WO2014036760A1 - 一种液晶聚酯、其制备方法、其组合物及其组合物的应用 - Google Patents

一种液晶聚酯、其制备方法、其组合物及其组合物的应用 Download PDF

Info

Publication number
WO2014036760A1
WO2014036760A1 PCT/CN2012/081587 CN2012081587W WO2014036760A1 WO 2014036760 A1 WO2014036760 A1 WO 2014036760A1 CN 2012081587 W CN2012081587 W CN 2012081587W WO 2014036760 A1 WO2014036760 A1 WO 2014036760A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
temperature
composition
mol
Prior art date
Application number
PCT/CN2012/081587
Other languages
English (en)
French (fr)
Inventor
肖中鹏
蔡彤旻
宁凯军
曹民
曾祥斌
姜苏俊
Original Assignee
金发科技股份有限公司
上海金发科技发展有限公司
珠海万通化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 上海金发科技发展有限公司, 珠海万通化工有限公司 filed Critical 金发科技股份有限公司
Publication of WO2014036760A1 publication Critical patent/WO2014036760A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides

Definitions

  • liquid crystal polyester preparation method thereof, composition thereof and composition thereof
  • the present invention relates to the field of polymers, and in particular to a liquid crystal polyester, a preparation method thereof, and a composition comprising the liquid crystal polyester and the use thereof - BACKGROUND
  • Liquid crystal polyester has excellent heat resistance, self-flame retardancy, dimensional stability, electrical properties, and processing fluidity, and has been widely used in fields such as electronic appliances.
  • LCP Liquid crystal polyester
  • the heat distortion temperature (HDT) is an important parameter to measure the temperature of the polymer.
  • the melting temperature of the LCP is constant, when the difference between the crystallization temperature and the HDT exceeds a certain range, the HDT is small, and the applicable temperature is low;
  • the difference between the crystallization temperature and the HDT is small, the difference between the melting temperature and the crystallization temperature is inevitably large, which causes the material to be cooled during the molding process, and the curing time is prolonged to lower the molding efficiency. Therefore, the difference between the crystallization temperature and the HDT must be limited to a certain temperature range.
  • a liquid crystal polyester comprising repeating units represented by formula (I), ( ⁇ ), (III):
  • Ar 2 includes
  • the molar ratio of the repeating unit represented by formula (I) is 55-65%, based on all repeating units of the liquid crystal polyester;
  • the molar ratio of the repeating unit represented by the formula ( ⁇ ) is from 17.5 to 22.5%, based on all repeating units of the liquid crystal polyester; the molar ratio of the repeating unit represented by the formula (III) is from 17.5 to 22.5%, based on All repeating units of liquid crystal polyester.
  • the molar amount of the repeating unit represented by the formula (III) is 0.9-1.1 as compared with the molar amount of the repeating unit represented by the formula ( ⁇ ), and the repeating unit is composed of:
  • the molar ratio of the repeating unit represented by formula (I) is 55-65%, based on all repeating units of the liquid crystal polyester;
  • the molar ratio of the repeating unit represented by the formula ( ⁇ ) is from 17.5 to 22.5%, based on all repeating units of the liquid crystal polyester;
  • the molar amount of the repeating unit represented by the formula (III) is 0.9 to 1.1 as compared with the molar amount of the repeating unit represented by the formula (?).
  • the molar amounts c, d and e of the repeating units shown in (c), (d) and (e) satisfy the following relationship: 0 ⁇ e / [c + d + e] 3 ⁇ 4 ⁇ 29%.
  • the molar amounts c, d, and e of the repeating units shown in the above (c), (d), and (e) satisfy the following relationship: 11. l%3 ⁇ 4 ⁇ e/[c+d+e] 3 ⁇ 4 ⁇ 28.6% .
  • the value of e/[c+d+e] may also be 12.5%, 17.7%, 25%.
  • liquid crystal polyester is composed of repeating units represented by the formulae (I), (a), (b), (c), (d) and (e).
  • the liquid crystal polyester has a melting temperature determined by a differential scanning calorimeter of 300 to 360 °C.
  • the liquid crystal polyester has a heat distortion temperature of 45-305 "C" measured at a heating rate of 2 ° C / min under a 1.82 MP & load according to the IS075-2 standard.
  • the difference between the crystallization temperature and the heat distortion temperature of the liquid crystal polyester is 10-20 ° C, and a more preferred embodiment can reach 11-18 ° C.
  • a method for preparing the above liquid crystal polyester :
  • a prepolymer is prepared by melt polymerization under the action of an acetic anhydride acylating agent and a catalyst, and then solid phase polymerization is carried out to prepare a liquid crystal polyester.
  • the amount of the hydroxy group of the monomer is 1-1. 5 times, preferably 1. 02-1. 2 times.
  • Various polymerization catalysts may be used, representative examples of catalysts include dialkyl tin oxide, diaryl tin oxide, titanium alkoxide-based, alkali and alkaline earth metal salts and Lewis acid like BF 3, 001-1. 2% ⁇
  • the catalyst is preferably Zn, K, Mg, Ca or a mixture of a sulphate or a sulphate.
  • the polymerization reaction conditions are: acetylation of 120-15 CTC for 1-6 hours, and then raising the temperature to a temperature of 10-6 CTC / hour to above the melting temperature of the prepolymer of 0-25 ° C (prepolymerization maximum reaction temperature), and keeping the reaction 10 minutes to 4 hours; the pressure of the final reaction system is 133-101080 Pa, preferably 133-6670 Pa.
  • the prepolymer in a molten state prepared by the above polymerization method is discharged through the bottom of the reaction vessel under an applied pressure of 0.05 to 0.6 MPa, and is processed into the form of columnar structural particles, spherical or ellipsoidal particles. Wherein the columnar structure particles have a cross-sectional area of 7_24 mm 2 and a length of
  • prepolymer prepared above its melting temperature of 10 ° C, 1000s- 1 shear rate measured by a capillary rheometer melt viscosity 4-8Pa.
  • the prepolymer may be further subjected to solid phase polymerization under reduced pressure or an inert gas to obtain a liquid crystal polyester having a desired viscosity.
  • the preferred condition for solid phase polymerization is that the reaction temperature is 10-80 ° C below the melting temperature of the prepolymer, and the reaction temperature is Preferably, it is 20-60 ° C below the melting temperature, the pressure is 3 ⁇ 4 ⁇ 1000 Pa, preferably the pressure is 3 ⁇ 4 ⁇ 200 Pa; and the reaction time is 1-24 hours.
  • the present invention further provides a composition comprising the above liquid crystal polyester resin, which can be used in various fields by adding one or more additives.
  • the present invention provides a composition of a liquid crystal polyester comprising the liquid crystal polyester and the inorganic filler described above.
  • the additive which may be mixed with the liquid crystal polyester resin includes an inorganic filler and/or a reinforcing material which may be fibrous, flake or granular.
  • the fibrous filler and/or reinforcing material comprises one or a combination of glass fiber, alumina fiber, carbon fiber, potassium titanate fiber, boric acid fiber, wollastonite fiber, preferably glass fiber; wherein the cross section of the fiber may be One or a combination of a circular cross section, an elliptical cross section, a rectangular cross section.
  • the flake and/or particulate inorganic filler includes one or a combination of glass flakes, mica, glass microbeads, talc, clay, graphite, calcium carbonate, barium sulfate, and titanium dioxide.
  • the composition of the liquid crystal polyester comprises 100 parts by weight of the above liquid crystal polyester and 1 to 200 parts by weight of an inorganic filler and/or reinforcing material.
  • the composition of the above liquid crystal polyester is applied to the field of electronic appliances.
  • the difference between the crystallization temperature and the heat distortion temperature of the liquid crystal polyester of the present invention is 10 to 20 ° C, and more preferably 11 to 18 ° C, and the molding cycle during liquid crystal polyester processing is short.
  • composition prepared by the liquid crystal polyester of the present invention and other inorganic fillers has low warpage resistance, is easy to apply, and has better impact resistance. detailed description
  • liquid crystal polyester of the present invention its preparation process, compositions thereof, and combinations thereof will be further described below in connection with some specific embodiments.
  • the specific embodiments are intended to describe the present invention in further detail, without limiting the scope of the invention.
  • the object of the present invention is to provide a liquid crystal polyester having a difference between a crystallization temperature and a heat distortion temperature of 10 to 20 ° C, and a more preferable solution of 11 to 18 ° C, and a molding cycle during liquid crystal polyester processing is reduced.
  • the composition prepared from the liquid crystal polyester and other fillers has high impact strength and low warpage deformation, and is convenient for use in the field of thin-walled parts for electronic appliances.
  • the method for measuring warpage deformation of the liquid crystal polyester composition of the present invention is as follows:
  • the melting temperature and crystallization temperature of the liquid crystal polyester were measured by a Nike DSC 200 F3, and the sample was heated from room temperature to 40 CTC at a heating rate of 20 ° C/min under a nitrogen atmosphere of 40 mL/min for 2 min. Then, the sample was cooled to room temperature at a cooling rate of 20 ° C / min, and the exothermic peak (Tc ) was recorded as the crystallization temperature; then the sample was heated to 400 ° C at a heating rate of 20 ° C / min, and the record was recorded.
  • the endothermic peak on the temperature rise curve is the melting temperature (Tm).
  • the test method of the heat distortion temperature is as follows: a liquid crystal polyester resin is injection-molded into a sample of 80 mm ⁇ 10 mm ⁇ 4 mm, and the sample is used at a heating rate of 2° C./min under a load of 1.82 MPa according to the ISO 75-2 standard. The heat distortion temperature was measured.
  • Melt viscosity Tested with a Dyni SCO LCR7001 capillary rheometer with a die diameter of 1 length of 20 prepolymer at 10 ° C above its melting temperature, liquid crystal polyester at 20 ° C above its melting temperature, shear rate The viscosity under the condition of 1000 s- 1 is the melt viscosity.
  • Notched impact strength The Izod notch was tested in accordance with IS0180.
  • the reaction was continued by evacuating to 200 Pa in 30 min until the stirring power reached a predetermined value. Then, nitrogen gas was introduced into the reaction vessel to a pressure of 0.2 MPa, and discharged through a bottom valve. After passing through the water tank, the pellet was cut into pellets having a cross-sectional diameter of 16 mm 2 and a length of 5 mm by a pelletizer.
  • Example 1 15.19 kg (110 mol) HBA, 6.517 kg (35 mol) BP, 1.1 kg (10 mol) HQ, 4.98 kg (30 mol) TPA, 0.83 kg (5 mol) IPA, 2.16 kg (lOmol) NDA, 21.44 kg (210 mol) AA and 3.08 g of magnesium acetate
  • a liquid crystal polyester was prepared except for the highest polymerization temperature of prepolymerization, the temperature of solid phase polymerization, the degree of vacuum and the time as shown in Table 1.
  • composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were prepared in accordance with the method and the parts by weight of Example 1, except that the temperature of the barrel was 280 to 315 ° C.
  • the test results are shown in Table 2.
  • Example 1 a liquid crystal polyester was prepared except for the highest polymerization temperature of prepolymerization, the temperature of solid phase polymerization, the degree of vacuum, and the time as shown in Table 1.
  • Example 2 the composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were prepared except that the temperature of the barrel was 300-345 ° C, and the test results are shown in Table 2.
  • compositions of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were prepared in accordance with the method and the parts by weight of Example 1, except that the barrel temperature was 310-36 CTC, and the test results are shown in Table 2.
  • composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were prepared in accordance with the method and the parts by weight of Example 1, except that the temperature of the barrel was 260 to 305 ° C.
  • the test results are shown in Table 2.
  • Example 1 a liquid crystal polyester was prepared except for the highest polymerization temperature of the prepolymerization in Table 1, the temperature of the solid phase polymerization, the degree of vacuum, and the time.
  • Example 2 Referring to the method and the parts by weight of Example 1, except that the temperature of the barrel was 290-335, the composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were examined, and the test results are shown in Table 2.
  • Example 1 a liquid crystal polyester was prepared except for the highest polymerization temperature of the prepolymerization in Table 1, the temperature of the solid phase polymerization, the degree of vacuum, and the time.
  • Example 2 Referring to the method and the parts by weight of Example 1, except that the temperature of the barrel was 270-305 ° C, the composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were examined, and the test results are shown in Table 2.
  • Example 1 a liquid crystal polyester was prepared except for the highest polymerization temperature of the prepolymerization in Table 1, the temperature of the solid phase polymerization, the degree of vacuum, and the time.
  • composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were prepared in accordance with the method and the parts by weight of Example 1, except that the barrel temperature was 300-335 ° C.
  • the test results are shown in Table 2.
  • the liquid crystal polyester is prepared by the highest polymerization temperature in the prepolymerization, the temperature of the solid phase polymerization, the degree of vacuum, and the time.
  • compositions of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were prepared in accordance with the method and the parts by weight of Example 1, except that the barrel temperature was 310-355 ° C.
  • the test results are shown in Table 2.
  • Example 1 a liquid crystal polyester was prepared except for the highest polymerization temperature of prepolymerization, the temperature of solid phase polymerization, the degree of vacuum, and the time as shown in Table 1.
  • composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were prepared in accordance with the method and the parts by weight of Example 1, except that the barrel temperature was 280-315 ° C.
  • the test results are shown in Table 2.
  • Example 1 a liquid crystal polyester was prepared except for the highest polymerization temperature of the prepolymerization in Table 1, the temperature of the solid phase polymerization, the degree of vacuum, and the time.
  • Example 2 Referring to the method and the parts by weight of Example 1, except that the temperature of the barrel was 270-305 ° C, the composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were examined, and the test results are shown in Table 2.
  • Example 1 a liquid crystal polyester was prepared except for the highest polymerization temperature of the prepolymerization in Table 1, the temperature of the solid phase polymerization, the degree of vacuum, and the time.
  • composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were prepared in accordance with the method and the parts by weight of Example 1, except that the barrel temperature was 290-325.
  • the test results are shown in Table 2.
  • composition of the liquid crystal polyester, the warpage resistance and the impact strength of the composition were prepared in accordance with the method and the parts by weight of Example 1, except that the barrel temperature was 300-335 ° C.
  • the test results are shown in Table 2.
  • the liquid crystal polyester prepared according to the technical solution disclosed in the present invention has a heat distortion temperature of 250-305 ° C, and the difference between the crystallization temperature and the heat distortion temperature is in the range of 10-2 CTC.
  • the difference between the crystallization temperature and the heat distortion temperature of the liquid crystal polyester in the comparative example is greater than 2 CTC or less than 10 ° C.
  • the difference between the crystallization temperature and the heat distortion temperature of the liquid crystal polyester of the present invention is in the range of 10-2 CTC.
  • Liquid crystal The difference between the crystallization temperature of the ester and the HDT is effectively controlled within a certain temperature range, and the material is not cooled and solidified during the molding process to reduce the molding efficiency, and the high temperature resistance is not lost.
  • the above method tests the warpage deformation of the injection-molded disk, and it can be found that the difference between the crystallization temperature and the heat distortion temperature of the liquid crystal polyester in the comparative example is higher than 2 CTC or lower than 10 ° C, and the injection-molded circular plate
  • the amount of warping deformation is larger than that of the embodiment, and when the difference between the crystallization temperature and the heat distortion temperature of the liquid crystal polyester in the embodiment is in the range of 10-2 CTC, the warpage deformation amount of the liquid crystal polyester can be controlled in one Within a preferred range of values, the warpage resistance of the injection molded article of the liquid crystal polyester is well improved.
  • the notched impact strength of the liquid crystal polyester described in the examples was also higher than that of the liquid crystal polyester in the comparative example.
  • the difference between the crystallization temperature and the heat distortion temperature of the liquid crystal polyester of the present invention can be well controlled within a certain range, and the warpage resistance of the composition is also well improved.
  • the liquid crystal polyester of the present invention has a high heat distortion temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明公开了一种液晶聚酯、其制备方法、其组合物及其组合物的应用。一种液晶聚酯,包括式(I)、(II)和(III)所示的重复单元:(I)、(II)、(III)。本发明液晶聚酯所述的制备方法包括熔融预聚合与固相聚合两个步骤。所得液晶聚酯的结晶温度与热变形温度之差为10-20°C,有利于液晶聚酯在保持其使用温度的同时又不失其优异的加工性能。此外本发明的液晶聚酯与无机填料制备的组合物具有优异的抗冲击性能以及抗翘曲变形性能,可以广泛用于电子电器领域。

Description

一种液晶聚酯、 其制备方法、 其组合物及其组合物的应用 技术领域
本发明涉及高分子领域, 特别涉及一种液晶聚酯、 其制备方法、 以及包含这种液晶聚酯的组合物及其 应用 - 背景技术
液晶聚酯 (LCP ) 具有优异的耐热性、 自阻燃性、 尺寸稳定性、 电性能以及加工流动性, 已在电子电 器等领域广泛应用。 随着电子电器制件的小型化、 薄壁化, 促进了电子元件密集化、 微型化以及高密度 组装技术的发展, 对所用 LCP材料的耐温性要求也不断提高。 特别是采用表面安装技术 (Surface Mount
Technology, 简称 SMT ) , 以及不含铅的焊锡被普遍采用, 对所用 LCP材料的耐温性提出了更高的要求。 对于同样的材料, 通常需要其既具有较好的加工性能, 同时其使用温度也不能太低。 热变形温度 (HDT ) 是衡量聚合物使用温度的一个重要的参数, 当 LCP的熔融温度一定时, 结晶温度与 HDT之差超过一定范围 时, 其 HDT偏小, 则其适用温度较低; 而当结晶温度与 HDT之差较小时, 其熔融温度与结晶温度之差势必 会较大, 这种情况会使材料在模塑加工过程中, 冷却固化时间延长而降低模塑效率。 因此结晶温度与 HDT 之差必须限定在一定的温度范围之内。
LCP使用于薄壁化的模塑制件时, 即使一定程度上具有流动性好的优点, 但近年来要求更 高的薄壁制件, 对材料的抗冲击性能以及抗翘曲性能也提出了更高的要求。 发明内容
鉴于以上所述, 本发明有必要提供一种液晶聚酯。
进一步地, 有必要提供一种液晶聚酯的制备方法。
进一步地, 有必要提供一种液晶聚酯的组合物。
进一步地, 有必要提供一种液晶聚酯的组合物的应用。
, 一种液晶聚酯, 包括式 ( I )、 (Π )、 (III) 所示的重复单元:
Figure imgf000003_0001
-0一 Ar,一 0 ― ( 11 )、
Ar—— CO cm), 其中, An选
Figure imgf000003_0002
Ar2包括
Figure imgf000004_0001
式 ( I ) 所示的重复单元的摩尔比例为 55-65%, 基于所述液晶聚酯的全部重复单元;
式 (Π) 所示的重复单元的摩尔比例为 17.5-22.5%, 基于所述液晶聚酯的全部重复单元; 式 (III) 所示的重复单元的摩尔比例为 17.5-22.5%, 基于所述液晶聚酯的全部重复单元。
其中, 式 (III) 所示的重复单元的摩尔量与式 (Π) 所示的重复单元的摩尔量相比为 0.9-1.1, 一 重复单元组成:
Figure imgf000004_0002
式 ( I ) 所示的重复单元的摩尔比例为 55-65%, 基于所述液晶聚酯的全部重复单元;
式 (Π) 所示的重复单元的摩尔比例为 17.5-22.5%, 基于所述液晶聚酯的全部重复单元;
式 (III) 所示的重复单元的摩尔量与式 (Π) 所示的重复单元的摩尔量相比为 0.9-1.1。
其中,所述( II )
Figure imgf000004_0003
(b), 其中式 (b) 与式 (a) 所示的重复单元的摩尔之比是 Ο-L·
其中, 所述 (III)
Figure imgf000004_0004
o— (d)、
Figure imgf000004_0005
其中, (c)、 (d) 和 (e) 所示的重复单元的摩尔量 c、 d和 e满足下列关系式: 0<e/[c+d+e]¾≡29%。 所述(c)、(d)和(e)所示的重复单元的摩尔量 c、d和 e满足下列关系式: 11. l%¾≡e/[c+d+e] ¾≡28.6%。 其中 e/[c+d+e]的取值也可以是 12.5%、 17.7%、 25%。
其中, 所述液晶聚酯由式 ( I )、 (a)、 (b)、 (c)、 (d) 和 (e) 所示的重复单元组成。
其中, 所述液晶聚酯通过差示扫描量热仪确定的熔融温度是 300-360°C。
其中, 所述液晶聚酯按照 IS075-2 标准在 1.82MP&载荷下以 2°C/min的加热速率测量热变形温度为 45-305 "C 。
其中, 所述液晶聚酯的结晶温度与热变形温度之差为 10-20°C, 更优选的方案能达到 11-18°C。 一种上述液晶聚酯的制备方法:
Figure imgf000005_0001
釜中, 在醋酸酐酰化剂以及催化剂作用下熔融聚合制备预聚物, 然后进行固相聚合制备液晶聚酯。
上述液晶聚酯的重复单元( I )、 (a)、 (b)、 (c )、 ( d)和(e )
Figure imgf000005_0002
( C )、
Figure imgf000005_0003
在本发明中,预聚合过程加入乙酸酐作为单体中羟基的酰化剂,其用量为单体羟基摩尔数的 1-1. 5倍, 优选 1. 02-1. 2倍。 聚合中可以使用各种催化剂, 催化剂的代表性实例包括二烷基锡氧化物、 二芳基锡氧化物、 烷氧基钛 类、 碱和碱土金属盐类以及 BF3之类的路易斯酸盐, 其中催化剂优选 Zn、 K、 Mg、 Ca或 Co的乙酸盐或芳香 酸盐为催化剂, 催化剂的用量基于单体总重量的 0. 001-1%, 优选 0. 05-0. 2%。
聚合的反应条件是, 120-15CTC乙酰化 1-6小时, 然后以 10-6CTC /小时的速率升温至该预聚物熔融温 度以上 0-25 °C (预聚合最高反应温度), 并保温反应 10 分钟至 4 小时; 最终反应体系的压力 为 133-101080Pa, 优选为 133- 6670Pa。 通过以上聚合方法制备的熔融状态的预聚物, 在 0. 05-0. 6MPa的外加压力下通过反应容器底部排出, 被加工成柱状结构颗粒、 球状或椭圆状颗粒的形式。 其中柱状结构颗粒的横截面面积为 7_24mm2, 长度为
3-6mm; 球状或者椭圆状颗粒体积为 15-65mm3
其中, 通过上述方法制备得到的预聚物在高于其熔融温度 10°C, 1000s— 1剪切速率下通过毛细管流变 仪测定的熔融粘度为 4-8Pa. s o 通过上述聚合方法制造的颗粒状预聚物可以进一步在减压或者惰性气体中加热固相聚合得到预期粘 度的液晶聚酯, 固相聚合的优选条件是反应温度在在预聚物熔融温度以下 10-80°C, 反应温度优选在熔融 温度以下 20-60°C, 压力在 ¾≡1000 Pa, 优选压力 ¾≡200 Pa; 反应时间是 1-24小时。 其中, 通过上述方法制备得到的预聚物在高于其熔融温度 20°C, 1000s— 1剪切速率下通过毛细管流变 仪测定的熔融粘度为 15-100Pa. s, 优选 20-50Pa. s。 本发明进一步提供了包含上述液晶聚酯树脂的组合物, 通过加入一种或多种添加剂获得的液晶聚酯组 合物可用于多个领域。
本发明提供的一种液晶聚酯的组合物, 包括由上所述的液晶聚酯和无机填料。 可与液晶聚酯树脂混合的添加剂包括无机填料和 /或增强材料, 所述无机填料或增强材料可以是纤维 状、 片状或颗粒状的。
纤维状填料和 /或增强材料包括玻璃纤维、 氧化铝纤维、 碳纤维、 钛酸钾纤维、 硼酸纤维、 硅灰石纤 维中的一种或几种组合, 优选玻璃纤维; 其中纤维的横截面可以是圆形横截面、 椭圆形截面、 矩形横截面 中的一种或任选组合。
所述片状和 /或颗粒状的无机填料包括是玻璃鳞片、 云母、 玻璃微珠、 滑石粉、 粘土、 石墨、 碳酸钙、 硫酸钡、 二氧化钛中的一种或几种组合。
该液晶聚酯的组合物, 包括 100重量份的上述液晶聚酯和 1-200重量份的无机填料和 /或增强材料。 上述液晶聚酯的组合物应用于电子电器领域。
本发明所述的液晶聚酯的结晶温度与热变形温度之差为 10-20°C, 更优选的方案为 11-18°C, 液晶聚 酯加工时的模塑周期较短。
此外, 本发明所述的液晶聚酯与其它无机填料制备的组合物, 其抗翘曲性能也比较低, 便于应用, 且 其抗冲击性能更好。 具体实施方式
下面结合一些具体实施方式对本发明的液晶聚酯、 其制备方法、 其组合物及其组合物的应用做进一步 描述。 具体实施例为进一步详细说明本发明, 非限定本发明的保护范围。
本发明的目的旨在一种液晶聚酯, 其结晶温度与热变形温度之差为 10-20°C, 更优选的方案能达到 11_18°C, 液晶聚酯加工时的模塑周期会减小。 由这种液晶聚酯与其它填料制备的组合物, 其抗冲击强度 高且翘曲变形低, 便于应用在电子电器薄壁制件领域。
本发明所述的液晶聚酯组合物的翘曲变形测量方法如下:
所述液晶聚酯的熔融温度和结晶温度由耐驰 DSC 200 F3测定的, 在 40mL/min氮气气氛, 下, 将试样 从室温以 20°C/min的升温速率加热到 40CTC并保持 2min, 再将试样以 20°C/min的降温速率降温至室温, 记录放热峰 (Tc ) 为结晶温度; 然后再将试样以 20°C/min 的升温速率加热至 400°C, 记录该升温曲线上 的吸热峰为熔融温度 (Tm)。
其中, 热变形温度的测试方法如下, 将液晶聚酯树脂注塑成型为 80mmX 10mmX 4mm的试样, 使用该试 样按照 ISO 75-2标准在 1. 82MPa载荷下以 2°C/min的加热速率测量热变形温度。
将液晶聚酯组合物注塑成型直径为 100mm、 厚度为 1. 5mm的圆板。 将圆板放置在水平桌面上, 测量圆 板表面离桌面之间的距离, 选取两个距离最大点 (A, B ) 和两个最小点 (C, D), 翘曲变形 (w) 按如下公 式计算: w= (A+B) I - (C+D) 12, w值越小, 表示测试片条的抗翘曲性能越好。
熔融粘度: 采用 DyniSCOLCR7001型毛细管流变仪进行测试, 口模直径为 1 长度为 20 预聚物 在其熔融温度以上 10°C,液晶聚酯在其熔融温度以上 20°C,剪切速率为 1000s— 1条件下的粘度为熔融粘度。
缺口冲击强度: 按照 IS0180标准对 Izod缺口进行测试。
所使用单体的结构和缩写分别如下: i): 对羟基苯甲酸 (HBA);
(A): 联苯二酚 (BP);
(B): 对苯二酚 (HQ);
(C): 对苯二甲酸 (TPA);
(D): 间苯二甲酸 (IPA); (E): 2 6-萘二甲酸( 八)
H3C ο' CH3: 醋酸酐 (AA)。
以上物质均可在市面上购买得到。
实施例 1
液晶聚酯的制备
在配有氮气入口、 带搅拌功率显示的搅拌器的 100升反应釜中, 加入 15.19kg(110mol) HBA 6.517kg (35mol) BP, 1.1kg (lOmol) HQ, 3.32kg (20mol) TPA, 2.824kg (17mol) IPA, 1.73kg (8mol) NDA, 21.44kg (210mol) AA及 3.07g醋酸镁。 置换氮气后, 在氮气氛下将反应温度升高到 145°C下回流反应 3 小时; 之后以 6CTC/小时速率升温至 315°C (预聚合最高反应温度), 保持在该温度下反应 30分钟后, 在 30min内抽真空至 200Pa继续反应至搅拌功率达到预定值。 然后将反应釜内加入氮气至压力为 0.2MPa, 通 过釜底阀门排出, 过水槽后用切粒机切成横截面直径为 16mm2, 长度为 5mm的预聚物颗粒。
将 10kg上述预聚物颗粒加入 50升带有搅拌器的反应器中, 然后在 250°C, 真空度为 25Pa条件下固相 缩聚反应 5小时得到最终的液晶聚酯。
所得液晶聚酯的熔融温度, 结晶温度, 热变形温度、 熔融粘度的测试结果列于表 1
液晶聚酯组合物的制备
将上述方法制备所得的 60重量份的液晶聚酯从双螺杆挤出机主喂料口加入到挤出机中, 将 25份玻璃 纤维和 15份片状云母从双螺杆挤出机侧喂料口加入到挤出机中。 在 300RPM的螺杆转速下熔融混合, 螺筒 温度为 270-305°C, 挤出得到液晶聚酯的组合物, 分别测试组合物抗翘曲性能和抗冲击强度, 其测试结果 列于表 2中。
实施例 2
液晶聚酯的制备
将 15.19kg(110mol) HBA, 6.517kg (35mol) BP, 1.1kg (lOmol) HQ, 4.98kg (30mol) TPA, 0.83kg (5mol) IPA, 2.16kg (lOmol) NDA, 21.44kg (210mol) AA及 3.08g醋酸镁参照实施例 1方法, 除了如 表 1中预聚合最高聚合温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 280-315°C之外制备液晶聚酯的组合物, 组合物抗翘 曲性能和抗冲击强度, 其测试结果列于表 2中。
实施例 3
液晶聚酯的制备
将 15.19kg (llOmol) HBA, 7.45kg (40mol) BP, 0.55kg (5mol) HQ, 4.98kg (30mol) TPA, 1.66kg (lOmol) IPA, 1.08kg (5mol) NDA, 21.44kg (210mol) AA及 3.09g醋酸镁参照实施例 1方法, 除了如 表 1中预聚合最高聚合温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法, 除了螺筒温度为 300-345°C条件外制备液晶聚酯的组合物, 组合物抗翘曲性能 和抗冲击强度, 其测试结果列于表 2中。
对比例 1
液晶聚酯的制备
将 15.19kg (llOmol) HBA, 6.52kg (35mol) BP, 1.1kg (lOmol) HQ, 4.98kg (30mol) TPA, 2.49kg (15mol) IPA, 21.44kg (210mol) AA及 3.03g醋酸镁参照实施例 1方法, 除了如表 1中预聚合最高聚合 温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 310-36CTC外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
实施例 4
液晶聚酯的制备
将 16.58kg (120mol) HBA, 3.72kg (20mol) BP, 2.2kg (20mol) HQ, 3.32kg (20mol) TPA, 1.66kg (lOmol) IPA, 2.16kg (lOmol) NDA , 21.44kg (210mol) AA及 2.96g醋酸镁参照实施例 1方法, 除了 如表 1中预聚合最高聚合温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 260-305°C外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
实施例 5
液晶聚酯的制备
将 16.58kg (120mol) HBA, 3.72kg (20mol) BP, 2.2kg (20mol) HQ, 4.98kg (30mol) TPA, 0.83kg (5mol) IPA, 1.08kg (5mol) NDA, 21.44kg (210mol) AA及 2.94g醋酸镁参照实施例 1方法, 除了如 表 1中预聚合最高聚合温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 290-335 外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
实施例 6
液晶聚酯的制备
将 16.58kg (120mol) HBA, 5.59kg (30mol) BP, 1.1kg (lOmol) HQ, 3.32kg (20mol) TPA,, 1.66kg (lOmol) IPA, 2.16kg (lOmol) NDA , 21.44kg (210mol) AA及 3.04g醋酸镁参照实施例 1方法, 除了 如表 1中预聚合最高聚合温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 270-305°C外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
实施例 7
液晶聚酯的制备
将 16.58kg (120mol) HBA, 5.59kg (30mol) BP, 1.1kg (lOmol) HQ, 4.98kg (30mol) TPA, 0.83kg (5mol) IPA, 1.08kg (5mol) NDA, 21.44kg (210mol) AA及 3.02g醋酸镁参照实施例 1方法, 除了如 表 1中预聚合最高聚合温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备 参照实施例 1的方法与重量份, 除了螺筒温度为 305-345 外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
对比例 2
液晶聚酯的制备
将 16.58kg (120mol) HBA, 3.72kg (20mol) BP, 2.2kg (20mol) HQ, 4.98kg (30mol) TPA, 1.66kg (lOmol) IPA, 21.44kg (210mol) AA及 2.92g醋酸镁参照实施例 1方法, 除了如表 1中预聚合最高聚合 温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 300-335°C外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
对比例 3
液晶聚酯的制备
将 16.58kg (120mol) HBA, 7.45kg (40mol) BP, 4.98kg (30mol) TPA, 1.66kg (lOmol) IPA, 21.44kg (210mol) M及 3.07g醋酸镁参照实施例 1方法, 除了如表 1中预聚合最高聚合温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 310-355°C外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
实施例 8
液晶聚酯的制备
将 17.96kg (130mol) HBA, 4.66kg (25mol) BP, 1.1kg (lOmol) HQ, 3.32kg (20mol) TPA, 1.66kg (lOmol) IPA, 1.08kg (5mol) NDA, 21.44kg (210mol) AA及 2.98g醋酸镁参照实施例 1方法, 除了如 表 1中预聚合最高聚合温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 280-315°C外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
实施例 9
液晶聚酯的制备
将 17.96kg (130mol) HBA, 6.52kg (35mol) BP, 3.32kg (20mol) TPA, 0.83kg (5mol) IPA, 2.16kg ( lOmol ) NDA, 21. 44kg ( 210mol ) AA及 3. 08g醋酸镁参照实施例 1方法, 除了如表 1中预聚合最高聚合 温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 270-305°C外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
实施例 10
液晶聚酯的制备
将 17. 96kg (130mol) HBA, 6. 52kg ( 35mol ) BP, 4. 15kg ( 25mol ) TPA, 0. 83kg ( 5mol ) IPA, 1. 08kg ( 5mol ) NDA, 21. 44kg ( 210mol ) AA及 3. 05g醋酸镁参照实施例 1方法, 除了如表 1中预聚合最高聚合 温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 290-325 外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
对比例 4
液晶聚酯的制备
将 17. 96kg (130mol) HBA, 6. 52kg ( 35mol ) BP, 4. 32kg ( 26mol ) TPA, 1. 5kg ( 9mol ) IPA, 21. 44kg (210mol ) M及 3. 03g醋酸镁参照实施例 1方法, 除了如表 1中预聚合最高聚合温度、 固相聚合的温度、 真空度及时间制备液晶聚酯。
所得液晶聚酯预聚物的横截面面积、 预聚物熔融粘度以及液晶聚酯的熔融温度, 结晶温度, 热变形温 度、 熔融粘度等测试结果列于表 1。
液晶聚酯组合物的制备
参照实施例 1的方法与重量份, 除了螺筒温度为 300-335°C外制备液晶聚酯的组合物, 组合物抗翘曲 性能和抗冲击强度, 其测试结果列于表 2中。
表 1 液晶聚酯的聚合参数及物理性能
实 实 实 对 实 实 实 实 对 对 实 实 实 对 施 施 施 比 施 施 施 施 比 比 施 施 施 比 例 例 例 例 例 例 例 例 例 例 例 例 例 例
1 2 3 1 4 5 6 7 2 3 8 9 10 4
HBA (mol%)
55 55 55 55 60 60 60 60 60 60 65 65 65 65
BP (mol%) 17. 17. 17. 12. 17. 17. 17.
20 10 10 15 15 10 20
5 5 5 5 5 5 5
HQ (mol%)
5 5 2. 5 5 10 10 5 5 10 0 5 0 0 0 TPA (mol%) 12.
10 15 15 15 10 15 10 15 15 15 10 10 13
5
IPA (mol%)
8. 5 2. 5 5 7. 5 5 2. 5 5 2. 5 5 5 5 2. 5 2. 5 4. 5
NDA (mol%)
4 5 2. 5 0 5 2. 5 5 2. 5 0 0 2. 5 5 2. 5 0 预聚合最高
反 应 温 度 310 320 355 365 310 340 310 350 345 360 320 310 330 340 ( °C )
预聚物熔融
5. 8 6. 6 4. 3 3. 9 4. 5 4. 6 5. 5 5. 5 6. 1 6. 4 4. 6 4. 9 5. 1 4. 2 粘度 (Pa. s )
预聚物颗粒
横截面面积 16 15 16 18 17 14 15 18 17 15 14 18 19 15 (mm2 )
Tm CO
305 311 346 358 300 332 305 342 335 350 312 304 323 330
Tc CO
265 275 300 327 262 292 264 295 294 303 278 268 273 273
HDT ( °C )
252 264 288 302 251 277 252 280 273 280 260 255 261 265
Tc-HDT
13 11 12 25 11 15 12 15 21 23 18 13 15 8 熔 融 粘 度
28 33 27 29 26 31 24 28 21 25 29 24 23 27 (Pa. s)
增粘时间(h)
5 5. 5 5. 4 5 5 5. 3 5. 1 5. 5 5 5 5. 1 5. 6 5 5 增 粘 温 度
260 265 290 300 260 280 260 290 280 260 270 260 275 290 ( °C )
增粘真空度
30 35 40 50 50 45 30 30 35 40 35 30 35 40 (Pa) 表 2 液晶聚酯组合物性能
Figure imgf000012_0001
结合表 1和表 2, 按本发明所公开的技术方案制备得到的液晶聚酯, 其热变形温度在 250-305°C之间, 且其结晶温度与热变形温度之差在 10-2CTC范围之间, 对比例中液晶聚酯的结晶温度与热变形温度之差大 于 2CTC或小于 10°C, 本发明所述的液晶聚酯, 其结晶温度与热变形温度之差在 10-2CTC范围之间, 液晶聚 酯的结晶温度与 HDT之差有效的控制在一定的温度范围之内, 不会使材料在模塑加工过程中冷却固化时间 延长而降低模塑效率, 同时有不丧失其耐高温性能。
——对 比, 可 以发现, 在液晶聚酯 中包含重复单元
Figure imgf000013_0001
即在制备过程中原料包括 NDA时, 可以发现, 其结晶温度与热变形温 度之差在 10-2CTC范围之间, 进一步对实施例和对比例所得的液晶聚酯测试其抗翘曲性能, 按上述方法测 试其注塑成型的圆板翘曲变形量,可以发现对比例所述的液晶聚酯结晶温度与热变形温度之差高于 2CTC或 低于 10°C时, 且其注塑成型的圆板, 其翘曲变形量均比实施例大, 而实施例中的液晶聚酯的结晶温度与热 变形温度之差在 10-2CTC范围之间时, 液晶聚酯的翘曲变形量能够控制在一个较好的范围值内, 所述液晶 聚酯的注塑制件的抗翘曲性能得到很好的提升。 与此同时, 实施例所述的液晶聚酯的缺口冲击强度也高于 对比例中液晶聚酯的缺口冲击强度。
由此可以看出, 本发明的液晶聚酯的结晶温度与热变形温度之差能很好的控制在一定的范围之内, 且 其组合物的抗翘曲性能也得到很好的改善。
从表 1中可以看出, 本发明所述的液晶聚酯热变形温度均较高。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书内容所作的 等效结构或等效流程变换, 或直接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范 围内。

Claims

权 利 要 求 书 一种液晶聚酯, 包括式 ( I )、 (Π ) 和 (III) 所示的重复单元:
Figure imgf000014_0001
( I )、
Figure imgf000014_0002
式 ( I ) 所示的重复单元的摩尔比例为 55-65%, 基于所述液晶聚酯的全部重复单元; 式 (Π ) 所示的重复单元的摩尔比例为 17.5-22.5%, 基于所述液晶聚酯的全部重复单 元;
式 (III) 所示的重复单元的摩尔比例为 17.5-22.5%, 基于所述液晶聚酯的全部重复单 元
2.如权利要求 1或 2所述的液晶聚酯, 其特征在于:
— (d)、
Figure imgf000014_0003
其中, (c)、 (d) 和 (e) 所示的重复单元的摩尔量 c、 d和 e满足下列关系式: 0<e/[c+d+e]¾≡29
3.如权利要求 1或 2所述的液晶聚酯, 其特征在于:
所述 (c)、 (d) 和 (e) 所示的重复单元的摩尔量 c、 d和 e满足下列关系式: 11. l%¾≡e/[c+d+e]¾≡28.6%。
4.如权利要求 1或 2所述的液晶聚酯, 的重复单元包括
Figure imgf000014_0004
( a )
Figure imgf000014_0005
(b),
其中式 (b) 与式 (a) 所示的重复单元的摩尔之比是 Ο-L·
5.如权利要求 1所述的液晶聚酯, 其特征在于:
所述液晶聚酯按照 IS075-2 标准在 1. 82MPa载荷下以 2°C/min的加热速率测量热变形 温度为 245-305 "C o
6.如权利要求 1所述的液晶聚酯, 其特征在于:
所述液晶聚酯的结晶温度与热变形温度之差为 10-2CTC。
一种权利要求 1-6任一项所述的液晶聚酯的制备方法:
Figure imgf000015_0001
然后进行固相聚合制备液晶聚酯。
8.如权利要求 7所述的制备液晶聚酯的制备方法, 其特征在于:
所述固相聚合的条件是反应温度在预聚物熔融温度以下 10-80°C, 压力 ¾≡200 Pa; 反应 时间为 1-24小时。
9.一种液晶聚酯的组合物, 包括由权利要求 1-6任一项所述的液晶聚酯和无机填料。 10.一种如权利要求 9述的液晶聚酯的组合物可以应用于电子电器领域。
PCT/CN2012/081587 2012-09-06 2012-09-19 一种液晶聚酯、其制备方法、其组合物及其组合物的应用 WO2014036760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210328681.5A CN103665354B (zh) 2012-09-06 2012-09-06 一种液晶聚酯、其制备方法、其组合物及其组合物的应用
CN201210328681.5 2012-09-06

Publications (1)

Publication Number Publication Date
WO2014036760A1 true WO2014036760A1 (zh) 2014-03-13

Family

ID=50236482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081587 WO2014036760A1 (zh) 2012-09-06 2012-09-19 一种液晶聚酯、其制备方法、其组合物及其组合物的应用

Country Status (2)

Country Link
CN (1) CN103665354B (zh)
WO (1) WO2014036760A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126847A (zh) * 2019-07-17 2022-03-01 住友化学株式会社 焊接成型体的制造方法、焊接成型体以及管

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923306B (zh) * 2014-04-08 2016-03-09 金发科技股份有限公司 一种液晶聚酯和由其组成的液晶聚酯组合物及其应用
CN103910860B (zh) * 2014-04-11 2016-01-20 江苏金聚合金材料有限公司 一种可降解的乙醇酸共聚酯的制备方法
CN105801826A (zh) * 2014-12-29 2016-07-27 金发科技股份有限公司 一种液晶聚酯树脂及由其组成的组合物
CN105542136A (zh) * 2015-12-30 2016-05-04 金发科技股份有限公司 一种液晶聚酯和由其组成的液晶聚酯组合物
CN105504247A (zh) * 2015-12-30 2016-04-20 金发科技股份有限公司 一种液晶聚酯和由其组成的液晶聚酯组合物
CN105566868A (zh) * 2015-12-30 2016-05-11 金发科技股份有限公司 一种液晶聚酯组合物
CN105585828A (zh) * 2015-12-30 2016-05-18 金发科技股份有限公司 一种液晶聚酯组合物
CN105504714A (zh) * 2015-12-30 2016-04-20 金发科技股份有限公司 一种液晶聚酯组合物
CN105504697A (zh) * 2015-12-30 2016-04-20 金发科技股份有限公司 一种液晶聚酯组合物
CN105542135A (zh) * 2015-12-30 2016-05-04 金发科技股份有限公司 一种液晶聚酯和由其组成的液晶聚酯组合物
CN105837803B (zh) * 2016-02-01 2017-05-31 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN105838386A (zh) * 2016-04-13 2016-08-10 珠海万通特种工程塑料有限公司 一种液晶聚酯组合物
CN108102314A (zh) * 2017-12-26 2018-06-01 上海普利特化工新材料有限公司 一种耐高温导电液晶聚酯复合材料
JP7175834B2 (ja) * 2019-04-16 2022-11-21 上野製薬株式会社 液晶ポリエステル樹脂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098432A (zh) * 1993-08-03 1995-02-08 中国科学院长春应用化学研究所 基体树脂热氧化交联的液晶共聚酯
US20030029634A1 (en) * 2001-04-27 2003-02-13 Satoshi Okamoto Aromatic liquid-crystalline polyester metal laminate
US20050031849A1 (en) * 2003-07-04 2005-02-10 Tdk Corporation Composite dielectric, composite dielectric sheet, composite dielectric paste, metal-layered composite dielectric, wiring board and multilayer wiring board
CN1597727A (zh) * 2004-08-26 2005-03-23 复旦大学 一种液晶共聚酯的固态聚合制备方法
CN102061068A (zh) * 2009-11-16 2011-05-18 住友化学株式会社 用于连接器的液晶聚酯组合物和使用该组合物的连接器
CN102477213A (zh) * 2010-11-30 2012-05-30 住友化学株式会社 液晶聚酯组合物
CN102649869A (zh) * 2011-02-28 2012-08-29 住友化学株式会社 液晶聚酯组合物及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263640A (ja) * 2008-04-04 2009-11-12 Sumitomo Chemical Co Ltd 熱伝導性樹脂組成物及びその用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098432A (zh) * 1993-08-03 1995-02-08 中国科学院长春应用化学研究所 基体树脂热氧化交联的液晶共聚酯
US20030029634A1 (en) * 2001-04-27 2003-02-13 Satoshi Okamoto Aromatic liquid-crystalline polyester metal laminate
US20050031849A1 (en) * 2003-07-04 2005-02-10 Tdk Corporation Composite dielectric, composite dielectric sheet, composite dielectric paste, metal-layered composite dielectric, wiring board and multilayer wiring board
CN1597727A (zh) * 2004-08-26 2005-03-23 复旦大学 一种液晶共聚酯的固态聚合制备方法
CN102061068A (zh) * 2009-11-16 2011-05-18 住友化学株式会社 用于连接器的液晶聚酯组合物和使用该组合物的连接器
CN102477213A (zh) * 2010-11-30 2012-05-30 住友化学株式会社 液晶聚酯组合物
CN102649869A (zh) * 2011-02-28 2012-08-29 住友化学株式会社 液晶聚酯组合物及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126847A (zh) * 2019-07-17 2022-03-01 住友化学株式会社 焊接成型体的制造方法、焊接成型体以及管

Also Published As

Publication number Publication date
CN103665354A (zh) 2014-03-26
CN103665354B (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2014036760A1 (zh) 一种液晶聚酯、其制备方法、其组合物及其组合物的应用
JP4625340B2 (ja) 液晶ポリエステル樹脂およびその製造方法
KR101175972B1 (ko) 액정 폴리에스테르 수지 및 이의 제조 방법
US10968347B2 (en) Wholly aromatic liquid crystalline polyester resin
CN103923306B (zh) 一种液晶聚酯和由其组成的液晶聚酯组合物及其应用
TW200925176A (en) Wholly aromatic liquid-crystalline polyester
KR20070081754A (ko) 액정 중합체 조성물, 이것의 제조 방법 및 이것을 이용한성형품
KR20120067946A (ko) 전방향족 액정 폴리에스테르 수지 및 이를 포함하는 조성물
CN114805773B (zh) 一种液晶聚合物及其制备方法和应用
JP2011052037A (ja) 液晶ポリエステル樹脂組成物、成形体およびアンテナ
WO2022099978A1 (zh) 一种液晶聚合物树脂及其制备方法和应用
US9012593B2 (en) Method for preparing an aromatic liquid crystal polyester resin and method for preparing a compound of aromatic liquid crystal polyester resin
KR101757308B1 (ko) 유동성이 향상된 전방향족 폴리에스테르 수지의 제조방법 및 이에 따라 제조된 전방향족 폴리에스테르
EP2682414B1 (en) Method for preparing wholly aromatic liquid crystalline polyester resin and resin prepared by the method, and compound including the resin
EP2524955B1 (en) Production method for a wholly aromatic liquid-crystal polyester resin, a wholly aromatic liquid-crystal polyester resin produced by means of the method, and a compound of the wholly aromatic liquid-crystal polyester resin
WO2009072641A1 (ja) 液晶ポリエステル及びその成形体
KR101817366B1 (ko) 방향족 액정 폴리에스테르 수지의 제조방법 및 방향족 액정 폴리에스테르 수지 컴파운드
JP5281751B2 (ja) 液晶性ポリマー組成物及びその製造方法、並びに、これを用いた成形品及び平面状コネクター
JP2013075990A (ja) 液晶性ポリマー、成形体および液晶性ポリマーの製造方法
JP4018781B2 (ja) 低温で成形でき、しかも半田付け加工に耐えうる耐熱性を保持した電気電子部品用封止材料
CN115667359B (zh) 全芳香族聚酯树脂及包含其的树脂组合物以及成型品
CN117887050A (zh) 一种液晶聚合物的制备方法及应用
KR20130047259A (ko) 휨변형이 감소된 전방향족 액정 고분자 수지 조성물 및 그로부터 제조되는 전자제품 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884326

Country of ref document: EP

Kind code of ref document: A1