WO2021210087A1 - 搬送装置および解析システム - Google Patents
搬送装置および解析システム Download PDFInfo
- Publication number
- WO2021210087A1 WO2021210087A1 PCT/JP2020/016525 JP2020016525W WO2021210087A1 WO 2021210087 A1 WO2021210087 A1 WO 2021210087A1 JP 2020016525 W JP2020016525 W JP 2020016525W WO 2021210087 A1 WO2021210087 A1 WO 2021210087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mesh
- holder
- image data
- information
- control unit
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims description 39
- 239000002245 particle Substances 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000012545 processing Methods 0.000 claims description 29
- 238000010894 electron beam technology Methods 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241000446313 Lamella Species 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/22—Optical, image processing or photographic arrangements associated with the tube
- H01J37/222—Image processing arrangements associated with the tube
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2007—Holding mechanisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/202—Movement
- H01J2237/20292—Means for position and/or orientation registration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/208—Elements or methods for movement independent of sample stage for influencing or moving or contacting or transferring the sample or parts thereof, e.g. prober needles or transfer needles in FIB/SEM systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/244—Detectors; Associated components or circuits therefor
Definitions
- the present invention relates to a transport device and an analysis system, and can be particularly suitably used for a transport device and an analysis system including a holder for holding a mesh.
- a sample is taken out from a wafer by a focused ion beam (FIB) device, the taken out sample is mounted on a mesh, and a transmission electron microscope (TEM: Transmission Electron) is used.
- TEM Transmission Electron
- a technique for observing a sample with a Microscope is known.
- Patent Document 1 discloses a technique of fixing a mesh on which a sample is mounted to a cartridge, mounting the cartridge in a holder, and observing the sample by TEM.
- the sample taken out from the wafer by the FIB device is mounted at a predetermined position on the mesh with reference to the reference region formed on the mesh. Therefore, after inserting the holder to which the mesh is fixed into the sample chamber of the TEM, a step of searching the reference region of the mesh is required.
- the search process is a factor that cannot reduce the observation throughput.
- the transport device is for acquiring the first information of the positional relationship between the mesh and the holder for holding the mesh on which the sample to be analyzed using the charged particle beam device is mounted. It includes a position information acquisition function and a position information output function for outputting the first information to the charged particle beam device.
- the analysis system in one embodiment includes a transport device for transporting the mesh on which the sample is mounted and a charged particle beam device for analyzing the sample.
- the transport device includes a holder for holding the mesh on which the sample is mounted, and a first control unit capable of acquiring first information on the positional relationship between the mesh and the holder.
- the charged particle beam device is electrically connected to an electron gun for irradiating the sample with an electron beam, a stage for fixing the holder, and the first control unit, and the electron gun. And a second control unit capable of controlling the stage.
- the analysis system provides a mesh retainer on the mesh so that the mesh is pressed against the holder after (a) the step of installing the mesh on the holder and (b) the step (a).
- the holder is transferred from the transfer device to the charged particle beam device, and the holder is fixed to the stage, (d) after the step (b).
- the second control unit of the stage is based on the first information. It has a step of setting coordinates, (f), and after the steps (c) to (e), a step of irradiating the sample with the electron beam from the electron gun.
- the observation throughput of the sample can be shortened.
- FIG. It is a schematic diagram which shows the analysis system in Embodiment 1.
- FIG. It is a flowchart which shows the processing flow of the analysis system in Embodiment 1.
- FIG. It is a schematic diagram which shows the operation in the transport device following FIG.
- It is a schematic diagram which shows the image data in Embodiment 1.
- FIG. It is a schematic diagram which shows the image data in Embodiment 1.
- FIG. It is a recording table which shows the recording example of the image data in Embodiment 1.
- FIG. It is a recording table which shows the recording example of the shift amount in Embodiment 1.
- FIG. It is a schematic diagram which shows the analysis system in Embodiment 2. It is a flowchart which shows the processing flow of the analysis system in Embodiment 2. It is a schematic diagram which shows the analysis system in Embodiment 3. It is a flowchart which shows the processing flow of the analysis system in Embodiment 3.
- the analysis system 1 includes a transport device 2 and a charged particle beam device 3 such as a transmission electron microscope (TEM).
- TEM transmission electron microscope
- the process of fixing the mesh (carrier) MS on which the sample (lamella, thin section sample) is mounted to the holder 24 and the transfer of the holder 24 from the transfer device 2 to the inside of the charged particle beam device 3 are mainly performed.
- the process is performed.
- the holder 24 is fixed to the stage 36, and the sample is irradiated with an electron beam to analyze the structure of the sample.
- the analysis system 1 may include a sample preparation device equipped with a focused ion beam (FIB), a scanning electron microscope (SEM), and the like.
- FIB focused ion beam
- SEM scanning electron microscope
- the wafer is composed of a semiconductor substrate, a semiconductor element such as a transistor formed on the semiconductor substrate, a wiring layer formed on the semiconductor element, and the like. Since the sample in the first embodiment is a slice obtained from a part of the wafer, the structure of the sample includes all or a part of the semiconductor substrate, the semiconductor element, and the wiring layer.
- the transport device 2 includes a manipulator 21, a mesh holding container 22, a manipulator 23, a holder 24 having a mesh mounting portion 25, a camera 26, and a transport device control unit C5.
- a plurality of mesh MSs are stored in the mesh holding container 22, and a sample is mounted on each of the plurality of mesh MSs.
- the holder 24 is a member for holding the mesh MS.
- the manipulator 21 can hold the mesh MS by vacuum suction, and the mesh MS can be installed on the holder 24.
- the method of holding the mesh MS is not limited to the method using the manipulator 21, and a method of grasping and holding the mesh MS using tweezers may be used.
- the manipulator 23 can hold the mesh holding (carrier holding) MSH, and after the mesh MS is installed on the mesh mounting portion 25 of the holder 24, the mesh holding MSH can be installed on the mesh MS.
- the mesh MS is fixed to the holder 24 by the mesh retainer MSH.
- the camera 26 can shoot a part or the whole of the holder 24.
- the camera 26 can focus a part of the holder 24 and shoot only the vicinity of the mesh mounting portion 25.
- the captured image of the holder 24 is recorded in the transport device control unit C5 as image data.
- the transport device control unit C5 is electrically connected to each of the manipulator 21, the manipulator 23, the holder 24, and the camera 26, and can control their operations. Further, the transport device control unit C5 can acquire information on the positional relationship between the mesh MS and the holder 24 including the image data and the like, and can store such information. Further, the transport device control unit C5 is electrically connected to the comprehensive control unit C0 of the charged particle beam device 3. Therefore, the above information can be output from the transport device control unit C5 to the general control unit C0.
- the transport device 2 includes a position information acquisition function for acquiring information on the positional relationship between the mesh MS and the holder 24, and a position information output function for outputting this information to the charged particle beam device 3. ing.
- the charged particle beam device 3 includes a mirror body 30 and control units C0 to C4.
- the mirror body 30 includes an electron gun 31, an irradiation lens 32, an objective lens 33, a projection lens 34, a detector 35, and a stage 36.
- the electron gun 31 is a source of electron beams, and the electron beams emitted from the electron gun 31 are focused by the irradiation lens 32 and irradiated to the sample mounted on the mesh MS.
- the transmitted electron beam transmitted through the sample is imaged by the objective lens 33, and the imaged transmitted image is magnified by the projection lens 34.
- the detector 35 is, for example, a fluorescent plate, and the imaged and enlarged transmission image is projected on the fluorescent plate and recorded as image data in the detection unit control unit C3 or the general control unit C0.
- the irradiation lens 32, the objective lens 33, and the projection lens 34 are magnetic field type electronic lenses that utilize the magnetic field generated by the exciting current flowing through the coil, respectively.
- the magnitude of the exciting current is controlled by the lens control unit C2.
- the comprehensive control unit C0 is electrically or physically connected to the electron gun control unit C1, the lens control unit C2, the detector control unit C3, and the stage control unit C4, and controls them. Therefore, in the present application, it may be described that the control performed by the control units C1 to C4 is performed by the comprehensive control unit C0. Further, the comprehensive control unit C0 including the control units C1 to C4 may be regarded as one control unit, and the comprehensive control unit C0 may be simply referred to as a “control unit”.
- the electron gun control unit C1 is electrically connected to the electron gun 31 and controls this operation.
- the lens control unit C2 is connected to the irradiation lens 32, the objective lens 33, and the projection lens 34, and controls their operations.
- the detector control unit C3 is electrically connected to the detector 35 and controls this operation.
- the stage control unit C4 is electrically connected to the stage 36 and controls this operation.
- the stage 36 is an XY-axis drive mechanism that can be driven in a direction parallel to the mounting surface of the charged particle beam device 3, and a Z-axis drive that can be driven in a direction (height direction) perpendicular to the mounting surface described above. It has a mechanism, an R-axis drive mechanism that can be driven in the rotational direction, and a T-axis drive mechanism that can be driven in a direction that is inclined with respect to the XY plane. These drive mechanisms are used to analyze any part of the holder 24 fixed on the stage 36. When the stage control unit C4 or the general control unit C0 controls these drive mechanisms, the stage 36 can move to the set coordinates of the stage 36.
- the comprehensive control unit C0 in the first embodiment includes the image processing unit C6.
- the image processing unit C6 calculates a shift amount indicating how much the mesh MS is deviated as information on the positional relationship between the mesh MS and the holder 24 by performing arithmetic processing on the image data acquired by using the camera 26 or the like. can. Further, by outputting the shift amount from the image processing unit C6 to the stage control unit C4, the coordinates of the stage 36 reflecting the shift amount can be set.
- the charged particle beam device 3 includes an input device 40 and a display 41 electrically connected to the integrated control unit C0 outside or inside the charged particle beam device 3.
- the input device 40 is, for example, a mouse or a trackball.
- various kinds of information are input to the comprehensive control unit C0 or output from the comprehensive control unit C0.
- ⁇ Location information acquisition function >> First, the position information acquisition function included in the transport device 2 will be described. Immediately before step S1 in FIG. 2, a sample has already been prepared, the prepared sample is mounted on the mesh MS, and the mesh MS is stored in the mesh holding container 22. That is, a plurality of mesh MSs for mounting the sample are prepared in the mesh holding container 22.
- step S1 the mesh MS is taken out from the mesh holding container 22.
- a manipulator 21 is used to take out a desired mesh MS from a plurality of mesh MSs mounted on the mesh holding container 22.
- step S2 the mesh MS is installed on the holder 24.
- the manipulator 21 holding the mesh MS is moved above the holder 24, and then the manipulator 21 is lowered to install the mesh MS on the mesh mounting portion 25 of the holder 24.
- step S3 the holder 24 is photographed.
- the manipulator 21 is moved from the holder 24 to the outside of the shooting field of view of the camera 26.
- the camera 26 is used to take a picture of the holder 24 (mesh mounting portion 25).
- the captured image is recorded in the transport device control unit C5 as image data D1.
- the image data D1 is treated as a part of the information on the positional relationship between the mesh MS and the holder 24 when the mesh MS is installed on the holder 24.
- FIG. 8 shows an example of image data D1.
- a state in which the mesh MS is mounted on the holder 24 with high accuracy is shown.
- a reference region MSa is formed in a part of the mesh MS.
- the reference region MSa has a shape different from that of the surrounding grid, and can be used as a mark when calculating the shift amount as described later.
- step S4 a mesh holding MSH is provided on the mesh MS.
- the manipulator 23 holding the mesh holding MSH is moved above the holder 24, and then the manipulator 23 is lowered so that the mesh MS is pressed against the holder 24 on the mesh MS.
- a mesh retainer MSH is installed. As a result, the mesh MS is fixed to the holder 24.
- the position of the mesh MS may shift due to the mesh holding MSH, and the position of the reference region MSa may shift.
- step S5 the holder 24 is photographed.
- the manipulator 23 is moved from the holder 24 to the outside of the shooting field of view of the camera 26.
- the camera 26 is used to take a picture of the holder 24 (mesh mounting portion 25).
- the captured image is recorded in the transport device control unit C5 as image data D2.
- the image data D2 is treated as a part of information on the positional relationship between the mesh MS and the holder 24 in a state where the mesh MS is fixed to the holder 24 by the mesh holding MSH.
- FIG. 9 shows an example of image data D2. Here, a state in which the position of the mesh MS is displaced by the mesh pressing MSH is shown.
- FIG. 10 is a recording table recording the image data D1 (before fixing) acquired in step S3 and the image data D2 (after fixing) acquired in step S5.
- the image data D1 and the image data D2 are associated with the identification information (ID) of each mesh MS and the number (NO) of each holder 24.
- ID identification information
- NO NO
- Such a recording table is stored in the transport device control unit C5. Thereby, it is possible to manage which image data D1 and image data D2 the predetermined mesh MS and holder 24 correspond to.
- step S6 the holder 24 is transferred.
- a sample is mounted on the mesh MS, and the mesh MS is fixed to the holder 24.
- the holder 24 is transferred from the transport device 2 to the charged particle beam device 3, and the holder 24 is fixed to the stage 36.
- step S7 the image data D1 and the image data D2 are output from the transport device 2 to the charged particle beam device 3.
- the image data D1 and the image data D2 recorded in the transport device control unit C5 are output to the image processing unit C6 of the comprehensive control unit C0 as a part of the information on the positional relationship between the mesh MS and the holder 24.
- step S8 the shift amount of the mesh MS is calculated.
- the image processing unit C6 is provided in the integrated control unit C0 of the charged particle beam device 3
- the shift amount calculation function is provided in the charged particle beam device 3.
- the image processing unit C6 of the comprehensive control unit C0 compares the image data D1 and the image data D2, and determines the shift amount indicating how much the position of the mesh MS of the image data D2 deviates from the position of the mesh MS of the image data D1. Can be calculated.
- the means for calculating the shift amount there is a means using the reference region MSa of the mesh MS.
- the reference region MSa of the mesh MS For example, using FIGS. 8 and 9, it is measured how much the position of the reference region MSa of the image data D2 deviates from the position of the reference region MSa of the image data D1. That is, the amount of movement in the X and Y directions ( ⁇ X, ⁇ Y) in the plan view and the rotation angle ( ⁇ ) in the plan view are measured. These values of ⁇ X, ⁇ Y and ⁇ are calculated as the shift amount.
- the reference region MSa in the first embodiment is a region having a shape different from the grid around the reference region MSa, and is formed near the central portion of the mesh MS.
- the reference region MSa may be any region as long as it can specify which coordinates of the mesh MS correspond to.
- a specific mark formed on the outer peripheral portion of the mesh MS such as a region surrounding the grid, can be used as the reference region MSa.
- not only one reference region MSa but also a plurality of reference regions MSa may be formed in the mesh MS. By using a plurality of reference regions MSa, a shift amount with higher accuracy can be calculated.
- FIG. 11 is a recording table recording the shift amount acquired in step S8. Similar to the image data D1 and the image data D2, the shift amount information is associated with the identification information (ID) of each mesh MS and the number (NO) of each holder 24. Such a recording table is stored in the image processing unit C6 or the comprehensive control unit C0. With each of the recording tables of FIGS. 10 and 11, it is possible to manage which shift amount, the image data D1 and the image data D2 the predetermined mesh MS and the holder 24 correspond to.
- the image processing unit C6 has a screen matching technique.
- the shape of the mesh MS of the image data D2 is compared with the shape of the mesh MS of the image data D1, and the shift amount is acquired by calculating the difference between these shapes as position data.
- step S9 the shift amount is set as the offset value of the stage 36 in the charged particle beam device 3.
- the shift amount acquired in step S8 is output to the stage control unit C4, and the stage control unit C4 sets the coordinates of the stage 36 based on the shift amount.
- the comprehensive control unit C0 controls each control unit including the stage control unit C4. Therefore, it can be said that the comprehensive control unit C0 sets the coordinates of the stage 36 based on the shift amount. After that, the sample is observed by irradiating the sample with an electron beam from the electron gun 31.
- the coordinates of the stage 36 are set based on the shift amount when observing the sample. Therefore, the search step of the reference region MSa can be omitted, and the desired sample can be quickly put into the field of view for imaging. That is, the observation throughput of the sample can be shortened.
- step S2 the mesh MS is mounted on the holder 24 with high accuracy, but if the technique of the first embodiment is used, even if the mounting accuracy of the mesh MS is low, it does not pose a big problem. That is, since the shift amount is calculated in step S8 based on the image data D1 in step S2 and the image data D2 in step S4, the desired sample can be placed in the correct field of view regardless of the mounting accuracy of the mesh MS. In addition, the stage 36 can be controlled.
- step S6 is performed before steps S7 to S9, but step S6 may be performed after step S7, after step S8, or after step S9.
- the shift amount information, the image data D1 and the image data D2 are associated with the identification information (ID) of each mesh MS and the number (NO) of each holder 24. Therefore, there is no problem even if the timing of fixing the holder 24 to the stage 36 is before or after the processing of each information such as the shift amount, the image data D1 and the image data D2. That is, it is sufficient that the coordinates of the stage 36 reflect the shift amount before irradiating the sample with the electron beam.
- the charged particle beam device 3 has an analysis function for analyzing a sample. After step S9, the sample is observed by the analysis function of the charged particle beam apparatus 3.
- the electron beam emitted from the electron gun 31 is focused by the irradiation lens 32 and irradiated to the sample mounted on the mesh MS.
- the transmitted electron beam transmitted through the sample is imaged by the objective lens 33, and the imaged transmitted image is magnified by the projection lens 34.
- the detector 35 is a fluorescent plate
- the imaged and enlarged transmitted image is projected on the fluorescent plate and recorded as image data in the detection unit control unit C3 or the general control unit C0.
- the acquired image data is displayed on the display 41, and the user can confirm the detailed structure of the sample.
- step S3 of the first embodiment the positional relationship between the mesh MS and the holder 24 was photographed using the camera 26, and the photographed image was recorded as image data D1.
- the image taken in step S3 is omitted, and the image data D1 taken in advance inside or outside the transport device 2 is used.
- image data D1 in the modified example is also image data indicating a state in which the mesh MS is installed in the holder 24, as in the first embodiment.
- a plurality of mesh MSs are stored in the mesh holding container 22.
- a sample having a similar shape is mounted on each of these mesh MSs. Therefore, the image data D1 obtained by photographing the first mesh MS can be applied as the image data D1 of the second and subsequent mesh MSs. Therefore, since the second and subsequent shots can be omitted, the observation throughput can be further shortened.
- the mesh MS on which the sample having the same shape is mounted does not have to be photographed by the transfer device 2, and may be photographed in advance by another device outside the transfer device 2. Such an image can also be applied as image data D1.
- the image processing unit C6 was included in the comprehensive control unit C0 of the charged particle beam device 3.
- the image processing unit C6 is included in the transport device control unit C5 of the transport device 2. Therefore, the transfer amount calculation function is provided in the transport device 2.
- steps S10 and S11 are carried out instead of steps S7 and S8 in the first embodiment.
- step S10 the shift amount of the mesh MS is calculated.
- the image processing unit C6 of the transport device 2 compares the image data D1 and the image data D2, and calculates a shift amount indicating how much the position of the mesh MS of the image data D2 deviates from the position of the mesh MS of the image data D1. do.
- the shift amount calculation means a method of calculating from the deviation of the position of the reference region MSa or a method of using an image matching technique can be applied as in the first embodiment.
- step S11 as a part of the information on the positional relationship between the mesh MS and the holder 24, the shift amount, the image data D1 and the image data D2 are transferred from the transfer device control unit C5 of the transfer device 2 to the comprehensive control unit of the charged particle beam device 3. It is output to C0.
- step S9 the acquired shift amount is output to the stage control unit C4, and the stage control unit C4 sets the coordinates of the stage 36 based on the shift amount.
- the search step of the reference region MSa can be omitted when observing the sample, and the observation throughput of the sample can be shortened.
- the image processing unit C6 is provided as an external device outside the transport device 2 and outside the charged particle beam device 3. Further, the image processing unit C6 is electrically connected to the transport device control unit C5 and the general control unit C0, and can communicate with these. The image processing unit C6 also constitutes a part of the analysis system 1.
- steps S12 and S13 are carried out instead of steps S7 and S8 (steps S10 and S11 in the second embodiment) in the first embodiment.
- step S12 the image processing unit C6, which is an external device, calculates the shift amount of the mesh MS.
- the means for calculating the shift amount a method of calculating from the deviation of the position of the reference region MSa or a method using an image matching technique can be applied as in the first and second embodiments.
- step S13 the shift amount, the image data D1 and the image data D2 are output from the image processing unit C6 to the integrated control unit C0 of the charged particle beam device 3 as a part of the information on the positional relationship between the mesh MS and the holder 24. ..
- step S9 the acquired shift amount is output to the stage control unit C4, and the stage control unit C4 sets the coordinates of the stage 36 based on the shift amount.
- the search step of the reference region MSa can be omitted when observing the sample, and the observation throughput of the sample can be shortened.
- the sample in the above embodiment has been described as being mainly a semiconductor device such as a semiconductor substrate, a semiconductor element, and a wiring layer, but the sample may be a device in a field other than the semiconductor device.
- each step such as steps S1 to S13 may be performed by the user, or may be performed by the artificial intelligence provided in the transport device control unit C5 and / or the comprehensive control unit C0. good.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
<解析システムの構成>
以下に図1を用いて、実施の形態1における解析システム1について説明する。図1に示されるように、解析システム1は、搬送装置2と、透過型電子顕微鏡(TEM)のような荷電粒子線装置3とを備える。
以下に、図2のフローチャートに示される各ステップS1~S9と、図3~図11とを対比させながら、実施の形態1における解析システム1について説明する。また、搬送装置2に備えられている位置情報取得機能および位置情報出力機能など、各種の機能についても説明する。
まず、搬送装置2が備える位置情報取得機能について説明する。図2のステップS1の直前には、既に試料が作製され、作製された試料がメッシュMSに搭載され、メッシュMSはメッシュ保持容器22に保管されている。すなわち、メッシュ保持容器22に、試料を搭載する複数のメッシュMSが用意されている。
以下に、搬送装置2が備える位置情報出力機能について説明する。
ステップS8では、メッシュMSのシフト量の算出が行われる。実施の形態1では、画像処理部C6が荷電粒子線装置3の総合制御部C0に備えられているので、シフト量の算出機能は、荷電粒子線装置3に備えられている。
荷電粒子線装置3は、試料を解析するための解析機能を備える。ステップS9の後、荷電粒子線装置3の解析機能によって試料の観察が行われる。
以下に、実施の形態1における変形例について説明する。
以下に図12および図13を用いて、実施の形態2における解析システム1を説明する。なお、以下では、主に実施の形態1との相違点について説明する。
以下に図14および図15を用いて、実施の形態3における解析システム1を説明する。なお、以下では、主に実施の形態1および実施の形態2との相違点について説明する。
2 搬送装置
3 荷電粒子線装置
21 マニピュレータ
22 メッシュ保持容器
23 マニピュレータ
24 ホルダ
25 メッシュ搭載部
26 カメラ
30 鏡体
31 電子銃
32 照射レンズ
33 対物レンズ
34 投射レンズ
35 検出器
36 ステージ
40 入力デバイス
41 ディスプレイ
C0 総合制御部
C1 電子銃制御部
C2 レンズ制御部
C3 検出器制御部
C4 ステージ制御部
C5 搬送装置制御部
C6 画像処理部
D1、D2 画像データ
MS メッシュ
MSH メッシュ押さえ
S1~S13 ステップ
Claims (15)
- 荷電粒子線装置を用いて解析される試料が搭載されたメッシュを保持するためのホルダと、
前記メッシュおよび前記ホルダの位置関係の第1情報を取得するための位置情報取得機能と、
前記第1情報を前記荷電粒子線装置へ出力するための位置情報出力機能と、
を備える、搬送装置。 - 請求項1に記載の搬送装置において、
前記メッシュを前記ホルダに固定する場合、前記メッシュが前記ホルダ上に設置された後、前記メッシュが前記ホルダに押し付けられるように、メッシュ押さえが前記メッシュ上に設けられ、
前記第1情報は、第2情報および第3情報を含み、
前記第2情報は、前記メッシュが前記ホルダ上に設置された状態における前記メッシュおよび前記ホルダの位置関係の情報であり、
前記第3情報は、前記メッシュが前記メッシュ押さえによって前記ホルダに固定された状態における前記メッシュおよび前記ホルダの位置関係の情報である、搬送装置。 - 請求項2に記載の搬送装置において、
前記第2情報は、前記メッシュが前記ホルダ上に設置された状態を撮影した第1画像データを含み、
前記第3情報は、前記メッシュが前記メッシュ押さえによって前記ホルダに固定された状態を撮影した第2画像データを含む、搬送装置。 - 請求項3に記載の搬送装置において、
前記ホルダを撮影するためのカメラを更に備え、
前記第1画像データおよび前記第2画像データの各々は、前記カメラによって撮影された画像データである、搬送装置。 - 請求項3に記載の搬送装置において、
前記ホルダを撮影するためのカメラを更に備え、
前記第2画像データは、前記カメラによって撮影された画像データであり、
前記第1画像データは、前記搬送装置の内部または外部において予め撮影された画像データである、搬送装置。 - 請求項3に記載の搬送装置において、
前記第1画像データおよび前記第2画像データを比較し、前記第2画像データの前記メッシュの位置が前記第1画像データの前記メッシュの位置からどの程度ずれているかを示すシフト量を算出できる画像処理部を更に備え、
前記第1情報は、前記シフト量も含む、搬送装置。 - 請求項6に記載の搬送装置において、
前記メッシュの一部には、基準領域が形成され、
前記シフト量は、前記第2画像データの前記基準領域の位置が前記第1画像データの前記基準領域の位置からどの程度ずれているかを測定することで算出される、搬送装置。 - 請求項6に記載の搬送装置において、
前記画像処理部は、画面マッチング技術を有し、
前記シフト量は、前記第2画像データの前記メッシュの形状と、前記第1画像データの前記メッシュの形状とを前記画面マッチング技術によって比較することで算出される、搬送装置。 - 試料が搭載されたメッシュを搬送するための搬送装置と、前記試料を解析するための荷電粒子線装置とを備えた解析システムであって、
前記搬送装置は、
前記試料が搭載された前記メッシュを保持するためのホルダと、
前記メッシュおよび前記ホルダの位置関係の第1情報を取得可能な第1制御部と、
を備え、
前記荷電粒子線装置は、
前記試料に電子線を照射するための電子銃と、
前記ホルダを固定するためのステージと、
前記第1制御部に電気的に接続され、且つ、前記電子銃および前記ステージを制御可能な第2制御部と、
を備え、
(a)前記メッシュを前記ホルダ上に設置するステップ、
(b)前記ステップ(a)の後、前記メッシュが前記ホルダに押し付けられるように、前記メッシュ上にメッシュ押さえを設けるステップ、
(c)前記ステップ(b)の後、前記ホルダを前記搬送装置から前記荷電粒子線装置へ移送し、前記ホルダを前記ステージに固定するステップ、
(d)前記ステップ(b)の後、前記第1情報を、前記第1制御部から前記第2制御部へ出力するステップ、
(e)前記ステップ(d)の後、前記第1情報に基づいて、前記第2制御部が前記ステージの座標を設定するステップ、
(f)前記ステップ(c)~(e)の後、前記試料に対して前記電子銃から前記電子線を照射するステップ、
を有する、解析システム。 - 請求項9に記載の解析システムにおいて、
前記ステップ(a)において、前記メッシュが前記ホルダ上に設置された状態における前記メッシュおよび前記ホルダの位置関係の第2情報が、前記第1制御部で取得され、
前記ステップ(b)において、前記メッシュが前記メッシュ押さえによって前記ホルダに固定された状態における前記メッシュおよび前記ホルダの位置関係の第3情報が、前記第1制御部で取得され、
前記第1情報は、前記第2情報および前記第3情報を含む、解析システム。 - 請求項10に記載の解析システムにおいて、
前記搬送装置は、前記ホルダを撮影するためのカメラを更に備え、
前記第2情報は、前記メッシュが前記ホルダ上に設置された状態を撮影した第1画像データを含み、
前記第3情報は、前記メッシュが前記メッシュ押さえによって前記ホルダに固定された状態を撮影した第2画像データを含み、
前記第2画像データは、前記カメラによって撮影された画像データであり、
前記第1画像データは、前記カメラによって撮影された画像データ、または、前記搬送装置の内部または外部において予め撮影された画像データである、解析システム。 - 請求項11に記載の解析システムにおいて、
前記第1画像データおよび前記第2画像データを比較し、前記第2画像データの前記メッシュの位置が前記第1画像データの前記メッシュの位置からどの程度ずれているかを示すシフト量を算出できる画像処理部を更に備え、
前記第1情報は、前記シフト量も含む、解析システム。 - 請求項12に記載の解析システムにおいて、
前記画像処理部は、前記第2制御部に含まれている、解析システム。 - 請求項12に記載の解析システムにおいて、
前記画像処理部は、前記第1制御部に含まれている、解析システム。 - 請求項12に記載の解析システムにおいて、
前記画像処理部は、前記搬送装置の外部および前記荷電粒子線装置の外部に設けられ、且つ、前記第1制御部および前記第2制御部に電気的に接続されている、解析システム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/917,973 US20230126577A1 (en) | 2020-04-15 | 2020-04-15 | Transfer Device and Analysis System |
KR1020227034356A KR20220151185A (ko) | 2020-04-15 | 2020-04-15 | 반송 장치 및 해석 시스템 |
JP2022514912A JP7322284B2 (ja) | 2020-04-15 | 2020-04-15 | 搬送装置および解析システム |
PCT/JP2020/016525 WO2021210087A1 (ja) | 2020-04-15 | 2020-04-15 | 搬送装置および解析システム |
TW110137003A TWI765830B (zh) | 2020-04-15 | 2021-03-12 | 搬運裝置及解析系統 |
TW110108832A TWI745250B (zh) | 2020-04-15 | 2021-03-12 | 搬運裝置及解析系統 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/016525 WO2021210087A1 (ja) | 2020-04-15 | 2020-04-15 | 搬送装置および解析システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021210087A1 true WO2021210087A1 (ja) | 2021-10-21 |
Family
ID=78083575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/016525 WO2021210087A1 (ja) | 2020-04-15 | 2020-04-15 | 搬送装置および解析システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230126577A1 (ja) |
JP (1) | JP7322284B2 (ja) |
KR (1) | KR20220151185A (ja) |
TW (2) | TWI745250B (ja) |
WO (1) | WO2021210087A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024161507A1 (ja) * | 2023-01-31 | 2024-08-08 | 株式会社日立ハイテク | 搬送方法、搬送装置および解析システム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61101945A (ja) * | 1984-10-24 | 1986-05-20 | Hitachi Ltd | 電子顕微鏡の試料ホルダ− |
JPH1064473A (ja) * | 1996-06-13 | 1998-03-06 | Hitachi Ltd | 試料評価・処理観察システム |
JP2010257617A (ja) * | 2009-04-22 | 2010-11-11 | Hitachi High-Technologies Corp | 試料ホールダ,該試料ホールダの使用法、及び荷電粒子装置 |
JP2011080869A (ja) * | 2009-10-07 | 2011-04-21 | Bridgestone Corp | 試験片の観察用メッシュ及び試験片の観察方法 |
JP2014056785A (ja) * | 2012-09-14 | 2014-03-27 | Hitachi High-Technologies Corp | 荷電粒子線装置及び試料観察方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5783830A (en) * | 1996-06-13 | 1998-07-21 | Hitachi, Ltd. | Sample evaluation/process observation system and method |
NL1022426C2 (nl) * | 2003-01-17 | 2004-07-26 | Fei Co | Werkwijze voor het vervaardigen en transmissief bestralen van een preparaat alsmede deeltjes optisch systeem. |
JP4636897B2 (ja) * | 2005-02-18 | 2011-02-23 | 株式会社日立ハイテクサイエンスシステムズ | 走査電子顕微鏡 |
JP4205122B2 (ja) | 2006-07-19 | 2009-01-07 | 株式会社日立ハイテクノロジーズ | 荷電粒子線加工装置 |
JP2019145304A (ja) * | 2018-02-20 | 2019-08-29 | 株式会社日立ハイテクサイエンス | 荷電粒子ビーム装置、荷電粒子ビーム装置のステージ駆動範囲制限方法およびプログラム |
-
2020
- 2020-04-15 US US17/917,973 patent/US20230126577A1/en active Pending
- 2020-04-15 JP JP2022514912A patent/JP7322284B2/ja active Active
- 2020-04-15 KR KR1020227034356A patent/KR20220151185A/ko active Search and Examination
- 2020-04-15 WO PCT/JP2020/016525 patent/WO2021210087A1/ja active Application Filing
-
2021
- 2021-03-12 TW TW110108832A patent/TWI745250B/zh active
- 2021-03-12 TW TW110137003A patent/TWI765830B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61101945A (ja) * | 1984-10-24 | 1986-05-20 | Hitachi Ltd | 電子顕微鏡の試料ホルダ− |
JPH1064473A (ja) * | 1996-06-13 | 1998-03-06 | Hitachi Ltd | 試料評価・処理観察システム |
JP2010257617A (ja) * | 2009-04-22 | 2010-11-11 | Hitachi High-Technologies Corp | 試料ホールダ,該試料ホールダの使用法、及び荷電粒子装置 |
JP2011080869A (ja) * | 2009-10-07 | 2011-04-21 | Bridgestone Corp | 試験片の観察用メッシュ及び試験片の観察方法 |
JP2014056785A (ja) * | 2012-09-14 | 2014-03-27 | Hitachi High-Technologies Corp | 荷電粒子線装置及び試料観察方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024161507A1 (ja) * | 2023-01-31 | 2024-08-08 | 株式会社日立ハイテク | 搬送方法、搬送装置および解析システム |
Also Published As
Publication number | Publication date |
---|---|
TWI745250B (zh) | 2021-11-01 |
KR20220151185A (ko) | 2022-11-14 |
TWI765830B (zh) | 2022-05-21 |
US20230126577A1 (en) | 2023-04-27 |
TW202141674A (zh) | 2021-11-01 |
JPWO2021210087A1 (ja) | 2021-10-21 |
TW202205508A (zh) | 2022-02-01 |
JP7322284B2 (ja) | 2023-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6072178A (en) | Sample analyzing apparatus | |
US7157703B2 (en) | Electron beam system | |
JP5307181B2 (ja) | 試料表面検査方法及び検査装置 | |
US6310341B1 (en) | Projecting type charged particle microscope and projecting type substrate inspection system | |
JP4610798B2 (ja) | レーザ欠陥検出機能を備えた走査型電子顕微鏡とそのオートフォーカス方法 | |
US20050194535A1 (en) | Sample surface inspection method and inspection system | |
US7777183B2 (en) | Charge particle beam system, sample processing method, and semiconductor inspection system | |
US9390886B2 (en) | Electro-optical inspection apparatus using electron beam | |
US20060190916A1 (en) | Semiconductor substrate processing method and apparatus | |
TW202107512A (zh) | 具有低串擾之多重帶電粒子束裝置 | |
JP2008112596A (ja) | 走査電子顕微鏡 | |
WO2021210087A1 (ja) | 搬送装置および解析システム | |
JP4642362B2 (ja) | 基板位置合わせ方法、基板表面検査方法、基板位置決め方法、半導体デバイス製造方法、基板位置合わせ装置及び基板表面検査装置 | |
US6762422B2 (en) | Analyzer/observer | |
JP3836735B2 (ja) | 回路パターンの検査装置 | |
JP5302934B2 (ja) | 試料表面検査方法および検査装置 | |
US20220254599A1 (en) | Multiple landing energy scanning electron microscopy systems and methods | |
JP4085259B2 (ja) | ウエハ検査用x線透視装置 | |
CN110337707B (zh) | 带电粒子线装置 | |
US20220351932A1 (en) | Beam manipulation of advanced charge controller module in a charged particle system | |
TW202414126A (zh) | 檢測設備及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20930659 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022514912 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227034356 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20930659 Country of ref document: EP Kind code of ref document: A1 |