged particle beam and guides it to the lower part of the column and scans the sample 6 as a primary charged particle beam. Consists of.
  • the charged particle optical column 2 is installed so as to protrude into the housing 7 and is fixed to the housing 7 via a vacuum sealing member 123.
  • a detector 3 for detecting secondary charged particles (secondary electrons or reflected electrons) obtained by irradiation with the primary charged particle beam is disposed at the end of the charged particle optical column 2.
  • the charged particle microscope of the present embodiment has a control system such as a computer 35 used by the user of the apparatus, a host controller 36 connected to the computer 35 for communication, and a vacuum pumping system and a charge according to a command transmitted from the host controller 36.
  • a lower control unit 37 that controls the particle optical system and the like is provided.
  • the computer 35 includes a monitor on which an operation screen (GUI) of the apparatus is displayed, and input means for an operation screen such as a keyboard and a mouse.
  • GUI operation screen
  • the upper control unit 36, the lower control unit 37, and the computer 35 are connected by communication lines 43 and 44, respectively.
  • the lower control unit 37 is a part that transmits and receives control signals for controlling the vacuum pump 4, the charged particle source 8, the optical lens 1, and the like, and further converts the output signal of the detector 3 into a digital image signal to perform higher control. It transmits to the part 36.
  • the output signal from the detector 3 is connected to the lower control unit 37 via an amplifier 154 such as a preamplifier. If an amplifier is not necessary, it may not be necessary.
  • the upper control unit 36 and the lower control unit 37 may include a mixture of analog circuits, digital circuits, etc., and the upper control unit 36 and the lower control unit 37 may be unified.
  • the configuration of the control system shown in FIG. 1 is merely an example, and modifications of the control unit, valve, vacuum pump, communication wiring, and the like can be applied to the SEM of this embodiment as long as the functions intended in this embodiment are satisfied. It belongs to the category of charged particle beam equipment.
  • the housing 7 is connected to a vacuum pipe 16 having one end connected to the vacuum pump 4 so that the inside can be maintained in a vacuum state.
  • a leak valve 14 for opening the inside of the housing to the atmosphere is provided, and the inside of the housing 7 can be opened to the atmosphere during maintenance.
  • the leak valve 14 may not be provided, and may be two or more. Further, the arrangement location of the leak valve 14 in the housing 7 is not limited to the location shown in FIG. 1, and may be arranged at another position on the housing 7.
  • a diaphragm 10 is provided on the lower surface of the housing at a position directly below the charged particle optical column 2.
  • the diaphragm 10 can transmit or pass the primary charged particle beam emitted from the lower end of the charged particle optical column 2, and the primary charged particle beam finally reaches the sample 6 through the diaphragm 10. To do.
  • the closed space formed by the diaphragm 10 can be evacuated. Therefore, in this embodiment, the charged particle optical column 2 can be maintained in a vacuum state, and the sample 6 can be maintained at atmospheric pressure. Further, the sample 6 can be freely exchanged during observation.
  • the diaphragm 10 is formed or deposited on the base 159.
  • the diaphragm 10 is a carbon material, an organic material, silicon nitride, silicon carbide, silicon oxide, or the like.
  • the base 159 is a member such as silicon, for example, and a tapered hole 165 is dug as shown in the figure by processing such as wet etching, and the diaphragm 10 is provided on the lower surface in FIG. Multiple portions of the diaphragm 10 may be arranged.
  • the thickness of the diaphragm capable of transmitting or passing the primary charged particle beam is about several nm to several ⁇ m.
  • an aperture member having a primary charged particle beam passage hole may be used.
  • the hole diameter should be about 1 mm 2 or less due to the requirement that differential pumping is possible with a realistic vacuum pump. Is desirable. If the vacuum pressure difference between the upper and lower sides of the diaphragm 10 can be formed and maintained, a minute hole may be formed in the diaphragm 10.
  • the diaphragm must not break under the differential pressure to separate atmospheric pressure and vacuum. Therefore, the area of the diaphragm 10 is about several tens of ⁇ m to several millimeters at most.
  • the shape of the diaphragm 10 is not square but may be a rectangle or the like. Any shape may be used.
  • the side shown in FIG. 2, that is, the side with the tapered portion 165 is disposed on the vacuum side (upper side in the figure). This is because the detector 3 efficiently detects the secondary charged particles emitted from the sample.
  • the detector 3 is a detection element that can detect and amplify a charged particle beam that comes in with an energy of several keV to several tens of keV.
  • a semiconductor detector made of a semiconductor material such as silicon, a scintillator capable of converting a charged particle signal into light on the glass surface or inside, and the like.
  • the lower part of the diaphragm 10 provided in the housing 7 is provided with a sample stage 5 arranged in an air atmosphere.
  • the sample stage 5 is provided with a height adjusting function that allows at least the sample 6 to approach the diaphragm 10.
  • the sample 6 can be brought closer to the direction of the diaphragm 10 by turning the operation unit 204.
  • an XY drive mechanism that moves in the sample plane direction may be provided.
  • FIG. 3A illustrates a configuration in which a liquid introduction / extraction unit 300 including a liquid transmission member 302 and an opening 301 is disposed below the sample of the sample stage 5.
  • the sample 6 is disposed on the liquid transmission member 302.
  • the liquid transmission member 302 is a porous material, a fiber such as filter paper, a sponge, an aperture material having at least one or more holes, a multi-tubular body composed of a large number of tubes, and the like, and is a member that transmits liquid or gas.
  • the liquid transmission member 302 and the liquid introduction / extraction part 300 are in contact or close to each other. For example, when a liquid is caused to flow from the liquid introduction / extraction part 300 in the direction indicated by the arrow in the figure, the liquid is transmitted to the liquid transmission member 302, and the sample 6 is infiltrated from below the sample surface indicated by the dotted line part in the figure. It becomes possible.
  • Specimens include, for example, biological samples such as cells, fiber materials such as cotton, and soft materials such as organic materials. Alternatively, an inorganic material whose surface structure or the like changes when it is infiltrated with a liquid.
  • the liquid to be introduced is water, an aqueous solution, an organic solvent such as ethanol, an ionic liquid, or the like.
  • FIG. 3B illustrates a state in which the liquid introduction / extraction part 300 is in contact with or close to the side surface of the liquid transmission member 302.
  • the liquid transmission member 302 may have such a configuration by having a certain thickness.
  • the liquid transmission member 302 may be fixed on the sample stage 5 using a member such as metal, an adhesive, or a tape.
  • the sample 6 may be fixed on the liquid transmission member 302 using any member.
  • the sample 6 may be arranged directly on the sample stage 5.
  • the liquid may flow in and out from the liquid introduction / extraction section 300 via the opening 301 below the sample 6, or if the sample has a certain thickness, FIG. As in d), the liquid introduction / extraction part 300 may be brought into contact with or close to the side surface of the sample 6.
  • the sample 6 is mounted on the liquid transmission member 302.
  • the liquid transmission member 302 together with the sample 6 is mounted on the sample stage 5.
  • the sample stage 5 is driven to bring the sample 6 closer to the diaphragm 10.
  • the charged particle beam is irradiated to the sample 6.
  • the liquid introduction / extraction part 300 is brought into contact with or close to the liquid transmission member 302. This operation is unnecessary if it is in contact or approached in advance.
  • the liquid is transmitted to the liquid transmission member 302 using the liquid introduction / extraction part 300. Thereafter, the sample is irradiated with a primary charged particle beam while the sample 6 and the diaphragm 10 are not in contact with each other. By these operations, it is possible to observe the state in which the sample 6 is wet.
  • Control of the flow rate or introduction speed of the liquid used for the liquid introduction / extraction unit 300, the timing of introduction / extraction, etc. may be performed by an electric liquid lead-in / out machine using an electric pump or the like, or manually by using a syringe or the like. May be. By performing these controls, it is possible to observe the sample in a desired state while adjusting the speed at which the sample 6 is wetted or dried.
  • the liquid introduction / extraction unit 300 is, for example, a tube material such as a nozzle or a straw capable of feeding liquid.
  • the liquid introduction / extraction unit 300 may be provided in the sample stage 5 or may be detachable.
  • the liquid introduction / extraction unit 300 may be a spoon such that a few drops of liquid can be mounted.
  • the liquid is supplied to the sample in a procedure in which the liquid is placed on a spoon outside the apparatus, the liquid part spoon is brought close to the sample, and the sample is brought into contact with the liquid.
  • the liquid is placed on the sample stage 5, and then the sample is placed under the diaphragm to be charged.
  • the sample may be irradiated with a particle beam. Any form may be used as long as the liquid can be introduced from a lower side (for example, a lower surface direction or a side surface direction of the sample) than the sample surface irradiated with the charged particle beam.
  • any method it is possible to automatically or manually control the flow rate, introduction / extraction speed or introduction / extraction timing of the liquid or gas introduced / extracted from the introduction / extraction section.
  • an introduction / extraction control unit such as an electric pump, it is easy to use if they can be further attached and detached.
  • the sample 6 can be infiltrated. Moreover, the sample 6 and the liquid and the diaphragm 10 can be made non-contact. If the liquid input amount and speed from the liquid inlet / outlet section 300 can be controlled with the above-described configuration, the infiltration speed can be controlled to some extent.
  • the sample 6 is indirectly infiltrated using the liquid transmission member 302, so that the liquid can be injected more slowly into the sample. It becomes.
  • liquid introduction / extraction unit 300 moisture may be sucked out from the already infiltrated sample 6 via the liquid introduction / extraction unit 300. That is, the infiltrated sample 6 can be gradually dried.
  • a pump capable of sucking moisture may be attached to the liquid introduction / extraction unit 300.
  • the sample 6 needs to remain on the sample stage 5, so when the sample 6 to be observed is very small, such as powder, a large number of micropores smaller than the sample are arranged.
  • a liquid transmission member 302 such as a mesh or filter paper may be disposed under the sample to suck out the liquid. If the sample 6 to be observed is sufficiently large, the liquid may be sucked out by bringing the sample 6 into direct contact with or close to the liquid inlet / outlet portion 300.
  • the introduction / extraction from the liquid introduction / extraction unit 300 has been described only for the liquid, but it may be a gas. It becomes possible to blow or suck out a desired gas locally near the sample 6.
  • the term “liquid” widely includes viscous fluids, dispersions such as gels and sols, fluids such as colloids and soft matter in general.
  • a liquid leakage prevention unit 308 may be provided on the sample stage as shown in FIG. Since the liquid leakage prevention unit 308 has a dish-like shape, even if more liquid than expected flows in the vicinity of the sample 6, it is possible to prevent the liquid from leaking downward in the sample stage 5 or the like. However, the height position of the sample surface A portion needs to be above the liquid leakage prevention portion B in the drawing so that the liquid leakage prevention portion 308 does not get in the way when the sample surface is brought close to the diaphragm 10.
  • liquid leakage prevention unit 308 and the liquid introduction / extraction unit 300 are in close contact.
  • a member such as packing may be provided between the liquid leakage prevention unit 308 and the liquid introduction / extraction unit 300 to prevent liquid from leaking.
  • the liquid leakage prevention unit 308 may be provided below the upper surface of the sample stage 5. If the liquid leakage prevention unit 308 can be prevented from spilling accidentally, the shape and arrangement method of the liquid leakage prevention unit 308 belong to the category of the charged particle beam apparatus of this embodiment as long as the functions intended in this embodiment are satisfied.
  • a liquid absorbing member 309 made of a fiber material such as filter paper or sponge may be provided around the diaphragm 10 so as to prevent the liquid from being applied to the diaphragm 10 as much as possible (shown in FIG. 5). By doing so, the liquid absorbing member 309 can suck the liquid before the liquid on the sample contacts the diaphragm 10. An extra liquid outlet may be provided. The fiber material such as filter paper and sponge can be exchanged.
  • a hydrophobic material may be applied to the atmosphere side (the lower side in the figure, the surface facing the sample) of the diaphragm 10 so that the liquid does not adhere to the diaphragm 10 as much as possible. By doing so, the liquid adhering to the diaphragm can be sucked into the liquid absorbing member 309 without adhering to the diaphragm.
  • the temperature control unit 305 is a heater that can heat the sample, a Peltier element that can be cooled, or the like. Although not shown, the temperature near the sample 6 may be measured by installing a thermometer.
  • the temperature control unit 305 may be the lower part or the upper part instead of the periphery of the liquid transmission member 302. When it is desired to heat the sample 6, the temperature control unit 305 should be as close to the sample 6 as possible.
  • the liquid introduction / extraction unit 300 includes a tank 306 in which liquid or gas is prepared.
  • the tank 306 includes a temperature control unit 305.
  • a liquid or gas whose temperature is controlled by the temperature controller 305 can be introduced into and out of the vicinity of the sample.
  • the temperature control unit 305 may be provided in the liquid introduction / extraction unit 300 through which liquid or gas is introduced / extracted. From the tank 306, a desired liquid can be introduced into and removed from the sample 6 using an electric pump (not shown).
  • an electrode 307 for applying a voltage to the sample may be provided near the sample. With this configuration, it is possible to irradiate a charged particle beam to the sample 6 in a state where a desired liquid or gas is introduced and discharged and a voltage is applied.
  • FIG. 8 shows an overall configuration diagram of the charged particle microscope of the present embodiment. Similar to the first embodiment, the charged particle microscope of the present embodiment also includes a charged particle optical column 2, a casing (vacuum chamber) 7 that supports the charged particle optical column with respect to the apparatus installation surface, a sample stage 5, and a liquid. It is comprised by the introduction / extraction part 300 grade
  • This configuration includes a second housing (attachment) that is used by being inserted into the housing 7 (hereinafter referred to as a first housing).
  • the second casing 121 includes a rectangular parallelepiped body portion 131 and a mating portion 132. As described later, at least one side surface of the rectangular parallelepiped side surface of the main body 131 is an open surface 9.
  • the surface other than the surface on which the diaphragm holding member 155 is installed may be configured by the wall of the second casing 121, or the second casing 121 itself has no wall and is You may be comprised by the side wall of the 1st housing 7 in the state integrated in the 1 housing 7.
  • the position of the second housing 121 is fixed to the side surface or inner wall surface of the first housing 7 or the charged particle optical lens barrel.
  • the main body 131 has a function of storing the sample 6 to be observed, and is inserted into the first housing 7 through the opening.
  • the mating portion 132 forms a mating surface with the outer wall surface on the side surface side where the opening of the first housing 7 is provided, and is fixed to the outer wall surface on the side surface side via the vacuum sealing member 126.
  • the entire second housing 121 is fitted into the first housing 7.
  • the opening is most easily manufactured using the opening for loading and unloading the sample originally provided in the vacuum sample chamber of the charged particle microscope. That is, if the second casing 121 is manufactured according to the size of the hole that is originally open and the vacuum sealing member 126 is attached around the hole, the modification of the apparatus is minimized.
  • the second housing 121 can be detached from the first housing 7.
  • the side surface of the second housing 121 is an open surface 9 that communicates with the atmospheric space with a surface that is at least large enough to allow the sample to be taken in and out.
  • the inside of the second housing 121 (right side from the dotted line in the figure; The sample 6 stored in the space is placed in an atmospheric pressure state during observation.
  • 8 is a cross-sectional view of the apparatus in the direction parallel to the optical axis, so that only one open surface 9 is shown. However, vacuum sealing is performed by the side surface of the first casing in the back direction and the near side in FIG. If it is, the open surface 9 of the second housing 121 is not limited to one surface. It is sufficient that at least one open surface is provided in a state where the second housing 121 is incorporated in the first housing 7.
  • a vacuum pump 4 is connected to the first housing 7, and a closed space (hereinafter referred to as a first space) constituted by the inner wall surface of the first housing 7, the outer wall surface of the second housing and the diaphragm 10.
  • a first space constituted by the inner wall surface of the first housing 7, the outer wall surface of the second housing and the diaphragm 10.
  • the second space can be isolated in pressure in this embodiment. That is, the first space 11 is maintained in a high vacuum by the diaphragm 10, while the second space 12 is maintained in a gas atmosphere having an atmospheric pressure or almost the same pressure as the atmospheric pressure.
  • the particle optical column 2 and the detector 3 can be maintained in a vacuum state, and the sample 6 can be maintained at atmospheric pressure. Further, since the second casing 121 has an open surface, the sample 6 can be freely exchanged during observation.
  • the diaphragm 10 On the upper surface side of the second casing 121, the diaphragm 10 is provided at a position directly below the charged particle optical column 2 when the entire second casing 121 is fitted into the first casing 7.
  • the diaphragm 10 can transmit or pass the primary charged particle beam emitted from the lower end of the charged particle optical column 2, and the primary charged particle beam finally reaches the sample 6 through the diaphragm 10. To do.
  • the attachment of the present embodiment can be easily increased in size because it is inserted from the side surface of the sample chamber.
  • a base 159 provided with the diaphragm 10 is provided on the diaphragm holding member 155.
  • the diaphragm holding member 155 is provided in the second housing 121.
  • a vacuum seal 124 such as an O-ring or packing is provided between the diaphragm holding member 155 and the second casing 121 and is vacuum-sealed.
  • the base 159 provided with the diaphragm 10 and the diaphragm holding member 155 are also bonded or adhered by an adhesive capable of vacuum sealing, a double-sided tape, or the like.
  • the diaphragm holding member 155 is detachably fixed to the upper surface side of the second housing 121, more specifically, to the lower surface side of the ceiling plate via a vacuum sealing member.
  • the diaphragm 10 is extremely thin with a thickness of about several nanometers to several tens of micrometers or less because of the requirement for transmission of the charged particle beam, so that there is a possibility that the diaphragm 10 may be deteriorated with time or damaged during observation preparation. On the other hand, since the diaphragm 10 is thin, it is very difficult to handle it directly.
  • the base 159 provided with the diaphragm 10 can be handled not via the direct but via the diaphragm holding member 155, so that the handling (particularly replacement) of the diaphragm 10 becomes very easy.
  • the diaphragm holding member 155 may be replaced, and even if the diaphragm 10 needs to be replaced directly, the diaphragm holding member 155 is taken out of the apparatus and the diaphragm 10 is replaced. Can be done externally.
  • the aperture member having a hole with an area of about 1 mm 2 or less can be used instead of the diaphragm as in the first embodiment.
  • the diaphragm holding member 155 When the inside of the first casing is in a vacuum state, the diaphragm holding member 155 is pulled by the vacuum, and is therefore attracted to the second casing 121 so that it does not fall. Further, if the fall prevention member 203 or the like is used between the second housing 121 and the diaphragm holding member 155, it is possible to prevent the gap between the diaphragm holding members 155 from falling when the inside of the first housing is under atmospheric pressure. It is.
  • the position adjustment mechanism of the diaphragm 10 will be described.
  • the optical axis 200 that is, the image center
  • the optical axis 200 of the charged particle optical barrel 2 may be displaced from the position of the diaphragm 10. If the image of the diaphragm 10 cannot be observed near the center of the image acquired by the charged particle microscope, there is a problem that the diaphragm 10 and the sample 6 cannot be observed when switching from the low magnification image to the high magnification image. Therefore, it is necessary to roughly match the optical axis 200 of the charged particle optical column 2 and the center 201 of the diaphragm. In the following description, it is assumed that the position of the optical axis 200 of the charged particle optical column 2 is fixed.
  • An adjusting mechanism 259 that can adjust the position of the diaphragm 10 is used to align the optical axis 200 of the charged particle optical column 2 with the position of the diaphragm.
  • FIG. 8 illustrates a mechanism provided with an adjustment mechanism 259 on the open surface side of the second casing 121.
  • the adjusting mechanism 259 adjusts the position by, for example, turning a knob to push or pull the diaphragm 10 position.
  • the drive mechanism 259 is held by the second casing 121 by a support portion 261. Although only one adjustment mechanism 259 is shown in the drawing, it is necessary to move in the direction of the paper surface in the drawing, and therefore, at least two types of adjustment mechanisms 259 are required.
  • the drive mechanism 259 By moving the drive mechanism 259, the position of the diaphragm holding member 155 itself including the diaphragm 10 and the base 159 is adjusted. When the position is changed, the diaphragm holding member 155 moves so as to slide on the vacuum seal 124. Although not shown, the diaphragm holding member 155 may be driven via a rail or a guide.
  • the diaphragm holding member 155 may be moved using the sample stage 5 by disposing a member (not shown) in contact with the diaphragm holding member 155 on the sample stage 5. That is, the member is arranged on the sample stage 5, and then the member is brought into contact with the diaphragm holding member 155 or the like using the operation unit 204. Next, the position of the diaphragm 10 can be changed by moving the sample stage 5 in the XY directions. In this case, in order to drive the diaphragm holding member 155 in the horizontal direction and the depth direction of the paper surface, it is necessary that there is a sufficient frictional force between the member and the diaphragm holding member 155.
  • a sample is mounted inside the second casing 121 and includes a sample stage 5 capable of changing the position.
  • the sample stage 5 includes an XY drive mechanism in the in-plane direction and a Z-axis drive mechanism in the height direction.
  • a stage support base 17 serving as a bottom plate for supporting the sample stage 5 is disposed inside the second housing, and the sample stage 5 is provided on the stage support base 17.
  • the Z-axis drive mechanism and the XY drive mechanism are disposed inside the second casing.
  • the apparatus user adjusts the position of the sample 6 in the second housing 121 by operating the operation knob 204 or the like for operating these.
  • the operation knob 204 is inside the second housing, but it may be pulled out of the apparatus or controlled from the outside by an electric motor or the like. Even in the case where the stage does not completely fit inside the second casing 121, such as when the stage is large, at least a part of the drive mechanism including the stage is disposed inside the second casing 121. That's fine.
  • the liquid introduction / extraction unit 300 that can transmit the liquid to the sample will be described.
  • An opening 301 is provided in the lower part of the sample stage 5 inside the second casing 121, and a liquid introduction / extraction unit 300 is provided.
  • the liquid or gas introduced / extracted from the liquid introduction / extraction unit 300 is transmitted to the sample 6 via the liquid transmission member 302.
  • the liquid transmission member 302 may be fixed on the sample stage 5 or the second casing 121 using a member such as a metal, an adhesive, a tape, or the like.
  • the sample 6 may be fixed on the liquid transmission member 302 using any member.
  • the configuration and usage of the liquid introduction / extraction unit 300 are the same as those in the first embodiment.
  • the liquid transmission member 302 may or may not be present.
  • the liquid leakage prevention unit 308, the liquid absorbing member 309, the temperature control unit 305, the electrode 307, and the like can be attached in the same manner as in the first embodiment. Further, in the same manner as in the first embodiment, a gas may be introduced from the liquid introduction / extraction section 300 instead of a liquid.
  • the liquid introduction / extraction part 300 inside the second casing 121 in the second embodiment has been described.
  • the location and arrangement method of the liquid introduction / extraction part 300 may be arranged in places other than those described above, and are intended in this example. As long as the function to be satisfied is satisfied, it belongs to the category of SEM or charged particle beam apparatus of this embodiment.
  • FIG. 9 shows an overall configuration diagram of the charged particle microscope of this example. Similar to the first and second embodiments, the charged particle microscope of the present embodiment also includes the charged particle optical column 2, the first casing (vacuum chamber) 7 that supports the charged particle optical column with respect to the apparatus installation surface, the first A second housing (attachment) 121 used by being inserted into one housing 7, a control system, and the like. Since the operations and functions of these elements or additional elements added to the elements are substantially the same as those in the first and second embodiments, detailed description thereof is omitted.
  • the open surface that forms at least one side surface of the second housing 121 can be covered with the lid member 122, and various functions can be realized. This will be described below.
  • the charged particle microscope of the present embodiment has a function of supplying a replacement gas into the second casing or a function of forming a pressure state different from the first space 11 and the outside air outside the apparatus.
  • the charged particle beam emitted from the lower end of the charged particle optical column 2 passes through the diaphragm 10 shown in FIG. 9 through the first space maintained at a high vacuum, and further, the atmospheric pressure or (first Invade into a second space maintained at a low vacuum (rather than space). That is, the second space is in a state of lower vacuum (low vacuum) than the first space. Since the electron beam is scattered by the gas molecules in the atmospheric space, the mean free path is shortened.
  • the scattering probability of an electron beam is proportional to the mass number and density of gas molecules. Therefore, if the second space is replaced with gas molecules having a lighter mass number than the atmosphere, or if the vacuum is slightly evacuated, the scattering probability of the electron beam decreases, and the electron beam can reach the sample. . Further, even if it is not the entire second space, it is sufficient that at least the passage of the electron beam in the second space, that is, the atmosphere in the space between the diaphragm and the sample can be replaced with gas.
  • the lid member 122 is provided with an attachment portion (gas introduction portion) for the gas supply pipe 100.
  • the gas supply pipe 100 is connected to the gas cylinder 103 by the connecting portion 102, whereby the replacement gas is introduced into the second space 12.
  • a gas control valve 101 is arranged in the middle of the gas supply pipe 100, and the flow rate of the replacement gas flowing through the pipe can be controlled.
  • a signal line extends from the gas control valve 101 to the lower control unit 37, and the apparatus user can control the flow rate of the replacement gas on the operation screen displayed on the monitor of the computer 35.
  • the gas control valve 101 may be manually opened and closed.
  • the gas is lighter than the atmosphere, such as nitrogen or water vapor, the effect of improving the image S / N can be seen, but helium gas or hydrogen gas having a lighter mass has a better image S / N. Great improvement effect.
  • an opening that communicates the inside and outside of the second space is provided below the attachment position of the gas supply pipe 100 by the lid member 122.
  • an opening is provided at the attachment position of the pressure adjustment valve 104.
  • a pressure regulating valve 104 may be provided instead of the opening described above.
  • the pressure regulating valve 104 has a function of automatically opening the valve when the internal pressure of the second housing 121 becomes 1 atm or more. By providing a pressure regulating valve with such a function, when light element gas is introduced, it automatically opens when the internal pressure reaches 1 atm or more and discharges atmospheric gas components such as nitrogen and oxygen to the outside of the device.
  • the element gas can be filled in the apparatus.
  • the illustrated gas cylinder or vacuum pump 103 may be provided in a charged particle microscope, or may be attached later by an apparatus user.
  • the gas cylinder 103 may be a vacuum pump. Then, by slightly evacuating, the inside of the second housing can be brought into an extremely low vacuum state (that is, an atmosphere having a pressure close to atmospheric pressure). For example, a vacuum exhaust port is provided in the second casing 121 or the lid member 122, and the inside of the second casing 121 is slightly evacuated. Thereafter, a replacement gas may be introduced.
  • the vacuum evacuation in this case does not require high vacuum evacuation because the atmospheric gas component remaining in the second housing 121 may be reduced to a certain amount or less, and rough evacuation is sufficient.
  • the sample when placed in a vacuum state changes its state as the water evaporates. Therefore, as described above, it is preferable to introduce the replacement gas directly from the air atmosphere. By closing the opening with a lid member after introducing the replacement gas, the replacement gas can be effectively confined in the second space.
  • the space in which the sample is placed can be controlled to an arbitrary degree of vacuum from atmospheric pressure (about 10 5 Pa) to about 10 3 Pa.
  • atmospheric pressure about 10 5 Pa
  • the electron beam column and the sample chamber communicate with each other, so if the pressure in the sample chamber is reduced to a pressure close to atmospheric pressure, the pressure in the electron beam column also changes accordingly. Therefore, it is difficult to control the sample chamber to a pressure of atmospheric pressure (about 10 5 Pa) to 10 3 Pa.
  • the second space and the first space are separated by the thin film, the pressure of the atmosphere in the second space surrounded by the second casing 121 and the lid member 122 and The gas species can be freely controlled.
  • the sample chamber can be controlled to a pressure of atmospheric pressure (about 10 5 Pa) to 10 3 Pa, which has been difficult to control until now. Furthermore, not only the observation at atmospheric pressure (about 10 5 Pa) but also the state of the sample can be observed by continuously changing the pressure in the vicinity thereof.
  • the cylinder 103 may be a reactive gas cylinder such as organic gas, oxygen gas, and inorganic gas.
  • the cylinder 103 may be a complex gas control unit in which a gas cylinder and a vacuum pump are combined.
  • the charged particle microscope of the present embodiment includes a sample stage 5 as means for moving the observation field of view by deflecting the sample position.
  • the sample stage 5 includes an XY drive mechanism in the in-plane direction and a Z-axis drive mechanism in the height direction.
  • a support plate 107 serving as a bottom plate for supporting the sample stage 5 is attached to the lid member 122, and the sample stage 5 is fixed to the support plate 107.
  • the support plate 107 is attached so as to extend toward the inside of the second casing 121 toward the surface of the lid member 122 facing the second casing 121.
  • Support shafts extend from the Z-axis drive mechanism and the XY drive mechanism, respectively, and are connected to the operation knob 108 and the operation knob 109 of the lid member 122, respectively.
  • the apparatus user adjusts the position of the sample 6 in the second housing 121 by operating these operation knobs 108 and 109.
  • the liquid introduction / extraction section 300 is provided around the sample stage 5 and in the vicinity of the sample 6.
  • the liquid introduction / extraction part 300 is connected to the lid member 122. If the connecting part 310 is provided on the lid member 122, it is easier to attach a liquid introduction / extraction control unit such as a liquid introduction / extraction pump or a syringe from the outside of the apparatus.
  • a liquid leakage prevention unit 308 may be provided in the same manner as in the above-described embodiment so that liquid does not leak into the second housing.
  • a gas may be introduced from the liquid introduction / extraction section 300 instead of a liquid. If the gas is introduced / extracted, the gas supply pipe 100 attached to the lid member 122 may or may not be provided.
  • a temperature heater or a Peltier element capable of controlling the temperature of the vicinity of the sample 6 or the liquid.
  • the temperature control unit 305 is disposed inside the second casing 121.
  • a wiring 311 wired from the signal introduction / extraction section 312 connected to the lid member 122 is connected to the temperature control section.
  • a thermometer or the like may be arranged.
  • the signal introducing / extracting portion 312 connected to the lid member 122 and the electrode 307 may be connected to apply a voltage to the sample 5.
  • the configuration according to the present embodiment is characterized in that the second housing internal space 12 is closed as compared with the configuration described above. Therefore, for example, a reactive gas, gas, or liquid in the sample 6 can be introduced, and the state of the temperature-controlled sample can be observed with the charged particle beam apparatus.
  • the charged particle microscope of this embodiment includes a lid member support member 19 and a bottom plate 20 on the bottom surface of the first housing 7 and the bottom surface of the lid member 122, respectively.
  • the lid member 122 is detachably fixed to the second housing 121 via a vacuum sealing member 125.
  • the lid member support member 19 is also detachably fixed to the bottom plate 20, and the lid member 122 and the lid member support member 19 can be removed from the second housing 121 as shown in FIG. Is possible.
  • electric wiring etc. are abbreviate
  • the bottom plate 20 is provided with a support 18 that is used as a guide for removal.
  • the support column 18 is stored in a storage portion provided on the bottom plate 20 and is configured to extend in the pull-out direction of the lid member 122 when being removed.
  • the support column 18 is fixed to the lid member support member 19, and when the lid member 122 is removed from the second housing 121, the lid member 122 and the charged particle microscope main body are not completely separated. ing. Thereby, the fall of the sample stage 5 or the sample 6 can be prevented.
  • the sample 6 is moved away from the diaphragm 10 by turning the Z-axis operation knob of the sample stage 5.
  • the pressure regulating valve 104 is opened, and the inside of the second housing is opened to the atmosphere.
  • the lid member 122 is pulled out to the side opposite to the apparatus main body.
  • the lid member 122 is pushed into the second casing 121, the lid member 122 is fixed to the mating portion 132 with a fastening member (not shown), and the interior of the second casing 121 is replaced with a replacement gas as necessary. Replace or evacuate.
  • the above operation can also be executed when a high voltage is applied to the optical lens 2 inside the charged particle optical column 2 or when a charged particle beam is emitted from the charged particle source 8. That is, the operation of the charged particle optical column 2 can be continued and the first space can be executed in a vacuum state. Therefore, the charged particle microscope of the present embodiment can start observation quickly after exchanging the sample.
  • FIG. 11 illustrates a state in which only the sample stage portion with the lid member 122 pulled out is observed from above in FIG.
  • the sample stage 5 is disposed on the support plate 107, and the sample holder 315 (or the liquid absorbing member 309) and the sample are disposed on the sample stage 5. Further, an X-direction mark portion 314 and a Y-direction mark portion 314 are provided on the support plate 107.
  • An observation sample 316 to be observed is placed at a mark center position 318 (intersection of a one-dot chain line in the figure) grasped by the X direction mark portion 314 and the Y direction mark portion 314.
  • the mark center position 318 is adjusted to be below the center of the diaphragm 10 when the lid member 122 is pushed into the second housing 121.
  • the center of the diaphragm 10 is adjusted in advance so as to be positioned on the optical axis of the charged particle optical column. Therefore, it can be said that the mark center position 318 is a mark representing a position on the optical axis in the sample stage. Thereby, even when the lid member 122 is pulled out, it is possible to grasp where it can be placed under the diaphragm 10 on the sample holder (or the liquid absorbing member 309).
  • the stage 5 is moved to bring the observation sample 317 to the mark center position 318 as shown in FIG. Thereafter, the observation sample 317 can be observed by pushing the lid member 122 into the second housing 121 again.
  • the positional relationship and the distance between the observation sample 316 and the observation sample 317 can be known.
  • it can be grasped how much the observation sample 317 can be observed, so that the sample stage is moved by the known numerical value while the cover member 122 is pushed in. It is also possible to observe the observation sample 317.
  • the mark center position 318 and the diaphragm 10 position are adjusted when the apparatus is assembled. For example, a sample having a known alignment mark at the center of the sample is placed in the sample holder 315 when the apparatus is assembled. Next, the sample stage 5 is moved by the charged particle device so that the alignment mark is below the diaphragm.
  • the lid member 122 is pulled out, the alignment mark position is confirmed by visual observation or the like, and the mark center position 318 is moved by moving the X-direction mark adjustment unit 320 and the Y-direction mark adjustment unit 321 itself (intersection of one-dot chain line in the figure). And the alignment mark position.
  • the mark center position 318 (intersection of the alternate long and short dash line in the figure) can coincide with the diaphragm 10 and the optical axis 200 of the charged particle optical column 2 when the lid member 122 is pushed in.
  • the X direction mark portion 313 and the Y direction mark portion 314 are provided on the support plate 107 independently of the sample stage 5. That is, even if the sample stage 5 is moved using the operation unit 108 or the like, the X direction mark portion 313 and the Y direction mark portion 314 do not move.
  • the X-direction mark portion 313 and the Y-direction mark portion 314 have been described as being provided on the support plate 107, but the lid member 122, the second case 121, and the first case 7 may be provided. Good.
  • a mark such as a scale may be disposed on the sample holder 315.
  • a mark such as a scale By disposing a mark such as a scale on the sample holder 315, it is possible to easily grasp how far the sample 6 is disposed from the center of the sample holder 315.
  • the charged particle microscope of the present embodiment can also be used as a normal high vacuum charged particle microscope apparatus.
  • FIG. 12 the whole block diagram of the charged particle microscope of a present Example in the state used as a high vacuum charged particle microscope is shown.
  • the control system is the same as that in FIG. FIG. 12 shows a charged particle microscope in a state where the gas supply pipe 100 is removed from the lid member 122 with the lid member 122 fixed to the second housing 121 and then closed at the position where the gas supply pipe 100 is attached with the lid member 130. Is shown.
  • the diaphragm 10 is removed together with the diaphragm holding member 155 by the operation before and after this operation, the first space 11 and the second space 12 can be connected, and the inside of the second housing is evacuated by the vacuum pump 4. It becomes possible. As a result, the pressure inside the second housing is the same as that inside the first housing, and high vacuum charged particle microscope observation is possible with the second housing 121 attached. That is, it is possible to change the charged particle microscope apparatus for observation under atmospheric pressure and gas atmosphere to a high vacuum charged particle microscope apparatus only by removing the 10 parts of the diaphragm together with the diaphragm holding member 155.
  • a desired liquid or gas may be introduced from the connecting portion 310.
  • the water that reaches the liquid transmission member 302 evaporates, so that it is possible to supply water vapor in the vicinity of the sample 6. In other words. A low vacuum state in which the vicinity of the sample is covered with water vapor can be formed.
  • the liquid to be introduced is water, an aqueous solution, an organic solvent such as ethanol, an ionic liquid, or the like.
  • an ionic liquid that does not evaporate even in a vacuum is poured from the liquid introduction / extraction section 300, it is possible to observe a charged particle beam under vacuum while the sample is infiltrated with the ionic liquid.
  • the sample stage 5 and its operation knobs 108 and 109, the gas supply pipe 100, the pressure adjustment valve 104, and the connecting portion 310 are all attached to the lid member 122. Therefore, the apparatus user performs the operation of the operation knobs 108 and 109, the sample replacement operation, or the operation of controlling the gas supply pipe 100, the pressure regulating valve 104, and the liquid introduction / extraction on the same surface of the first casing. Can do. Therefore, the operability is greatly improved as compared with the charged particle microscope in which the above-described components are separately attached to the other surfaces of the sample chamber.
  • a contact monitor that detects the contact state between the second casing 121 and the lid member 122 may be provided to monitor whether the second space is closed or open.
  • an X-ray detector and a photodetector may be provided so that EDS analysis and fluorescent light detection can be performed.
  • the X-ray detector or the photodetector it may be arranged in either the first space 11 or the second space 12.
  • a voltage may be applied to the sample stage 5 and the detector 151.
  • the emitted electrons and transmitted electrons from the sample 6 can be given high energy, the signal amount can be increased, and the image S / N is improved.
  • the sample 6 and the diaphragm 10 are brought as close as possible to irradiate the sample 6 with the charged particle beam. Therefore, there is a possibility that the sample 6 is accidentally brought into contact with the diaphragm 10 and the diaphragm 10 is damaged. Therefore, a member for defining the distance between the sample 6 and the diaphragm 10 may be disposed between the sample 6 and the diaphragm 10.
  • the replacement gas can be introduced from the atmospheric pressure in addition to the effects of the first and second embodiments.
  • the SEM that can observe the sample in the same vacuum state as the first space is realized.
  • the present Example demonstrated the structural example which intended the desktop electron microscope
  • this Example can also be applied to a large sized charged particle microscope.
  • the entire apparatus or charged particle optical column is supported on the apparatus installation surface by a housing, but in the case of a large charged particle microscope, the entire apparatus may be placed on a gantry. If the first casing 7 is placed on a gantry, the configuration described in the present embodiment can be directly used for a large charged particle microscope.
  • FIG. 13 shows a configuration diagram of the charged particle microscope of the present embodiment.
  • a vacuum pump and a control system are not shown in the figure.
  • the housing 7 and the charged particle optical column 2 that are vacuum chambers are supported by columns, supports, and the like on the apparatus installation surface. Since the operation / function of each element or additional elements added to each element are substantially the same as those in the above-described embodiment, detailed description thereof is omitted.
  • a sample stage 5 for making the sample 6 and the diaphragm 10 non-contact is provided on the diaphragm. That is, the sample surface below the sample 6 in the figure is observed.
  • the operation unit 204 for operating the sample stage 5 it is possible to bring the lower surface of the sample closer to 10 parts of the diaphragm.
  • the liquid inlet / outlet part 300 is arranged on the upper side in the figure. By introducing the liquid from the upper side in the figure as indicated by the arrows in the figure, it is possible to introduce the liquid from the sample surface opposite to the diaphragm 10 side.
  • the liquid transmission member 302 is not shown in the drawing, the liquid transmission member 302 may be used.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or an optical disk.
  • a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or an optical disk.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 本発明は、ガス雰囲気または液体状態での試料を観察する機能を備えた荷電粒子線装置において、乾燥状態の試料に液体を導入して浸潤していく様子を観察すること、また、隔膜と試料の間に余分な液体が導入されて荷電粒子線が散乱されることを防止することを目的とする。 本発明は、試料(6)の下面方向または側面方向から所望の液体または気体を導入出する導入出部(300)を備え、試料(6)と隔膜(10)とが非接触な状態で一次荷電粒子線を試料(6)に照射する構成を備える。

Description

荷電粒子線装置及び試料観察方法
 本発明は、試料を大気圧あるいは所定の圧力下のガス雰囲気中で観察可能な顕微鏡技術に関する。
 物体の微小な領域を観察するために、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などが用いられる。一般的に、これらの装置では試料を配置するための筐体を真空排気し、試料雰囲気を真空状態にして試料を撮像する。しかしながら、生物化学試料や液体試料などは真空によってダメージを受け、または状態が変わってしまう。一方で、このような試料を電子顕微鏡で観察したいというニーズは大きく、近年、観察対象試料を大気圧下で観察可能なSEM装置や試料保持装置などが開発されている。
 これらの装置は、原理的には電子光学系と試料の間に電子線が透過可能な隔膜または微小な貫通孔を設けて真空状態と大気状態を仕切るもので、いずれも試料と電子光学系との間に隔膜を設ける点で共通する。
 例えば、特許文献1には、電子光学鏡筒の電子源側を下向きに、また対物レンズ側を上向きに配置し、電子光学鏡筒末端の電子線の出射孔上にOリングを介して電子線が透過できる隔膜を設けたSEMが開示されている。当該文献に記載された発明では、観察対象試料を隔膜上に直接載置し、試料の下面から一次電子線を照射して、反射電子または二次電子を検出してSEM観察を行う。試料は、隔膜の周囲に設置された環状部材と隔膜により構成される空間内に保持され、さらにこの空間内には水などの液体が満たされている。
 また、特許文献2には、電子線を通過させる隔膜を上面側に設けた円筒容器内に観察試料を格納し、この円筒容器をSEMの真空試料室内に設け、更に当該円筒容器に真空試料室の外部からホースを接続することにより容器内部を大気雰囲気に維持できる環境セルの発明が開示されている。
特開2009-158222号公報(米国特許出願公開第2009/0166536号明細書) 特表2004-515049号公報(国際公開第2002/045125号明細書)
 ガス雰囲気または液体状態での試料を観察する機能を備えた従来の荷電粒子線装置は、いずれも乾燥状態の試料に液体を導入して浸潤していく様子を観察できる装置ではなかった。
 また、特許文献1及び特許文献2に記載の装置では隔膜と試料では、試料と隔膜間に液体が入り込むことが避けられない。この場合、電子線が液体により散乱を受けるために、実際に観察したい試料で電子線が届かないという問題がある。つまり、完全に試料と隔膜が接触している部位の試料しか観察できないという問題がある。
 また、液体が隔膜に常に接触しているために、隔膜が破損する可能性が非常に高いという問題もある。
 以上に一例として挙げたように従来の荷電粒子線装置では、大気圧または所定の圧力下のガス雰囲気中で、液体または気体を試料近傍に導入して試料を観察する手段は不十分なものであった。
 本発明は、かかる問題に鑑みてなされたもので、試料を大気雰囲気または真空下または所望の液体もしくは気体雰囲気で観察することが可能であり、また試料内部または試料近傍に所望の液体や気体を導入出できる荷電粒子線装置を提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、試料の下面方向または側面方向から所望の液体または気体を導入出する導入出部を備え、試料と隔膜とが非接触な状態で一次荷電粒子線を試料に照射することを特徴とする。
 本発明によれば、試料を大気雰囲気または真空下または所望の液体もしくは気体雰囲気で観察することが可能であり、また試料内部または試料近傍に所望の液体や気体を導入出できる荷電粒子線装置を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1の荷電粒子顕微鏡の全体構成図。 隔膜の詳細図。 実施例1の荷電粒子顕微鏡の構成例を説明する図。 実施例1の荷電粒子顕微鏡の構成例を説明する図。 実施例1の荷電粒子顕微鏡の構成例を説明する図。 実施例1の荷電粒子顕微鏡の構成例を説明する図。 実施例1の荷電粒子顕微鏡の構成例を説明する図。 実施例2の荷電粒子顕微鏡の全体構成図。 実施例3の荷電粒子顕微鏡の全体構成図。 実施例3の荷電粒子顕微鏡の試料ステージを引き出した図。 試料ステージ5近傍周辺の説明図。 実施例3の荷電粒子顕微鏡にて真空観察を行うための図。 実施例4の荷電粒子顕微鏡の構成例を説明する図。
 以下、図面を用いて各実施形態について説明する。
 以下では、荷電粒子線装置の一例として、荷電粒子線顕微鏡について説明する。ただし、これは本発明の単なる一例であって、本発明は以下説明する実施の形態に限定されるものではない。本発明は、走査電子顕微鏡、走査イオン顕微鏡、走査透過電子顕微鏡、これらと試料加工装置との複合装置、またはこれらを応用した解析・検査装置にも適用可能である。
 また、本明細書において「大気圧」とは大気雰囲気または所定のガス雰囲気であって、大気圧または若干の負圧若しくは加圧状態の圧力環境のことを意味する。具体的には約105Pa(大気圧)から~103Pa程度である。
 <装置基本構成>
 本実施例では、最も基本的な実施形態について説明する。図1には、本実施例の荷電粒子顕微鏡の全体構成図を示す。図1に示される荷電粒子顕微鏡は、主として、荷電粒子光学鏡筒2、荷電粒子光学鏡筒2と接続された支持する筐体(真空室)7、大気雰囲気下に配置される試料ステージ5、およびこれらを制御する制御系によって構成される。荷電粒子顕微鏡の使用時には荷電粒子光学鏡筒2と第1筐体の内部は真空ポンプ4により真空排気される。真空ポンプ4の起動・停止動作も制御系により制御される。図中、真空ポンプ4は一つのみ示されているが、二つ以上あってもよい。荷電粒子光学鏡筒2及び筺体7は図示しない柱等が土台270によって支えられているとする。
 荷電粒子光学鏡筒2は、荷電粒子線を発生する荷電粒子源8、発生した荷電粒子線を集束して鏡筒下部へ導き、一次荷電粒子線として試料6を走査する光学レンズ1などの要素により構成される。荷電粒子光学鏡筒2は筐体7内部に突き出すように設置されており、真空封止部材123を介して筐体7に固定されている。荷電粒子光学鏡筒2の端部には、上記一次荷電粒子線の照射により得られる二次荷電粒子(二次電子または反射電子)を検出する検出器3が配置される。
 本実施例の荷電粒子顕微鏡は、制御系として、装置使用者が使用するコンピュータ35、コンピュータ35と接続され通信を行う上位制御部36、上位制御部36から送信される命令に従って真空排気系や荷電粒子光学系などの制御を行う下位制御部37を備える。コンピュータ35は、装置の操作画面(GUI)が表示されるモニタと、キーボードやマウスなどの操作画面への入力手段を備える。上位制御部36、下位制御部37およびコンピュータ35は、各々通信線43、44により接続される。
 下位制御部37は真空ポンプ4、荷電粒子源8や光学レンズ1などを制御するための制御信号を送受信する部位であり、さらには検出器3の出力信号をディジタル画像信号に変換して上位制御部36へ送信する。図では検出器3からの出力信号をプリアンプなどの増幅器154を経由して下位制御部37に接続している。もし、増幅器が不要であればなくてもよい。
 上位制御部36と下位制御部37ではアナログ回路やディジタル回路などが混在していてもよく、また上位制御部36と下位制御部37が一つに統一されていてもよい。なお、図1に示す制御系の構成は一例に過ぎず、制御ユニットやバルブ、真空ポンプまたは通信用の配線などの変形例は、本実施例で意図する機能を満たす限り、本実施例のSEMないし荷電粒子線装置の範疇に属する。
 筐体7には、一端が真空ポンプ4に接続された真空配管16が接続され、内部を真空状態に維持できる。同時に、筐体内部を大気開放するためのリークバルブ14を備え、メンテナンス時などに、筐体7の内部を大気開放することができる。リークバルブ14は、なくてもよいし、二つ以上あってもよい。また、筐体7におけるリークバルブ14の配置箇所は、図1に示された場所に限られず、筐体7上の別の位置に配置されていてもよい。
 筐体下面には上記荷電粒子光学鏡筒2の直下になる位置に隔膜10を備える。この隔膜10は、荷電粒子光学鏡筒2の下端から放出される一次荷電粒子線を透過または通過させることが可能であり、一次荷電粒子線は、隔膜10を通って最終的に試料6に到達する。隔膜10によって構成される閉空間は真空排気可能である。よって、本実施例では、荷電粒子光学鏡筒2を真空状態に維持でき、かつ試料6を大気圧に維持することができる。また、観察中、試料6を自由に交換できる。
 <隔膜部>
 隔膜10の詳細図を図2に示す。隔膜10は土台159上に成膜または蒸着されている。隔膜10はカーボン材、有機材、シリコンナイトライド、シリコンカーバイド、酸化シリコンなどである。土台159は例えばシリコンのような部材であり、ウェットエッチングなどの加工により図のようにテーパ穴165が掘られてあり、図2中下面に隔膜10が具備されている。隔膜10部は複数配置された多窓であってもよい。一次荷電粒子線を透過または通過させることが可能な隔膜の厚みは数nm~数μm程度である。隔膜に替えて、一次荷電粒子線の通過孔を備えるアパーチャ部材を用いてもよく、その場合の孔径は、現実的な真空ポンプで差動排気可能という要請から、面積1mm2程度以下であることが望ましい。また、隔膜10の上下の真空圧差が形成及び維持可能であるならば隔膜10に微小な穴があいていてもかまわない。
 但し、隔膜10部が複数設けた多窓の場合、試料が誤って隔膜に接触して破損する確率が増す。そのため、隔膜10は一か所だけ配置してもよい。
 隔膜は大気圧と真空を分離するための差圧下で破損しないことが必要である。そのため、隔膜10の面積は数十μmから大きくとも数mm程度の大きさである。隔膜10の形状は正方形でなく、長方形などのような形状でもよい。形状に関してはどのような形状でもかまわない。図2に示された側、つまり、テーパ部165がある側が真空側(図中上側)に配置される。これは試料から放出された二次荷電粒子を検出器3にて効率よく検出するためである。
 隔膜10を透過ないし通過して試料6に到達した荷電粒子線によって試料内部または表面から反射荷電粒子や透過荷電粒子などの二次的荷電粒子線を放出する。この二次的荷電粒子を検出器3にて検出する。検出器3は数keVから数十keVのエネルギーで飛来してくる荷電粒子線を検知及び増幅することができる検出素子である。例えば、シリコン等の半導体材料で作られた半導体検出器や、ガラス面または内部にて荷電粒子信号を光に変換することが可能なシンチレータ等である。
 筺体7に具備された隔膜10の下部には大気雰囲気下に配置された試料ステージ5を備える。試料ステージ5には少なくとも試料6を隔膜10に接近させることが可能な高さ調整機能を備える。例えば、操作部204を回すなどして試料6を隔膜10方向に接近させることができる。当然のことながら、試料面内方向に動くXY駆動機構を備えてもよい。
 局所的に大気雰囲気に維持できる環境セルのような従来技術では、大気圧/ガス雰囲気での観察を行うことは可能であるが、セルに挿入可能なサイズの試料しか観察できず、大型試料の大気圧/ガス雰囲気での観察ができないという問題があった。また環境セルの場合、異なる試料を観察するには、SEMの真空試料室から環境セルを取り出し、試料を取り替えて再度真空試料室内に搬入しなければならず、試料交換が煩雑であるという問題もあった。一方、本実施例の方式によれば、試料が載置される空間がが開放されているので、半導体ウェハ等の大型試料であっても大気圧下で観察することができる。さらに、観察中に試料を自由に移動させることができ、試料交換を容易に行うことができる。
 また、液体を満たした隔膜上部に試料を保持する従来技術では、液体が隔膜に常に接触しているために、隔膜が破損する可能性が非常に高いという問題があった。一方、本実施例の方式によれば、試料が隔膜上に載置されないので試料によって隔膜が破損してしまう可能性を低減できる。
 <液体または気体導入出部>
 次に、試料に液体を伝えることが可能な最も基本的な実施形態について説明する。荷電粒子光学鏡筒2などは簡略して図3に説明図を記載する。図3(a)では試料台5の試料下部に液体伝達部材302と開口部301を備えた液体導入出部300が配置された構成に関して説明する。試料6は液体伝達部材302上に配置されている。液体伝達部材302は多孔質体、濾紙などの繊維質、スポンジ、少なくとも一つ以上穴が開いたアパーチャ材、多量の管で構成された多管体などで液体または気体を透過する部材である。液体伝達部材302と液体導入出部300は接触または近接している。例えば、図中矢印で示した方向に液体導入出部300から液体を流すと、液体伝達部材302に液体が伝わり、図中点線部で示した試料面より下側から試料6を浸潤させることが可能となる。
 試料としては、例えば、細胞などの生体試料、綿などの繊維材料、有機材などのソフトマテリアルなどである。または、液体に浸潤されることによって表面構造等の何らかの状態が変化する無機材料などである。
 導入される液体としては、水、水溶液、エタノールなどの有機溶媒、イオン液体などである。
 図3(b)では液体導入出部300が液体伝達部材302の側面方向から接触または近接されている様子を図示している。液体伝達部材302がある程度の厚みを持たすことで、このような構成にしてもよい。
 図示されていないが、液体伝達部材302は金属などの部材や接着剤またはテープなどを用いて試料ステージ5上に固定してもよい。また、試料6も同様に何らかの部材を用いて液体伝達部材302上に固定してもよい。
 また、試料そのものがある程度の大きさをもっているのであれば、試料6は試料ステージ5上に直接配置してもよい。この場合、図3(c)のように液体導入出部300から試料6下側の開口部301経由で液体を流入出してもよいし、試料にある程度の厚みがあるのであれば、図3(d)のように試料6側面側から液体導入出部300を接触または近接させてもよい。
 以下では、荷電粒子線を試料に照射している状態で、試料に液体を導入して試料を湿潤させる手順に関して説明する。ここでは前述の図3(a)の構成を用いた例で説明するが、図3(b)から(d)の構造においても同様の方法を採用することができる。初めに、液体伝達部材302上に試料6を搭載する。次に、試料6ごと液体伝達部材302を試料ステージ5上に搭載する。次に、試料ステージ5を駆動し、隔膜10に試料6を接近させる。次に、荷電粒子線を試料6に照射する。次に、液体導入出部300を液体伝達部材302に接触または接近させる。予め、接触または接近してあるのであれば、本動作は不要である。次に、液体導入出部300を用いて液体伝達部材302に液体を伝達させる。その後、試料6と隔膜10とが非接触な状態で一次荷電粒子線を試料に照射する。これら動作によって、試料6が湿潤していく様子を観察することが可能となる。
 液体導入出部300に用いる液体の流量または導入出速度、導入出のタイミング等の制御は、電動ポンプなどを用いた電動液体導出入機でも行ってもよいし、注射器などを用いて手動で行ってもよい。これらの制御を行うことによって、試料6が湿潤または乾燥していく速度を調整しながら所望の状態で試料を観察することが可能となる。
 液体導入出部300は例えば、液体を送ることが可能なノズルやストローなどの管材である。液体導入出部300は試料ステージ5に具備されていてもよいし着脱可能としてもよい。または、液体導入出部300は数滴の液体を搭載可能なさじのようなものでもよい。例えば、装置外部にてさじ上に液体を置き、その液体部さじごと試料に接近させて、試料を液体に接触させる手順にて、試料に液体を供給する。または、装置外部にて荷電粒子線が照射される試料面より下側の部位に、液体を接触させたのちに、試料ステージ5上に配置してから、隔膜下に前記試料を配置して荷電粒子線を試料に照射してもよい。荷電粒子線が照射される側の試料表面よりも下側(例えば試料の下面方向または側面方向)から液体を導入することができればどのような形態でもかまわない。
 また、装置外部から液体を導入するためのノズルが装置に常設されていない場合には、観察したい場所を荷電粒子線顕微鏡で確認後、試料ホルダを外に取り出して試料下側の液体伝達部材302経由で液体を導入した後、試料ホルダをステージ上に戻して再度観察する。一方装置に外部から液体を導入するためのノズルが設置されている場合には、荷電粒子線照射を行いながら液体または気体を銅入出できるので、リアルタイムに試料が浸潤していく様子を観察することができる。
 いずれの方法においても、自動または手動で、導入出部から導入出される液体または気体の流量または導入出速度または導入出タイミング等を制御することが可能である。電動ポンプなどの導入出制御部によって自動でこれらを制御する場合には、さらに、これを着脱可能とすると使い勝手が良い。
 上記の液体導入出部を用いれば、試料と隔膜を非接触状態として荷電粒子線照射することができ、これにより、大気またはガス雰囲気に維持された状態の試料が、浸潤された状態、浸潤されていく状態、あるいは乾燥していく状態の観察をすることが可能となる。
 以下では、荷電粒子線が照射される試料表面より下側から液体を湿潤させる理由に関して説明する。ここで、図4(a)に示したように、ノズル303などを使って試料上側から液体を導入すると、隔膜と試料間に余分な液体が入ってしまう。隔膜10を通過した荷電粒子線は試料6表面に到達する前に、液体によって荷電粒子線が散乱されてしまうため、試料6を観察することができない。また、隔膜10に液体が接触してしまう恐れもある。一方で、図4(b)に示したように、液体導入出部300を荷電粒子線が照射される試料面より下側から導入した場合は、隔膜10と試料6に余分な液体をいれることなく、試料6を浸潤させることが可能となる。また、試料6及び液体と隔膜10は非接触とすることができる。上述のような構成により液体導入出部300からの液体投入量や速度は制御可能とすれば、浸潤していく速度もある程度制御することができる。
 図3(a)で示したように液体伝達部材302を用いると、液体伝達部材302を用いて間接的に試料6を浸潤させることになるので、よりゆっくりと液体を試料に注入することが可能となる。
 以上では、液体を試料に伝達することだけに関して説明したが、すでに浸潤している試料6から液体導入出部300を経由して水分を吸い出してもよい。つまり、浸潤状態の試料6が徐々に乾燥させることが可能となる。この場合は、液体導入出部300には水分を吸い取ることが可能なポンプなどを取り付ければよい。液体を吸い出す場合は、試料6が試料ステージ5上に残存している必要があるので、観察したい試料6が粉末などの非常に小さい場合は、試料よりも大きさが小さい微細孔を多数配置されたメッシュや濾紙など液体伝達部材302を試料下に配置して液体を吸い出せばよい。観察したい試料6が十分大きければ、試料6を直接液体導入出部300に接触または近接させて、液体を吸い出してもよい。
 また、以上では、液体導入出部300からの導入出は液体だけに関して説明したが、気体でもよい。所望の気体を試料6近傍の局所的に吹き付けまたは吸い出すことが可能となる。また、本明細書で「液体」とは、粘性流体、ゲルやゾル等の分散系、コロイド、ソフトマター等の流体一般を広く含むものとする。
 <液体漏れ防止部>
 液体が試料6や液体伝達部材302以外の所に漏洩する可能性がある。そこで、図5(a)のように液体漏れ防止部308を試料ステージ上に具備してもよい。液体漏れ防止部308は皿のような形状をしているので、想定以上の液体が試料6近傍に流れても、試料ステージ5下方向などに液体が漏れることを防止することができる。但し、試料表面を隔膜10に接近させる際に液体漏れ防止部308が邪魔にならないように、試料表面A部の高さ位置は液体漏れ防止部B部より図中上側にある必要がある。
 図中液体漏れ防止部308と液体導入出部300は密着させている。パッキンなどの部材を液体漏れ防止部308と液体導入出部300の間に設けて液体が漏れることを防止してもよい。
 図5(b)のように、液体漏れ防止部308は試料ステージ5上面部の下側に設けてもよい。誤って液体がこぼれないようにできれば液体漏れ防止部308形状及び配置方法に関しては本実施例で意図する機能を満たす限り、本実施例の荷電粒子線装置の範疇に属する。
 また、誤って多量の液体が試料6周辺部に導入された際は、液体が隔膜10に付着する可能性がある。そこで、隔膜10に最大限液体が付かないように、濾紙やスポンジなどの繊維材でできた液体吸収部材309を隔膜10周辺に設けてもよい(図5で図示)。こうすることで、試料上の液体が隔膜10に接触する前に液体吸収部材309にて液体を吸い取ることが可能となる。余分な液体吸い出し口を設けてもよい。当該濾紙やスポンジなどの繊維材は交換可能とする。
 また、液体が隔膜10に出来る限り付着しないように、隔膜10の大気側(図中下側、試料と対向する側の面)には疎水性材を塗布してあってもよい。こうすることで、隔膜に付着した液体は隔膜には付着せずに、前記液体吸収部材309に吸い込ませることが可能となる。
 <電圧印加部>
 次に、試料6に近傍に温度制御部を配置した構成に関して図6(a)を用いて説明する。試料ステージ5上に温度制御部305を配置した構成を図示している。本温度制御部305は試料を加熱することが可能なヒータや、冷却が可能なペルチェ素子などである。また、図示しないが温度計を設置することによって、試料6近傍の温度を測定してもよい。温度制御部305は液体伝達部材302の周辺ではなく下部でもよいし上部でもよい。試料6を加熱したい場合は温度制御部305は試料6に出来る限り近接されたほうがよい。
 試料ではなく液体や気体を温度制御したい場合に関する構成に関して図6(b)を用いて説明する。液体導入出部300には液体あるいは気体が準備されたタンク306を備える。タンク306には温度制御部305を備える。温度制御部305によって温度制御された液体や気体を試料近傍に導入出することが可能である。なお、図示しないが温度制御部305は液体や気体が導入出する液体導入出部300に具備されていてもよい。タンク306からは図示しない電動ポンプなどを用いて試料6に所望の液体を導入出することが可能となる。
 図7に図示したように試料に電圧を印加するための電極307を試料近傍に設けてもよい。本構成により、所望の液体や気体が導入出され且つ電圧が印加された状態の試料6に荷電粒子線を照射することが可能となる。
 以下では、一般的な荷電粒子線装置を簡便に大気下にて試料観察できる装置構成に関して説明する。
 図8には、本実施例の荷電粒子顕微鏡の全体構成図を示す。実施例1と同様、本実施例の荷電粒子顕微鏡も、荷電粒子光学鏡筒2、該荷電粒子光学鏡筒を装置設置面に対して支持する筐体(真空室)7、試料ステージ5、液体導入出部300などによって構成される。これらの各要素の動作・機能あるいは各要素に付加される付加要素は、実施例1とほぼ同様であるので、詳細な説明は省略する。
 <第2筺体に関して>
 本構成では、筐体7(以下、第1筺体)に挿入して使用される第2筐体(アタッチメント)を備える。第2筐体121は、直方体形状の本体部131と合わせ部132とにより構成される。後述するように本体部131の直方体形状の側面のうち少なくとも一側面は開放面9となっている。本体部131の直方体形状の側面のうち隔膜保持部材155が設置される面以外の面は、第2筺体121の壁によって構成されていてもよいし、第2筺体121自体には壁がなく第1筺体7に組み込まれた状態で第1筺体7の側壁によって構成されても良い。第2筐体121は第1筐体7の側面又は内壁面又は荷電粒子光学鏡筒に位置が固定される。本体部131は、観察対象である試料6を格納する機能を持ち、上記の開口部を通って第1筐体7内部に挿入される。合わせ部132は、第1筐体7の開口部が設けられた側面側の外壁面との合わせ面を構成し、真空封止部材126を介して上記側面側の外壁面に固定される。これによって、第2筐体121全体が第1筐体7に嵌合される。上記の開口部は、荷電粒子顕微鏡の真空試料室にもともと備わっている試料の搬入・搬出用の開口を利用して製造することが最も簡便である。つまり、もともと開いている穴の大きさに合わせて第2筐体121を製造し、穴の周囲に真空封止部材126を取り付ければ、装置の改造が必要最小限ですむ。また、第2筐体121は第1筐体7から取り外しも可能である。
 第2筐体121の側面は大気空間と少なくとも試料の出し入れが可能な大きさの面で連通した開放面9であり、第2筐体121の内部(図の点線より右側;以降、第2の空間とする)に格納される試料6は、観察中、大気圧状態に置かれる。なお、図8は光軸と平行方向の装置断面図であるため開放面9は一面のみが図示されているが、図8の紙面奥方向および手前方向の第1の筺体の側面により真空封止されていれば、第2の筺体121の開放面9は一面に限られない。第2の筺体121が第1の筺体7に組み込まれた状態で少なくとも開放面が一面以上あればよい。一方、第1筐体7には真空ポンプ4が接続されており、第1筐体7の内壁面と第2筐体の外壁面および隔膜10によって構成される閉空間(以下、第1の空間とする)を真空排気可能である。第2の空間の圧力を第1の空間の圧力より大きく保つように隔膜が配置されることで、本実施例では、第2の空間を圧力的に隔離することができる。すなわち、隔膜10により第1の空間11が高真空に維持される一方、第2の空間12は大気圧または大気圧とほぼ同等の圧力のガス雰囲気に維持されるので、装置の動作中、荷電粒子光学鏡筒2や検出器3を真空状態に維持でき、かつ試料6を大気圧に維持することができる。また、第2筐体121が開放面を有するので、観察中、試料6を自由に交換できる。
 第2筐体121の上面側には、第2筐体121全体が第1筐体7に嵌合された場合に上記荷電粒子光学鏡筒2の直下になる位置に隔膜10を備える。この隔膜10は、荷電粒子光学鏡筒2の下端から放出される一次荷電粒子線を透過または通過させることが可能であり、一次荷電粒子線は、隔膜10を通って最終的に試料6に到達する。
 以上の通り、隔膜を備えたアタッチメント部を導入することによって、一般的な真空下荷電粒子線装置を大気圧またはガス雰囲気で試料観察が可能である。さらに前述の液体導入機構により、大気圧またはガス雰囲気かつ液体浸潤状態での試料観察が可能となる。また、本実施例のアタッチメントは、試料室の側面から挿入する方式のため大型化が容易である。
 <隔膜の固定部位に関して>
 隔膜10を備えた土台159は隔膜保持部材155上に具備されている。隔膜保持部材155は第2の筐体121に具備されている。隔膜保持部材155と第2の筐体121との間はOリングやパッキンなどの真空シール124を備えており、真空封じされている。図示しないが、隔膜10を備えた土台159と隔膜保持部材155との間も真空シールが可能な接着剤や両面テープ等により接着または密着されている。
 隔膜保持部材155は、第2筐体121の上面側、より具体的には天井板の下面側に真空封止部材を介して着脱可能に固定される。隔膜10は、荷電粒子線が透過する要請上、厚さ数nm~数十μm程度以下と非常に薄いため、経時劣化または観察準備の際に破損する可能性がある。一方、隔膜10は薄いため直接ハンドリングすることが非常に困難である。そのため、本実施例のように、隔膜10を備えた土台159を直接ではなく隔膜保持部材155を介してハンドリングできることで、隔膜10の取扱い(特に交換)が非常に容易となる。つまり、隔膜10が破損した場合には、隔膜保持部材155ごと交換すればよく、万が一隔膜10を直接交換しなければならない場合でも、隔膜保持部材155を装置外部に取り出し、隔膜10の交換を装置外部で行うことができる。なお、隔膜に替えて、面積1mm2以下程度の穴を有するアパーチャ部材を使用できる点は、実施例1と同様である。
 第一の筐体内部は真空状態の場合は、隔膜保持部材155は真空に引っ張られるために、第2の筐体121に吸着されるため落下することはない。また、落下防止部材203などを第2筺体121と隔膜保持部材155間に用いれば第一の筐体内部が大気圧下の状態の時に隔膜保持部材155間が落下することを防止することが可能である。
 <隔膜の位置調整に関して>
 次に、隔膜10の位置調整機構に関して説明する。隔膜10を備えた部材を第2の筐体121に取り付けた際に、荷電粒子光学鏡筒2の光軸200(つまり画像中心)と隔膜10位置がずれている場合がある。荷電粒子顕微鏡で取得される画像のほぼ中心付近に当該隔膜10の画像が観察できないと、低倍画像から高倍画像に切り替えた場合に、隔膜10及び試料6が観察できないという問題点がある。そのため、荷電粒子光学鏡筒2の光軸200と隔膜の中心201とを大まかに合わせる必要がある。以下の説明では、荷電粒子光学鏡筒2の光軸200位置は固定されているものとする。
 荷電粒子光学鏡筒2の光軸200と隔膜位置を合わせるために、隔膜10の位置を調整することが可能な調整機構259が用いられる。図8では、第2の筐体121の開放面側に調整機構259が具備した機構を図示している。調整機構259は例えばつまみを回して隔膜10位置を押したり引いたりなどしで位置調整する。駆動機構259は支え部261で第2の筐体121に保持されている。図中調整機構259は一つしか図示されていないが、図中紙面方向にも動かす必要があるので、最低計2種類の調整機構259が必要となる。
 駆動機構259を動かすことによって隔膜10及び土台159を具備する隔膜保持部材155自体が位置調整される。位置変更の際は真空シール124上を隔膜保持部材155が滑るように動く。図示しないがレールやガイドのようなものを経由して隔膜保持部材155を駆動できるようにしてもよい。
 また、試料ステージ5上に隔膜保持部材155と接触させる部材(図示せず)を配置することによって、試料ステージ5を用いて隔膜保持部材155を動かしてもよい。つまり、試料ステージ5上に前記部材を配置し、次に、操作部204を使って、当該部材を隔膜保持部材155などに接触させる。次に、試料ステージ5を用いてXY方向に動かすことによって、隔膜10の位置を変更することが可能となる。この場合は、隔膜保持部材155を紙面横方向及び奥行き方向に対して駆動させるために当該部材と隔膜保持部材155との間には十分な摩擦力がある必要がある。
 <試料ステージに関して>
 第2の筐体121の内部には試料を搭載し、位置変更が可能な試料ステージ5を備える。試料ステージ5には、面内方向へのXY駆動機構および高さ方向へのZ軸駆動機構を備えている。第2の筐体内部に試料ステージ5を支持する底板となるステージ支持台17が配置されており、試料ステージ5はステージ支持台17に具備されている。Z軸駆動機構およびXY駆動機構は第2の筐体内部に配置されている。装置ユーザは、これらを操作する操作つまみ204などを操作することにより、試料6の第2筐体121内での位置を調整する。図中操作つまみ204は第2の筐体内部にあるが、装置外部にひきだされてもよいし、電動モータなどによって外部から制御してもよい。ステージが大きい場合等、第2の筐体121の内部にステージが完全に収まらない場合であっても、ステージを含めた駆動機構の少なくとも一部が第2の筐体121の内部に配置されればよい。
 <液体または気体導入出部>
 次に、試料に液体を伝えることが可能な液体導入出部300をについて説明する。第2筺体121内部の試料ステージ5の試料下部に開口部301を備えられ液体導入出部300を備える。前述の通り、液体導入出部300から導入出される液体または気体は液体伝達部材302経由で試料6に伝達される。図示しないが、液体伝達部材302間は金属などの部材や接着剤、テープなどを用いて試料ステージ5または第2筺体121上に固定してもよい。また、試料6も同様に何らかの部材を用いて液体伝達部材302上に固定してもよい。液体導入出部300の構成及び使用方法に関しては実施例1と同等である。また、液体伝達部材302はあってもなくてもよい。液体漏れ防止部308、液体吸収部材309、温度制御部305や電極307などに関しても実施例1と同様に取付可能とする。また、実施例1と同様に液体導入出部300からは液体ではなく気体を導入出してもよい。
 以上、実施例2における第2筺体121内部の液体導入出部300に関して説明したが、液体導入出部300の場所及び配置方法に関しては上記以外の場所に配置されてもよく、本実施例で意図する機能を満たす限り、本実施例のSEMないし荷電粒子線装置の範疇に属する。
 図9には、本実施例の荷電粒子顕微鏡の全体構成図を示す。実施例1、2と同様、本実施例の荷電粒子顕微鏡も、荷電粒子光学鏡筒2、該荷電粒子光学鏡筒を装置設置面に対して支持する第1筐体(真空室)7、第1筐体7に挿入して使用される第2筐体(アタッチメント)121、制御系などによって構成される。これらの各要素の動作・機能あるいは各要素に付加される付加要素は、実施例1や2とほぼ同様であるので、詳細な説明は省略する。
 本実施例の荷電粒子顕微鏡の場合、第2筐体121の少なくとも一側面をなす開放面を蓋部材122で蓋うことができるようになっており、種々の機能が実現できる。以下ではそれについて説明する。
 <試料近傍雰囲気に関して>
 本実施例の荷電粒子顕微鏡においては、第2筐体内に置換ガスを供給する機能または第一の空間11や装置外部である外気とは異なった気圧状態を形成可能な機能を備えている。荷電粒子光学鏡筒2の下端から放出された荷電粒子線は、高真空に維持された第1の空間を通って、図9に示す隔膜10を通過し、更に、大気圧または(第1の空間よりも)低真空度に維持された第2の空間に侵入する。すなわち第2の空間は第1の空間より真空度が悪い(低真空度の)状態である。大気空間では電子線は気体分子によって散乱されるため、平均自由行程は短くなる。つまり、隔膜10と試料6の距離が大きいと荷電粒子線または荷電粒子線照射により発生する二次電子、反射電子もしくは透過電子が試料及び検出器3や検出器151まで届かなくなる。一方、電子線の散乱確率は、気体分子の質量数や密度に比例する。従って、大気よりも質量数の軽いガス分子で第2の空間を置換するか、少しだけ真空引きすることを行えば、電子線の散乱確率が低下し、電子線が試料に到達できるようになる。また、第2の空間の全体ではなくても、少なくとも第2の空間中の電子線の通過経路、すなわち隔膜と試料との間の空間の大気をガス置換できればよい。
 以上の理由から、本実施例の荷電粒子顕微鏡では、蓋部材122にガス供給管100の取り付け部(ガス導入部)を設けている。ガス供給管100は連結部102によりガスボンベ103と連結されており、これにより第2の空間12内に置換ガスが導入される。ガス供給管100の途中には、ガス制御用バルブ101が配置されており、管内を流れる置換ガスの流量を制御できる。このため、ガス制御用バルブ101から下位制御部37に信号線が伸びており、装置ユーザは、コンピュータ35のモニタ上に表示される操作画面で、置換ガスの流量を制御できる。また、ガス制御用バルブ101は手動にて操作して開閉してもよい。
 置換ガスの種類としては、窒素や水蒸気など、大気よりも軽いガスであれば画像S/Nの改善効果が見られるが、質量のより軽いヘリウムガスや水素ガスの方が、画像S/Nの改善効果が大きい。
 置換ガスは軽元素ガスであるため、第2の空間12の上部に溜まりやすく、下側は置換しにくい。そこで、蓋部材122でガス供給管100の取り付け位置よりも下側に第2の空間の内外を連通する開口を設ける。例えば図9では圧力調整弁104の取り付け位置に開口を設ける。これにより、ガス導入部から導入された軽元素ガスに押されて大気ガスが下側の開口から排出されるため、第2筐体121内を効率的にガスで置換できる。なお、この開口を後述する粗排気ポートと兼用しても良い。
 上述の開口の代わりに圧力調整弁104を設けても良い。当該圧力調整弁104は、第2筐体121の内部圧力が1気圧以上になると自動的にバルブが開く機能を有する。このような機能を有する圧力調整弁を備えることで、軽元素ガスの導入時、内部圧力が1気圧以上になると自動的に開いて窒素や酸素などの大気ガス成分を装置外部に排出し、軽元素ガスを装置内部に充満させることが可能となる。なお、図示したガスボンベまたは真空ポンプ103は、荷電粒子顕微鏡に備え付けられる場合もあれば、装置ユーザが事後的に取り付ける場合もある。
 また、ヘリウムガスや水素ガスのような軽元素ガスであっても、電子線散乱が大きい場合がある。その場合は、ガスボンベ103を真空ポンプにすればよい。そして、少しだけ真空引きすることによって、第2の筐体内部を極低真空状態(すなわち大気圧に近い圧力の雰囲気)にすることが可能となる。例えば、第2の筐体121または蓋部材122に真空排気ポートを設け、第2筐体121内を少しだけ真空排気する。その後置換ガスを導入してもよい。この場合の真空排気は、第2筐体121内部に残留する大気ガス成分を一定量以下に減らせればよいので高真空排気を行う必要はなく、粗排気で十分である。
 ただし、生体試料など水分を含む試料などを観察する場合、一度真空状態に置かれた試料は、水分が蒸発して状態が変化する。従って、上述のように、大気雰囲気から直接置換ガスを導入する方が好ましい。上記の開口は、置換ガスの導入後、蓋部材で閉じることにより、置換ガスを効果的に第2の空間内に閉じ込めることができる。
 このように本実施例では、試料が載置された空間を大気圧(約105Pa)から約103Paまでの任意の真空度に制御することができる。従来のいわゆる低真空走査電子顕微鏡では、電子線カラムと試料室が連通しているので、試料室の真空度を下げて大気圧に近い圧力とすると電子線カラムの中の圧力も連動して変化してしまい、大気圧(約105Pa)~103Paの圧力に試料室を制御することは困難であった。本実施例によれば、第2の空間と第1の空間を薄膜により隔離しているので、第2の筐体121および蓋部材122に囲まれた第2の空間の中の雰囲気の圧力およびガス種は自由に制御することができる。したがって、これまで制御することが難しかった大気圧(約105Pa)~103Paの圧力に試料室を制御することができる。さらに、大気圧(約105Pa)での観察だけでなく、その近傍の圧力に連続的に変化させて試料の状態を観察することが可能となる。
 また、試料表面の化学反応過程を観察したいもある。この場合は、ボンベ103は有機ガス、酸素ガス、無機ガスなどの反応性ガスボンベにしてもよい。図示しないが、ボンベ103部はガスボンベと真空ポンプを複合的に接続した、複合ガス制御ユニット等でもよい。
 <試料ステージに関して>
 次に、試料ステージ5について説明する。本実施例の荷電粒子顕微鏡は、試料位置を偏向することで観察視野を移動する手段としての試料ステージ5を備えている。試料ステージ5には、面内方向へのXY駆動機構および高さ方向へのZ軸駆動機構を備えている。蓋部材122には試料ステージ5を支持する底板となる支持板107が取り付けられており、試料ステージ5は支持板107に固定されている。支持板107は、蓋部材122の第2筐体121への対向面に向けて第2筐体121の内部に向かって延伸するよう取り付けられている。Z軸駆動機構およびXY駆動機構からはそれぞれ支軸が伸びており、各々蓋部材122が有する操作つまみ108および操作つまみ109と繋がっている。装置ユーザは、これらの操作つまみ108および109を操作することにより、試料6の第2筐体121内での位置を調整する。
 <液体または気体導入出部>
 前述の実施例と同様に、試料ステージ5周辺及び試料6近傍に液体導入出部300を備える。液体導入出部300は蓋部材122に接続されている。蓋部材122につなぎ部310を設ければ装置外部から液体導入出用ポンプや注射器などの液体導入出制御部を取り付ける際により簡便となる。なお、図示していないが、液体が第2筺体内部に漏れないように、前述の実施例と同様に液体漏れ防止部308を設けてもよい。
 また、実施例1と同様に液体導入出部300からは液体ではなく気体を導入出してもよい。もし、気体を導入出するのであれば、前述の蓋部材122に取り付けられたガス供給管100はなくてもよいし、あってもよい。
 <電圧印加部>
 本実施例においても、試料6近傍や液体の温度制御が可能な温度ヒータやペルチェ素子を配置することが可能である。図では、第2筺体121内部に温度制御部305を配置している。蓋部材122に接続された信号導入出部312から配線された配線311が温度制御部に接続される。本構成により、信号導入出部312を経由して装置外部から試料6周辺の温度または導入出される液体等の温度を制御することが可能となる。図示しないが温度計などを配置してもよい。また、蓋部材122に接続された信号導入出部312と電極307を接続して、試料5に電圧を印加させてもよい。
 本実施例による構成は前述までの構成と比べて、第2筺体内部空間12が閉じられているという特徴を持つ。そのため、例えば試料6にある反応性のあるガスや気体や液体を導入し、また温度制御されている試料の状態を荷電粒子線装置により観察することが可能となる。
 <試料交換に関して>
 次に、試料6の交換機構について説明する。本実施例の荷電粒子顕微鏡は、第1筐体7の底面および蓋部材122の下面に、蓋部材用支持部材19、底板20をそれぞれ備える。蓋部材122は第2筐体121に真空封止部材125を介して取り外し可能に固定される。一方、蓋部材用支持部材19も底板20に対して取り外し可能に固定されており、図10に示すように、蓋部材122および蓋部材用支持部材19を丸ごと第2筐体121から取り外すことが可能である。なお、本図では電気配線などは省略している。
 底板20には、取り外しの際にガイドとして使用される支柱18を備える。通常の観察時の状態では、支柱18は底板20に設けられた格納部に格納されており、取り外しの際に蓋部材122の引出し方向に延伸するように構成される。同時に、支柱18は蓋部材用支持部材19に固定されており、蓋部材122を第2筐体121から取り外した際に、蓋部材122と荷電粒子顕微鏡本体とが完全には分離しないようになっている。これにより、試料ステージ5または試料6の落下を防止することができる。
 第2筐体121内に試料を搬出あるいは搬入する場合には、まず試料ステージ5のZ軸操作つまみを回して試料6を隔膜10から遠ざける。次に、圧力調整弁104を開放し、第2筐体内部を大気開放する。その後、第2筐体内部が減圧状態または極端な与圧状態になっていないことを確認後、蓋部材122を装置本体とは反対側に引き出す。試料交換後は、蓋部材122を第2筐体121内に押し込み、図示しない締結部材にて蓋部材122を合わせ部132に固定後、必要に応じて第2の筐体121内部を置換ガスに置換したり真空排気したりする。以上の操作は、荷電粒子光学鏡筒2内部の光学レンズ2に高電圧を印加している状態や荷電粒子源8から荷電粒子線が放出している状態の時にも実行することができる。すなわち、荷電粒子光学鏡筒2の動作を継続したまま及び第一空間が真空状態のまま実行することができる。従って本実施例の荷電粒子顕微鏡は、試料交換後、迅速に観察を開始することができる。
 <位置関係把握目印>
 本発明では大気圧と真空との差圧形成であるために、隔膜の面積は非常に小さい必要がある。そのため、図10のように蓋部材122を引き出した状態で試料6を交換した後、蓋部材122を第2筐体121内に押し込んでも、隔膜10下に試料がない可能性がある。そこで、試料観察位置と隔膜位置との位置関係を把握する目印部に関して以下説明する。なお、以下では隔膜10位置と荷電粒子光学鏡筒2の光軸200は調整機構259等によって位置調整されているものとする。
 図11は蓋部材122が引出された状態の試料ステージ部のみを図10を上から観察している様子を図示している。支持板107上に試料ステージ5が配置され、試料ステージ5上に試料ホルダ315(または液体吸収部材309)及び試料が配置されている。また、支持板107上にX方向目印部314部及びY方向目印部314を備える。X方向目印部314部及びY方向目印部314によって把握される目印中心位置318(図中一点鎖線の交差点)に観察したい観察試料316を配置する。目印中心位置318は後述するように、蓋部材122を第2筐体121内に押し込んだ際に隔膜10の中心の下に来るように調整されているとする。なお、ここで隔膜10の中心は予め荷電粒子光学鏡筒の光軸上に位置するように調整されているものとする。したがって、目印中心位置318は試料ステージにおける光軸上に位置する箇所を表す目印であるといえる。これにより、蓋部材122を引き出された状態でも、試料ホルダ(あるいは液体吸収部材309)上のどこに置けば隔膜10下に配置できるか把握することが可能である。
 次に、観察試料317を見たい時の操作方法について説明する。蓋部材122を引き出した後、ステージ5を動かして、図11(b)のように目印中心位置318に観察試料317を持ってくる。その後、再度、蓋部材122を第2筐体121内に押しこむことによって、観察試料317の観察をすることが可能である。
 X方向目印部313部及びY方向目印部314に目盛319を備えることによって、観察試料316と観察試料317の位置関係及びその距離は既知とすることも可能である。この場合、観察試料318を観察した後に、どの程度動かせば観察試料317の観察が可能かを把握することができるので、蓋部材122を押しこんだままで前記既知の数値分だけ試料ステージを動かすことによって、観察試料317の観察を行うことも可能である。
 以下では、目印中心位置318(図中一点鎖線の交差点)と隔膜位置を調整する方法に関して説明する。目印中心位置318と隔膜10位置は装置組み立て時に調整する。例えば、装置組み立ての際に試料中心に既知のアライメントマークを備えた試料を試料ホルダ315に配置する。次に、荷電粒子装置にてアライメントマークが隔膜下にくるように試料ステージ5を動かす。その後、蓋部材122を引き出して、目視等によりアライメントマーク位置を確認し、X方向目印調整部320とY方向目印調整部321自体を動かすことによって、目印中心位置318(図中一点鎖線の交差点)とアライメントマーク位置を合致させる。こうすることによって、目印中心位置318(図中一点鎖線の交差点)は、蓋部材122を押しこんだ際の隔膜10及び荷電粒子光学鏡筒2の光軸200と合致することが可能となる。
 X方向目印部313部及びY方向目印部314は試料ステージ5とは独立して支持板107上に具備される。つまり、試料ステージ5を操作部108などを使って動かしても、X方向目印部313及びY方向目印部314は動くことがない。前述では、X方向目印部313部及びY方向目印部314は支持板107上に具備している説明をしたが、当該蓋部材122や第2筺体121や第1筺体7に具備されていてもよい。
 また、図示しないが、試料ホルダ315上に目盛等の目印を配置してもよい。試料ホルダ315上に目盛等の目印を配置することによって、試料ホルダ315中心からどの程度の距離に試料6を配置したかが簡単に把握することが可能である。
 <真空観察>
 本実施例の荷電粒子顕微鏡は、通常の高真空荷電粒子顕微鏡装置として使用することも可能である。図12には、高真空荷電粒子顕微鏡として使用した状態での、本実施例の荷電粒子顕微鏡の全体構成図を示す。図12において、制御系は図9と同様であるので省略し図示している。図12は、蓋部材122を第2筐体121に固定した状態で、ガス供給管100を蓋部材122から取り外した後、ガス供給管100取り付け位置に蓋部材130で塞いだ状態の荷電粒子顕微鏡を示している。この前後の操作で、隔膜10部を隔膜保持部材155ごと取り外しておけば、第1の空間11と第2の空間12をつなげることができ、第2筐体内部を真空ポンプ4で真空排気することが可能となる。これにより、第2の筐体内部は第1の筐体内部と同等の圧力となり、第2筐体121を取り付けた状態で、高真空荷電粒子顕微鏡観察が可能となる。つまり、隔膜10部を隔膜保持部材155ごと取り外す動作だけで、当該大気圧及びガス雰囲気下観察用の荷電粒子顕微鏡装置を高真空荷電粒子顕微鏡装置に変更することが可能となる。
 前述では第一の空間11と第2の空間12を繋がるために、隔膜10部を隔膜保持部材155ごとはずしたが、試料上部に穴が空いたアパーチャ部材を代わりに配置してもよい。こうすることで、第一の空間11と第2の空間12に若干の差圧差を形成することが可能となる。
 高真空観察時は液体導入出部300と蓋部材122を接続しているつなぎ部310を塞ぐ必要がある。但し、高真空ではなく、低真空荷電粒子顕微鏡観察を行う場合は、つなぎ部310からは所望の液体や気体を導入してもよい。例えば、水を導入することを考えると液体伝達部材302に到達した水は蒸発するので、試料6近傍に水蒸気を供給することが可能となる。つまり。試料近傍が水蒸気に覆われた低真空状態を形成することが可能となる。
 導入される液体としては、水、水溶液、エタノールなどの有機溶媒、イオン液体などである。特に真空中でも蒸発しないイオン液体を液体導入出部300から流し込めば、イオン液体にて試料が浸潤していく様子が真空下にて荷電粒子線観察することが可能となる。
 <その他>
 以上説明したように、本実施例では、試料ステージ5およびその操作つまみ108、109、ガス供給管100,圧力調整弁104、つなぎ部310が全て蓋部材122に集約して取り付けられている。従って装置ユーザは、上記操作つまみ108、109の操作、試料の交換作業、またはガス供給管100,圧力調整弁104や液体導入出の制御の操作を第1筐体の同じ面に対して行うことができる。よって、上記構成物が試料室の他の面にバラバラに取り付けられている構成の荷電粒子顕微鏡に比べて操作性が非常に向上している。
 以上説明した構成に加え、第2の筐体121と蓋部材122との接触状態を検知する接触モニタを設けて、第2の空間が閉じているまたは開いていることを監視してもよい。
 また、二次電子検出器や反射電子検出器に加えて、X線検出器や光検出器を設けて、EDS分析や蛍光線の検出ができるようにしてもよい。X線検出器や光検出器の配置としては、第1の空間11または第2の空間12のいずれに配置されてもよい。
 また、試料ステージ5や検出器151に電圧を印加してもよい。試料6や検出器150に電圧を印加すると試料6からの放出電子や透過電子に高エネルギーを持たせることができ、信号量を増加させることが可能となり、画像S/Nが改善される。
 当該装置構成の場合、試料6と隔膜10は出来る限り近接させて荷電粒子線を試料6に照射する。そのため、試料6が誤って隔膜10に接触させて隔膜10が破損する可能性がある。そのため、試料6と隔膜10間の距離を規定するための部材を試料6と隔膜10間に配置してもよい。
 以上、本実施例により、実施例1や2の効果に加え、大気圧から置換ガスが導入可能である。また、第一の空間とは異なった圧力の雰囲気下での試料観察が可能である。また、大気または所定のガス雰囲気下での観察に加えて第一の空間と同じ真空状態での試料観察も可能なSEMが実現される。
 なお、本実施例では卓上型電子顕微鏡を意図した構成例について説明したが、本実施例を大型の荷電粒子顕微鏡に適用することも可能である。卓上型電子顕微鏡の場合は、装置全体または荷電粒子光学鏡筒が筐体によって装置設置面に支持されるが、大型の荷電粒子顕微鏡の場合は、装置全体を架台に載置すればよく、従って、第1筐体7を架台に載置すれば、本実施例で説明した構成をそのまま大型の荷電粒子顕微鏡に転用できる。
 本実施例では、実施例1の変形例である荷電粒子光学鏡筒2が隔膜10に対して下側にある構成に関して説明する。図13に、本実施例の荷電粒子顕微鏡の構成図を示す。真空ポンプや制御系などは省略して図示する。また、真空室である筺体7、荷電粒子光学鏡筒2は装置設置面に対して柱や支え等によって支持されているものとする。各要素の動作・機能または各要素に付加される付加要素は、前述の実施例とほぼ同様であるので、詳細な説明は省略する。
 試料6と隔膜10を非接触にするための試料ステージ5が隔膜上に具備される。つまり、図中試料6下側の試料面が観察されることになる。試料ステージ5を操作するための操作部204を使うことによって、試料下面を隔膜10部に接近させることが可能である。
 液体導入出部300は図中上側に配置される。図中矢印で示したように液体を図中上側から導入出することによって、隔膜10側とは反対側の試料面から液体を導入出することが可能である。図中液体伝達部材302は記載していないが、液体伝達部材302を用いてもよい。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、光ディスク等の記録媒体に置くことができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1:光学レンズ、2:荷電粒子光学鏡筒、3:検出器、4:真空ポンプ、5:試料ステージ、6:試料、7:第1の筐体、8:荷電粒子源、9:開放面、10:隔膜、11:第1の空間、12:第2の空間、14:リークバルブ、16:真空配管、17:ステージ支持台、18:支柱、19:蓋部材用支持部材、20:底板、35:コンピュータ、36:上位制御部、37:下位制御部、43,44,45:通信線、
100:ガス供給管、101:ガス制御用バルブ、102:連結部、103:ガスボンベまたは真空ポンプ、104:圧力調整弁、107:支持板、108,109:操作つまみ、121:第2筐体、122,130:蓋部材、123,124,125,126,128,129:真空封止部材、131:本体部、132:合わせ部、154:信号増幅器、155:隔膜保持部材、156,157,158:通信線、159:土台、
200:荷電粒子線の光軸、201:隔膜の中心軸、203:落下防止部材、204:試料位置操作つまみ、270:土台、
300:液体導入出口、301:開口部、302:液体伝達部材、303:ノズル、305:温度制御部、306:タンク、307:電極、308:液体漏れ防止部、309:液体吸収部材、310:つなぎ部、311:配線、312:信号入出力部、313:X方向目印部、314:Y方向目印部、315:試料台、316:観察試料、317:観察試料、318:目印中心位置、319:目盛、320:X方向目印調整部、321:Y方向目印調整部

Claims (17)

  1.  一次荷電粒子線を試料上に照射する荷電粒子光学鏡筒と、真空ポンプとを備える荷電粒子線装置において、
     前記荷電粒子線装置の一部を成し、内部が前記真空ポンプにより真空排気される筐体と、
     前記試料が載置された空間の圧力が前記筐体内部の圧力より大きく保たれるように前記試料が載置された空間を隔離し、前記一次荷電粒子線を透過または通過させる着脱可能な隔膜と、
     前記試料の下面方向または側面方向から所望の液体または気体を導入出する導入出部と、を備え、
     前記試料と前記隔膜とが非接触な状態で前記一次荷電粒子線を前記試料に照射することを特徴とする荷電粒子線装置。
  2.  請求項1に記載の荷電粒子線装置において、
     前記荷電粒子線装置の一部を成し内部が前記真空ポンプにより真空排気される第1の筐体と、
     前記第1の筐体の側面、または内壁面、または前記荷電粒子光学鏡筒に位置が固定される、前記試料を内部に格納する第2の筐体と、を備え、
     前記隔膜は前記第2の筐体の上面側に設けられ、
     前記第2の筐体内部の圧力が前記第1の筐体内部の圧力と同等か、前記第2の筐体内部の圧力を前記第1の筐体内部の圧力よりも高い状態に維持し、
     前記導入出部は前記第2の筐体内部に配置されることを特徴とする荷電粒子線装置。
  3.  請求項2に記載の荷電粒子線装置において、
     前記導入出部の一部である前記液体または気体の導入出口が、前記一次荷電粒子線が照射される側の試料表面より下側に配置されることを特徴とする荷電粒子線装置。
  4.  請求項1に記載の荷電粒子線装置において、
     前記導入出部と前記試料との間に前記液体または気体を透過することが可能な伝達部材を有することを特徴とした荷電粒子線装置。
  5.  請求項4に記載の荷電粒子線装置において、
     前記伝達部材は、少なくとも一つ以上の穴が開いた部材であることを特徴とする荷電粒子線装置。
  6.  請求項4に記載の荷電粒子線装置において、
     前記伝達部材は、繊維材、または多孔質体、または多量の管で構成された多管体で構成されることを特徴とする荷電粒子線装置。
  7.  請求項1に記載の荷電粒子線装置において、
     前記導入出部の少なくとも一部が試料台または試料位置を変更する試料ステージに固定されていることを特徴とする荷電粒子線装置。
  8.  請求項1に記載の荷電粒子線装置において、
     前記導入出部から導入出される液体または気体の流量または導入出速度または導入出タイミングを制御することが可能であるを特徴とする荷電粒子線装置。
  9.  請求項1に記載の荷電粒子線装置において、
     前記導入出部から導入出される液体が所望の部位以外に漏れることを防止する液体漏れ防止部を備えることを特徴とする荷電粒子線装置。
  10.  請求項1に記載の荷電粒子線装置において、
     前記導入出部から導入出される液体を吸収する液体吸収部材が前記隔膜周辺に備えることを特徴とする荷電粒子線装置。
  11.  請求項1に記載の荷電粒子線装置において、
     前記隔膜の少なくとも前記試料と対向する面は疎水性材質であることを特徴とする荷電粒子線装置。
  12.  請求項1に記載の荷電粒子線装置において、
     前記導入出部から導入出される液体または気体の温度を制御する温度制御部を備えることを特徴とする荷電粒子線装置。
  13.  請求項1に記載の荷電粒子線装置において、
     前記試料に電圧を印加する電極を有することを特徴とする荷電粒子線装置。
  14.  請求項2に記載の荷電粒子線装置において、
     前記試料が載置された空間の少なくとも一つの側面を形成するように設置される蓋部材を有し、
     前記蓋部材は、前記試料位置を変更するための試料ステージの少なくとも一部と、前記導入出部の接続口となるつなぎ部のいずれかまたは両方を具備することを特徴とする荷電粒子線装置。
  15.  請求項1に記載の荷電粒子線装置において、
     前記試料を載置する試料ステージを有し、
     前記荷電粒子光学鏡筒の光軸上に位置することを表す目印が試料ステージに配置されることを特徴とする荷電粒子線装置。
  16.  請求項15に記載の荷電粒子線装置において、
     前記目印は前記試料ステージとは独立に可動な目盛により表されることを特徴とする荷電粒子線装置。
  17.  一次荷電粒子線を透過または通過させる着脱可能な隔膜により、試料が載置された空間の圧力が前記荷電粒子光学鏡筒内部の圧力より大きく保たれるように前記試料が載置された空間が隔離された状態で、前記試料に前記一次荷電粒子線を照射することで前記試料を観察する試料観察方法において、
     前記試料を前記隔膜に接近させるステップと、
     前記試料の下面方向または側面方向から液体または気体が前記試料に供給されるステップと、
     前記試料と前記隔膜とが非接触な状態で前記一次荷電粒子線を前記試料に照射するステップと、を有することを特徴とする試料観察方法。
PCT/JP2013/068587 2012-09-14 2013-07-08 荷電粒子線装置及び試料観察方法 WO2014041882A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013003552.9T DE112013003552B4 (de) 2012-09-14 2013-07-08 Ladungsteilchenstrahlvorrichtung und Probenbeobachtungsverfahren
CN201380041393.4A CN104520966B (zh) 2012-09-14 2013-07-08 带电粒子束装置以及试样观察方法
KR1020147036132A KR101675386B1 (ko) 2012-09-14 2013-07-08 하전 입자선 장치 및 시료 관찰 방법
US14/420,942 US9362083B2 (en) 2012-09-14 2013-07-08 Charged particle beam apparatus and sample observation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-202194 2012-09-14
JP2012202194A JP5930922B2 (ja) 2012-09-14 2012-09-14 荷電粒子線装置及び試料観察方法

Publications (1)

Publication Number Publication Date
WO2014041882A1 true WO2014041882A1 (ja) 2014-03-20

Family

ID=50278014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068587 WO2014041882A1 (ja) 2012-09-14 2013-07-08 荷電粒子線装置及び試料観察方法

Country Status (6)

Country Link
US (1) US9362083B2 (ja)
JP (1) JP5930922B2 (ja)
KR (1) KR101675386B1 (ja)
CN (1) CN104520966B (ja)
DE (1) DE112013003552B4 (ja)
WO (1) WO2014041882A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094096B (zh) * 2012-03-09 2016-08-24 株式会社日立高新技术 试样观察方法及试样前处理方法
US9349567B2 (en) * 2013-05-10 2016-05-24 Hitachi High-Technologies Corporation Charged particle beam device
DE112014003268B4 (de) 2013-08-23 2018-05-30 Hitachi High-Technologies Corporation Membrananbringungselement, mit einem strahl geladener teilchen arbeitende vorrichtung, system, membrananbringungsverfahren sowie verfahren zum inspizieren der qualität
DE112014003352B4 (de) 2013-09-06 2023-02-02 Hitachi High-Tech Corporation Mit einem Strahl geladener Teilchen arbeitende Vorrichtung und Probenbilderfassungsverfahren
JP2015178322A (ja) 2014-03-19 2015-10-08 株式会社 神崎高級工機製作所 作業車両の走行駆動ユニット
GB201613173D0 (en) * 2016-07-29 2016-09-14 Medical Res Council Electron microscopy
US10365564B2 (en) * 2017-08-09 2019-07-30 Saudi Arabian Oil Company Calcite channel nanofluidics
US11894213B2 (en) * 2018-06-22 2024-02-06 Hitachi High-Tech Corporation Ion milling device
WO2020171764A1 (en) * 2019-02-21 2020-08-27 Xiaodong Zou Cryo-em specimen preparation
JP7322284B2 (ja) 2020-04-15 2023-08-07 株式会社日立ハイテク 搬送装置および解析システム
DE102020111151B4 (de) 2020-04-23 2023-10-05 Carl Zeiss Microscopy Gmbh Verfahren zum Belüften und Abpumpen einer Vakuumkammer eines Teilchenstrahlgeräts, Computerprogrammprodukt und Teilchenstrahlgerät zur Durchführung des Verfahrens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850875A (ja) * 1994-08-05 1996-02-20 Hitachi Ltd 電子顕微鏡
JP2005174657A (ja) * 2003-12-09 2005-06-30 Canon Inc 電子顕微鏡用メッシュ及びその製造方法
JP2006147430A (ja) * 2004-11-22 2006-06-08 Hokkaido Univ 電子顕微鏡
JP2009129799A (ja) * 2007-11-27 2009-06-11 Hitachi Ltd 走査透過型電子顕微鏡
JP2011175809A (ja) * 2010-02-24 2011-09-08 Hitachi High-Technologies Corp 電子顕微鏡、および試料ホルダ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1511332A (zh) 2000-12-01 2004-07-07 Ү���о�����չ���޹�˾ 采用扫描电子显微镜在非真空环境下检验样品的装置和方法
US7138629B2 (en) * 2003-04-22 2006-11-21 Ebara Corporation Testing apparatus using charged particles and device manufacturing method using the testing apparatus
JP5253800B2 (ja) 2007-12-26 2013-07-31 日本電子株式会社 試料保持体及び観察・検査方法並びに観察・検査装置
US8334510B2 (en) 2008-07-03 2012-12-18 B-Nano Ltd. Scanning electron microscope, an interface and a method for observing an object within a non-vacuum environment
JP2010230417A (ja) 2009-03-26 2010-10-14 Jeol Ltd 試料の検査装置及び検査方法
JP5320418B2 (ja) * 2011-01-31 2013-10-23 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US8835847B2 (en) * 2011-04-28 2014-09-16 Hitachi High-Technologies Corporation Sample holding apparatus for electron microscope, and electron microscope apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850875A (ja) * 1994-08-05 1996-02-20 Hitachi Ltd 電子顕微鏡
JP2005174657A (ja) * 2003-12-09 2005-06-30 Canon Inc 電子顕微鏡用メッシュ及びその製造方法
JP2006147430A (ja) * 2004-11-22 2006-06-08 Hokkaido Univ 電子顕微鏡
JP2009129799A (ja) * 2007-11-27 2009-06-11 Hitachi Ltd 走査透過型電子顕微鏡
JP2011175809A (ja) * 2010-02-24 2011-09-08 Hitachi High-Technologies Corp 電子顕微鏡、および試料ホルダ

Also Published As

Publication number Publication date
US9362083B2 (en) 2016-06-07
KR20150016351A (ko) 2015-02-11
CN104520966B (zh) 2016-11-16
DE112013003552B4 (de) 2021-07-15
CN104520966A (zh) 2015-04-15
US20150221470A1 (en) 2015-08-06
KR101675386B1 (ko) 2016-11-11
JP2014056785A (ja) 2014-03-27
JP5930922B2 (ja) 2016-06-08
DE112013003552T5 (de) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5930922B2 (ja) 荷電粒子線装置及び試料観察方法
JP5699023B2 (ja) 荷電粒子線装置
JP6035602B2 (ja) 荷電粒子線装置、試料台ユニット、及び試料観察方法
JP5936484B2 (ja) 荷電粒子線装置及び試料観察方法
JP5825964B2 (ja) 検査又は観察装置及び試料の検査又は観察方法
JP6239246B2 (ja) 荷電粒子線装置、試料観察方法、試料台、観察システム、および発光部材
JP6302702B2 (ja) 走査電子顕微鏡および画像生成方法
JP5909431B2 (ja) 荷電粒子線装置
JP5923412B2 (ja) 観察装置および光軸調整方法
JP6078637B2 (ja) 荷電粒子線装置およびフィルタ部材
WO2014054477A1 (ja) 荷電粒子線装置、隔膜の位置調整方法および隔膜位置調整ジグ
JP5936497B2 (ja) 荷電粒子線装置及び試料観察方法
JP6272384B2 (ja) 荷電粒子線装置
JP5923632B2 (ja) 荷電粒子線装置
JP2016001629A (ja) 試料観察方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147036132

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013003552

Country of ref document: DE

Ref document number: 1120130035529

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14420942

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13837418

Country of ref document: EP

Kind code of ref document: A1