WO2014035090A1 - 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 다공성 고체상 및 이의 용도 - Google Patents

생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 다공성 고체상 및 이의 용도 Download PDF

Info

Publication number
WO2014035090A1
WO2014035090A1 PCT/KR2013/007469 KR2013007469W WO2014035090A1 WO 2014035090 A1 WO2014035090 A1 WO 2014035090A1 KR 2013007469 W KR2013007469 W KR 2013007469W WO 2014035090 A1 WO2014035090 A1 WO 2014035090A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid phase
biological sample
biological
pcr
porous solid
Prior art date
Application number
PCT/KR2013/007469
Other languages
English (en)
French (fr)
Inventor
한정헌
인금숙
박대호
Original Assignee
주식회사 바이오큐브시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오큐브시스템 filed Critical 주식회사 바이오큐브시스템
Priority to JP2015528395A priority Critical patent/JP6170154B2/ja
Priority to CN201380044466.5A priority patent/CN104583397B/zh
Priority to US14/423,135 priority patent/US20150252356A1/en
Priority to EP13832463.7A priority patent/EP2891716B1/en
Publication of WO2014035090A1 publication Critical patent/WO2014035090A1/ko
Priority to US15/933,394 priority patent/US10837010B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/02Oxides
    • C01G21/06Lead monoxide [PbO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a porous solid phase and a use thereof for rapidly separating biological molecules for nucleic acid amplification reactions from a biological sample. More particularly, the present invention relates to a porous solid phase by contacting a biological solid phase with a biological sample.
  • a method for rapidly separating biological molecules for nucleic acid amplification reactions from a biological sample comprising absorbing into pores, and contacting the porous solid phase to the biological sample to obtain a porous solid phase in which the biological molecules in the biological sample are absorbed into the pores of the porous solid phase.
  • a method for amplifying a target sequence in a biological sample comprising directly adding or performing a reverse transcriptase reaction and then amplifying the target sequence using as a template for a nucleic acid amplification reaction, and a biological sample using the method.
  • the most widely used methods for detecting pathogens that cause diseases of plants and animals are serological diagnostic methods for detecting native proteins of pathogens and molecular biological diagnostics methods for detecting nucleic acids.
  • the widely used method in molecular biological diagnostics is the PCR (polymerase chain reaction) method has the advantage of high detection sensitivity and easy use by anyone.
  • PCR polymerase chain reaction
  • the genome used as a template should be extracted from the target tissue.
  • Current methods of DNA extraction include the use of phenol / chloroform, salting, chaotropic salts and silica resins, affinity resins, ion exchange chromatography and magnetic beads. How to do it. These methods are described in U.S. Pat.Nos.
  • Amplification of target sites from DNA or RNA templates using PCR can be applied to a variety of applications such as DNA molecular labeling, probe construction, cDNA and genomic DNA library construction, pathogen assays, and the like.
  • DNA molecular labeling probe construction
  • cDNA and genomic DNA library construction pathogen assays
  • pathogen assays pathogen assays
  • PCR has high specificity and detection sensitivity, but it is difficult to examine a large amount of samples at once. This is because the rapid separation of PCR templates from various samples is still time consuming and expensive.
  • Korean Patent Publication No. 2005-0088164 discloses a nucleic acid isolation method
  • Japanese Patent Publication No. 2007-506404 discloses a rapid method for detecting a nucleic acid molecule.
  • the present invention is derived from the above-described demands, and the present inventors pressurize a porous ceramic cube of an oxide material, which is a porous solid, on a pepper leaf infected with a cucumber mosaic virus (CMV) as a biological sample to a flat portion behind the metal pin V.
  • CMV cucumber mosaic virus
  • RNA, gDNA, and virus particles present in the pepper sample were absorbed by adding them to the pores of the porous ceramic cube, and then the porous ceramic cube was directly put into the PCR tube as a template without elution using a separate solvent for the absorbed biological molecules.
  • CMV cucumber mosaic virus
  • the method described above was applied to purified CMV particles, CMV infected whole RNA, and purified pepper genomic DNA to confirm that the genome can be efficiently absorbed and used for PCR and cDNA synthesis according to the material and production temperature of ceramic cubes. It was.
  • BAC plasmid amplification was successfully performed on multiplex RT-PCR and Escherichia coli using nucleic acids isolated from tobacco leaves using the LTCC cube of the present invention.
  • the present invention has completed the present invention by enabling the rapid diagnosis of the presence of the target sequence through the rapid separation of biological molecules present in the biological sample.
  • the present invention is to rapidly separate the biological molecules for nucleic acid amplification reaction from the biological sample comprising the step of contacting the biological solid phase to the biological sample to absorb the biological molecules present in the biological sample into the pores of the porous solid phase Provide a way to.
  • the present invention is a nucleic acid amplification reaction after contacting the porous solid phase to the biological sample directly added to the porous solid phase that absorbs the biological molecules present in the biological sample into the pores of the porous solid phase, or by performing a reverse transcriptase reaction for cDNA synthesis. It provides a method for amplifying a target sequence in a biological sample comprising amplifying the target sequence using as a template for and a method for quickly confirming the presence of the target sequence in the biological sample using the method.
  • the present invention also provides a kit for nucleic acid amplification reactions for amplifying a target sequence in a biological sample comprising a porous solid phase capable of rapidly absorbing biological molecules present in the biological sample into the pores of the porous solid phase.
  • kits and compositions for rapidly separating biological molecules for nucleic acid amplification reactions from biological samples comprising a porous solid phase capable of rapidly absorbing biological molecules present in the biological sample into the pores of the porous solid phase. do.
  • the present invention enables rapid diagnosis of the presence of a target sequence through rapid separation of biological molecules present in a biological sample, thereby facilitating rapid and accurate determination of desired genomic DNA amplification, cDNA synthesis, and the presence of pathogen infection. May be used.
  • Figure 1 shows a schematic diagram of the dielectric adsorption and application to RT-PCR / PCR template using a porous ceramic cube.
  • A Porous ceramic cube
  • B Porous ceramic cube is an enlarged picture of 14 cubes made by varying materials and fabrication temperature to vary the pore size on the cube surface of 1 cubic millimeter (1 mm 3 )
  • C Place one cube on the plant leaf and press the cube on the back of pin V to break up the tissue and simultaneously absorb the dielectric into the pores of the cube.
  • D Use one cube with the dielectric absorbed as RT-PCR or PCR template.
  • E PCR product confirmed on agarose gel.
  • Figure 2 shows the results of separating the DNA / RNA template for nucleic acid amplification reaction from biological samples using porcelain sections.
  • A Pottery fragments (1-8) used to make porcelain fragments of about 1 mm 3 in size, where 6 is the arrow portion of porcelain segment 5.
  • B Capsicum annuum CM334 Put 8 kinds of porcelain debris on pepper leaves, press with pin V and use it as PCR template. Results of PCR with Tscar primers.
  • C gDNA (1ug / ⁇ l) purified from CM334 pepper leaf was absorbed into 8 kinds of porcelain fragments obtained from A and used as a PCR template.
  • PCR with Tscar primer resulted in lane M; 1 kb DNA leather, Lane PC; 1 ⁇ l of gDNA (1ug / ⁇ l) purified from CM334 pepper leaves was used as a PCR template.
  • D Tomato spotted wilt virus (TSWV) detection by RT-PCR, lane M; 1 kb DNA leather, lane NC; 1 ⁇ l of total RNA isolated from healthy Nicotiana rustica tobacco leaves was used as reverse transcription template, Lane PC; 1 ⁇ l of total RNA isolated from tobacco leaves artificially infected with TSWV was used as a reverse transcription template. Lanes 1-8; Infection of the eight kinds of pottery shards in the TSWV N. Pressed onto rustica tobacco leaves to absorb biological molecules (here viral particles or RNA) and then used as a template for reverse transcription. Arrows indicate the size of the expected PCR product.
  • FIG. 3 is an enlarged photograph of the porcelain fragment (A) of FIG. 2A having the best genomic DNA amplification and the surface of the porous ceramic cube made of each oxide material by electron microscope (SEM). All of them are magnified 10,000 times, depending on the material and fabrication temperature. 1 to 14: materials listed in Table 1 in order, bar: 1 ⁇ m.
  • Figure 4 is a result of performing the RT-PCR / PCR reaction by separating the CMV RNA and genomic DNA from the pepper leaves using a porous ceramic cube made of each oxide material.
  • A Results of RT-PCR on the total cumulus mosaic virus (CMV) RNA;
  • B PCR on genomic DNA purified from pepper leaves.
  • Lane M 1 kb DNA leather,
  • Lane PC In A, 1 ⁇ l of total RNA isolated from CMV-infected pepper leaves was used as RT-PCR template.
  • Lanes 1-14 Materials listed in Table 1 in order.
  • B 1 ⁇ l of genomic DNA isolated from CM334 pepper was used as a PCR template.
  • A CMV infected pepper leaf
  • B Purified CMV (lane PC1: 1 ⁇ l of total RNA of CMV infected CM334 was used as template.
  • Lane PC2 1 ⁇ l of total RNA of CMV infected Nicotia tabaccum Xanthi-nc was used as template).
  • Lanes 1-14 Materials listed in Table 1 in order.
  • Figure 6 is a result of analyzing the DNA amplification efficiency using a variety of porous ceramic cube prepared in the present invention for red pepper leaves.
  • Lane M 1 kb DNA leather
  • lanes 1 to 14 the materials listed in Table 1 in that order
  • lane PC 1 ul of purified gDNA was used as a template.
  • Lane 7 is a result of analyzing the effect of the LTCC porous ceramic cube manufacturing temperature of the present invention on PCR amplification.
  • Lane M 1 kb DNA leather
  • Lane PC 1 ul of purified gDNA as a template
  • lanes 30 to 34 30 (LTCC, 650 ° C), 31 (LTCC, 700 ° C), 32 (LTCC, 750 ° C), 33 ( LTCC, 800 ° C.), 34 (LTCC, 850 ° C.).
  • Figure 8 shows the cut surface (A ⁇ E) and the inside (F ⁇ J) of the LTCC porous ceramic cube according to the manufacturing temperature.
  • A-J SEM photograph observed by 10,000 times.
  • 30 to 34 30 (LTCC, 650 ° C), 31 (LTCC, 700 ° C), 32 (LTCC, 750 ° C), 33 (LTCC, 800 ° C), 34 (LTCC, 850 ° C)
  • a to C SEM photograph taken at 1000 times.
  • D and E lane M, 1 kb DNA ladder; Lane PC, using 1 ul of purified gDNA as a template; Lanes 39 and 33 (LTCC, 800 ° C.) without cube polishing; Polishing lanes 41 and 33 for 48 hours; Polish lanes 42 and 33 for 72 hours.
  • FIG. 12 is a multiplex RT-PCR resulted from biological molecules isolated from tobacco leaves using the LTCC cube of the present invention.
  • Lane M 1 kb DNA leather
  • lanes 1 to 3 were RT-PCR products of CMV (473 bp), CIYVV (806 bp), CMV (473 bp) + CIYVV (806 bp), respectively.
  • Figure 13 shows the results of BAC plasmid amplification of E. coli using the LTCC cube of the present invention.
  • Lane M 1kb DNA leather, lanes 1 to 4 using E. coli culture 1ul, 2ul, 3ul, 4ul as a template.
  • E. coli culture 1ul, 2ul, 3ul, 4ul 1ul, 2ul, 3ul, 4ul as a template.
  • 8, LTCC, 850 °C porous ceramic cubes absorbing E. coli are used as molds.
  • the PCR band thickness is constant, that is, E. coli is uniformly absorbed and there is no difference between four templates absorbed in one cube. Increasing the primer concentration makes the PCR band much thicker than one when using four.
  • 1-4 shows the result that the viscosity of E. coli culture solution was not high, so it was not added constantly.
  • A Single simple structure (square, round, etc.), B; A structure in which a hole-shaped space is formed inside a single simple structure to increase the material absorption rate, C; Surface pore size and a composite of different materials, D; Dual structures with different densities (left) and voids inside (right)
  • the present invention provides a method for rapidly removing a biological molecule for nucleic acid amplification reaction from a biological sample comprising contacting the biological solid phase with the biological sample to absorb the biological molecules present in the biological sample into the pores of the porous solid phase. Provide a way to separate them.
  • the biological sample may be derived from an animal, a plant, a bacterium or a fungus, preferably, a plant or an animal, but is not limited thereto.
  • a method of contacting a biological solid phase to a biological sample means a method of inducing absorption into the porous solid phase through a simple contact when the biological sample is in a liquid phase, and in the case of a solid phase, the porous solid phase is referred to as pin V. It refers to a method of absorbing biological molecules when they are stabbed and destroyed, but it is not limited to this method alone.
  • the biological molecule may be DNA, RNA, dsRNA, microRNA, viroid, virus, bacteria, fungus or microalgae, preferably may be DNA or RNA This is not restrictive.
  • the biological molecules of the present invention can be obtained from various sources in animals, for example, from muscles, epidermis, blood, bones, organs, and most preferably from muscles or blood, but not limited thereto. Do not. Plants can be obtained from various organ extracts, for example, from leaves, flowers, stems, roots, fruits, seeds, most preferably from leaves, seeds or flowers, but are not limited thereto. Microorganisms can be obtained from the flora, mycelium or ooze, and most preferably from the place where they are concentrated (lesion development site), but is not limited thereto.
  • the porous solid phase with appropriately controlled pore size is contacted to absorb some of these particles or all of the cells into the pores, and PCR reaction with the template results in a high temperature denaturation step of the PCR reaction step (approximately 94 ⁇ 96 °C) can be released from the nucleic acid due to tissue destruction, it is possible to analyze the target gene.
  • Bio molecules of the present invention may also include analogs in which their bases are modified, as well as nucleotides, which are the basic structural units of nucleic acid molecules.
  • the ceramic rod tip can be adsorbed by contacting the biological sample. If the starting material is mRNA, the ceramic rod tip is brought into contact with the biological sample and total RNA adsorbed on the tip is synthesized as cDNA using reverse transcriptase as a template. Since the total RNA is isolated from plant or animal cells, the end of the mRNA has a poly-A tail, and cDNA can be easily synthesized using oligo dT primer and reverse transcriptase using this sequence characteristic.
  • cDNA is synthesized in the same manner as above, but in the absence of a poly-A tail, such as tobamovirus, antisense primer specific for the target RNA according to various methods known in the art.
  • CDNA can be synthesized.
  • the small amount of biological molecules can be applied to various methods known in the art that can be used as a template.
  • techniques applicable to the present invention include CAPS or SCAR molecular labels, HRM using fluorescent markers, real time PCR, Nested PCR, immunocapture PCR, mutiplex PCR used for the detection of various pathogens, and direct DNA sequences.
  • the present invention provides a method for analyzing the presence of virus in the tissue using genotyping primers designed to match the nucleotides absorbed in the ceramic block.
  • Nucleic acid amplification through the present invention can be used for DNA molecular labeling, probe production, cDNA and genomic DNA library production, pathogen assay, etc., but is not limited thereto.
  • the nucleic acid amplification reaction is cDNA synthesis, polymerase chain reaction (PCR), multiplex (muliplex) PCR, reverse transcriptase polymerase chain reaction (RT-PCR), ligase chain reaction ( Amplification or sugar via ligase chain reaction, nucleic acid sequence-based amplification, transcription-based amplification system, strand displacement amplification or Q ⁇ replicaase
  • PCR is a method of amplifying a target nucleic acid from a pair of primers specifically binding to the target nucleic acid using a polymerase.
  • PCR methods are well known in the art, and commercially available kits may be used.
  • the porous solid phase is a cellulose carbide, agglomerated paper in the form of particles, natural or synthetic zeolites, polystyrene (polystylene), polycarbonate, polypropylene (polyprophylene), porous Metal particles, porous rubber, glass fiber agglomerated in the form of particles may be pore glass, lime, shells, porcelain fragments or an oxide ceramic, preferably an oxide ceramic, but is not limited thereto.
  • the ceramic of the oxide material is Al 2 O 3 , Fe 2 O 3, Low temperature co-fired ceramic (LTCC), PbO
  • the ceramic may be made of ZnO as a main component, but is not limited thereto.
  • the porous solid phase is a cube, a cuboid, a sphere, a cylinder, a bar type (bar type), a bar shape having a groove at one end of the bar, a pointed rod shape, one side of the rod It may be in the form of a rod having a groove at the end and having a pointed end, or a rod having a groove at one end of the rod and having a large pore inside the pointed end and having a pointed end, but is not limited thereto.
  • the ceramic of the oxide material as the porous solid phase of the present invention can adjust the size of the pores
  • the porous ceramic with the same oxide material can adjust the size and number of pores according to the production temperature
  • the purpose By using the porous ceramics optimized according to the type of biological molecule to be able to perform the PCR or RT-PCR reaction effectively.
  • the size of the pores of the porous ceramic can be appropriately adjusted to the size of the porous solid phase to selectively absorb the biological molecules of interest in the target biological sample.
  • the external size of the oxide ceramic is not particularly limited as long as it can easily enter the PCR tube, but may be, for example, 1 mm 3 , but is not limited thereto.
  • step (b) adding a porous solid phase having absorbed the biological molecules of step (a) as a template for nucleic acid amplification reaction, and amplifying the target sequence by performing an amplification reaction using a target primer set.
  • a target primer set for amplifying a target sequence.
  • the nucleic acid amplification reaction is as described above.
  • step (b) performing a reverse transcriptase reaction by adding reverse transcriptase to the porous solid absorbing the biological molecules of step (a);
  • step (b) adding a porous solid phase having absorbed the biological molecules of step (a) as a template for nucleic acid amplification reaction, and amplifying the target sequence by performing an amplification reaction using a target primer set;
  • step (b) performing a reverse transcriptase reaction by adding reverse transcriptase to the porous solid absorbing the biological molecules of step (a);
  • the method of the present invention includes detecting the amplification product. Detection of the amplification product may be performed through DNA chip, gel electrophoresis, radioactivity measurement, fluorescence measurement or phosphorescence measurement, but is not limited thereto. As one of the methods for detecting amplification products, gel electrophoresis can be performed. Gel electrophoresis may use agarose gel electrophoresis or acrylamide gel electrophoresis depending on the size of the amplification product. In addition, in the fluorescence measurement method, PCR is performed by labeling Cy-5 or Cy-3 at the 5'-end of a primer, and a target sequence is labeled with a detectable fluorescent labeling substance, and the labeled fluorescence is measured using a fluorimeter.
  • radioactivity measuring method is to add a radioactive isotope such as 32 P or 35 S to the PCR reaction solution to label the amplification product when performing PCR, and then radioactive measuring apparatus, for example, Geiger counter or liquid flash The radioactivity can be measured using a liquid scintillation counter.
  • a radioactive isotope such as 32 P or 35 S
  • radioactive measuring apparatus for example, Geiger counter or liquid flash
  • the radioactivity can be measured using a liquid scintillation counter.
  • the present invention is a porous solid phase that can quickly absorb the biological molecules present in the biological sample into the pores of the porous solid phase; Target primer set; And it provides a kit for nucleic acid amplification reaction for amplifying a target sequence in a biological sample, comprising a reagent for performing an amplification reaction.
  • the kit for nucleic acid amplification reaction of the present invention may include a reagent used for micro RNA isolation, small RNA isolation, or cDNA synthesis, but is not limited thereto.
  • the reagent for performing the amplification reaction may include DNA polymerase, dNTPs, buffers and the like.
  • the kits of the present invention may further comprise a user guide describing the optimal reaction performance conditions.
  • the guide is a printed document that explains how to use the kit, such as how to prepare a PCR buffer, and the reaction conditions presented.
  • the instructions include brochures in the form of pamphlets or leaflets, labels affixed to the kit, and instructions on the surface of the package containing the kit.
  • the guide includes information that is disclosed or provided through electronic media such as the Internet.
  • the nucleic acid amplification reaction is cDNA synthesis, It may be a polymer chain reaction (PCR), multiplex PCR, or reverse transcriptase polymerase chain reaction (RT-PCR), but is not limited thereto.
  • PCR polymer chain reaction
  • RT-PCR reverse transcriptase polymerase chain reaction
  • the porous solid phase is as described above.
  • the present invention also provides a kit for rapidly separating biological molecules for nucleic acid amplification reactions from a biological sample, including a porous solid phase capable of rapidly absorbing biological molecules present in the biological sample into voids.
  • the nucleic acid amplification reaction may be cDNA synthesis, PCR (Polymerase Chain Reaction), multiplex (multiplex) PCR or RT-PCR (Reverse Transcriptase Polymerase Chain Reaction), but is not limited thereto. Do not.
  • the porous solid phase is as described above.
  • the present invention also provides a composition for rapidly separating biological molecules for nucleic acid amplification reactions from a biological sample, including a porous solid phase capable of rapidly absorbing biological molecules present in the biological sample into voids.
  • the composition includes a porous solid phase capable of rapidly absorbing the biological molecules present in the biological sample of the present invention as voids, and rapidly absorbs the biological molecules present in the biological sample into the pores of the porous solid phase. It can be used for the amplification reaction.
  • the porous solid phase is as described above.
  • the nucleic acid amplification reaction may be cDNA synthesis, PCR (Polymerase Chain Reaction), multiplex (multiplex) PCR or RT-PCR (Reverse Transcriptase Polymerase Chain Reaction), but is not limited thereto. Do not.
  • the porous solid phase is as described above.
  • Figure 1 shows a schematic diagram of dielectric adsorption and application to RT-PCR / PCR template using the porous ceramic cube of the present invention.
  • 14 kinds of cubes were manufactured by varying the production temperature using the main components of Table 1 as materials so that the size of the pores on the cube surface of 1 cubic millimeter (1 mm 3 ), and the porous ceramic cube is enlarged. Shown in 1B.
  • the cube Since the cube is porous, it selectively absorbs materials that are smaller than the pores, and by varying the size of the pores (typically the pores become smaller when ceramics are fabricated at higher temperatures), they selectively absorb the desired material when the tissue breaks down. That is, the purpose is to give the cube an ultra filtration function (ulrafiltration) to the size of the pore to be able to exclude PCR inhibitors as much as possible through the size of the pore.
  • ultra filtration function ultra filtration
  • one of the prepared porous ceramic cube is placed on the leaf of the plant and pressed to the back of the pin V and the tissue is crushed and the dielectric is absorbed into the pores of the cube, and the dielectric is absorbed into the cube 1 RT
  • the results used as PCR or PCR templates were confirmed on agarose gels (FIG. 1E).
  • PCR premix consisted of 0.5 ⁇ l of 10 pmol sense primer (Tsca-F: AAACGCCATCATTCGTTTTC: SEQ ID NO: 1), 0.5 ⁇ l of 10 pmol antisense primer (Tsca-R: CATGAAAGTTGACCCGAACA: SEQ ID NO: 2), 4 ⁇ l of rTaq-Mix, and 15 ⁇ l of DW.
  • PCR product was denatured for 3 minutes at 94 °C (94 °C / 30 seconds, 59 °C / 30 seconds, 72 °C / 60 seconds), amplified 35 times, 72 °C / 5 minutes and reacted 1 containing EtBr Electrophoresis on% agarose gel confirmed the amplification of the desired PCR product.
  • CM334 gDNA (1ug / ⁇ l) was used as a material instead of leaves. 1 ⁇ l of the purified gDNA was dropped on the surface of the plastic petri dish, and then the gDNA was absorbed with each porcelain fragment and used as a template for PCR.
  • PC positive control
  • PCR products of the same size were amplified in all the treatments, and their concentrations were slightly different. The surface area was considered to be due to the nonuniformity.
  • the porcelain fragments absorbed gDNA can be used as a template for PCR amplification, and investigated the possibility of using them for the diagnosis of plant viruses. Nicotiana rustica tobacco leaves (PC) and artificially infected with Nicotiana rustica tobacco leaves (NC) and Tomato spotted wilt virus (TSWV) uninfected with virus to purify RNA for negative and positive controls using the QIAGEN RNeasy Mini Kit (PC) Total RNA was isolated and used as a template for reverse transcription reaction.
  • PC Nicotiana rustica tobacco leaves
  • NC Nicotiana rustica tobacco leaves
  • TSWV Tomato spotted wilt virus
  • the PCR premix consisted of 0.5 ⁇ l of 10 pmol sense primer (Tsca-F AAACGCCATCATTCGTTTTC: SEQ ID NO: 4), 0.5 ⁇ l of 10 pmol antisense primer (Tsca-R CATGAAAGTTGACCCGAACA: SEQ ID NO: 5), 4 ⁇ l of rTaq-Mix, and 15 ⁇ l of DW.
  • PCR reaction was denatured at 94 ° C. for 3 minutes, amplified 35 times at (94 ° C./30 sec, 50 ° C./30 sec, 72 ° C./60 sec), and reacted at 72 ° C./5 min, followed by 1% containing EtBr.
  • Electrophoresis on agarose gel confirmed the amplification of the target PCR product (777bp). As shown in Figure 2D it can be confirmed that the RT-PCR product is expected to be successfully amplified in the remaining porcelain debris treatment except for the 4 and 6 porcelain fragments. This means that TSWV assay can be performed only with TSWV RNA or TSWV particles absorbed in porcelain fragments.
  • the PCR product was more amplified in RT-PCR than gDNA as shown in FIG. 2B because more PCR template was generated through reverse transcription. Judging by From the above results, it was judged that if the porcelain fragments were made to a certain size and used to absorb biological molecules, better results could be obtained.
  • each porous ceramic cube which prepared the oxide of Table 1 as a main component with the electron microscope (SEM) is shown in FIG. Since the surface and the pore size are different according to the ceramic main component and the fabrication temperature, in order to increase the absorption rate of the target biological molecule, the ceramic cube should be manufactured and used to have the optimum pore size and number.
  • Table 1 sign chief ingredient Fabrication temperature (°C) One Al 2 O 3 1450 2 Al 2 O 3 1550 3 Fe 2 O 3 800 4 Fe 2 O 3 850 5 Fe 2 O 3 900 6 LTCC 650 7 LTCC 750 8 LTCC 850 9 PbO 1000 10 PbO 1150 11 PbO 1250 12 ZnO 800 13 ZnO 900 14 ZnO 1000
  • RNA isolated from CMV-infected pepper leaves and genomic DNA isolated from CM334 pepper were absorbed into each ceramic cube and then RT-PCR. And used as a template for PCR.
  • CMV was added to RT-PCR premix (RTamp1, Biocubesystem, Korea) at 25 pmol concentration of the sense (5'-TACATTGAGTCGAGTCATG-3 ': SEQ ID NO: 6) and antisense (5'-TGGAATCAGACTGGGACA-3': SEQ ID NO: 7) primers, respectively.
  • the PCR premix consisted of 0.5 ⁇ l of 10 pmol sense primer (Tsca-F: AAACGCCATCATTCGTTTTC: SEQ ID NO: 8), 0.5 ⁇ l of 10 pmol antisense primer (Tsca-R: CATGAAAGTTGACCCGAACA: SEQ ID NO: 9), rTaq-Mix 4 ⁇ l, DW 15 ⁇ l.
  • PCR product was denatured for 3 minutes at 94 °C (94 °C / 30 seconds, 59 °C / 30 seconds, 72 °C / 60 seconds), amplified 35 times, 72 °C / 5 minutes and reacted 1 containing EtBr Electrophoresis on% agarose gel confirmed the amplification of the desired PCR product.
  • viral RNA as shown in Fig. 4A, all 14 ceramic cubes showed similar results (Fig. 4A).
  • the efficiency of the PCR reaction using the purified gDNA was different depending on the material and fabrication temperature of the cube (Fig. 4B).
  • Lane 9 (PbO, 1000 ° C) and lane 11 (PbO, 1250 ° C) had a small amount of amplification, but lane 10 (PbO, 1150 ° C) was strongly amplified.
  • Lane 12 (ZnO, 800 ° C.) and Lane 14 (ZnO, 1000 ° C.) were hardly amplified, but Lane 13 (ZnO, 900 ° C.) was weakly amplified.
  • the absorption rate of genomic DNA differs depending on the cube material and the fabrication temperature.
  • CMV is a primer set specific to CMV particles in RT-PCR premixes (RTamp1, Biocubesystem, Korea).
  • Sense 5'-TACATTGAGTCGAGTCATG-3 ': SEQ ID NO: 10
  • antisense primer 5'-TGGAATCAGACTGGGACA-3': SEQ ID NO: 11
  • Sense 50 ° C / 20 minutes
  • 94 ° C / 10 minutes (94 ° C./30 sec, 55 ° C./30 sec, 72 ° C./60 sec) 35 times, 72 ° C./5 min reaction followed by electrophoresis on 1% agarose gel containing EtBr to obtain the target PCR product (670bp).
  • Amplification was confirmed.
  • the purified virus was absorbed into the porous ceramic cube, PCR products were more amplified, but the PCR product amplification patterns of the two treatment sections were similar (FIG. 5).
  • Lanes 1 and 2 of FIG. 5A have the same main components as Al 2 O 3 , and manufacturing temperatures are 1450 ° C. and 1550 ° C., while the main components of lanes 3, 4 and 5 are the same as Fe 2 O 3 , but the manufacturing temperatures are 800 ° C. and 850.
  • PCR efficiency was high when DNA was separated using porous ceramic cubes made of Al 2 O 3 and Fe 2 O 3 at 1550 ° C. and 900 ° C. at 900 ° C. and 900 ° C., respectively.
  • Lanes 6, 7, and 8 are mainly composed of low temperature co-fired ceramics (LTCC), but the manufacturing temperatures are 650 ° C, 750 ° C, and 850 ° C. Lane 6 shows no amplification at all. Amplification was shown to be better.
  • Capsicum annuum sr10 Place a porous ceramic cube on the leaves of the pepper and pressed to the back of the pin V to absorb the gDNA into each cube, which was added one per PCR tube.
  • PCR reaction solution was 10 ⁇ l of 2X PCR premix (gDamp1, Biocubesystem, Korea) 0.5 ⁇ l of 10 pmol sense primer (Primer 10-F: 5'-TGGCTTATCGAAGGAGCCAT-3 ': SEQ ID NO: 12), 10 pmol antisense primer (Primer 10-R : 5'-AGATGAAACCAAAGCCTCCA-3 ': SEQ ID NO: 13)
  • 10 pmol sense primer (Primer 10-F: 5'-TGGCTTATCGAAGGAGCCAT-3 ': SEQ ID NO: 12)
  • 10 pmol antisense primer Primary 10-R : 5'-AGATGAAACCAAAGCCTCCA-3 ': SEQ ID NO: 13)
  • lane 5 (Fe 2 O 3 , 900 ° C.), lane 8 (LTCC, 850 ° C.), lane 9 (PbO, 1000 ° C.), 10 (PbO, 1150 ° C.) and lane 14 (ZnO, 1000 ° C.)
  • lane 6 (LTCC, 650 ° C)
  • lane 7 (LTCC, 750 ° C)
  • lane 8 (LTCC, 850)
  • lane 12 (ZnO, 800 ° C)
  • lane 13 ZnO, 900 ° C
  • lanes 14 ZnO, 1000 °C
  • the primer used at this time was a sense primer (Primer 10-F: 5'-TGGCTTATCGAAGGAGCCAT-3 ': SEQ ID NO: 12), an antisense primer (Primer 10-R: 5'-AGATGAAACCAAAGCCTCCA-3': SEQ ID NO: 13) and a sense primer (Primer 146-F: 5'-AGAAGAAAGAGGAGGCTCCA-3 ': SEQ ID NO: 14) and antisense primer (Primer 146-R: 5'-TGGAAGCCTTTGAGGGATCT-3': SEQ ID NO: 15) were used. PCR products were denatured at 94 ° C.
  • lane 30 LTCC, 650 ° C.
  • gDNA amplification was not performed as in lane 6 (LTCC, 650 ° C.) of FIG. 6 in both primers.
  • lane 31 LTCC, 700 ° C.
  • amplification was weakly carried out in primer 10, but amplified well in primer 146.
  • lane 32 LTCC, 750 ° C
  • lane 33 LTCC, 800 ° C
  • both amplification was very good.
  • lane 34 LTCC, 850 °C
  • a suitable manufacturing temperature was analyzed to be 750 ° C to 800 ° C.
  • LTCC porous ceramic cubes Five LTCC porous ceramic cubes were fabricated to investigate the characteristics of the cubes according to the fabrication temperature, and the surface (Fig. 8A ⁇ E) and the inside (Fig. 8F ⁇ J) cutting surface, material absorption capacity and filtration capacity were examined by SEM and TEM. Each was investigated.
  • the surface (FIGS. 8A-E) and internal (FIGS. 8F-J) cut surfaces of the cube showed a tendency to increase as the temperature increased. In both cases, the pore size was almost the same at the ⁇ m level, and the pore number tended to decrease with higher temperature.
  • the decrease in the number of pores can be understood as a decrease in the amount of molecular absorption, but in order to obtain clearer data, gold nanoparticles artificially fabricated for absorbing and filtering materials of LTCC porous ceramic cubes having different fabrication temperatures (average diameter 40nm) ) And a mixture of polystyrene particles (average size diameter 2 ⁇ m, 5 ⁇ m, 38 ⁇ 45 ⁇ m, Beads & Micro, Korea).
  • Ten cubes prepared at the same temperature per 20 ⁇ l of the mixed solution of the above two materials having different diameters were immersed, and the filtrate was completely removed by using a micropipette and filter paper. 10 ⁇ l of sterile water was added to the same tube, and then allowed to stand at 65 ° C. for 30 minutes, vortexed for 10 seconds, and the surface properties of the remaining cubes and the particle distribution of the washing were observed (5000 times SEM and 250 times TEM). stomach).
  • the diameter of the other treatment was approximately Particles having a thickness of 2 ⁇ m were mainly observed (FIGS. 9G-J).
  • the 33 (LTCC, 800 ° C) cube treatment group which had the best DNA amplification result, particles of 2 ⁇ m or less were mainly distributed than other treatment groups.
  • the results of FIG. 9 mean that the synthetic particles are not only passively sucked into the pore by the absorbing power of the porous ceramic cube but also the particles can be selectively sucked according to the pore diameter.
  • the eluted particle diameters were distributed in a very constant size from 26 nm to about 500 nm (FIGS. 10A and 10B). This suggests that if the pore size is adjusted regularly, it can selectively absorb particles of a certain size.
  • the extent to which surface roughness and pore number affected the absorption of biological molecules was investigated.
  • PCR reaction solution was prepared by adding 10 ⁇ l of 10 pmol sense primer, 0.5 ⁇ l of 10 pmol antisense primer, 1 cube of gDNA absorbed, and 9 ⁇ l of DW to 10 ⁇ l of 2X PCR premix (gDamp1, Biocubesystem, Korea). Instead of the cube, 2 ⁇ l of purified gDNA (20 ng / ⁇ l) and 7 ⁇ l of DW were added. PCR products were denatured at 94 ° C.
  • the fabrication temperature affects the roughness, surface area, and pore size of the cube surface.
  • the change in the characteristics of the cube according to the fabrication temperature is to inhibit the reaction with the template used in the PCR reaction in the step of absorbing the biological molecules (here gDNA or nucleus) in the biological sample into the pores of the porous solid by contacting the porous solid phase to the biological sample It can be judged that it affects the total absorption of the substance.
  • the most important characteristic change is that the fabrication temperature can not only selectively remove PCR inhibitors by controlling the number or size of pores present in the porous cube, but also to obtain sufficient initial template for PCR. To give.
  • CMV Cucumber mosaic virus
  • ClYVV Ceral yellow vein potyvirus
  • tobacco N. benthamiana
  • a porous ceramic cube 33, LTCC, 800 °C
  • biological molecules viral particles or virus intermidiate form
  • RT-PCR reaction solution was prepared in RT-PCR premix (RTamp1, Biocubesystem, Korea), 1 ⁇ l 10 pmol sense primer, 1 ⁇ l 10 pmol antisense primer, 1 cube absorbed template, DW 18 Prepared by addition of ⁇ l.
  • primers of the virus were added as above, followed by addition of 6 ⁇ l of DW.
  • PCR products were denatured at 94 ° C. for 3 minutes, amplified by reaction at 52 ° C./20 minutes, 94 ° C./30 seconds, 68 ° C./30 seconds, 72 ° C./60 seconds 35 times, 72 ° C./5 minutes, and EtBr.
  • Porous ceramic cubes were analyzed to have a filtration effect with absorbing ability, which was confirmed by the successful PCR when the bacterial culture was absorbed into the cube and used as a template.
  • BAC colonies were inoculated into 5 ml of E. coli culture medium with sterile toothpicks, and 1 ⁇ l, 2 ⁇ l, 3 ⁇ l, and 4 ⁇ l of the E. coli cultured for 15 hours as a positive control were used as templates.
  • the lab was spread flat on the bench and 10 ⁇ l of E. coli culture was dispensed on the lab, and then one, two, three or four porous ceramic cubes (34, LTCC, 850 ° C.) were added to absorb E. coli.
  • the cubes absorbed by E. coli with pin V were removed, the filtrate on pin V was removed with a tissue, and each cube was placed in a PCR tube and PCR reaction solution was added thereto.
  • the PCR reaction solution was prepared in 10 ⁇ l of 2X PCR premix (gDamp1, Biocubesystem, Korea), 10 ⁇ l sense primer (Primer: 5'-GTCAAATCTGAGGACGCTATGTCT-3 ': SEQ ID NO: 20), 1 ⁇ l, 10 pmol antisense primer (Primer: 5'-CACTATAGAGAACTAGGTATGTCGTTG- 3 ': SEQ ID NO: 21) 1 ⁇ l, 1 to 4 cubes in which the template was absorbed, and DW were prepared by adding a final volume of 20 ⁇ l.
  • PCR products were denatured at 95 ° C. for 3 minutes, amplified by reaction at 95 ° C./30 sec, 58 ° C./30 sec, 30 ° C. at 72 ° C./60 sec, and 72 ° C./10 min for 1% agar containing EtBr. Electrophoresis on rose gel confirmed the amplification of the desired PCR product (Fig. 13).
  • the amount of PCR amplification products did not increase proportionally with the amount of template added.
  • the amount of PCR amplification products was constant in the porous ceramic cube treatment in which the culture solution was absorbed. This meant that the PCR amplification was sufficient in the current reaction solution even with the template absorbed in one porous ceramic cube. Therefore, the porous ceramic cube could be used successfully for PCR amplification using bacteria as a template.
  • Example 7 Forms of Porous Ceramics Available for Absorbing Biological Molecules
  • a structure as shown in FIG. 14 may be used to efficiently absorb biological molecules from biological samples according to the purpose.
  • the basic structure may be a cube with a pore, a cylinder, a sphere or a cuboid (Fig. 14A), and a shape including a large gap therein to increase absorption (Fig. 14B).
  • the dielectric material is selectively absorbed by the surface pores, but in FIG. 14B, the amount of the dielectric to be absorbed is increased by increasing the absorption rate than in FIG. 14A.
  • the structure shown in the middle and the right side of Figure 14C absorbs the biological molecules and then applies a slight force to the grooved right part so that this part is separated and easily enters the PCR tube. It is a structure that can be used in production, and in the case of a square, a part of the groove is cut so that it can easily fall to about 1mm 3 at the tip of the bar, and the rear part of the bar is a seat for the plastic rod made for the handle.
  • 14D has a sharp shape is a structure for easy sticking when targeting seeds or trees, since when the rod is made of the same material, the dielectric may flow into the entire rod, so that the size of the rod
  • Different materials can be designed to increase absorption and to collect dielectrics at the tip of the PCR tube. It is very effective in preventing contamination and increasing absorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 생물학적 시료 내에 존재하는 생물학적 분자를 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상을 이용하여 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하고, 이를 증폭하여, 생물학적 시료 내에서 표적 서열의 존재 여부를 신속하게 확인하는 방법을 제공한다.

Description

생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 다공성 고체상 및 이의 용도
본 발명은 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 다공성 고체상 및 이의 용도에 관한 것으로, 더욱 상세하게는 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계를 포함하는 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하는 방법, 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시킨 다공성 고체상을 직접 첨가하거나, 역전사 효소 반응을 수행한 후 핵산 증폭 반응을 위한 주형으로 이용하여 표적 서열을 증폭하는 단계를 포함하는 생물학적 시료에서 표적 서열을 증폭하는 방법 및 상기 방법을 이용하여 생물학적 시료 내에서 표적 서열의 존재 여부를 신속하게 확인하는 방법, 생물학적 시료 내에 존재하는 생물학적 분자를 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상을 포함하는, 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 키트 및 조성물에 관한 것이다.
동식물에 병을 일으키는 병원체를 검출하는 방법 가운데 가장 널리 이용되는 것은 병원체의 고유 단백질을 검출하는 혈청학적 진단법과 핵산을 검출하는 분자생물학적 진단법이 있다. 분자생물학적 진단법에서 널리 이용되는 방법은 PCR(polymerase chain reaction)법이며, 검출감도가 높고 누구나 쉽게 이용할 수 있다는 장점이 있다. PCR을 수행하기 위해서는 우선 주형으로 이용되는 유전체를 대상 조직으로부터 추출해야 한다. DNA를 추출하는 현재의 방법으로는 페놀/클로로포름을 사용하는 방법, 염석하는 방법, 카오트로픽 염 및 실리카 수지를 사용하는 방법, 친화성 수지를 사용하는 방법, 이온 교환 크로마토그래피법 및 자성 비드를 사용하는 방법 등이 있다. 이 방법들은 미국특허 제5057426호, 제4923978호, EP 특허 제0512767 A1호, 및 EP 제0515484B호, WO 제95/13368호, WO 제97/10331호, 및 WO 제96/18731호 등에 기술되어 있다. 이들은 고체 지지체상에 핵산을 흡수시킨 후 핵산을 분리(isolation)하는 방법에 관하여 기재하고 있다. 이전에 사용되는 방법들은 핵산을 단리하기 위해서 일정 종류의 용매를 사용하였다.
PCR을 이용하여 DNA나 RNA 주형으로부터 목적 부위를 증폭하는 것은 DNA 분자표지, 프로브 제작, cDNA 및 게놈 DNA 라이브러리 제작, 병원체 검정 등과 같은 다양한 분야에 응용될 수 있다. 예로 병원체의 유전체를 증폭할 경우 검체 내의 병원체 존재 유무를 목적하는 산물의 증폭 유무를 가지고 쉽게 판독할 수 있다. 병원체 진단에 이용될 경우 PCR은 특이도와 검출감도가 매우 높지만 다량의 시료를 한번에 검사하는 데에는 많은 어려움이 있다. 이것은 다양한 검체로부터 PCR 주형을 신속하게 분리하는 데에는 아직까지 시간과 비용이 많이 소요되기 때문이다. 여러가지 조직으로부터 DNA나 RNA를 분리하는 다양한 방법이 보고되어 있으며, 혈흔, 머리카락, 상피세포, 잎 조각을 대상으로 끓이는 방법, NaOH 처리 VC-캡쳐, 열추출, 전자레인지 추출, NaOH 추출 등의 방법을 이용하여 PCR이 가능하도록 손쉽게 유전체를 얻을 수 있는 방법도 보고되어 있다. 그러나 이들 방법은 유전체 추출효율이 균일하지 않고 PCR 반응의 재현성이 낮다는 단점이 있다. PCR 기법이 갖는 높은 특이도와 검출 감도를 저해하지 않고 다양한 검체로부터 PCR 주형용 생물학적 분자를 손쉽게 대량으로 추출할 수 있다면, PCR의 활용도가 지금보다 훨씬 높아질 것이라는 것은 누구나 쉽게 예측할 수 있을 것이다.
한편, 한국공개특허 제2005-0088164호에서는 핵산 단리방법에 개시되어 있고, 일본공개특허 제2007-506404호에서는 핵산 분자를 검출하기 위한 신속한 방법이 개시되어 있으나, 본 발명에서와 같이 생물학적 시료로부터 다공성 고체상을 이용하여 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하는 방법에 대해서는 밝혀진 바가 없다.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자는 생물학적 시료로서 CMV(cucumber mosaic virus)에 감염된 고추 잎에 다공성 고체상인 산화물 재질의 다공성 세라믹 큐브를 금속 핀 V의 뒤쪽 편평한 부분으로 압력을 가해 접촉시켜 고추 시료 내에 존재하는 RNA, gDNA 및 바이러스 입자를 다공성 세라믹 큐브의 공극으로 흡수시킨 후, 흡수된 생물학적 분자에 대해 별도의 용매를 이용한 용출 과정 없이 다공성 세라믹 큐브를 직접 주형으로서 PCR 튜브에 넣고, CMV 특이 프라이머로 증폭시킨 결과, CMV에 감염된 고추임을 확인할 수 있었다. 이상과 같은 방법을 정제한 CMV 입자, CMV에 감염된 전체 RNA, 정제한 고추 게놈 DNA에 적용하여 세라믹 큐브의 재질과 제작 온도에 따라 상기 유전체를 효율적으로 흡수하여 PCR과 cDNA 합성에 이용할 수 있음을 확인하였다. 또한, 본 발명의 LTCC 큐브를 이용하여 담배 잎으로부터 분리한 핵산을 주형으로 multiplex RT-PCR과 대장균을 대상으로 BAC 플라스미드 증폭을 성공적으로 수행하였다.
이를 통해, 본 발명은 생물학적 시료 내에 존재하는 생물학적 분자의 신속한 분리를 통해 표적 서열의 존재 여부를 신속하게 진단할 수 있게 함으로써, 본 발명을 완성하였다.
상기 과제를 해결하기 위해, 본 발명은 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계를 포함하는 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하는 방법을 제공한다.
또한, 본 발명은 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시킨 다공성 고체상을 직접 첨가하거나, cDNA 합성을 위한 역전사 효소 반응을 수행한 후 핵산 증폭 반응을 위한 주형으로 이용하여 표적 서열을 증폭하는 단계를 포함하는 생물학적 시료에서 표적 서열을 증폭하는 방법 및 상기 방법을 이용하여 생물학적 시료 내에서 표적 서열의 존재 여부를 신속하게 확인하는 방법을 제공한다.
또한, 본 발명은 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상을 포함하는 생물학적 시료 내에서 표적 서열을 증폭하기 위한 핵산 증폭 반응용 키트를 제공한다.
또한, 본 발명은 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상을 포함하는, 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 키트 및 조성물을 제공한다.
본 발명은 생물학적 시료 내에 존재하는 생물학적 분자의 신속한 분리를 통해 표적 서열의 존재 여부를 신속하게 진단할 수 있게 하므로, 목적하는 게놈 DNA 증폭, cDNA 합성, 병원체 감염 유무 등을 신속하고 정확하게 판별하는데 용이하게 이용될 수 있을 것이다.
도 1은 다공성 세라믹 큐브를 이용한 유전체 흡착과 RT-PCR/PCR 주형으로의 활용 모식도를 나타낸다. A: 다공성 세라믹 큐브, B: 다공성 세라믹 큐브를 확대한 그림으로 1입방밀리미터(1mm3)의 큐브 표면에 공극의 크기가 달라지도록 재료와 제작 온도를 달리하여 14종의 큐브를 제작함, C: 식물체 잎에 큐브 1개를 올려놓고 핀 V 뒷면으로 큐브를 눌러 조직이 파쇄됨과 동시에 큐브의 공극으로 유전체가 흡수되도록 설계함, D: 유전체가 흡수된 큐브 1개를 RT-PCR 혹은 PCR 주형으로 사용, E: PCR 산물을 아가로스 젤에서 확인.
도 2는 도자기 절편을 이용하여 생물학적 시료로부터 핵산 증폭 반응을 위한 DNA/RNA 주형을 분리한 결과를 나타낸다. A: 약 1mm3 크기의 도자기 파편을 제조하는데 사용한 도자기 절편(1~8)으로 6은 도자기 절편 5의 화살표 부위를 의미함. B: Capsicum annuum CM334 고추잎에 8종류의 도자기 파편을 올려놓고 핀 V으로 누른 다음 이를 PCR 주형으로 사용. Tscar 프라이머로 PCR 수행한 결과. C: CM334 고추잎에서 정제한 gDNA(1ug/㎕)를 A에서 얻은 도자기 파편 8종류로 흡수하고 이를 PCR 주형으로 사용. Tscar 프라이머로 PCR 수행한 결과, 레인 M; 1kb DNA 레더, 레인 PC; CM334 고추잎에서 정제한 gDNA(1ug/㎕) 1㎕를 PCR 주형으로 사용. D: RT-PCR에 의한 Tomato spotted wilt virus(TSWV) 검출, 레인 M;1kb DNA 레더, 레인 NC; 건전한 Nicotiana rustica 담배잎에서 분리한 총 RNA 1㎕를 역전사 반응 주형으로 사용, 레인 PC; TSWV를 인공적으로 감염시킨 담배 잎에서 분리한 총 RNA 1㎕를 역전사 반응 주형으로 사용. 레인 1~8; 8종의 도자기 파편을 TSWV에 감염된 N. rustica 담배 잎에 눌러 생물학적 분자(여기서는 바이러스 입자 혹은 RNA)를 흡수시킨 다음 이를 역전사반응용 주형으로 사용함. 화살표는 예상한 PCR 산물의 크기를 의미함.
도 3은 게놈 DNA 증폭이 가장 잘된 도 2A의 4의 도자기 파편(A)과 각각의 산화물 재질로 제조된 다공성 세라믹 큐브의 표면을 전자 현미경(SEM)으로 확대한 사진이다. 모두 1만배 확대한 사진으로 재료와 제작 온도에 따라 표면 형태, 공극의 크기와 갯수에 차이가 있다. 1~14: 순서대로 표 1에 기록된 재료, bar : 1㎛.
도 4는 각각의 산화물 재질로 제조된 다공성 세라믹 큐브를 이용하여 고추 잎에서 CMV RNA 및 게놈 DNA를 분리하여 RT-PCR/PCR 반응을 수행한 결과이다. A: 오이모자이크바이러스(cucumber mosaic virus, CMV) 총 RNA를 대상으로 RT-PCR을 수행한 결과, B: 고추 잎에서 정제한 게놈 DNA를 대상으로 PCR을 수행한 결과. 레인 M:1kb DNA 레더, 레인 PC: A에서는 CMV에 감염된 고추잎에서 분리한 총 RNA 1㎕를 RT-PCR 주형으로 사용함. 레인 1~14: 순서대로 표 1에 기록된 재료. B에서는 CM334 고추에서 분리한 게놈 DNA 1㎕를 PCR 주형으로 사용함.
도 5는 각각의 산화물 재질로 제조된 다공성 세라믹 큐브를 이용하여 CMV에 감염된 고추잎 및 정제한 CMV 입자를 대상으로 생물학적 분자의 흡수율을 조사한 결과이다. A: CMV 감염 고추잎, B: 정제한 CMV (레인 PC1: CMV 감염된 CM334의 총 RNA 1㎕를 주형으로 사용. 레인 PC2: CMV 감염된 Nicotia tabaccum Xanthi-nc의 총 RNA 1㎕를 주형으로 사용). 레인 1~14: 순서대로 표 1에 기록된 재료.
도 6은 고추잎을 대상으로 본 발명에서 제조한 다양한 다공성 세라믹 큐브를 이용하여 DNA 증폭효율을 분석한 결과이다. 레인 M: 1kb DNA 레더, 레인 1~14: 순서대로 표 1에 기록된 재료, 레인 PC: 정제한 gDNA 1ul를 주형으로 사용.
도 7은 본 발명의 LTCC 다공성 세라믹 큐브 제작온도가 PCR 증폭에 미치는 영향을 분석한 결과이다. 레인 M: 1kb DNA 레더, 레인 PC: 정제한 gDNA 1ul를 주형으로 사용, 레인 30~34: 30(LTCC, 650℃), 31(LTCC, 700℃), 32(LTCC, 750℃), 33(LTCC, 800℃), 34(LTCC, 850℃).
도 8은 제작온도에 따른 LTCC 다공성 세라믹 큐브의 표면(A~E)과 내부(F~J) 절단면을 나타낸다. A~J: 10,000배로 관찰한 SEM 사진. 30~34: 30(LTCC, 650℃), 31(LTCC, 700℃), 32(LTCC, 750℃), 33(LTCC, 800℃), 34(LTCC, 850℃)
도 9는 제작 온도에 따른 LTCC 다공성 세라믹의 물질 흡수능력과 여과 능력을 조사한 결과이다. 큐브의 표면(A~E)과 내부(F~J) 절단면을 5000배 SEM 및 250배 TEM으로 각각 관찰하여 금 나노입자 및 폴리스틸렌 입자의 혼합액 분포를 조사하였다. 30~34: 30(LTCC, 650℃), 31(LTCC, 700℃), 32(LTCC, 750℃), 33(LTCC, 800℃), 34(LTCC, 850℃)
도 10은 제작 온도에 따른 LTCC 다공성 세라믹의 물질 흡수능력과 여과 능력을 조사한 결과이다. LTCC 다공성 세라믹 큐브의 내부에 흡수된 금 나노입자 및 폴리스틸렌 입자를 용출시킨 후 3500배 TEM으로 그 분포를 조사하였다. 33(LTCC, 800℃), 34(LTCC, 850℃)
도 11은 큐브 표면의 특성이 PCR 산물 증폭 효율에 미치는 영향을 조사한 결과이다. A~C: 1000배로 촬영한 SEM 사진. A, 33(LTCC, 800℃) 큐브 연마 안함; B, 33을 48시간 연마; C, 33을 72시간 연마. D와 E: 레인 M, 1kb DNA 레더; 레인 PC, 정제한 gDNA 1ul를 주형으로 사용; 레인 39, 33(LTCC, 800℃) 큐브 연마 안함; 레인 41, 33을 48시간 연마; 레인 42, 33을 72시간 연마. 프라이머 10(D)과 146(E)을 사용함.
도 12는 본 발명의 LTCC 큐브를 이용하여 담배 잎으로부터 분리한 생물학적 분자를 주형으로 한 멀티플렉스(multiplex) RT-PCR 결과이다. 레인 M: 1kb DNA 레더, 레인 1~3은 각각 CMV(473bp), CIYVV(806bp), CMV(473bp)+CIYVV(806bp)의 RT-PCR 산물.
도 13은 본 발명의 LTCC 큐브를 이용하여 대장균을 대상으로 BAC 플라스미드 증폭 결과이다. 레인 M: 1kb DNA 레더, 레인 1~4는 대장균 배양액 1ul, 2ul, 3ul, 4ul를 주형으로 사용함. 5~8은 대장균을 흡수시킨 다공성 세라믹 큐브(8, LTCC, 850℃)를 한 개, 두 개, 세 개, 네 개를 각각 넣어 주형으로 사용함. PCR 밴드 두께가 일정함, 즉 균일하게 대장균이 흡수되고, 큐브 1개에 흡수된 주형은 4개인 경우와 별반 차이가 없음. 이때 프라이머 농도를 높이면 4개 사용할 때 PCR 밴드가 1개 보다 훨씬 두꺼워짐. 1~4는 대장균 배양 용액의 점도가 높아서 일정하게 첨가되지 않은 결과를 나타냄.
도 14는 생물학적 분자를 흡수시키기 위해 이용가능한 다공성 세라믹의 형태를 나타낸다. A; 단일 심플 구조 (사각, 원형 등), B; 재료 흡수율을 높이기 위해 단일 심플 구조의 내부에 홀 모양의 공간을 형성시킨 구조, C; 표면 기공사이즈 및 서로 다른 재료가 복합화된 구조, D; 밀도가 다른 2중 구조(왼쪽) 및 내부에 공극을 포함한 구조(오른쪽)
본 발명의 목적을 달성하기 위하여, 본 발명은 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계를 포함하는 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하는 방법을 제공한다.
본 발명의 일 구현 예에 따른 방법에서, 상기 생물학적 시료는 동물, 식물, 세균 또는 곰팡이 유래일 수 있고, 바람직하게는 식물 또는 동물일 수 있으나, 이에 제한되지 않는다.
본 발명에서 생물학적 시료에 다공성 고체상을 접촉시키는 방법으로는 생물학적 시료의 형태가 액상일 경우는 단순 접촉을 통해 다공성 고체상으로의 흡수를 유도하는 방법을 의미하고, 고체상일 경우는 다공성 고체상을 핀 V으로 찔러서 세포가 파괴될 때 나오는 생물학적 분자를 흡수시키는 방법을 의미하는 것이나, 이 방법만으로 제한되는 것은 아니다.
본 발명의 일 구현 예에 따른 방법에서, 상기 생물학적 분자는 DNA, RNA, dsRNA, microRNA, 비로이드(viroid), 바이러스, 세균, 곰팡이 또는 미세조류일 수 있고, 바람직하게는 DNA 또는 RNA일 수 있으나, 이에 제한되지 않는다.
본 발명의 생물학적 분자는 동물의 경우 다양한 소스(source)로부터 얻을 수 있으며, 예컨대, 근육, 표피, 혈액, 뼈, 장기로부터 얻을 수 있고, 가장 바람직하게는 근육 또는 혈액으로부터 얻을 수 있으나, 이에 제한되지 않는다. 식물의 경우 각종 기관 추출물로부터 얻을 수 있으며, 예컨대, 잎, 꽃, 줄기, 뿌리, 열매, 종자로부터 얻을 수 있고, 가장 바람직하게는 잎, 종자 또는 꽃으로부터 얻을 수 있으나, 이에 제한되지 않는다. 미생물의 경우 균총, 균사체 또는 우즈(ooze)로부터 얻을 수 있고, 가장 바람직하게는 이들이 집중적으로 서식하는 곳(병반 발생 부위)에서 얻을 수 있으나, 이에 제한되지 않는다. 바이러스, 세균, 곰팡이 또는 미세조류의 경우, 공극 크기를 적절히 조절한 다공성 고체상을 접촉시켜 이들의 일부 입자 또는 세포 전체를 공극 안으로 흡수시키고, 이를 주형으로 PCR 반응시키면 PCR 반응 단계 중 고온 변성 단계(대략 94~96℃)에서 조직 파괴로 인하여 내부의 핵산들이 방출될 수 있어 목적 유전자의 분석이 가능하다.
본 발명의 생물학적 분자는 또한, 핵산 분자의 기본 구성 단위인 뉴클레오타이드 뿐만 아니라, 이의 염기가 변형된 유사체(analogue)를 포함할 수 있다.
본 발명의 방법에서 분리된 생물학적 분자가 gDNA인 경우, 세라믹 막대 선단을 생물학적 시료에 접촉시켜 흡착할 수 있다. 출발물질이 mRNA인 경우에는, 이것에 세라믹 막대 선단을 생물학적 시료에 접촉시키고 선단에 흡착된 총 RNA를 주형으로 역전사효소를 이용하여 cDNA로 합성한다. 상기 총 RNA는 식물이나 동물 세포로부터 분리된 것이기 때문에, mRNA의 말단에는 폴리-A 테일을 갖고 있으며, 이러한 서열 특성을 이용한 올리고 dT 프라이머 및 역전사 효소를 이용하여 cDNA를 용이하게 합성할 수 있다. 또한 바이러스일 경우 폴리-A 테일이 있을 경우 위와 동일한 방법으로 cDNA를 합성하나, 토바모바이러스처럼 폴리-A 테일이 없을 경우 당업계에 공지된 다양한 방법에 따라 목적 RNA에 특이적인 안티센스 프라이머(antisense primer)를 이용하여 cDNA를 합성할 수 있다.
본 발명의 방법에 있어서, 상기 소량의 생물학적 분자는 주형으로 이용할 수 있는 당업계에 공지된 다양한 방법에 응용될 수 있다. 예를 들어, 본 발명에 응용될 수 있는 기술은, CAPS 또는 SCAR 분자표지, 형광 표식자를 사용하는 HRM, real time PCR, Nested PCR, immunocapture PCR, 동시에 다양한 병원체 검출에 이용되는 mutiplex PCR, 직접적 DNA 서열결정, 단일-가닥 컨퍼메이션 분석 (SSCA, Orita et al., PNAS, USA 86:2776(1989)), RNase 보호 분석 (Finkelstein et al., Genomics, 7:167(1990)), 변성 구배 젤 전기영동 (DGGE, Wartell et al., Nucl.Acids Res., 18:2699(1990)), 뉴클레오타이드 미스매치를 인식하는 단백질 (예: E. coli의 mutS 단백질)을 이용하는 방법 (Modrich, Ann. Rev. Genet., 25:229-253 (1991)), 대립형-특이 PCR을 포함하나, 이에 한정되는 것은 아니다.
핵산 증폭기술이 적용되는 경우에, 본 발명의 바이러스 검출을 위해서는 적합한 프라이머를 디자인하는 것이 중요하다. 그러나 역전사 반응(RT) 및 PCR을 동일 튜브에서 수행되는 것보다는 RT와 PCR이 각각 다른 튜브에서 진행될 때 주형의 증폭양을 늘릴 수 있어 바이러스 검정 결과의 신뢰성을 높일 수 있다. 본 발명의 바람직한 구현 예에 의하면, 본 발명은 세라믹 블럭에 흡수된 뉴클레오타이드와 매칭되도록 디자인된 지노타이핑(genotyping) 프라이머를 이용하여 조직 내 바이러스 유무를 분석하는 방법을 제공한다.
본 발명을 통한 핵산 증폭은 DNA 분자표지 제작, 프로브 제작, cDNA 및 게놈 DNA 라이브러리 제작, 병원체 검정 등에 이용될 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구현 예에 따른 방법에서, 상기 핵산 증폭 반응은 cDNA 합성, 중합효소연쇄반응(PCR), 멀티플렉스(muliplex) PCR, 역전사 중합효소 연쇄 반응 (RT-PCR), 리가아제 연쇄반응(ligase chain reaction), 핵산 서열 기재 증폭(nucleic acid sequence-based amplification), 전사 기재 증폭 시스템(transcription-based amplification system), 가닥 치환 증폭(strand displacement amplification) 또는 Qβ 복제효소(replicase)를 통한 증폭 또는 당업계에 알려진 핵산 분자를 증폭하기 위한 임의의 기타 적당한 방법이 있다. 상기에서, PCR이란 중합효소를 이용하여 표적 핵산에 특이적으로 결합하는 프라이머 쌍으로부터 표적 핵산을 증폭하는 방법이다. 이러한 PCR 방법은 당업계에 잘 알려져 있으며, 상업적으로 이용가능한 키트를 이용할 수도 있다.
본 발명의 일 구현 예에 따른 방법에서, 상기 다공성 고체상은 탄화셀룰로오스류, 종이를 입자 형태로 뭉친 것, 천연 또는 합성 제오라이트, 폴리스틸렌(polystylene), 폴리카보네이트(polycarbonate), 폴리프로필렌(polyprophylene), 다공성 금속 입자, 다공성 고무, 유리섬유를 입자 형태로 뭉친 세공성 유리, 석회, 조개껍질, 도자기 절편 또는 산화물 재질의 세라믹일 수 있고, 바람직하게는 산화물 재질의 세라믹일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구현 예에 따른 방법에서, 상기 산화물 재질의 세라믹은 Al2O3, Fe2O3, LTCC(Low temperature co-fired ceramic), PbO 또는 ZnO을 주성분으로 제조된 세라믹일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구현 예에 따른 방법에서, 상기 다공성 고체상은 정육면체, 직육면체, 구, 원기둥, 막대 형태(bar type), 막대의 한쪽 말단에 홈이 있는 막대 형태, 끝이 뾰족한 막대 형태, 막대의 한쪽 말단에 홈이 있으며 끝이 뾰족한 막대 형태, 또는 막대의 한쪽 말단에 홈이 있으며 끝이 뾰족하고 끝이 뾰족한 쪽의 내부에 큰 공극을 갖는 막대 형태일 수 있으나, 이에 제한되지 않는다.
본 발명의 다공성 고체상으로서 산화물 재질의 세라믹을 사용하는 경우 이의 공극의 크기를 조절할 수 있는데, 같은 산화물 재질을 가지고 다공성 세라믹을 제조할 경우 제작 온도에 따라 공극의 크기 및 공극 수를 조절할 수 있어, 목적으로 하는 생물학적 분자의 종류에 따라 최적화된 다공성 세라믹을 이용함으로써 PCR 또는 RT-PCR 반응을 효과적으로 수행할 수 있게 한다. 이와 같은 다공성 세라믹의 공극의 크기는 대상의 생물학적 시료에서 목적으로 하는 생물학적 분자를 선택적으로 흡수할 수 있도록 다공성 고체상의 크기를 적절히 조절할 수 있다. 또한, 상기 산화물 재질의 세라믹의 외형 크기는 PCR용 튜브에 용이하게 들어갈 수 있는 크기이면 특별히 제한되지 않으나, 예를 들면, 1 mm3 일 수 있으나, 이에 제한되지 않는다.
또한, 본 발명은
(a) 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계; 및
(b) 상기 (a)단계의 생물학적 분자를 흡수시킨 다공성 고체상을 핵산 증폭 반응을 위한 주형으로 첨가하고, 표적 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계를 포함하는 생물학적 시료에서 표적 서열을 증폭하는 방법을 제공한다.
본 발명의 일 구현 예에 따른 방법에서, 상기 핵산 증폭 반응은 전술한 바와 같다.
또한, 본 발명은
(a) 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계;
(b) 상기 (a)단계의 생물학적 분자를 흡수시킨 다공성 고체상에 역전사 효소(Reverse Transcriptase)를 첨가하여 역전사 효소 반응을 수행하는 단계; 및
(c) 상기 역전사 효소 반응물을 핵산 증폭 반응을 위한 주형으로 첨가하고, 표적 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계를 포함하는 생물학적 시료에서 표적 서열을 증폭하는 방법을 제공한다.
또한, 본 발명은
(a) 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계;
(b) 상기 (a)단계의 생물학적 분자를 흡수시킨 다공성 고체상을 핵산 증폭 반응을 위한 주형으로 첨가하고, 표적 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및
(c) 상기 증폭 산물을 검출하는 단계를 포함하는, 생물학적 시료 내에서 표적 서열의 존재 여부를 신속하게 확인하는 방법을 제공한다.
또한, 본 발명은
(a) 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계;
(b) 상기 (a)단계의 생물학적 분자를 흡수시킨 다공성 고체상에 역전사 효소(Reverse Transcriptase)를 첨가하여 역전사 효소 반응을 수행하는 단계;
(c) 상기 역전사 효소 반응물을 핵산 증폭 반응을 위한 주형으로 첨가하고, 표적 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및
(d) 상기 증폭 산물을 검출하는 단계를 포함하는, 생물학적 시료 내에서 표적 서열의 존재 여부를 신속하게 확인하는 방법을 제공한다.
본 발명의 방법은 상기 증폭 산물을 검출하는 단계를 포함한다. 상기 증폭 산물의 검출은 DNA 칩, 겔 전기영동, 방사성 측정, 형광 측정 또는 인광 측정을 통해 수행될 수 있으나, 이에 제한되지 않는다. 증폭 산물을 검출하는 방법 중의 하나로서, 겔 전기영동을 수행할 수 있다. 겔 전기영동은 증폭 산물의 크기에 따라 아가로스 겔 전기영동 또는 아크릴아미드 겔 전기영동을 이용할 수 있다. 또한, 형광 측정 방법은 프라이머의 5'-말단에 Cy-5 또는 Cy-3를 표지하여 PCR을 수행하면 표적 서열이 검출가능한 형광 표지 물질로 표지되며, 이렇게 표지된 형광은 형광 측정기를 이용하여 측정할 수 있다. 또한, 방사성 측정 방법은 PCR 수행시 32P 또는 35S 등과 같은 방사성 동위원소를 PCR 반응액에 첨가하여 증폭 산물을 표지한 후, 방사성 측정기구, 예를 들면, 가이거 계수기(Geiger counter) 또는 액체섬광계수기(liquid scintillation counter)를 이용하여 방사성을 측정할 수 있다.
또한, 본 발명은 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상; 표적 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는, 생물학적 시료 내에서 표적 서열을 증폭하기 위한 핵산 증폭 반응용 키트를 제공한다.
본 발명의 상기 핵산 증폭 반응용 키트는 마이크로 RNA 분리, small RNA 분리 또는 cDNA 합성에 이용되는 시약을 포함할 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구현 예에 따른 키트에서, 상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs, 버퍼 등을 포함할 수 있다. 또한, 본 발명의 키트는 최적의 반응 수행 조건을 기재한 사용자 안내서를 추가로 포함할 수 있다. 안내서는 키트 사용법, 예를 들면, PCR 완충액 제조 방법, 제시되는 반응 조건 등을 설명하는 인쇄물이다. 안내서는 팜플렛 또는 전단지 형태의 안내 책자, 키트에 부착된 라벨, 및 키트를 포함하는 패키지의 표면상에 설명을 포함한다. 또한, 안내서는 인터넷과 같이 전기 매체를 통해 공개되거나 제공되는 정보를 포함한다.
본 발명의 일 구현 예에 따른 키트에서, 상기 핵산 증폭 반응은 cDNA 합성, PCR(Polymerase Chain Reaction), 멀티플렉스(multiplex) PCR 또는 RT-PCR(Reverse Transcriptase Polymerase Chain Reaction)일 수 있으나, 이에 제한되지 않는다. 또한, 상기 다공성 고체상은 전술한 바와 같다.
또한, 본 발명은 생물학적 시료 내에 존재하는 생물학적 분자를 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상을 포함하는, 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 키트를 제공한다.
본 발명의 일 구현 예에 따른 키트에서, 상기 핵산 증폭 반응은 cDNA 합성, PCR(Polymerase Chain Reaction), 멀티플렉스(multiplex) PCR 또는 RT-PCR(Reverse Transcriptase Polymerase Chain Reaction)일 수 있으나, 이에 제한되지 않는다. 또한, 상기 다공성 고체상은 전술한 바와 같다.
또한, 본 발명은 생물학적 시료 내에 존재하는 생물학적 분자를 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상을 포함하는, 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 조성물을 제공한다. 상기 조성물은 유효성분으로 본 발명의 생물학적 시료 내에 존재하는 생물학적 분자를 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상을 포함하며, 생물학적 시료 내에 존재하는 생물학적 분자를 상기 다공성 고체상의 공극으로 신속하게 흡수시켜 핵산 증폭 반응에 이용할 수 있는 것이다. 상기 다공성 고체상은 전술한 바와 같다.
본 발명의 일 구현 예에 따른 조성물에서, 상기 핵산 증폭 반응은 cDNA 합성, PCR(Polymerase Chain Reaction), 멀티플렉스(multiplex) PCR 또는 RT-PCR(Reverse Transcriptase Polymerase Chain Reaction)일 수 있으나, 이에 제한되지 않는다. 또한, 상기 다공성 고체상은 전술한 바와 같다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1. 다공성 세라믹 큐브를 이용한 유전체 흡착과 RT-PCR/PCR 주형으로의 활용
본 발명의 다공성 세라믹 큐브를 이용한 유전체 흡착과 RT-PCR/PCR 주형으로의 활용 모식도를 도 1에 나타내었다. 본 발명에서는 1 입방밀리미터(1mm3)의 큐브표면에 공극의 크기가 달라지도록 표 1에 기재된 주성분을 재료로 제작 온도를 달리하여 14종의 큐브를 제작하였고, 그 다공성 세라믹 큐브를 확대한 것을 도 1B에 나타내었다. 큐브는 다공성이므로 공극보다 작은 물질을 비선택적으로 흡수하는데, 공극의 크기를 다르게 하여(일반적으로 높은 온도에서 세라믹을 제작할 경우 공극이 작아짐) 조직이 파쇄될 때 나오는 여러 가지 물질 가운데 원하는 것을 선택적으로 흡수, 즉 공극의 크기를 통해 PCR 저해 물질을 최대한 배제할 수 있는 공극의 크기로 초미세여과(ulrafiltration) 기능을 큐브에 부여하는데 목적이 있다.
본 발명에서는 상기 제작한 다공성 세라믹 큐브 1개를 식물체 잎에 올려놓고 핀 V 뒷면으로 큐브를 눌러 조직이 파쇄됨과 동시에 큐브의 공극으로 유전체가 흡수되도록 설계하였고, 상기 유전체가 흡수된 큐브 1개를 RT-PCR 혹은 PCR 주형으로 사용한 결과를 아가로스 젤에서 확인하였다(도 1E).
실시예 2. 도자기 절편을 이용한 생물학적 시료로부터 핵산 증폭 반응을 위한 DNA/RNA 주형 분리
청자와 백자를 포함한 7종류의 도자기 절편을 니퍼(nipper)로 잘게 부수고 유약을 포함하지 않는 부위 가운데 크기가 약 1mm3인 파편을 골라 유전체 흡착재료로 사용하였다. 도 2A의 5번 도자기 절편의 경우 유약이 도포된 부위에 따라 황색과 회색으로 구분 되었는데, 이들 각각으로부터 얻은 황토색 파편은 5로, 회색 파편은 6으로 표기하였다. Capsicum annuum CM334 고추잎에 각각의 도자기 파편을 올려놓고 핀 V의 편평한 뒷부분으로 도자기 파편을 가볍게 눌러 gDNA를 흡수하게 하였다. 고추의 모용관 연관된 분자표지를 검정할 수 있는 프라이머 프리믹스가 첨가된 PCR 튜브에 gDNA를 흡수시킨 각각의 도자기 파편을 튜브당 1개씩 첨가하였다. PCR 프리믹스는 10pmol 센스 프라이머(Tsca-F : AAACGCCATCATTCGTTTTC : 서열번호 1) 0.5㎕, 10 pmol 안티센스 프라이머(Tsca-R : CATGAAAGTTGACCCGAACA : 서열번호 2) 0.5㎕, rTaq-Mix 4㎕, DW 15㎕로 구성되었으며, PCR 산물은 94℃에서 3분간 변성시킨 다음 (94℃/30초, 59℃/30초, 72℃/60초)에서 35회 증폭하고, 72℃/5분간 반응시킨 후 EtBr을 포함하는 1% 아가로즈젤 상에서 전기영동하여 목적 PCR 산물의 증폭 유무를 확인하였다.
그 결과 도 2B와 같이 도자기 파편 4, 5, 6에서는 PCR 산물이 증폭됨을 확인할 수 있었다. 게놈 DNA가 가장 증폭이 잘된 도자기 파편 4의 표면을 전자현미경으로 관찰한 결과, 도자기내 공극이 다양한 크기로 분포하는 것을 확인할 수 있었다(도 3의 A). 그러나 도자기 파편의 표면이나 면적을 동일하게 조절할 수 없는 상황에서 도자기 파편의 종류와 PCR 산물 증폭 효율을 명확하게 구별하는 것에는 다소 어려움이 있었다.
따라서 각각의 도자기 파편이 고추의 gDNA를 어느 정도 흡수하고 이것이 실제로 PCR에 적용할 수 있는지를 확인하고자 잎 대신 정제한 CM334 gDNA(1ug/㎕)를 재료로 사용하였다. 정제한 gDNA를 1㎕씩 플라스틱 페트리디쉬 표면에 떨어뜨린 다음 각각의 도자기 파편으로 gDNA를 흡수하고 이들 PCR용 주형으로 사용하였다. 도 2C와 같이 1㎕의 CM334 gDNA를 주형으로 사용한 양성 대조구(PC)와 마찬가지로 동일 크기의 PCR 산물이 모든 처리구에서 증폭됨을 확인할 수 있었으며, 이들의 농도에는 다소 차이가 있었으나 이것은 사용한 도자기 파편의 크기나 표면적이 균일하지 못한 것에서 기인한 것으로 판단되었다. 한편, gDNA를 흡수한 상기 도자기 파편은 PCR 증폭용 주형으로 사용할 수 있음을 확인하였는데, 이들을 식물 바이러스 진단에 활용할 수 있는지에 대한 가능성을 조사하였다. QIAGEN RNeasy Mini Kit를 이용하여 음성과 양성 대조구용 RNA를 정제하기 위하여 바이러스에 감염되지 않은 건전한 Nicotiana rustica 담배 잎(NC용)과 Tomato spotted wilt virus(TSWV)를 인공적으로 감염시킨 Nicotiana rustica 담배 잎(PC용)으로부터 전체 RNA를 분리하고 이를 역전사 반응용 주형으로 사용하였다. TSWV에 감염된 담배잎에 각각의 도자기 파편을 올려놓고 핀 V으로 눌러 RNA 혹은 바이러스 입자를 흡수시키고 이들 조각을 1개씩, 10 pmol 안티센스 프라이머 TSNCPR (5'-TCAAGCAAGTTCTGCGAGTT-3': 서열번호 3) 0.5 ㎕가 첨가된 역전사 반응용 RT-프리믹스 (reverse transcription master premix, ELPIS-Biotech, Korea)에 튜브당 한 개씩 첨가하였다. 42℃에서 1시간 동안 역전사 반응을 수행한 다음 반응액 1㎕를 PCR용 주형으로 사용하였다. PCR 프리믹스는 10pmol 센스 프라이머(Tsca-F AAACGCCATCATTCGTTTTC : 서열번호 4) 0.5㎕, 10 pmol 안티센스 프라이머(Tsca-R CATGAAAGTTGACCCGAACA : 서열번호 5) 0.5 ㎕, rTaq-Mix 4 ㎕, DW 15 ㎕로 구성되었다. PCR 반응은 94℃에서 3분간 변성시키고, (94℃/30초, 50℃/30초, 72℃/60초)에서 35회 증폭하고, 72℃/5분간 반응시킨 후 EtBr을 포함하는 1% 아가로즈젤 상에서 전기영동하여 목적 PCR 산물(777bp)의 증폭 유무를 확인하였다. 도 2D와 같이 4번과 6번 도자기 파편을 제외한 나머지 도자기 파편 처리구에서 예상하는 RT-PCR 산물이 성공적으로 증폭되는 것을 확인할 수 있었다. 이는 도자기 파편에 흡수된 TSWV RNA 혹은 TSWV입자만으로도 TSWV 검정이 가능함을 의미하며, 도 2B에 명시된 gDNA보다 RT-PCR에서 PCR 산물이 보다 증폭이 잘된 것은 역전사반응을 통해 PCR 주형이 보다 많이 생성되었기 때문으로 판단되었다. 이상의 결과에서 도자기 파편을 일정한 크기로 제작하고 이를 생물학적 분자를 흡수하는데 사용한다면 보다 우수한 결과를 얻을 수 있을 것으로 판단되었다.
실시예 3. 산화물 재질의 다공성 세라믹 큐브의 종류에 따른 생물학적 분자의 흡수율 조사
표 1에 기재된 산화물을 주성분으로 제조된 각각의 다공성 세라믹 큐브의 표면을 전자 현미경(SEM)으로 확대한 사진을 도 3에 나타내었다. 세라믹 주성분 및 제작 온도에 따라 표면과 공극의 크기에 차이가 있으므로, 목적으로 하는 생물학적 분자의 흡수율을 높이기 위해서는 세라믹 큐브의 최적의 공극의 크기 및 수를 갖도록 제작해서 사용해야 한다.
표 1
기호 주성분 제작 온도(℃)
1 Al2O3 1450
2 Al2O3 1550
3 Fe2O3 800
4 Fe2O3 850
5 Fe2O3 900
6 LTCC 650
7 LTCC 750
8 LTCC 850
9 PbO 1000
10 PbO 1150
11 PbO 1250
12 ZnO 800
13 ZnO 900
14 ZnO 1000
① CMV에 감염된 캡시쿰 아눔 CM334 고추잎에서 분리한 총 RNA와 CM334 고추에서 분리한 게놈 DNA 대상
산화물 재질의 다공성 세라믹 큐브의 종류에 따른 생물학적 분자의 흡수 효율을 조사하고자 CMV에 감염된 고추잎에서 분리한 총 RNA와 CM334 고추에서 분리한 게놈 DNA를 각각의 세라믹 큐브로 흡수시킨 다음, 이를 RT-PCR과 PCR용 주형으로 사용하였다. CMV는 RT-PCR 프리믹스(RTamp1, Biocubesystem, Korea)에 센스(5'-TACATTGAGTCGAGTCATG-3': 서열번호 6) 및 안티센스(5'-TGGAATCAGACTGGGACA-3': 서열번호 7) 프라이머를 각각 25pmol 농도로 첨가하고, 50℃/20분, 94℃/10분, (94℃/30초, 55℃/30초, 72℃/60초) 35회, 72℃/5분간 반응시킨 후 EtBr을 포함하는 1% 아가로즈젤 상에서 전기영동하여 목적 PCR 산물(670bp)의 증폭 유무를 확인하였다(도 4A). gDNA의 경우 캡시쿰 아눔 CM334 (Capsicum annuum CM334) 고추잎으로부터 분리한 고농도(100ug) gDNA를 다공성 세라믹 큐브로 각각 흡수시키고 PCR 튜브당 1개씩 첨가하였다. PCR 프리믹스는 10pmol 센스 프라이머(Tsca-F : AAACGCCATCATTCGTTTTC : 서열번호 8) 0.5㎕, 10 pmol 안티센스 프라이머(Tsca-R : CATGAAAGTTGACCCGAACA : 서열번호 9) 0.5 ㎕, rTaq-Mix 4 ㎕, DW 15 ㎕로 구성되었으며, PCR 산물은 94℃에서 3분간 변성시킨 다음 (94℃/30초, 59℃/30초, 72℃/60초)에서 35회 증폭하고, 72℃/5분간 반응시킨 후 EtBr을 포함하는 1% 아가로즈젤 상에서 전기영동하여 목적 PCR 산물의 증폭 유무를 확인하였다. 바이러스 RNA의 경우도 4A와 같이 14종 세라믹 큐브는 모두 비슷한 결과를 보였다(도 4A). 반면에 정제된 gDNA를 이용한 PCR 반응의 효율은 큐브의 재질과 제작 온도에 따라 다르게 나타났다(도 4B). 레인 1(Al2O3, 1450℃)과 레인 2(Al2O3, 1550℃)에서는 증폭량에 큰 차이가 없었고, 낮은 온도에서 제작된 레인 3(Fe2O3, 800℃)과 레인 4(Fe2O3, 850℃)에서는 증폭이 거의 되지 않았으나 고온에서 제작한 레인 5(Fe2O3, 900℃)에서는 약하게 증폭되었다. 레인 6(LTCC, 650℃)은 증폭되지 않지만 레인 7(LTCC, 750℃)과 레인 8(LTCC, 850℃)에서는 강하게 증폭되었다. 레인 9(PbO, 1000℃)와 레인 11(PbO, 1250℃)은 증폭량이 적으나 레인 10(PbO, 1150℃)은 강하게 증폭되었다. 레인 12(ZnO, 800℃)와 레인 14(ZnO, 1000℃)는 거의 증폭되지 않으나 레인 13(ZnO, 900℃)은 약하게 증폭되었다. 이상과 같은 결과를 종합해 보면 큐브 재료와 제작온도에 따라 게놈 DNA의 흡수율에 차이가 나며 레인 8(LTCC, 850℃), 레인 11(PbO, 1250℃), 레인 14(ZnO, 1000℃)처럼 공극이 거의 없는 구조에서는 본 실험에서 사용한 PCR 조건에서는 검출되지 않을 정도로 적은 양의 게놈 DNA가 흡수되는 것으로 판단되었다.
② CMV에 감염된 고추잎과 정제한 CMV 입자 대상
다공성 세라믹 큐브의 종류에 따른 생물학적 분자의 흡수 효율을 조사하고자 CMV에 감염된 고추잎과 정제한 CMV 입자를 각각의 세라믹 큐브로 흡수시킨 다음, 이를 RT-PCR과 PCR용 주형으로 사용하였다. CMV는 RT-PCR 프리믹스(RTamp1, Biocubesystem, Korea)에 CMV 입자 대상 특이적 프라이머 세트인 센스(5'-TACATTGAGTCGAGTCATG-3': 서열번호 10) 및 안티센스 프라이머(5'-TGGAATCAGACTGGGACA-3': 서열번호 11)를 각각 25pmol 농도로 첨가하고, 50℃/20분, 94℃/10분, (94℃/30초, 55℃/30초, 72℃/60초) 35회, 72℃/5분간 반응시킨 후 EtBr을 포함하는 1% 아가로즈젤 상에서 전기영동하여 목적 PCR 산물(670bp)의 증폭 유무를 확인하였다. 정제한 바이러스를 다공성 세라믹 큐브로 흡수시켰을 때 PCR 산물이 보다 많이 증폭되었으나 두 처리구간의 PCR 산물 증폭 양상은 비슷하였다(도 5).
③ 다공성 세라믹 큐브의 제작온도 및 재질에 따른 생물학적 분자의 흡수율
도 5A의 레인 1, 2는 주성분은 Al2O3로 같은데, 제작온도는 1450℃, 1550℃이며, 레인 3, 4, 5의 주성분은 Fe2O3로 같으나, 제작온도는 800℃, 850℃, 900℃로 Al2O3 및 Fe2O3를 각각 1550℃ 및 900℃에서 제작한 다공성 세라믹 큐브를 이용하여 DNA를 분리시킨 경우 PCR 효율이 높게 나타났다. 레인 6, 7, 8도 주성분은 LTCC(Low temperature co-fired ceramic)로 같은데, 제작온도는 650℃, 750℃, 850℃로, 레인 6은 전혀 증폭되지 않은 결과를 나타내고, 레인 8이 7보다 증폭이 더 잘되는 것으로 나타났다.
④ 다공성 세라믹 큐브를 이용한 고추 DNA 증폭효율 분석
캡시쿰 아눔 sr10(Capsicum annuum sr10) 고추 잎 위에 다공성 세라믹 큐브 하나를 올려 놓고 핀 V의 뒷부분으로 눌러 각각의 큐브로 gDNA를 흡수시키고, 이를 PCR 튜브당 1개씩 첨가하였다. PCR 반응액은 2X PCR 프리믹스(gDamp1, Biocubesystem, Korea) 10㎕에 10pmol 센스 프라이머(Primer 10-F: 5'-TGGCTTATCGAAGGAGCCAT-3': 서열번호 12) 0.5㎕, 10 pmol 안티센스 프라이머(Primer 10-R: 5'-AGATGAAACCAAAGCCTCCA-3': 서열번호 13) 0.5 ㎕, gDNA가 흡수된 큐브 1개, DW 9㎕를 첨가하여 준비하였고, 양성 대조구에서는 큐브 대신 정제한 gDNA(20ng/㎕) 2㎕와 DW 7㎕를 첨가하여 준비하였다. PCR 산물은 94℃에서 3분간 변성시킨 다음 94℃/30초, 58℃/30초, 72℃/60초에서 35회, 72℃/5분간 반응시켜 증폭하였고, EtBr을 포함하는 1% 아가로즈 젤 상에서 전기영동하여 목적 PCR 산물의 증폭 유무를 확인하였다. 그 결과, 레인 5(Fe2O3, 900℃), 레인 8(LTCC, 850℃), 레인 9(PbO, 1000℃), 10(PbO, 1150℃) 및 레인 14(ZnO,1000℃)는 증폭이 잘 되었고, 레인 6(LTCC, 650℃), 레인 7(LTCC, 750℃) 및 레인 8(LTCC, 850)과 레인 12(ZnO, 800℃), 레인 13(ZnO, 900℃) 및 레인 14(ZnO, 1000℃)는 제작 온도에 따라 증폭 효율이 뚜렷이 구별되었다(도 6).
실시예 4. 제작조건에 따른 LTCC 다공성 세라믹 큐브
① LTCC 다공성 세라믹 큐브 제작온도가 PCR 증폭에 미치는 영향
반복 실험 결과 ZnO보다 LTCC 재료에서 제작온도에 따른 gDNA 증폭 차이는 명확하게 나타났다(도 6 참고). 제작 온도에 따른 gDNA 증폭 효율을 보다 더 면밀하게 조사하고자 LTCC 다공성 세라믹 큐브 5종(30~34)을 새로 제작하였다. 제작온도는 650~850℃로 50℃ 간격으로 제작하였다 (30(LTCC, 650℃), 31(LTCC, 700℃), 32(LTCC, 750℃), 33(LTCC, 800℃), 34(LTCC, 850℃)). 이때 사용한 프라이머는 센스 프라이머(Primer 10-F: 5'-TGGCTTATCGAAGGAGCCAT-3': 서열번호 12), 안티센스 프라이머(Primer 10-R: 5'-AGATGAAACCAAAGCCTCCA-3': 서열번호 13)와 센스 프라이머(Primer 146-F: 5'-AGAAGAAAGAGGAGGCTCCA-3': 서열번호 14), 안티센스 프라이머(Primer 146-R: 5'-TGGAAGCCTTTGAGGGATCT-3': 서열번호 15)의 두 종류를 사용하였다. PCR 산물은 94℃에서 3분간 변성시킨 다음 94℃/30초, 58℃/30초, 72℃/60초에서 35회, 72℃/5분간 반응시켜 증폭하였고, EtBr을 포함하는 1% 아가로즈 젤 상에서 전기영동하여 목적 PCR 산물의 증폭 유무를 확인하였다(도 7).
PCR 결과를 나타낸 도 7을 살펴보면, 레인 30(LTCC, 650℃)의 경우 두 종류 프라이머 모두에서 도 6의 레인 6(LTCC, 650℃)처럼 gDNA 증폭이 되지 않았다. 레인 31(LTCC, 700℃)에서는 프라이머 10에서는 약하게 증폭되었으나 프라이머 146에서는 증폭이 잘 되었다. 레인 32(LTCC, 750℃)와 레인 33(LTCC, 800℃)에서는 프라이머 둘 다에서 증폭이 아주 잘 되었다. 반면에 레인 34(LTCC, 850℃)에서는 레인 31(LTCC, 700℃)과 비슷한 결과를 보였는데, 이는 프라이머에 따른 PCR 증폭 효율이 달라질 수 있음을 시사하는 것이다. 이상의 결과에서 다공성 세라믹 큐브를 LTCC로 제작할 때 적합한 제작온도는 750℃~800℃인 것으로 분석되었다.
② 제작온도에 따른 LTCC 다공성 세라믹 큐브의 표면(A~E)과 내부(F~J) 절단면
제작온도에 따른 큐브의 특성을 조사하고자 5종의 LTCC 다공성 세라믹 큐브를 제작하고 이들의 표면(도 8A~E)과 내부(도 8F~J) 절단면, 물질 흡수능력 및 여과 능력을 SEM과 TEM으로 각각 조사하였다. 큐브의 표면(도 8A~E)과 내부(도 8F~J) 절단면 제조 온도가 증가할수록 매끈한 경향을 보였다. 두 경우 모두에서 포어 사이즈는 ㎛ 수준에서는 거의 비슷하였고, 온도가 높을수록 포어 수가 줄어드는 경향을 보였다.
③ 제작 온도에 따른 LTCC 다공성 세라믹 큐브의 물질 흡수능력과 여과 능력 분석
포어 개수가 줄어든다는 것은 분자 흡수량이 적어지는 것으로 이해할 수 있으나 보다 명확한 자료를 얻고자 제작 온도가 다른 LTCC 다공성 세라믹 큐브의 물질 흡수능력과 여과 능력을 인위적으로 제작한 금 나노입자(평균 직경이 40㎚)와 폴리스틸렌 입자(평균 크기 직경이 2㎛, 5㎛, 38~45㎛, Beads&Micro, Korea)의 혼합액을 이용하여 조사하였다. 직경이 다른 위 2가지 물질의 혼합액 20㎕ 당 동일 온도에서 제조한 큐브 10개를 침지하고 마이크로피펫과 필터 페이퍼를 이용해 여액을 완전히 제거하였다. 동일 튜브에 멸균수를 10㎕ 첨가한 다음 65℃에서 30분간 정치하고 10초 동안 볼텍싱한 다음 남은 큐브의 표면 특성과 세척액(washing)의 입자 분포를 관찰하였다 (SEM은 5000배, TEM은 250배).
큐브의 표면을 5000배로 관찰한 결과 도 9D 및 9E에서 쉽게 관찰할 수 있었던 포어에 비슷한 크기의 입자(대략적인 지름이 1㎛ 이내)가 집중적으로 분포하였고(도 9D 및 9E), 33 및 34 큐브의 표면에서 명확하게 구분되었다. 큐브 세척액을 TEM으로 관찰했을 때, 직경이 38㎛ 이상인 입자는 모든 처리구에서 드물게 관찰되었다(자료 미제시). 이는 큐브 표면에 묻은 혼합액이 완전히 제거되지 못해서 생긴 결과로 판단되었다. 한편, 직경이 2~5㎛인 입자 또한 모든 처리구에서는 고르게 관찰되었으며, 30(LTCC, 650℃) 처리구에서는 다른 처리구에 비해 용출된 입자의 양이 월등히 많았고(도 9F), 다른 처리구에서는 직경이 대략 2㎛인 입자가 주로 관찰되었다(도 9G~J). DNA 증폭 결과가 가장 좋았던 33(LTCC, 800℃) 큐브 처리구에서는 다른 처리구에 비해 2㎛ 이하의 입자가 주로 분포하였다.
도 9의 결과는 합성입자가 다공성 세라믹 큐브의 흡수력에 의해 수동적으로 포어 속으로 빨려 들어갈 뿐만 아니라 동시에 포어의 직경에 따라 입자가 선택적으로 흡입될 수 있음을 의미하는데, 실제로 33과 34 큐브의 세척액을 보다 높은 배율로 관찰했을 때, 용출된 입자 직경은 26nm에서 500nm 정도(도 10A 및 도 10B)로 매우 일정한 크기로 분포하였다. 이는 포어 크기를 일정하게 조절할 경우 특정 크기의 입자를 선택적으로 흡수할 수 있음을 시사하는 것이다.
④ 큐브의 표면의 특성이 PCR 산물 증폭 효율에 미치는 영향
표면의 거칠기와 포어 수가 생물학적 분자(여기서는 gDNA)의 흡수량에 어느 정도 영향을 주는지를 조사하였다. DNA 증폭 결과가 가장 좋았던 33(LTCC, 800℃) 큐브의 표면을 48시간과 72시간 연마하고 이들의 표면 특성과 PCR 증폭 효율을 비교하였다.
고추 잎 위에 다공성 세라믹 큐브 하나를 올려 놓고 핀 V의 뒷부분으로 눌러 각각의 큐브로 흡수시키고 이를 PCR 튜브당 1개씩 첨가하였다. PCR 반응액은 2X PCR 프리믹스(gDamp1, Biocubesystem, Korea) 10㎕에 10pmol 센스 프라이머 0.5㎕, 10 pmol 안티센스 프라이머 0.5 ㎕, gDNA가 흡수된 cube 1개, DW 9㎕를 첨가하여 준비하였고, 양성대조구에서는 큐브 대신 정제한 gDNA(20ng/㎕) 2㎕와 DW 7㎕를 첨가하여 준비하였다. PCR 산물은 94℃에서 3분간 변성시킨 다음 94℃/30초, 58℃/30초, 72℃/60초에서 35회, 72℃/5분간 반응시켜 증폭하였고, EtBr을 포함하는 1% 아가로즈 젤 상에서 전기영동하여 목적 PCR 산물의 증폭 유무를 확인하였다.
큐브 각각의 표면을 관찰한 결과 표면이 거친 정도는 48시간, 72시간, 0시간 순으로 증가하였고, 포어 개수는 48시간 처리구가 다른 처리구에 비해 적게 관찰되었다. 이들 시료를 이용해 PCR용 프라이머 10번과 146번으로 DNA 증폭 효율을 조사한 결과 48시간 연마구에서는 비연마구에 비해 PCR 증폭효율이 낮았으나, 72시간 처리구에서는 PCR 산물의 증폭효율이 비슷하거나 다소 높게 나타났다(도 11).
이상의 결과에서 제작온도는 큐브 표면의 거칠기와 표면적 및 포어 크기에 영향을 주는 것으로 판단되었다. 또한 제작온도에 따른 큐브의 특성 변화는 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자(여기서는 gDNA 혹은 핵)를 다공성 고체상의 공극으로 흡수하는 단계에서 PCR 반응에 이용되는 주형과 반응 억제 물질의 전체 흡수량에 영향을 준다고 판단할 수 있다. 그러나 무엇보다 중요한 특성 변화는 제작온도가 다공성 큐브에 존재하는 포어의 수 혹은 크기, 그리고 표면적을 조절함으로써 PCR 저해 물질을 선택적으로 제거할 뿐만 아니라 PCR에 필요한 충분한 양의 초기 주형을 획득하는데 많은 영향을 준다는 것이다.
실시예 5. 본 발명의 LTCC 큐브를 이용하여 바이러스에 복합 감염된 담배 잎으로부터 분리한 생물학적 분자를 주형으로 한 멀티플렉스(multiplex) RT-PCR
CMV(Cucumber mosaic virus)와 ClYVV(Clover yellow vein potyvirus)를 담배(N. benthamiana)에 복합감염시켜 바이러스를 증식시킨 후, 복합감염된 담배 잎 위에 다공성 세라믹 큐브(33, LTCC, 800℃) 하나를 올려 놓고 핀 V의 뒷부분으로 눌러 큐브로 생물학적 분자(바이러스 입자 또는 바이러스 intermidiate form)를 흡수시켰다.주형이 흡수된 큐브를 PCR 튜브당 1개씩 첨가하고 RT-PCR 반응액을 분주하였다. 각 바이러스를 단독으로 검출할 경우, RT-PCR 반응액은 RT-PCR 프리믹스(RTamp1, Biocubesystem, Korea)에 10pmol 센스 프라이머 1㎕, 10 pmol 안티센스 프라이머 1 ㎕, 주형이 흡수된 큐브 1개, DW 18㎕를 첨가하여 준비하였다. 멀티플렉스 RT-PCR에서는 해당 바이러스의 프라이머를 위와 같이 첨가한 다음 DW 6㎕ 첨가하여 준비하였다. PCR 산물은 94℃에서 3분간 변성시킨 다음, 52℃/20분, 94℃/30초, 68℃/30초, 72℃/60초에서 35회, 72℃/5분간 반응시켜 증폭하였고, EtBr을 포함하는 1% 아가로즈 젤 상에서 전기영동하여 목적 PCR 산물의 증폭 유무를 확인하였다. RT-PCR에 사용한 프라이머는 CMV의 경우 DPU1 센스 프라이머(5'-CGTCGTGGTTCCCGCTCCG-3': 서열번호 16)와 DPd2 안티센스 프라이머(5'-AGCGCGCATCGCCGAAAGAT-3': 서열번호 17)를 사용하였고, ClYVV의 경우 2F 센스 프라이머(5'-TAAGAGAGGGGCACAGTGGA-3': 서열번호 18)와 2R 안티센스 프라이머 (5'-GCAACAGCACGGGTAACA-3': 서열번호 19)를 사용하였다. 도 12의 결과를 통해, 이것은 다공성 세라믹 큐브에 흡수된 주형으로 현재의 반응액에서 멀티플렉스 RT-PCR이 충분히 가능한 것을 의미하였다.
실시예 6. 본 발명의 LTCC 큐브를 이용하여 대장균을 대상으로 BAC 플라스미드 증폭
다공성 세라믹 큐브는 흡수능력과 함께 여과 효과가 있는 것으로 분석되었는데, 이를 세균 배양액을 큐브에 흡수시키고 이를 주형으로 사용했을 때 PCR이 성공적으로 되는지를 통하여 확인하였다. BAC 콜로니를 멸균된 이쑤시개로 대장균 배양용 액체 배지 5ml에 접종하고, 양성 대조구로 15시간 동안 배양한 대장균을 증식액 1㎕, 2㎕, 3㎕, 4㎕를 주형으로 사용하였다. 랩을 실험대 위에 편평하게 깔고 랩위에 대장균 배양액을 10㎕씩 분주한 다음 다공성 세라믹 큐브(34, LTCC, 850℃)를 한 개, 두 개, 세 개, 네 개를 각각 넣어 대장균을 흡수시켰다. 핀 V으로 대장균이 흡수된 큐브를 건져내고 핀 V에 묻은 여액을 휴지로 제거한 다음 각각의 큐브를 PCR 튜브에 넣고 PCR 반응액을 첨가하였다. PCR 반응액은 2X PCR 프리믹스(gDamp1, Biocubesystem, Korea) 10㎕에 10pmol 센스 프라이머(Primer : 5'-GTCAAATCTGAGGACGCTATGTCT-3': 서열번호 20) 1㎕, 10 pmol 안티센스 프라이머(Primer: 5'-CACTATAGAGAACTAGGTATGTCGTTG-3': 서열번호 21) 1 ㎕, 주형이 흡수된 큐브 1~4개, DW는 최종 부피가 20㎕ 되게 첨가하여 준비하였다. PCR 산물은 95℃에서 3분간 변성시킨 다음, 95℃/30초, 58℃/30초, 72℃/60초에서 30회, 72℃/10분간 반응시켜 증폭하였고, EtBr을 포함하는 1% 아가로즈 젤 상에서 전기영동하여 목적 PCR 산물의 증폭 유무를 확인하였다(도 13). 배양액을 직접 PCR 주형으로 사용했을 때 첨가한 주형의 양에 따라 PCR 증폭 산물 양이 비례적으로 증가하지 않았다. 반면에 배양액이 흡수된 다공성 세라믹 큐브 처리구에서는 PCR 증폭 산물의 양이 일정하였다. 이것은 다공성 세라믹 큐브 한 개에 흡수된 주형만으로도 현재의 반응액에서 PCR 증폭이 충분히 일어났음을 의미하였다. 따라서 세균을 주형으로 하는 PCR 증폭에도 다공성 세라믹 큐브가 성공적으로 이용될 수 있음을 의미하였다.
실시예 7. 생물학적 분자를 흡수시키기 위해 이용가능한 다공성 세라믹의 형태
본 발명에서는 목적에 따라 생물학적 시료로부터 생물학적 분자를 효율적으로 흡수시키기 위해 도 14와 같은 구조가 이용가능하다. 기본 구조로 공극이 있는 정육면체, 원기둥, 구 또는 직육면체가 가능하고(도 14A), 흡수력을 높이기 위해 내부에 큰 공극을 포함하는 형태가 가능하다(도 14B). 도 14A 구조에서는 단순히 표면 공극으로 유전체를 선택적으로 흡수하지만, 도 14B의 경우는 도 14A보다 흡수율을 높여 흡수하는 유전체의 양을 많게 하는 구조이다. 이것은 홀 외벽의 공극 크기가 일정하게 해야 하며, 홀의 기능은 흡수력을 높이는 것과 동시에 PCR 프라이머를 미리 넣어둬 PCR 단계를 줄일 수 있다. 이는 차후 초기 주형의 양을 많이 필요로 하는 게놈 DNA용 PCR에 적합하다.
또한, 도 14C의 중간 및 오른쪽에 나타낸 구조는 생물학적 분자를 흡수시킨 후 홈이 있는 오른쪽 부위에 살짝 힘을 가하여 이 부분이 떨어져 PCR 튜브로 용이하게 들어가게 한 것인데 큐브의 크기가 너무 작기 때문에 실제 제품을 생산할 때 이용할 수 있는 구조로 사각형의 경우 막대 선단쪽 1mm3 정도로 쉽게 떨어질 수 있도록 홈 부분을 일부 절단한 것이고, 막대 뒷부분은 손잡이 용으로 제작한 플라스틱 봉이 끼워지는 자리이다. 도 14D의 끝이 날카로운 모양을 갖는 구조는 종자나 수목을 대상으로 할 경우 찌르기 쉽게 하기 위한 구조인데, 막대가 동일 재질로 구성되어 있을 때 막대 전체로 유전체가 유입될 수 있기 때문에 막대 부분의 크기만큼 흡수력을 높이고 PCR 튜브에 들어가는 선단부에 유전체가 모이게 하기 위해 재료를 달리하여 설계가 가능하며, 오염 방지 및 흡수력 증가에 매우 효과적이다.

Claims (18)

  1. 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계를 포함하는 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하는 방법.
  2. 제1항에 있어서, 상기 생물학적 시료는 동물, 식물, 세균 또는 곰팡이 유래인 것을 특징으로 하는 방법.
  3. 제1항에 있어서, 상기 생물학적 분자는 DNA, RNA, dsRNA, microRNA, 비로이드(viroid), 바이러스, 세균, 곰팡이 또는 미세조류인 것을 특징으로 하는 방법.
  4. 제1항에 있어서, 상기 핵산 증폭 반응은 cDNA 합성, PCR(Polymerase Chain Reaction), 멀티플렉스(multiplex) PCR 또는 RT-PCR(Reverse Transcriptase Polymerase Chain Reaction)인 것을 특징으로 하는 방법.
  5. 제1항에 있어서, 상기 다공성 고체상은 탄화셀룰로오스류, 종이를 입자 형태로 뭉친 것, 천연 또는 합성 제오라이트, 폴리스틸렌(polystylene), 폴리카보네이트(polycarbonate), 폴리프로필렌(polyprophylene), 다공성 금속 입자, 다공성 고무, 유리섬유를 입자 형태로 뭉친 세공성 유리, 석회, 조개껍질, 도자기 절편 및 산화물 재질의 세라믹으로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 방법.
  6. 제5항에 있어서, 상기 산화물 재질의 세라믹의 주성분은 Al2O3, Fe2O3, LTCC(Low temperature co-fired ceramic), PbO 또는 ZnO인 것을 특징으로 하는 방법.
  7. 제1항에 있어서, 상기 다공성 고체상은 정육면체, 직육면체, 구, 원기둥, 막대 형태(bar type), 막대의 한쪽 말단에 홈이 있는 막대 형태 또는 끝이 뾰족한 막대 형태인 것을 특징으로 하는 방법.
  8. (a) 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계; 및
    (b) 상기 (a)단계의 생물학적 분자를 흡수시킨 다공성 고체상을 핵산 증폭 반응을 위한 주형으로 첨가하고, 표적 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계를 포함하는 생물학적 시료에서 표적 서열을 증폭하는 방법.
  9. 제8항에 있어서, 상기 핵산 증폭 반응은 PCR(Polymerase Chain Reaction)인 것을 특징으로 하는 방법.
  10. (a) 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계;
    (b) 상기 (a)단계의 생물학적 분자를 흡수시킨 다공성 고체상에 역전사 효소(Reverse Transcriptase)를 첨가하여 역전사 효소 반응을 수행하는 단계; 및
    (c) 상기 역전사 효소 반응물을 핵산 증폭 반응을 위한 주형으로 첨가하고, 표적 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계를 포함하는 생물학적 시료에서 표적 서열을 증폭하는 방법.
  11. (a) 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계;
    (b) 상기 (a)단계의 생물학적 분자를 흡수시킨 다공성 고체상을 핵산 증폭 반응을 위한 주형으로 첨가하고, 표적 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및
    (c) 상기 증폭 산물을 검출하는 단계를 포함하는, 생물학적 시료 내에서 표적 서열의 존재 여부를 신속하게 확인하는 방법.
  12. (a) 생물학적 시료에 다공성 고체상을 접촉시켜 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 흡수시키는 단계;
    (b) 상기 (a)단계의 생물학적 분자를 흡수시킨 다공성 고체상에 역전사 효소(Reverse Transcriptase)를 첨가하여 역전사 효소 반응을 수행하는 단계;
    (c) 상기 역전사 효소 반응물을 핵산 증폭 반응을 위한 주형으로 첨가하고, 표적 프라이머 세트를 이용하여 증폭 반응을 수행하여 표적 서열을 증폭하는 단계; 및
    (d) 상기 증폭 산물을 검출하는 단계를 포함하는, 생물학적 시료 내에서 표적 서열의 존재 여부를 신속하게 확인하는 방법.
  13. 생물학적 시료 내에 존재하는 생물학적 분자를 다공성 고체상의 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상; 표적 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는, 생물학적 시료 내에서 표적 서열을 증폭하기 위한 핵산 증폭 반응용 키트.
  14. 제13항에 있어서, 상기 증폭 반응을 수행하기 위한 시약은 역전사 효소, DNA 중합효소, dNTPs 및 완충용액을 포함하는 것을 특징으로 하는 키트.
  15. 제13항에 있어서, 상기 다공성 고체상은 탄화셀룰로오스류, 종이를 입자 형태로 뭉친 것, 천연 또는 합성 제오라이트, 폴리스틸렌(polystylene), 폴리카보네이트(polycarbonate), 폴리프로필렌(polyprophylene), 다공성 금속 입자, 다공성 고무, 유리섬유를 입자 형태로 뭉친 세공성 유리, 석회, 조개껍질, 도자기 절편 및 산화물 재질의 세라믹으로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 키트.
  16. 생물학적 시료 내에 존재하는 생물학적 분자를 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상을 포함하는, 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 키트.
  17. 생물학적 시료 내에 존재하는 생물학적 분자를 공극으로 신속하게 흡수시킬 수 있는 다공성 고체상을 포함하는, 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 조성물.
  18. 제17항에 있어서, 상기 다공성 고체상은 탄화셀룰로오스류, 종이를 입자 형태로 뭉친 것, 천연 또는 합성 제오라이트, 폴리스틸렌(polystylene), 폴리카보네이트(polycarbonate), 폴리프로필렌(polyprophylene), 다공성 금속 입자, 다공성 고무, 유리섬유를 입자 형태로 뭉친 세공성 유리, 석회, 조개껍질, 도자기 절편 및 산화물 재질의 세라믹으로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 조성물.
PCT/KR2013/007469 2012-08-28 2013-08-20 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 다공성 고체상 및 이의 용도 WO2014035090A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015528395A JP6170154B2 (ja) 2012-08-28 2013-08-20 生物学的試料から核酸増幅反応用生物学的分子を迅速に分離するための多孔性固体相及びその用途
CN201380044466.5A CN104583397B (zh) 2012-08-28 2013-08-20 用于从生物样品迅速分离核酸扩增反应用生物分子的多孔性固体相及其用途
US14/423,135 US20150252356A1 (en) 2012-08-28 2013-08-20 Porous solid phase for rapidly isolating biological molecules for nucleic acid amplification reaction from biological sample, and use thereof
EP13832463.7A EP2891716B1 (en) 2012-08-28 2013-08-20 Porous solid phase for rapidly isolating biological molecules for nucleic acid amplification reaction from biological sample, and use thereof
US15/933,394 US10837010B2 (en) 2012-08-28 2018-03-23 Porous solid phase for rapidly isolating biological molecules for nucleic acid amplification reaction from biological sample, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120094046 2012-08-28
KR10-2012-0094046 2012-08-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/423,135 A-371-Of-International US20150252356A1 (en) 2012-08-28 2013-08-20 Porous solid phase for rapidly isolating biological molecules for nucleic acid amplification reaction from biological sample, and use thereof
US15/933,394 Division US10837010B2 (en) 2012-08-28 2018-03-23 Porous solid phase for rapidly isolating biological molecules for nucleic acid amplification reaction from biological sample, and use thereof

Publications (1)

Publication Number Publication Date
WO2014035090A1 true WO2014035090A1 (ko) 2014-03-06

Family

ID=50183848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007469 WO2014035090A1 (ko) 2012-08-28 2013-08-20 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 다공성 고체상 및 이의 용도

Country Status (6)

Country Link
US (2) US20150252356A1 (ko)
EP (1) EP2891716B1 (ko)
JP (1) JP6170154B2 (ko)
KR (1) KR101365737B1 (ko)
CN (1) CN104583397B (ko)
WO (1) WO2014035090A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106460072A (zh) * 2014-06-30 2017-02-22 通用电气医疗集团英国有限公司 固体生物团的空间分子分布谱生成和分布谱储存

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117833B1 (ko) 2019-01-04 2020-06-02 남장희 생물시료로부터 유전물질을 신속하게 분리하는 핵산 흡착 물질을 포함하는 조성물 및 그를 이용하여 생물시료로부터 유전물질을 신속하게 분리하는 방법
KR20200086006A (ko) 2019-01-08 2020-07-16 남장희 RAPD(random amplified polymorphic DNA)를 이용하여 생물시료로부터 표적서열을 증폭하는 방법
KR20200086005A (ko) 2019-01-08 2020-07-16 남장희 지르코니아를 이용하여 생물시료 내에서 표적 서열의 존재 여부를 신속하게 확인하는 방법
KR20200086007A (ko) 2019-01-08 2020-07-16 남장희 지르코니아를 이용하여 생물시료로부터 표적서열을 증폭하는 방법
KR102562639B1 (ko) 2021-04-29 2023-08-02 주식회사 한국과학 Pcr 진단용 시료 채취 진단 방법 및 이를 실행하기 위한 pcr 진단용 시료 채취 도구
KR102597565B1 (ko) * 2021-05-03 2023-11-06 성균관대학교산학협력단 Pcr 장치

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923978A (en) 1987-12-28 1990-05-08 E. I. Du Pont De Nemours & Company Process for purifying nucleic acids
US5057426A (en) 1986-11-22 1991-10-15 Diagen Institut Fur Molekular-Biologische, Diagnostik Gmbh Method for separating long-chain nucleic acids
EP0512767A1 (en) 1991-05-03 1992-11-11 Becton, Dickinson and Company Solid phase extraction purification of DNA
EP0515484B1 (en) 1990-02-13 1995-04-26 AMERSHAM INTERNATIONAL plc Method to isolate macromolecules using magnetically attractable beads which do not specifically bind the macromolecules
WO1995013368A1 (en) 1993-11-11 1995-05-18 Medinnova Sf Isolation of nucleic acid
WO1996018731A2 (en) 1994-12-12 1996-06-20 Dynal A/S Isolation of nucleic acid
WO1997010331A1 (en) 1995-09-15 1997-03-20 Beckman Instruments, Inc. Method for purifying nucleic acids from homogeneous mixtures
KR20050088164A (ko) 1997-12-06 2005-09-01 디엔에이 리서치 이노베이숀즈 리미티드 핵산 단리방법
KR20060093063A (ko) * 2005-02-18 2006-08-23 인피니언 테크놀로지스 아게 화학 증폭 반응용 거대 다공성 지지체
JP2007506404A (ja) 2003-08-13 2007-03-22 ツィンフア ユニバーシティ 核酸分子を検出するための迅速な方法
JP2009112317A (ja) * 2001-06-30 2009-05-28 Enzo Life Sciences Inc 分析物の検出、定量及び増幅のための新規な組成物および方法
JP2010094136A (ja) * 2003-10-21 2010-04-30 Fujifilm Corp 核酸分離精製カートリッジ
JP2010233579A (ja) * 2010-06-17 2010-10-21 Gl Sciences Inc Dnaなどの分離精製機構

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257887A (ja) * 1996-09-30 1998-09-29 Dainippon Printing Co Ltd 遺伝子解析装置および方法
DE19856064C2 (de) * 1998-12-04 2000-11-30 Invitek Gmbh Universelles Verfahren zur Isolierung von DNA aus beliebigen Ausgangsmaterialien
ATE399215T1 (de) * 1999-03-11 2008-07-15 Whatman Inc Festmedium sowie verfahren zur speicherung und schnellen aufreinigung von nukleinsäuren
CA2379503A1 (en) * 1999-08-20 2001-03-01 Promega Corporation Simultaneous isolation and quantitation of dna
BR0014877A (pt) * 1999-10-18 2002-06-11 Ferx Inc Veìculo magnético objetivado composto de ferro e materiais porosos para a distribuição objetivada de agentes biologicamente ativos
JP2004201607A (ja) * 2002-12-26 2004-07-22 Asahi Kasei Corp 核酸吸着固相体上でのlamp反応
CA2482097C (en) * 2003-10-13 2012-02-21 F. Hoffmann-La Roche Ag Methods for isolating nucleic acids
US20050176588A1 (en) 2003-12-22 2005-08-11 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP4597870B2 (ja) * 2004-02-12 2010-12-15 ジーエルサイエンス株式会社 Dnaなどの分離精製機構
JP2008509226A (ja) * 2004-05-24 2008-03-27 ジェンボールト コーポレイション 回収可能な形式での安定なタンパク質保管および安定な核酸保管
US7993738B2 (en) * 2004-11-30 2011-08-09 The Regents Of The University Of Michigan Modified porous materials and method of forming the same
JP4568614B2 (ja) * 2005-02-04 2010-10-27 富士フイルム株式会社 核酸の分離精製方法
WO2007084192A2 (en) * 2005-09-16 2007-07-26 The Regents Of The University Of California A colorimetric bio-barcode amplification assay for analyte detection
WO2007069301A1 (ja) * 2005-12-13 2007-06-21 Japan Tobacco Inc. 粉体を用いて形質転換効率を向上させる方法
JP2007325562A (ja) 2006-06-09 2007-12-20 Fujifilm Corp 核酸抽出法
WO2007149791A2 (en) * 2006-06-15 2007-12-27 Stratagene System for isolating biomolecules from a sample
WO2008049930A2 (en) * 2006-10-27 2008-05-02 Janssen Pharmaceutica Nv A method for profiling kinase inhibitors
JP4340298B2 (ja) 2007-03-01 2009-10-07 株式会社日立ハイテクノロジーズ 核酸回収方法及び核酸回収装置
JP5290987B2 (ja) 2007-11-05 2013-09-18 栄研化学株式会社 核酸増幅用サンプルの調製方法及び調製キット
EP2699903B1 (en) * 2011-04-20 2018-07-18 Life Technologies Corporation Methods, compositions and systems for sample deposition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057426A (en) 1986-11-22 1991-10-15 Diagen Institut Fur Molekular-Biologische, Diagnostik Gmbh Method for separating long-chain nucleic acids
US4923978A (en) 1987-12-28 1990-05-08 E. I. Du Pont De Nemours & Company Process for purifying nucleic acids
EP0515484B1 (en) 1990-02-13 1995-04-26 AMERSHAM INTERNATIONAL plc Method to isolate macromolecules using magnetically attractable beads which do not specifically bind the macromolecules
EP0512767A1 (en) 1991-05-03 1992-11-11 Becton, Dickinson and Company Solid phase extraction purification of DNA
WO1995013368A1 (en) 1993-11-11 1995-05-18 Medinnova Sf Isolation of nucleic acid
WO1996018731A2 (en) 1994-12-12 1996-06-20 Dynal A/S Isolation of nucleic acid
WO1997010331A1 (en) 1995-09-15 1997-03-20 Beckman Instruments, Inc. Method for purifying nucleic acids from homogeneous mixtures
KR20050088164A (ko) 1997-12-06 2005-09-01 디엔에이 리서치 이노베이숀즈 리미티드 핵산 단리방법
JP2009112317A (ja) * 2001-06-30 2009-05-28 Enzo Life Sciences Inc 分析物の検出、定量及び増幅のための新規な組成物および方法
JP2007506404A (ja) 2003-08-13 2007-03-22 ツィンフア ユニバーシティ 核酸分子を検出するための迅速な方法
JP2010094136A (ja) * 2003-10-21 2010-04-30 Fujifilm Corp 核酸分離精製カートリッジ
KR20060093063A (ko) * 2005-02-18 2006-08-23 인피니언 테크놀로지스 아게 화학 증폭 반응용 거대 다공성 지지체
JP2010233579A (ja) * 2010-06-17 2010-10-21 Gl Sciences Inc Dnaなどの分離精製機構

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FINKELSTEIN ET AL., GENOMICS, vol. 7, 1990, pages 167
LEE, JIN-HYEONG ET AL.: "Super high speed/high efficiency Organic Molecule Separation Technology using Magnetic-meso porous Ceramic Material", CERAMIST, vol. 12, no. 6, 2009, pages 21 - 28, XP008176433 *
MODRICH, ANN. REV. GENET., vol. 25, 1991, pages 229 - 253
ORITA ET AL., PNAS, USA, vol. 86, 1989, pages 2776
See also references of EP2891716A4
WARTELL ET AL., NUCL. ACIDS RES., vol. 18, 1990, pages 2699

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106460072A (zh) * 2014-06-30 2017-02-22 通用电气医疗集团英国有限公司 固体生物团的空间分子分布谱生成和分布谱储存
CN106460072B (zh) * 2014-06-30 2022-08-02 环球生命科学解决方案运营英国有限公司 固体生物团的空间分子分布谱生成和分布谱储存

Also Published As

Publication number Publication date
EP2891716B1 (en) 2018-03-28
JP2015526091A (ja) 2015-09-10
CN104583397B (zh) 2018-05-25
EP2891716A4 (en) 2016-04-27
JP6170154B2 (ja) 2017-07-26
EP2891716A1 (en) 2015-07-08
CN104583397A (zh) 2015-04-29
US10837010B2 (en) 2020-11-17
US20150252356A1 (en) 2015-09-10
US20180282717A1 (en) 2018-10-04
KR101365737B1 (ko) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2014035090A1 (ko) 생물학적 시료로부터 핵산 증폭 반응용 생물학적 분자를 신속하게 분리하기 위한 다공성 고체상 및 이의 용도
ES2922281T3 (es) Método para construir una biblioteca de secuenciación de una célula individual y uso del mismo
KR102653725B1 (ko) 핵산 증폭을 위한 방법
CN111188094A (zh) 一种用于病原微生物检测的测序文库构建方法和试剂盒
CA2477017A1 (en) Selective extraction of dna from groups of cells
US7094543B2 (en) Methods for detecting rare polymorphic variants in genomic DNA sequences
US10161005B2 (en) Method for detecting telomerase via washing-free anchored-extension and telomeric-binding amplification, and kit
CN110343754A (zh) 一种用于造血干细胞移植供体病原微生物快速检测的方法
KR20180064603A (ko) 유전자감식 신속분석을 위한 20개의 Autosomal-STR 유전자 마커 및 성염색체 유전자마커를 이용한 PCR 다중증폭 시스템
CN117210605B (zh) 一种鉴定玫红花黄芩的InDel分子标记及其应用
KR100673071B1 (ko) 파이로시퀀싱법을 이용한 녹용의 종간 유전자 감별 키트
US20210155972A1 (en) Targeted rare allele crispr enrichment
CN114517238A (zh) 一种用于鉴定金耳zjje001菌种的ssr分子标记及方法
JP2023536085A (ja) スルホン化dnaの精製
US7141658B1 (en) Single stranded oligonucleotides, probes, primers and method for detecting spirochetes
CN114540508B (zh) 一种用于牛中常见艾美耳球虫检测和虫种鉴定的巢式pcr方法及试剂盒
KR20130138000A (ko) PepMoV 저항성 고추 품종을 선별하기 위한 프라이머 세트, 방법 및 키트
CN112852948B (zh) 一种检测药物性耳聋相关基因位点的方法及试剂盒
KR101500686B1 (ko) 적은 수의 세포에서 증폭가능한 dna를 얻기 위한 추출 방법 및 그 조성물
KR101502575B1 (ko) 이산화 지르코늄을 이용한 유전자 추출방법
CN109735643B (zh) 鉴别或辅助鉴别黄芪的引物对及其应用
CN109735609B (zh) 鉴别或辅助鉴别黄芪的方法
KR100728603B1 (ko) 단일쇄 형태변환 다형성을 이용하여 2 종 이상의 미생물에대한 항생제의 항균활성을 동시에 분석하는 방법
JP2008086271A (ja) 標的核酸の検出法
KR101716108B1 (ko) Str 유전좌위의 분별 선행 증폭을 통한 유전자 감식 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528395

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423135

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE