WO2014040526A1 - 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法 - Google Patents

圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法 Download PDF

Info

Publication number
WO2014040526A1
WO2014040526A1 PCT/CN2013/083270 CN2013083270W WO2014040526A1 WO 2014040526 A1 WO2014040526 A1 WO 2014040526A1 CN 2013083270 W CN2013083270 W CN 2013083270W WO 2014040526 A1 WO2014040526 A1 WO 2014040526A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
base
roundness
outer diameter
disposed
Prior art date
Application number
PCT/CN2013/083270
Other languages
English (en)
French (fr)
Inventor
郑青焕
Original Assignee
深圳深蓝精机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳深蓝精机有限公司 filed Critical 深圳深蓝精机有限公司
Publication of WO2014040526A1 publication Critical patent/WO2014040526A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2408Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring roundness

Definitions

  • the invention relates to the technical field of a circular axis measuring device, in particular to a measuring device for a circular shaft length, an outer diameter, a runout value and a true roundness, and a measuring method thereof.
  • the round shaft is a commonly used part in the mechanical field and is generally used in the assembly of various mechanical equipment.
  • the requirements for the length, outer diameter, runout value and roundness of the round shaft are also different. Therefore, before assembling the mechanical equipment, it is first necessary to select the round shaft that matches the requirements, and for production, For processing companies, this is also a prerequisite for the beginning of the process. If the length, outer diameter, runout value and roundness of the round shaft are too far from the requirements, it will damage the operation of the mechanical equipment and cause damage to the mechanical equipment. Therefore, the length, outer diameter and runout value of the round shaft And the measurement and classification of roundness is a necessary process for industrial enterprises to produce.
  • the length, the outer diameter, the jitter value, and the roundness of the circular shaft are usually measured by a common caliper or a dial gauge, so that there is a problem of slow measurement speed, low measurement accuracy, and low efficiency, which cannot satisfy the precision.
  • the need for production is usually measured by a common caliper or a dial gauge, so that there is a problem of slow measurement speed, low measurement accuracy, and low efficiency, which cannot satisfy the precision. The need for production.
  • the object of the present invention is to provide a measuring device for the length, the outer diameter, the runout value and the roundness of the circular shaft, which aims to solve the measurement of the length, outer diameter, runout value and roundness of the circular shaft by using a caliper or a dial indicator in the prior art. Therefore, the measurement speed is slow, the measurement accuracy is low, the efficiency is low, and the problem of precision production needs cannot be met.
  • the present invention is achieved by a measuring device for a circular shaft length, an outer diameter, a runout value and a roundness, comprising a base, a control center, and a measuring mechanism for placing the length of the circular shaft on the base and controlled by the control center. a first measuring mechanism and a second measuring mechanism disposed on the base and controlled by the control center to measure an outer diameter, a runout value and a roundness of the circular shaft;
  • the first measuring mechanism includes a first guide rail and two first bearing assemblies and a second bearing assembly respectively disposed on the first rails;
  • the first bearing assembly includes a first base disposed at one end of the first rail and a first abutment shaft disposed on the first base and extending forwardly to abut the end of the round shaft, the first a base is further provided with a power component for driving the circular shaft to rotate;
  • the second bearing assembly includes a second base disposed at the other end of the first rail and a second abutment shaft disposed on the second base and extending forwardly to abut the end of the round shaft, a second base is further provided with a sensor for detecting a moving distance and a cylinder for driving the second abutting shaft and the sensor to move forward;
  • the second measuring mechanism includes two second rails disposed on the base and respectively disposed on two sides of the first rail, and horizontal plates respectively connected to the two second rails, and respectively disposed on the second rail Both ends of the horizontal plate measure the outer diameter, the runout value and the roundness of the circular axis in rotation by emitting parallel light and transmit the measurement result to the optical detector of the control center.
  • the present invention also provides a measuring method of the above-mentioned measuring device for the length, the outer diameter, the runout value and the roundness of the round shaft, as follows: a circular shaft is placed between the first bearing assembly and the second bearing assembly; The distance between the first abutting shaft and the second abutting shaft is greater than the length of the circular shaft; the power assembly drives the circular shaft to rotate, and the cylinder drives the second abutting shaft and the The sensor moves forward; until the first abutting shaft and the second abutting shaft respectively abut on both ends of the circular shaft, the sensor transmits the moving distance to the control center, and the control center is according to a preset distance The difference from the moving distance gives the length value of the circular axis;
  • the optical detector When the circular axis rotates, the optical detector emits parallel light, and the parallel light is shaded by the circular axis to generate a shadow, and the distance d of the shadow is obtained, and the distance between the tangent point of the parallel light and the edge of the parallel light is obtained.
  • L 1 or L 2 when the circular axis rotates for many weeks, multiple sets of data are obtained: d(d 1 , d 2 , ..., d n ), L 1 (L 11 , L 12 , ..., L 1n ) Or L 2 (L 21 , L 22 , ..., L 2n ); the control center calculates the average of d(d 1 , d 2 , ..., d n ) to obtain the average outer diameter value of the circular axis, and calculates L 1 (L 11 , L 12 , ..., L 1n ) or the difference between the maximum and minimum values of L 2 (L 21 , L 22 , ..., L 2n ), to obtain the value of the circular axis runout, and calculate d(d 1 , The difference between the maximum value and the minimum value in d 2 , ..., d n ) gives the value of the roundness of the circular axis.
  • the measuring device of the invention can automatically measure the length, the outer diameter, the runout value and the roundness of the round shaft, and has the advantages of high operation speed, high efficiency and high accuracy, and meets the needs of precision production. .
  • FIG. 1 is a perspective view of a measuring device for a circular shaft length, an outer diameter, a runout value, and a true roundness provided by the present invention
  • FIG. 2 is a perspective view of a first bearing assembly and a power assembly according to an embodiment of the present invention
  • FIG. 3 is a perspective view of a second bearing assembly according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a second measuring mechanism according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an optical detector according to an embodiment of the present invention for emitting parallel light onto a circular axis
  • FIG. 6 is a perspective view showing a measuring device for a circular shaft length, an outer diameter, a jitter value, and a true roundness according to an embodiment of the present invention, which is applied to a production line.
  • the invention provides a measuring device for a circular shaft length, an outer diameter, a runout value and a roundness, comprising a base, a control center, a first measurement placed on the base and controlled by the control center to measure the length of the circular shaft a mechanism and a second measuring mechanism disposed on the base and controlled by the control center to measure an outer diameter, a runout value, and a roundness of the circular shaft;
  • the first measuring mechanism includes a first guide rail and two first bearing assemblies and a second bearing assembly respectively disposed on the first rails;
  • the first bearing assembly includes a first base disposed at one end of the first rail and a first abutment shaft disposed on the first base and extending forwardly to abut the end of the round shaft, the first a base is further provided with a power component for driving the circular shaft to rotate;
  • the second measuring mechanism includes two second rails disposed on the base and respectively disposed on two sides of the first rail, and horizontal plates respectively connected to the two second rails, and respectively disposed on the second rail Both ends of the horizontal plate measure the outer diameter, the runout value and the roundness of the circular axis in rotation by emitting parallel light and transmit the measurement result to the optical detector of the control center.
  • the automatic measurement of the length, the outer diameter, the runout value and the roundness of the circular shaft can be realized, and the operation speed is fast, the efficiency is high, and the accuracy is also high, which satisfies the requirement of precision production.
  • the measuring device 1 in this embodiment is for measuring the length, the outer diameter, the jitter value and the roundness of the circular shaft 2, and includes a substrate 10, a first surface disposed on the substrate 10 and capable of measuring the length of the circular shaft 2 a measuring mechanism, a second measuring mechanism 13 and a control center disposed on the substrate 10 and capable of measuring an outer diameter, a jitter value and a roundness of the rotating circular shaft 2, under the control of the control center, the first measurement described above
  • the mechanism can also drive the circular shaft 2 to rotate, and the circular shaft 2 can only rotate, and the second measuring mechanism 13 can measure the jitter value and the true roundness of the rotating circular shaft 2.
  • the first measuring structure includes a first rail 110 disposed on the substrate 10 and a bearing assembly disposed between the two phases on the first rail 110.
  • the bearing assembly has a gap therebetween, and the circular shaft 2 is axially disposed. In the gap, the two ends are respectively supported by the bearing assembly.
  • the two bearing assemblies are the first bearing assembly 11 and the second bearing assembly 15, respectively.
  • the first bearing assembly 11 includes a first base 111 disposed on one end of the first rail 110.
  • the lower end of the first base 111 is provided with a first rail that cooperates with the first rail 110, so that the first base 111 can be
  • the upper end of the first base 111 is provided with a downwardly concave first limiting slot.
  • the first abutting block 112 is disposed on the rear side of the first base 111 corresponding to the first limiting slot.
  • a first abutting shaft 113 is disposed in the first abutting block 112.
  • One end of the first abutting shaft 113 is disposed in the first abutting block 112, and the other end extends forwardly through the first a limiting slot extending to the front end of the first base 111 for abutting on one end of the round shaft 2; two first rollers 114 are disposed between the front ends of the first base 111, the two first rollers The shafts 114 are respectively located below the first limiting slots and are distributed on the left and right sides of the first limiting slot, so that the first limiting slot and the two first rollers 114 form a triangle shape, and the two first The gap of the roller 114 should not be too large. When one end of the round shaft 2 is placed on the first bearing assembly 11, it is placed. Between the two first roller 114, so that, by the rotation of the two first roller 114, driven in rotation round shaft 2.
  • the rotating structure includes three rotating wheels 122 respectively located on two sides and below the two first rollers 114 and a belt 123 disposed outside the three rotating wheels 122.
  • the belt 123 abuts on the two first rollers.
  • the rotating wheel 122 on the side of the two first rollers 114 is coupled to the rotating shaft of the motor 121, so that when the rotating shaft of the motor 121 rotates, the belt 123 moves, thereby driving three turns by the belt 123.
  • the wheel 122 rotates, because the distribution position of the three reels 122 forms a triangle surrounding the two first rollers 114, so that the belt 123 directly drives the two first rollers 114 to rotate, so that the two first positions can be placed.
  • the circular shaft 2 between the rollers 114 rotates.
  • the second bearing assembly 15 includes a second base 151 disposed on the other end of the first rail 110.
  • the second end of the second base 151 is provided with a second rail that cooperates with the first rail 110.
  • the second base 151 is movable relative to the first rail 110; the upper end of the second base 151 is provided with a second recessed recessed slot, corresponding to the position of the second limiting slot, the rear side of the second base 151 is provided a second abutting block 152 is disposed in the second abutting block 152.
  • the second abutting shaft 153 has one end extending through the second abutting block 152 and the other end extending forward.
  • a cylinder 142 is connected to the second base 151, and a moving plate 143 is connected to the telescopic shaft of the cylinder 142, and a sensor for measuring the length of the circular shaft 2 is disposed above the moving plate 143, and The second abutting block 152 is connected to the moving plate 143.
  • the moving plate 143 moves, and the second abutting block 152 and the sensor also move.
  • the second abutting block 152 moves, it will move the second abutting shaft 153 disposed therein, so that the relative distance between the first abutting shaft 113 and the second abutting shaft 153 is changed.
  • the length of the circular shaft 2 is measured as follows: First, the distance between the two bearing assemblies is adjusted such that the distance is slightly larger than the length of the circular shaft 2 to be measured, and the distance is stored in the control center.
  • the circular shaft 2 is placed between the first bearing assembly 11 and the second bearing assembly 15, and the two ends are respectively placed on the first roller 114 and the second roller 154, and the motor 121 on the first roller 114 drives
  • the rotating structure rotates, that is, the three rotating wheels 122 rotate, thereby driving the first roller 114 to rotate, thereby causing the circular shaft 2 to rotate therewith;
  • the cylinder 142 on the second bearing assembly 15 drives the moving plate 143 to move forward, thus, Since the spring 144 is compressed, the cymbal drive sensor also moves forward, and the second abutment block 152 and the second abutment shaft 153 also move forward until the first abutment shaft 113 and the second abutment shaft 153 abut each other.
  • the control center controls the cylinder 142 to stop operating, and the sensor transmits the moving distance to the control center, and the control center subtracts the moving distance according to the preset distance, thereby obtaining the circular axis.
  • the second measuring mechanism 13 described above includes a second guide rail 133 which is placed in parallel on the base between the two phases, a horizontal plate 132, and two optical detectors 131 respectively connected to the ends of the horizontal plate 132.
  • the two second guide rails 133 are respectively parallel to the first guide rail 110 and respectively disposed on two sides of the first guide rail 110; the two ends of the horizontal plate 132 are respectively connected to the second guide rail 133, and the second ends thereof are respectively provided with second
  • the rail by the cooperation between the second rail and the second rail 133, can move the horizontal plate 132 on the second rail 133; the optical detectors 131 are respectively placed on both ends of the horizontal plate 132, which can be paralleled by emission
  • the light measures the circular axis 2 in rotation to obtain the outer diameter, the jitter value and the roundness of the circular shaft 2.
  • the "parallel light” herein refers to the light and the circular axis 2 emitted by the optical detector 131. It is vertical and multiple rays are parallel.
  • the measurement process of the second measuring mechanism 13 is as follows: under the driving of the first measuring mechanism, the circular shaft 2 rotates, and when the circular shaft 2 rotates, the optical detector 131 emits parallel light.
  • the parallel light is irradiated on the rotating circular shaft 2, and after being shielded by the circular shaft 2, a shadow is generated, thereby obtaining a shadow d distance, and at the same time, a tangent point and a parallel light edge of the parallel light and the edge of the circular axis 2 can be obtained.
  • the distance L 1 or L 2 is constantly rotating, so the above data is not single, there are multiple, respectively: d (d 1 , d 2 , ..., d n ), L 1 (L 11 , L 12 , ..., L 1n ), L 2 (L 21 , L 22 , ..., L 2n ), such that by calculating the average of d(d 1 , d 2 , ..., d n ) Value, wait until the average outer diameter of the circular axis 2; by calculating the maximum and minimum values of L 1 (L 11 , L 12 , ..., L 1n ) or L 2 (L 21 , L 22 , ..., L 2n ) The difference between the values, waiting for a jump value of the circular axis 2, of course, by calculating a number of jitter values, the average axis jump value of the circular axis 2 is obtained; by calculating the maximum of d(d 1 , d 2
  • the horizontal plate 132 is further provided with an adjustment structure, and the adjustment structure is connected to the horizontal plate 132, and The height position of the optical detector 131 on the cross plate 132 can be adjusted.
  • the adjustment structure includes an adjustment nut 134 connected to the horizontal plate 132.
  • One end of the adjustment nut 134 is connected to the optical detector 131.
  • the adjustment nut 134 serves only as a fine adjustment function of the optical detector 131.
  • the arrangement direction of the two optical detectors 131 is perpendicular to the arrangement direction of the two bearing assemblies, forming a cross-shaped arrangement.
  • control center is a PC-PLC control center, and includes a calculation module and an analysis module, which perform calculation and analysis according to the movement of the mechanical part to obtain a required structure.
  • the loading device 1 is provided with a loading mechanism on both sides. 18 and the blanking sorting mechanism 17, and the measuring device 1 is provided with a robot 16 controlled by the control center, which can pick up the round shaft 2 to be detected in the loading mechanism 18 and place it in the measuring device 1 for length,
  • the control center re-controls the manipulator 16 to classify the detected round shaft 2 into the blank sorting mechanism 17, and the entire process is automated, reducing labor.
  • the labor intensity of the operation is suitable for the case where the number of the circular shafts 2 to be detected is large, and the detection efficiency is increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种圆轴长度、外径、跳动值及真圆度的测量装置,包括基座(10)、控制中心、置于基座(10)上且由控制中心控制测量圆周长度的第一测量机构以及置于基座(10)上且由控制中心控制测量圆轴外径、跳动值及真圆度的第二测量机构(13);第一测量机构包括两个相间设置的轴承组件(11,15)及传感器,利用两个轴承组件(11,15)之间距离变化,传感器测量到圆轴长度;第二测量机构(13)包括发射平行光的光学检测仪(131),利用平行光照在圆轴上的结构,得到圆轴的外径、跳动值及真圆度。还公开该测量装置的测量方法。

Description

圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法 技术领域
本发明涉及圆轴测量装置的技术领域,尤其涉及圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法。
背景技术
圆轴是机械领域中常用的零件,一般在各种机械设备的组装中都会用到。对于不同的机械设备,对圆轴的长度、外径、跳动值以及真圆度的要求也不一样,因此,在机械设备组装之前,首先必须选择与要求相匹配的圆轴,且对于生产、加工企业而言,这也是工序开始的前期必备程序。若圆轴的长度、外径、跳动值以及真圆度与要求有过大偏差,则会损害机械设备的运作,造成机械设备损坏等现象,因此,对圆轴的长度、外径、跳动值以及真圆度进行测量并分类则成为工业企业生产所必须进行的工序。
   现有技术中,通常都采用普通卡尺或百分表测量圆轴的长度、外径、跳动值以及真圆度,这样,存在测量速度慢、测量准确度低以及效率低的问题,不能满足精密生产的需要。
技术问题
本发明的目的在于提供圆轴长度、外径、跳动值及真圆度的测量装置,旨在解决现有技术中采用卡尺或百分表测量圆轴长度、外径、跳动值及真圆度,以致测量速度慢、测量准确度低、效率低及不能满足精密生产需要的问题。
技术解决方案
   本发明是这样实现的,圆轴长度、外径、跳动值及真圆度的测量装置,包括基座、控制中心、置于所述基座上且由所述控制中心控制测量圆轴长度的第一测量机构以及置于所述基座上且由所述控制中心控制测量圆轴外径、跳动值及真圆度的第二测量机构;
   所述第一测量机构包括第一导轨以及两分别相间设于所述第一导轨上的第一轴承组件及第二轴承组件;
   所述第一轴承组件包括设于所述第一导轨一端的第一底座以及设于所述第一底座上且向前延伸可抵接于圆轴端头的第一抵接轴,所述第一底座上还设有驱动圆轴转动的动力组件;
   所述第二轴承组件包括设于所述第一导轨另一端的第二底座以及设于所述第二底座上且向前延伸可抵接于圆轴端头的第二抵接轴,所述第二底座上还设有检测移动距离的传感器以及可驱动所述第二抵接轴及所述传感器向前移动的气缸;
   所述第二测量机构包括两设于所述基座上且分别平行置于所述第一导轨两侧的第二导轨、分别连接于两所述第二导轨的横板以及分别置于所述横板两端且通过发出平行光测量转动中的圆轴的外径、跳动值及真圆度并将测量结果传至所述控制中心的光学检测仪。
   本发明还提供了上述圆轴长度、外径、跳动值及真圆度的测量装置的测量方法,如下:将圆轴置于所述第一轴承组件及所述第二轴承组件之间;预设所述第一抵接轴与第二抵接轴之间的距离大于所述圆轴的长度;所述动力组件驱动所述圆轴转动,所述气缸驱动所述第二抵接轴及所述传感器向前移动;直至所述第一抵接轴及第二抵接轴分别抵接于圆轴的两端,传感器将移动的距离传递至所述控制中心,所述控制中心根据预设距离与移动距离之差得到圆轴的长度数值;
   当所述圆轴转动后,所述光学检测仪发出平行光,平行光受圆轴遮蔽产生阴影,得到阴影的间距d,且得到所述平行光于圆轴边缘切点与平行光边缘的距离L1或L2;当圆轴转动多周后,得到多组数据为:d(d1, d2, ……, dn)、L1(L11,L12,……,L1n)或L2(L21,L22,……, L2n);控制中心计算d(d1, d2, ……, dn)的平均值,得到圆轴的平均外径数值,计算L1(L11,L12,……,L1n)或L2(L21,L22,……, L2n) 中最大值及最小值之差,得到圆轴跳动值,计算d(d1, d2, ……, dn) 中最大值及最小值之差,得到圆轴真圆度的数值。
有益效果
与现有技术相比,本发明中的测量装置可以对圆轴的长度、外径、跳动值及真圆度进行自动化测量,且操作速度快、效率高及准确率高,满足精密生产的需要。
附图说明
图1是本发明提供的圆轴长度、外径、跳动值及真圆度的测量装置的立体示意图;
   图2是本发明实施例提供的第一轴承组件与动力组件配合的立体示意图;
   图3是本发明实施例提供的第二轴承组件的立体示意图;
   图4是本发明实施例提供的第二测量机构的立体示意图;
   图5是本发明实施例提供的光学检测仪发出平行光至圆轴上的效果示意图;
   图6是本发明实施例提供的圆轴长度、外径、跳动值及真圆度的测量装置运用于生产线中的立体示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
   本发明提供了圆轴长度、外径、跳动值及真圆度的测量装置,包括基座、控制中心、置于所述基座上且由所述控制中心控制测量圆轴长度的第一测量机构以及置于所述基座上且由所述控制中心控制测量圆轴外径、跳动值及真圆度的第二测量机构;
   所述第一测量机构包括第一导轨以及两分别相间设于所述第一导轨上的第一轴承组件及第二轴承组件;
   所述第一轴承组件包括设于所述第一导轨一端的第一底座以及设于所述第一底座上且向前延伸可抵接于圆轴端头的第一抵接轴,所述第一底座上还设有驱动圆轴转动的动力组件;
   所述第二轴承组件包括设于所述第一导轨另一端的第二底座以及设于所述第二底座上且向前延伸可抵接于圆轴端头的第二抵接轴,所述第二底座上还设有检测移动距离的传感器以及可驱动所述第二抵接轴及所述传感器向前移动的气缸;
   所述第二测量机构包括两设于所述基座上且分别平行置于所述第一导轨两侧的第二导轨、分别连接于两所述第二导轨的横板以及分别置于所述横板两端且通过发出平行光测量转动中的圆轴的外径、跳动值及真圆度并将测量结果传至所述控制中心的光学检测仪。
利用本发明中的测量装置,可以实现对圆轴长度、外径、跳动值及真圆度自动化测量,其操作速度快、效率高,且准确度也高,满足精密生产的需要。
以下结合具体附图对本发明的实现进行详细的描述。
如图1~6所示,为本发明的一较佳实施例。
本实施例中的测量装置1,用于测量圆轴2的长度、外径、跳动值以及真圆度,其包括基板10、设置在基板10上且可对圆轴2长度进行测量的第一测量机构、设置在基板10上且可对转动的圆轴2的外径、跳动值及真圆度进行测量的第二测量机构13以及控制中心,在控制中心的控制下,上述的第一测量机构还可以带动圆轴2转动,圆轴2只有转动,第二测量机构13才可以对转动中的圆轴2的跳动值及真圆度进行测量。
具体地,上述的第一测量结构包括设置在基板10上的第一导轨110以及两相间设置在第一导轨110上的轴承组件,两轴承组件之间具有间隙,圆轴2呈轴向放置在该间隙中,两端分别由轴承组件支撑。为了便于叙述,两轴承组件分别为第一轴承组件11以及第二轴承组件15。
上述的第一轴承组件11包括设置在第一导轨110一端上的第一底座111,当然,第一底座111下端设有与第一导轨110配合的第一轨道,这样,使得第一底座111可以相对于第一导轨110移动;第一底座111的上端设有向下凹的第一限位槽,对应第一限位槽的位置,第一底座111的后侧设有第一抵接块112,该第一抵接块112中穿设有第一抵接轴113,该第一抵接轴113的一端穿设在第一抵接块112中,另一端向前延伸,通过上述的第一限位槽,延伸至第一底座111的前端,其可用于抵接在圆轴2的一端头上;在第一底座111的前端相间设置有两个第一滚轴114,该两第一滚轴114分别位于第一限位槽的下方,且分布在第一限位槽的左右两侧,这样,也就是第一限位槽以及两个第一滚轴114形成三角状,两个第一滚轴114的间隙不宜过大,当圆轴2的一端部置于第一轴承组件11上后,其是放置在两个第一滚轴114之间的,这样,由两第一滚轴114的转动,带动圆轴2的转动。
该第一轴承组件11的第一底座111上还设有动力组件12,其可以驱动两个第一滚轴114的转动,以使两第一滚轴114驱动圆轴2的转动。具体地,动力组件12包括连接在第一底座111上的电机121以及由电机121驱动转动的转动结构,该转动结构由电机121驱动转动,当其转动后,则可以驱动两第一滚轴114的转动。
具体地,上述的转动结构包括分别位于两第一滚轴114两侧及下方的三个转轮122以及套设在三个转轮122外的皮带123,皮带123抵接在两第一滚轴114的表面上,其中位于两第一滚轴114一侧的转轮122连接在电机121的转轴上,这样,当电机121的转轴转动后,皮带123运动,从而,由皮带123驱动三个转轮122转动,由于三个转轮122的分布位置形成包围了两第一滚轴114下方的三角形,这样,皮带123直接也带动两第一滚轴114转动,这样,可使放置在两第一滚轴114之间的圆轴2转动。
本实施例中,上述的第二轴承组件15包括设置在第一导轨110另一端上的第二底座151,当然,第二底座151下端设有与第一导轨110配合的第二轨道,这样,使得第二底座151可以相对于第一导轨110移动;第二底座151的上端设有向下凹的第二限位槽,对应第二限位槽的位置,第二底座151的后侧设有第二抵接块152,该第二抵接块152中穿设有第二抵接轴153,该第二抵接轴153的一端穿设在第二抵接块152中,另一端向前延伸,通过上述的第二限位槽,延伸至第二底座151的前端,其可用于抵接在圆轴2的另一端头上;在第二底座151的前端相间设置有两个第二滚轴154,该两第二滚轴154分别位于第二限位槽的下方,且分布在第二限位槽的左右两侧,这样,也就是第二限位槽以及两个第二滚轴154形成三角状,两个第二滚轴154的间隙不宜过大,当圆轴2的另一端部置于第二轴承组件15上后,其是放置在两个第二滚轴154之间的。
在上述的第二轴承组件15中,第二底座151上连接有气缸142,气缸142的伸缩轴上连接有移动板143,移动板143上方设有用于对圆轴2长度进行测量的传感器,且上述的第二抵接块152是连接在移动板143上的,这样,当气缸142的伸缩轴进行伸缩移动时,移动板143则移动,同时,第二抵接块152以及传感器也进行移动,当第二抵接块152移动时,其会带动穿设在其中的第二抵接轴153移动,从而第一抵接轴113以及第二抵接轴153之间的相对距离则发生改变。
具体地,上述的移动板143的后端设有向上弯折的弯折条,该弯折条与传感器之间通过弹簧144连接,也就是弹簧144的一端抵压在传感器上,另一端抵压在移动板143的弯折条上,当移动板143随着气缸142向前移动时,弹簧144被压缩,从而弹簧144的压缩力驱动传感器向前移动;当移动板143随气缸142向后移动时,弹簧144被拉伸,在弹簧144拉伸力的作用下,传感器向后移动。
本实施例中,圆轴2长度的测量方法如下:首先,调节好两个轴承组件之间的距离,使得该距离略大于要测量的圆轴2的长度,并将该距离长度存储在控制中心中;将圆轴2放置在第一轴承组件11及第二轴承组件15之间,两端分别放置在第一滚轴114及第二滚轴154上,第一滚轴114上的电机121带动转动结构转动,也就是三个转轮122转动,从而驱动第一滚轴114转动,从而使得圆轴2随之转动;第二轴承组件15上的气缸142驱动移动板143向前移动,这样,由于弹簧144被压缩,瘫痪驱动传感器也向前移动,且第二抵接块152以及第二抵接轴153也向前移动,直至第一抵接轴113以及第二抵接轴153分别抵接在圆轴2的两端上,此时,控制中心控制气缸142停止运作,并且,传感器将移动的距离传递给控制中心,控制中心根据预设的距离减去移动的距离,从而得到了圆轴2的长度。
   上述的第二测量机构13包括两相间平行放置在基座上的第二导轨133、横板132以及两分别连接在横板132两端的光学检测仪131。该两第二导轨133分别平行于第一导轨110,且分别放置在第一导轨110的两侧;横板132的两端分别连接在第二导轨133上,其两端下分别设有第二轨道,利用该第二轨道与第二导轨133之间的配合,可以使得横板132在第二导轨133上移动;光学检测仪131分别放置在横板132的两端上,其可以通过发射平行光对转动中的圆轴2进行测量,以得到圆轴2的外径、跳动值以及真圆度,当然,此处的“平行光”指的是光学检测仪131发出的光线与圆轴2呈垂直状态,且多个光线之间是平行的。
   如图5所示,上述的第二测量机构13的测量过程是这样的:在第一测量机构的带动下,圆轴2转动,当圆轴2转动动后,光学检测仪131发出平行光,平行光照射在转动中的圆轴2上,受到圆轴2的遮蔽后,产生阴影,从而得到阴影的间距为d,且同时可以得到平行光与圆轴2边缘的切点与平行光边缘的距离L1或L2,当然,圆轴2在不断的旋转,故上述的数据不是单一的,是有多个,分别为:d(d1, d2, ……, dn),L1(L11,L12,……,L1n),L2(L21,L22,……, L2n) ,这样,通过计算d(d1, d2, ……, dn)的平均值,等到圆轴2的平均外径;通过计算L1(L11,L12,……,L1n) 或L2(L21,L22,……, L2n) 中的最大值与最小值之差,等到圆轴2的一个跳动值,当然,通过计算若干跳动值,得出圆轴2的平均轴跳动值;通过计算d(d1, d2, ……, dn) 中最大值与最小值之差,得到圆轴2的一个真圆度,当然,通过计算若干真圆度,得到圆轴2的平均真圆度。
   本实施例中,有时候为了针对不同情况的测量,需要调节光学检测仪131在横板132上的高度位置,横板132上还设有调节结构,该调节结构连接在横板132上,且可以调节光学检测仪131在横板132上的高度位置。
   具体地,上述的调节结构包括连接在横板132上的调节螺母134,该调节螺母134的一端连接在光学检测仪131上,这样,通过转动调节螺母134,其则可以带动光学检测仪131在基板10上移动,本实施例中,调节螺母134只是作为光学检测仪131的微调作用。
   在上述的检测装置中,两光学检测仪131的布置方向与两轴承组件的布置方向是垂直的,形成了十字架形状布置。
   本实施例中,控制中心为PC-PLC控制中心,包括计算模块以及分析模块,其根据机械部分的运动,进行计算以及分析,以得到需要的结构。
   为了提高圆轴2的测量效率,以及应对待测量圆轴2数量较多的情况,如图6所示,为测量装置1运用在生产线中的示意图,测量装置1的两侧设置了上料机构18以及下料分拣机构17,且测量装置1上方设有由控制中心控制的机械手16,其可以将上料机构18中的待检测圆轴2抓起放置在测量装置1中,进行长度、外径、跳动值以及真圆度的测量,根据测量结构,控制中心再控制机械手16分类的将检测好的圆轴2放入下料分拣机构17中,整个过程实现自动化操作,减少了人工操作的劳动强度,适用于待检测圆轴2数量较多的情况,调高检测效率。
   以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 圆轴长度、外径、跳动值及真圆度的测量装置,其特征在于,包括基座、控制中心、置于所述基座上且由所述控制中心控制测量圆轴长度的第一测量机构以及置于所述基座上且由所述控制中心控制测量圆轴外径、跳动值及真圆度的第二测量机构;
       所述第一测量机构包括第一导轨以及两分别相间设于所述第一导轨上的第一轴承组件及第二轴承组件;
       所述第一轴承组件包括设于所述第一导轨一端的第一底座以及设于所述第一底座上且向前延伸可抵接于圆轴端头的第一抵接轴,所述第一底座上还设有驱动圆轴转动的动力组件;
       所述第二轴承组件包括设于所述第一导轨另一端的第二底座以及设于所述第二底座上且向前延伸可抵接于圆轴端头的第二抵接轴,所述第二底座上还设有检测移动距离的传感器以及可驱动所述第二抵接轴及所述传感器向前移动的气缸;
       所述第二测量机构包括两设于所述基座上且分别平行置于所述第一导轨两侧的第二导轨、分别连接于两所述第二导轨的横板以及分别置于所述横板两端且通过发出平行光测量转动中的圆轴的外径、跳动值及真圆度并将测量结果传至所述控制中心的光学检测仪。   
  2. 如权利要求1所述的圆轴长度、外径、跳动值及真圆度的测量装置,其特征在于,所述第一底座的上端设有第一限位槽,外侧设有第一抵接块,所述第一抵接轴一端传设于所述第一抵接块中,另一端穿过所述第一限位槽,向前延伸,所述第一底座的内侧设有两分别置于所述第一限位槽两侧且由所述动力组件驱动转动的第一滚轴;
       所述第二底座的上端设有第二限位槽,外侧设有由所述气缸驱动移动的第二抵接块,所述第二抵接轴一端穿设于所述第二抵接块中,另一端穿过所述第二限位槽,向前延伸,所述第二底座的内侧设有两分别置于所述第二限位槽两侧的第二滚轴。
  3.    如权利要求2所述的圆轴长度、外径、跳动值及真圆度的测量装置,其特征在于,所述动力组件包括设于所述第一底座上的电机以及三个分别置于所述第一滚轴左右侧及下方且由所述电机驱动带动所述第一滚轴转动的转轮。
  4. 如权利要求2所述的圆轴长度、外径、跳动值及真圆度的测量装置,其特征在于,所述第二底座上设有连接于所述气缸伸缩杆的移动板,所述第二抵接块连接于所述移动板。
  5.    如权利要求4所述的圆轴长度、外径、跳动值及真圆度的测量装置,其特征在于,所述移动板的后端设有向上弯折的弯折条,所述传感器置于所述移动板上方,后端与所述弯折条通过弹簧连接。
  6.    如权利要求1至5任一项所述的圆轴长度、外径、跳动值及真圆度的测量装置,其特征在于,两所述光学检测仪的布置方向垂直于所述第一轴承组件及所述第二轴承组件的布置方向。
  7.    如权利要求2至5任一项所述的圆轴长度、外径、跳动值及真圆度的测量装置,其特征在于,所述第一限位槽及所述第二限位槽分别呈V形状。
  8.    如权利要求2至5任一项所述的圆轴长度、外径、跳动值及真圆度的测量装置,其特征在于,所述横板上设有用于调节所述光学检测仪相对于所述横板上下移动的调节螺母,所述调节螺母连接于所述横板,一端连接于所述光学检测仪。
  9.    如权利要求1至5任一项所述的圆轴长度、外径、跳动值及真圆度的测量装置,其特征在于,所述测量装置两侧分别设有上料机构及下料分拣机构,上方设有由所述控制中心控制将所述上料机构中的待检测圆轴置于所述第一轴承组件及第二轴承组件之间且将检测好的圆轴分类置于所述下料分拣机构中的机械手。
  10. 采用权利要求1至9任一项所述的圆轴长度、外径、跳动值及真圆度的测量装置的测量方法,其特征在于,将圆轴置于所述第一轴承组件及所述第二轴承组件之间;预设所述第一抵接轴与第二抵接轴之间的距离大于所述圆轴的长度;所述动力组件驱动所述圆轴转动,所述气缸驱动所述第二抵接轴及所述传感器向前移动;直至所述第一抵接轴及第二抵接轴分别抵接于圆轴的两端,传感器将移动的距离传递至所述控制中心,所述控制中心根据预设距离与移动距离之差得到圆轴的长度数值;
       当所述圆轴转动后,所述光学检测仪发出平行光,平行光受圆轴遮蔽产生阴影,得到阴影的间距d,且得到所述平行光于圆轴边缘切点与平行光边缘的距离L1或L2;当圆轴转动多周后,得到多组数据为:d(d1, d2, ……, dn),L1(L11,L12,……,L1n)或L2(L21,L22,……, L2n);控制中心计算d(d1, d2, ……, dn) 的平均值,得到圆轴的平均外径数值,计算L1(L11,L12,……,L1n)或L2(L21,L22,……, L2n) 中最大值及最小值之差,得到圆轴跳动值,计算d(d1, d2, ……, dn) 中最大值及最小值之差,得到圆轴真圆度的数值。
PCT/CN2013/083270 2012-09-12 2013-09-11 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法 WO2014040526A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210335595.7A CN102901453B (zh) 2012-09-12 2012-09-12 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法
CN201210335595.7 2012-09-12

Publications (1)

Publication Number Publication Date
WO2014040526A1 true WO2014040526A1 (zh) 2014-03-20

Family

ID=47573821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083270 WO2014040526A1 (zh) 2012-09-12 2013-09-11 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法

Country Status (2)

Country Link
CN (1) CN102901453B (zh)
WO (1) WO2014040526A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482601A (zh) * 2016-12-02 2017-03-08 江苏尚诚精密模具科技有限公司 一种跳动检测机
CN107270850A (zh) * 2017-06-23 2017-10-20 宁波新松机器人科技有限公司 卡簧槽高度测量装置及测量方法
CN107588724A (zh) * 2017-10-10 2018-01-16 宁波嘉思特智能设备有限公司 一种激光测试仪
CN108775847A (zh) * 2018-05-11 2018-11-09 南京信息职业技术学院 一种测量杆类零件长度的检具
CN110411320A (zh) * 2019-08-08 2019-11-05 嘉善大冶机电科技有限公司 一种简易型圆度检测仪
CN110733852A (zh) * 2019-10-31 2020-01-31 福州天瑞线锯科技有限公司 一种单晶硅棒上料装置及料车
CN113218285A (zh) * 2021-05-12 2021-08-06 西安理工大学 一种分段式圆弧滚动导轨圆度的现场测量装置
CN113446915A (zh) * 2020-03-27 2021-09-28 晋义机械设备(上海)有限公司 一种手动钢管长度检具
CN113566759A (zh) * 2021-08-31 2021-10-29 常熟希那基汽车零件有限公司 一种电机轴外圆跳动自动化测量装置
CN113680682A (zh) * 2021-08-20 2021-11-23 嘉善品辉精机有限公司 一种三工位检测仪
CN113983978A (zh) * 2021-11-03 2022-01-28 山东洛轴所轴承研究院有限公司 一种高精度轴承内圈跳动检测用装置
CN114001614A (zh) * 2021-11-04 2022-02-01 南通市华冠电器有限公司 一种用于端子排上的铝块螺纹的自动检测机
CN114952330A (zh) * 2022-07-04 2022-08-30 苏州中航盛世刀辊制造有限公司 精密刀具检测台
CN115014237A (zh) * 2022-06-21 2022-09-06 广东技术师范大学 基于视觉检测的铝型材模具圆度检测装置
CN115138586A (zh) * 2022-06-23 2022-10-04 陕西法士特齿轮有限责任公司 一种片齿类零件的在线测量机构
CN115876051A (zh) * 2023-03-08 2023-03-31 临沂金正阳管业有限公司 一种无缝钢管制造用外径检测设备
CN117450982A (zh) * 2023-12-25 2024-01-26 泰州市勤峰物资有限公司 一种自行车轮圈真圆度测试机

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901453B (zh) * 2012-09-12 2015-06-10 深圳深蓝精机有限公司 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法
CN103453823B (zh) * 2013-09-10 2016-06-22 大连理工大学 一种管道几何尺寸的测量机
CN105806261A (zh) * 2014-12-29 2016-07-27 西安隆基硅材料股份有限公司 工件检测装置及工件检测方法
CN105135971A (zh) * 2015-09-02 2015-12-09 吴忠仪表有限责任公司 双立柱支撑可移动式球芯综合误差检测装置
CN105300341A (zh) * 2015-09-18 2016-02-03 宁波中和汽配有限公司 一种三四档拨叉轴的轴变形检测装置
JP6270931B2 (ja) * 2015-12-15 2018-01-31 日本特殊陶業株式会社 点火プラグ用絶縁体の検査方法および検査装置
CN107957253A (zh) * 2016-10-18 2018-04-24 广东科达洁能股份有限公司 一种轴类自动测量机
CN108534713B (zh) * 2017-03-02 2019-08-06 林明慧 免对正轴心的影像测量装置及其测量方法
CN106895785B (zh) * 2017-03-28 2023-06-16 久智光电子材料科技有限公司 管材固定组件及管材检测装置和方法
CN106931928A (zh) * 2017-04-06 2017-07-07 佳韩(常州)激光科技有限公司 环形加工物的内/外径真圆度的检测方法
CN107270852A (zh) * 2017-07-11 2017-10-20 苏州市瑞川尔自动化设备有限公司 自动轴长度检测及穿轴装置
CN107246855B (zh) * 2017-07-31 2020-06-16 中核(天津)科技发展有限公司 用于阶梯轴跳动检测的定位装置及定位方法
CN107202561B (zh) * 2017-07-31 2020-07-03 中核(天津)科技发展有限公司 阶梯轴跳动检测装置及检测方法
CN107560582A (zh) * 2017-08-25 2018-01-09 西安工业大学 一种火车轴径自动化测量装置
CN107462680A (zh) * 2017-09-04 2017-12-12 深圳创怡兴实业有限公司 海绵辊内部检测机及其检测方法
CN108088380A (zh) * 2018-02-05 2018-05-29 中山市恒臻金属制品有限公司 一种自动化的高精度测径设备
CN108871252A (zh) * 2018-07-27 2018-11-23 天津大学 基于同步带驱动式罗拉工件径向跳动测量装置及测量方法
CN109000530A (zh) * 2018-07-27 2018-12-14 天津大学 基于滚轴支撑和滚轮驱动的罗拉径向跳动测量装置及方法
CN109550705B (zh) * 2018-12-21 2024-02-20 苏州富邦机械链传动制造有限公司 一种销轴直径自动检测筛选装置
CN109612396A (zh) * 2018-12-28 2019-04-12 中国航空工业集团公司西安飞行自动控制研究所 一种基于led光学测径仪的自动化测量装置
CN110174087A (zh) * 2019-04-09 2019-08-27 重庆工业自动化仪表研究所 核反应柱安装测量总成及测量方法
CN109916306A (zh) * 2019-04-19 2019-06-21 力邦测控设备(洛阳)有限公司 一种轴类零件激光扫描仪
CN110044313A (zh) * 2019-04-26 2019-07-23 江苏理工学院 基于传感技术的轴类零件测量装置及其测量方法
CN110294285B (zh) * 2019-06-03 2020-07-14 中国农业机械化科学研究院 一种螺旋输送器快速检测装置及方法
CN110146047A (zh) * 2019-06-13 2019-08-20 横店集团英洛华电气有限公司 轴圆度检测装置
CN110345994B (zh) * 2019-08-15 2021-08-10 衢州市迈德电子有限公司 一种电机转子的检测方法
CN110823044A (zh) * 2019-10-23 2020-02-21 湖南军成科技有限公司 一种跳动检测样机及检测方法
CN113124776B (zh) * 2021-04-16 2023-06-27 青岛海之晨工业装备有限公司 一种基于车辆半轴表面自动检测机器人的检测方法
CN113932750A (zh) * 2021-11-25 2022-01-14 安徽苍井精密机械有限公司 跳动检测仪

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630702A1 (de) * 1986-09-09 1988-03-17 Ulrich Wagensommer Vorrichtung zum vermessen eines werkstueckes
DE4308283C2 (de) * 1992-03-17 1995-10-12 Wuttig Praezision Gmbh & Co Meßvorrichtung zum Messen von Längen oder anderen Maßkriterien an Werkstücken
US6141106A (en) * 1997-09-05 2000-10-31 Blum-Novotest Gmbh Measuring device for scanning dimensions, especially diameters
JP2006098197A (ja) * 2004-09-29 2006-04-13 Canon Chemicals Inc ゴムローラの外径及び振れ測定装置及び方法
CN101013026A (zh) * 2007-02-05 2007-08-08 深圳深蓝精机有限公司 激光外径检测仪
CN101266137A (zh) * 2008-01-16 2008-09-17 深圳深蓝精机有限公司 轴外径长度检测的方法及装置
JP2010101740A (ja) * 2008-10-23 2010-05-06 Murata Machinery Ltd シャフトワーク計測装置
CN101806568A (zh) * 2010-03-31 2010-08-18 温州市冠盛汽车零部件集团股份有限公司 汽车传动轴总成压缩长度检具
CN201575774U (zh) * 2009-12-31 2010-09-08 贵州西工精密机械有限公司 轴类零件台阶长度检测装置
CN202216649U (zh) * 2011-07-22 2012-05-09 大同齿轮(昆山)有限公司 测外径跳动装置
CN102901453A (zh) * 2012-09-12 2013-01-30 深圳深蓝精机有限公司 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513992C (zh) * 2006-11-14 2009-07-15 深圳深蓝精机有限公司 激光检测仪
CN202372139U (zh) * 2011-12-12 2012-08-08 上海博泽电机有限公司 转子跳动检测装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630702A1 (de) * 1986-09-09 1988-03-17 Ulrich Wagensommer Vorrichtung zum vermessen eines werkstueckes
DE4308283C2 (de) * 1992-03-17 1995-10-12 Wuttig Praezision Gmbh & Co Meßvorrichtung zum Messen von Längen oder anderen Maßkriterien an Werkstücken
US6141106A (en) * 1997-09-05 2000-10-31 Blum-Novotest Gmbh Measuring device for scanning dimensions, especially diameters
JP2006098197A (ja) * 2004-09-29 2006-04-13 Canon Chemicals Inc ゴムローラの外径及び振れ測定装置及び方法
CN101013026A (zh) * 2007-02-05 2007-08-08 深圳深蓝精机有限公司 激光外径检测仪
CN101266137A (zh) * 2008-01-16 2008-09-17 深圳深蓝精机有限公司 轴外径长度检测的方法及装置
JP2010101740A (ja) * 2008-10-23 2010-05-06 Murata Machinery Ltd シャフトワーク計測装置
CN201575774U (zh) * 2009-12-31 2010-09-08 贵州西工精密机械有限公司 轴类零件台阶长度检测装置
CN101806568A (zh) * 2010-03-31 2010-08-18 温州市冠盛汽车零部件集团股份有限公司 汽车传动轴总成压缩长度检具
CN202216649U (zh) * 2011-07-22 2012-05-09 大同齿轮(昆山)有限公司 测外径跳动装置
CN102901453A (zh) * 2012-09-12 2013-01-30 深圳深蓝精机有限公司 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482601B (zh) * 2016-12-02 2022-11-15 江苏尚诚精密模具科技有限公司 一种跳动检测机
CN106482601A (zh) * 2016-12-02 2017-03-08 江苏尚诚精密模具科技有限公司 一种跳动检测机
CN107270850B (zh) * 2017-06-23 2023-08-18 宁波新松机器人科技有限公司 卡簧槽高度测量装置及测量方法
CN107270850A (zh) * 2017-06-23 2017-10-20 宁波新松机器人科技有限公司 卡簧槽高度测量装置及测量方法
CN107588724A (zh) * 2017-10-10 2018-01-16 宁波嘉思特智能设备有限公司 一种激光测试仪
CN107588724B (zh) * 2017-10-10 2023-12-29 宁波嘉思特智能设备有限公司 一种激光测试仪
CN108775847A (zh) * 2018-05-11 2018-11-09 南京信息职业技术学院 一种测量杆类零件长度的检具
CN110411320A (zh) * 2019-08-08 2019-11-05 嘉善大冶机电科技有限公司 一种简易型圆度检测仪
CN110733852A (zh) * 2019-10-31 2020-01-31 福州天瑞线锯科技有限公司 一种单晶硅棒上料装置及料车
CN113446915A (zh) * 2020-03-27 2021-09-28 晋义机械设备(上海)有限公司 一种手动钢管长度检具
CN113218285B (zh) * 2021-05-12 2024-03-29 西安理工大学 一种分段式圆弧滚动导轨圆度的现场测量装置
CN113218285A (zh) * 2021-05-12 2021-08-06 西安理工大学 一种分段式圆弧滚动导轨圆度的现场测量装置
CN113680682A (zh) * 2021-08-20 2021-11-23 嘉善品辉精机有限公司 一种三工位检测仪
CN113566759A (zh) * 2021-08-31 2021-10-29 常熟希那基汽车零件有限公司 一种电机轴外圆跳动自动化测量装置
CN113983978B (zh) * 2021-11-03 2024-04-16 山东智连共同体轴承科技有限公司 一种高精度轴承内圈跳动检测用装置
CN113983978A (zh) * 2021-11-03 2022-01-28 山东洛轴所轴承研究院有限公司 一种高精度轴承内圈跳动检测用装置
CN114001614B (zh) * 2021-11-04 2023-11-10 南通市华冠电器有限公司 一种用于端子排上的铝块螺纹的自动检测机
CN114001614A (zh) * 2021-11-04 2022-02-01 南通市华冠电器有限公司 一种用于端子排上的铝块螺纹的自动检测机
CN115014237A (zh) * 2022-06-21 2022-09-06 广东技术师范大学 基于视觉检测的铝型材模具圆度检测装置
CN115138586A (zh) * 2022-06-23 2022-10-04 陕西法士特齿轮有限责任公司 一种片齿类零件的在线测量机构
CN115138586B (zh) * 2022-06-23 2024-05-10 陕西法士特齿轮有限责任公司 一种片齿类零件的在线测量机构
CN114952330A (zh) * 2022-07-04 2022-08-30 苏州中航盛世刀辊制造有限公司 精密刀具检测台
CN115876051A (zh) * 2023-03-08 2023-03-31 临沂金正阳管业有限公司 一种无缝钢管制造用外径检测设备
CN117450982A (zh) * 2023-12-25 2024-01-26 泰州市勤峰物资有限公司 一种自行车轮圈真圆度测试机
CN117450982B (zh) * 2023-12-25 2024-04-26 泰州市勤峰物资有限公司 一种自行车轮圈真圆度测试机

Also Published As

Publication number Publication date
CN102901453A (zh) 2013-01-30
CN102901453B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2014040526A1 (zh) 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法
CN100573031C (zh) 导轨直线度检测装置
CN102901450B (zh) 一种测量装置以及轴体检测设备
WO2014040499A1 (zh) 检测装置及检测圆轴的外径、跳动值、真圆度的方法
CN101806592B (zh) 有机玻璃在线双面自动测厚装置
CN203541170U (zh) 一种t型电梯导轨矫直机
US9239218B2 (en) Size inspection device
CN203298725U (zh) 一种硅棒几何尺寸测量仪
CN210734805U (zh) 一种自动定位装置及含有该自动定位装置的自动检测线
CN102506729B (zh) 一种薄板厚度激光在线测量装置
CN206695753U (zh) 光学测量仪
CN105737781A (zh) 细长薄壁类工件专用三维测量设备
CN209280544U (zh) 一种新型高精度机器视觉检测平台
CN103292702B (zh) 一种硅棒几何尺寸测量仪
CN113834532A (zh) 一种长度、跳动公差、质量复合测量系统及测量方法
CN109579681A (zh) 锚链拉力测试前后锚链长度值测量装置
CN215449641U (zh) 一种光电传感器的检测装置
CN201215476Y (zh) 导轨直线度检测装置
CN214250922U (zh) 一种管材长度测量装置
CN213396887U (zh) 变压器引线带电距离测量装置
CN103217505B (zh) Smt网板检测装置
CN209214533U (zh) 锚链拉力测试前后锚链长度值测量装置
CN207556478U (zh) 墨板直线度检测系统
CN202432967U (zh) 一种轴承直径检测装置
CN205748320U (zh) 细长薄壁类工件专用三维测量设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836931

Country of ref document: EP

Kind code of ref document: A1