WO2014034796A1 - ユニフロー掃気式2サイクルエンジン - Google Patents
ユニフロー掃気式2サイクルエンジン Download PDFInfo
- Publication number
- WO2014034796A1 WO2014034796A1 PCT/JP2013/073188 JP2013073188W WO2014034796A1 WO 2014034796 A1 WO2014034796 A1 WO 2014034796A1 JP 2013073188 W JP2013073188 W JP 2013073188W WO 2014034796 A1 WO2014034796 A1 WO 2014034796A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel injection
- cylinder
- fuel
- fuel gas
- gas
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B25/00—Engines characterised by using fresh charge for scavenging cylinders
- F02B25/02—Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3094—Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B17/00—Reciprocating-piston machines or engines characterised by use of uniflow principle
- F01B17/02—Engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B25/00—Engines characterised by using fresh charge for scavenging cylinders
- F02B25/02—Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
- F02B25/04—Engines having ports both in cylinder head and in cylinder wall near bottom of piston stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B7/00—Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel
- F02B7/06—Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel the fuel in the charge being gaseous
- F02B7/08—Methods of operating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/06—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
- F02D19/08—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
- F02D19/10—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0027—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
- F02D41/34—Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0248—Injectors
- F02M21/0275—Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0248—Injectors
- F02M21/0281—Adapters, sockets or the like to mount injection valves onto engines; Fuel guiding passages between injectors and the air intake system or the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0284—Arrangement of multiple injectors or fuel-air mixers per combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/14—Arrangements of injectors with respect to engines; Mounting of injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/04—Injectors peculiar thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/025—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D2041/389—Controlling fuel injection of the high pressure type for injecting directly into the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/08—Engine blow-by from crankcase chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2400/00—Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
- F02D2400/04—Two-stroke combustion engines with electronic control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a uniflow scavenging two-cycle engine that burns a premixed gas generated by injecting fuel gas into active gas sucked from a scavenging port.
- a uniflow scavenging two-cycle engine (two-stroke engine) that is also used as a marine engine is provided with an exhaust port at one end in a stroke direction of a piston in a cylinder.
- a scavenging port is provided on the other end side in the stroke direction.
- the cylinder is provided with a fuel injection valve that injects fuel gas.
- a fuel injection valve that injects fuel gas.
- a plurality of fuel injection valves are provided in the circumferential direction of the cylinder, and fuel gas is injected simultaneously from the plurality of fuel injection valves.
- the fuel gas is simultaneously injected from all the fuel injection valves toward the center of the cylinder. There are cases where it cannot be distributed.
- the fuel gas can be widely distributed throughout the cylinder, the operation performance can be further improved. Therefore, further improvement of fuel gas injection is desired.
- the present invention provides a uniflow scavenging two-cycle engine that can spread the fuel gas widely throughout the cylinder by devising the configuration of the fuel injection valve and can further improve the operating performance.
- the purpose is to do.
- a uniflow scavenging two-cycle engine includes a cylinder in which a combustion chamber is formed, a piston that slides in the cylinder, an exhaust port provided at one end of the piston in the stroke direction of the cylinder, and an exhaust port
- An exhaust valve that opens and closes the cylinder, a scavenging port that is provided on the inner peripheral surface of the cylinder on the other end side in the stroke direction of the piston, and draws the active gas into the combustion chamber according to the sliding movement of the piston;
- a plurality of fuel injection valves for generating a premixed gas by injecting fuel gas into the active gas sucked into the fuel, and a fuel injection for changing the injection direction of the fuel gas injected from some or all of the plurality of fuel injection valves A control unit.
- the uniflow scavenging two-cycle engine further includes a load determination unit that determines whether the uniflow scavenging two-cycle engine is in a high load state or a low load state, and the fuel injection control unit includes: When the load state detected by the load determination unit is a high load state, the load determination unit detects the fuel gas injection direction in a first direction that is a direction along the swirling flow of the active gas sucked into the cylinder. When the loaded state is a low load state, the fuel gas injection direction may be directed to the second direction, which is the direction toward the central axis side of the cylinder from the first direction.
- the uniflow scavenging two-cycle engine further includes a blow-out detection unit that detects the amount of blow-through of the fuel gas from the exhaust port, and the fuel injection control unit blows through the fuel gas detected by the blow-out detection unit.
- the fuel gas injection direction may be directed toward the scavenging port in the stroke direction of the piston as compared with the case where the fuel gas blow-through amount is less than the threshold value.
- the plurality of fuel injection valves may have a variable flow path cross-sectional area in any flow path from the inside of the fuel injection valve through which the fuel gas flows to the injection port.
- the fuel gas can be spread widely throughout the cylinder, and the operating performance can be further improved.
- FIG. 1 is an explanatory diagram showing the overall configuration of the uniflow scavenging two-cycle engine 100.
- the uniflow scavenging two-cycle engine 100 of the present embodiment is used for, for example, ships.
- the uniflow scavenging two-cycle engine 100 includes a cylinder 110 (cylinder head 110a and cylinder block 110b), a piston 112, a pilot injection valve 114, an exhaust port 116, an exhaust valve driving device 118, and an exhaust valve.
- 120 scavenging port 122, scavenging chamber 124, fuel injection port 126, fuel injection valve 128, rotary encoder 130, blow-out detection unit 132, and combustion chamber 140.
- (Speed machine) 150 a fuel injection control unit 152, an exhaust control unit 154, and the like.
- a piston 112 connected to a cross head is slidably reciprocated in a cylinder 110 through four successive strokes of intake (supply), compression, combustion, and exhaust.
- intake supply
- compression combustion
- exhaust exhaust
- the stroke in the cylinder 110 can be formed relatively long, and the side pressure acting on the piston 112 can be received by the cross head, so a uniflow scavenging two-cycle engine
- the output of 100 can be increased.
- the cylinder 110 and a crank chamber (not shown) in which the crosshead is accommodated are isolated, deterioration of contamination can be prevented even when using low quality fuel oil.
- the pilot injection valve 114 is provided in the cylinder head 110a above the top dead center of the piston 112, which is one end of the cylinder 110 in the stroke direction, and injects an appropriate amount of fuel oil at a desired time in the engine cycle.
- This fuel oil spontaneously ignites with the heat of the combustion chamber 140 surrounded by the cylinder head 110a, the cylinder liner in the cylinder block 110b, and the piston 112, and burns in a short time. Therefore, the premixed gas containing the fuel gas can be reliably ignited and burned at a desired timing.
- the exhaust port 116 is an opening provided at one end of the cylinder 110 in the stroke direction of the piston 112, that is, at the top of the cylinder head 110 a above the top dead center of the piston 112. It is opened and closed to exhaust the exhaust gas.
- the exhaust valve driving device 118 opens and closes the exhaust port 116 by sliding the exhaust valve 120 up and down at a predetermined timing. The exhaust gas exhausted through the exhaust port 116 in this manner is supplied to the turbine side of a turbocharger (not shown) and then exhausted to the outside.
- the scavenging port 122 is an opening provided on the inner peripheral surface (the inner peripheral surface of the cylinder block 110 b) on the other end side in the stroke direction of the piston 112 in the cylinder 110, and the cylinder 110 according to the sliding operation of the piston 112.
- the active gas is inhaled inside.
- This active gas contains an oxidizing agent such as oxygen and ozone, or a mixture thereof (for example, air).
- the scavenging chamber 124 is filled with active gas (for example, air) pressurized by a compressor of a supercharger (not shown), and the active gas is sucked from the scavenging port 122 with a differential pressure in the scavenging chamber 124 and the cylinder 110. .
- the pressure in the scavenging chamber 124 can be substantially constant. However, when the pressure in the scavenging chamber 124 changes, a pressure gauge may be provided in the scavenging port 122 and other parameters such as the fuel gas injection amount may be controlled in accordance with the measured value.
- the fuel injection port 126 has a predetermined interval on the inner circumferential surface of the cylinder 110 (between the exhaust port 116 and the scavenging port 122) in a substantially circumferential direction (allowing displacement not only in the strict circumferential direction but also in the stroke direction).
- a substantially circumferential direction allowing displacement not only in the strict circumferential direction but also in the stroke direction.
- the fuel injection valve 128 is disposed in each fuel injection port 126 and receives a command from the fuel injection control unit 152 and injects, for example, fuel gas obtained by gasifying LNG (liquefied natural gas). In this way, the fuel gas is supplied into the cylinder 110. Further, the fuel gas is not limited to LNG, and for example, gasified LPG (liquefied petroleum gas), light oil, heavy oil, or the like can be applied.
- LNG liquefied natural gas
- the rotary encoder 130 is provided in a crank mechanism (not shown) and detects a crank angle signal (hereinafter referred to as a crank angle signal).
- the blow-out detection unit 132 is provided in an exhaust passage communicating with the exhaust port 116, and the amount of fuel gas injected from the fuel injection valve 128 is discharged from the exhaust port 116 without remaining in the combustion chamber and remaining unburned (blow-through amount). ) Is detected.
- the blowout detector 132 detects the amount of fuel gas blown out from the exhaust port 116 by detecting the hydrocarbon (hydrocarbon) concentration in the exhaust gas discharged from the cylinder 110.
- the blow-out detection unit 132 outputs a blow-out detection signal indicating the blow-through amount to the fuel injection control unit 152.
- the governor 150 derives the fuel injection amount based on the engine output command value input from the host controller and the engine speed based on the crank angle signal from the rotary encoder 130, and outputs the fuel injection amount to the fuel injection control unit 152.
- the fuel injection control unit 152 controls the fuel injection valve 128 by a control signal based on the information indicating the fuel injection amount input from the governor 150, the crank angle signal from the rotary encoder 130, and the blowout detection signal.
- the fuel injection control unit 152 also functions as a load determination unit, and based on the information indicating the fuel injection amount input from the governor 150, the uniflow scavenging two-cycle engine 100 is in a high load state. Determine whether there is a low load condition.
- the exhaust control unit 154 outputs an exhaust valve operation signal to the exhaust valve driving device 118 based on the information indicating the fuel injection amount from the fuel injection control unit 152 and the crank angle signal from the rotary encoder 130.
- the operation of each control unit in the engine cycle of the above-described uniflow scavenging two-cycle engine 100 will be described.
- FIG. 2 is an explanatory diagram showing the operation of each control unit. As shown in FIG. 2, in the exhaust stroke after the combustion stroke, the exhaust port 116 and the scavenging port 122 are in a closed state, and the combustion chamber 140 (inside the cylinder 110) is filled with exhaust gas.
- the exhaust control unit 154 opens the exhaust valve 120 through the exhaust valve driving device 118, and the piston 112 slides.
- the scavenging port 122 opens according to the operation (t1 shown in FIG. 2).
- the active gas is sucked from the scavenging port 122, and the active gas rises while forming a swirl (swirl flow) for promoting the mixing of the fuel gas, and the exhaust gas in the combustion chamber 140 (in the cylinder 110) is discharged. Push out from the exhaust port 116.
- the scavenging port 122 is closed and the suction of the active gas is stopped.
- the exhaust control unit 154 maintains the exhaust valve 120 in an open state, and the exhaust gas in the combustion chamber 140 (inside the cylinder 110) continues to be exhausted from the exhaust port 116 as the piston 112 rises.
- the fuel injection control unit 152 causes the piston 112 to change the fuel injection valve 128 based on the information indicating the fuel injection amount input from the governor 150, the engine speed derived from the crank angle signal from the rotary encoder 130, and the like.
- the fuel gas is injected from the fuel injection valve 128 into the cylinder 110 (t2 shown in FIG. 2).
- the fuel gas is injected into the active gas sucked from the scavenging port 122, and a premixed gas is generated in the combustion chamber 140 (inside the cylinder 110). Thereafter, when the piston 112 further rises and approaches the top dead center of the fuel injection valve 128, the exhaust control unit 154 closes the exhaust valve 120 and closes the exhaust port 116 (t3 shown in FIG. 2).
- the premixed gas burns in the combustion chamber 140, and thus, exhaust, intake (supply), compression, combustion, and expansion strokes are repeated as described above.
- exhaust, intake (supply), compression, combustion, and expansion strokes are repeated as described above.
- the fuel injection valve 128 is configured to always spread the fuel gas widely throughout the cylinder 110 (combustion chamber 140), the fuel gas may not burn when the engine is in a low load state. Therefore, in the present embodiment, the fuel injection valve 128 is configured as follows in order to inject the fuel gas to a suitable place according to the operating condition.
- FIG. 3A, 3B, and 3C are diagrams for explaining the fuel injection valve 128.
- FIG. 3A shows a horizontal cross section of the position where the fuel injection port 126 is formed in the cylinder 110
- FIG. 3C is an enlarged view of a portion of the fuel injection valve 128 in FIG. 3A.
- the fuel injection valve 128 can change the injection direction of the fuel gas according to the control signal output from the fuel injection control unit 152.
- the fuel injection valve 128 maintains a dimensional relationship that is substantially the same as the diameter of the flow path 110c through which the fuel gas formed in the cylinder block 110b flows.
- the main body 210 that rotates about the two axes of the shaft P and the axis Q, the injection port 212 formed on one end side of the main body unit 210, and the other end side of the main body unit 210.
- An inlet 214 having a diameter larger than 212 and a through hole 220 that is continuous with the injection port 212 and the inlet 214 and penetrates the main body 210 are configured.
- the through-hole 220 includes a directing portion 220a having a diameter substantially the same as that of the injection port 212 and a continuous portion 220b in which the directing portion 220a and the introduction port 214 are continuous.
- the drive unit (not shown) receives the control signal output from the fuel injection control unit 152
- the main unit 210 of the fuel injection valve 128 is controlled to rotate so that the fuel injection valve 128 is in the first state shown in FIG. 3B. And the second state shown in FIG. 3C.
- FIG. 4 is a diagram for explaining the injection direction of the fuel gas, and shows a horizontal section of the position where the fuel injection port 126 in the cylinder 110 is formed.
- 5A, 5B, and 5C are vertical cross-sectional views of the position where the fuel injection port 126 is formed in the cylinder 110
- FIG. 5A is a cross-sectional view taken along line V (a) -V (a) in FIG. 5B shows a cross section taken along line V (b) -V (b) in FIG. 4
- FIG. 5C controls the fuel injection valve 128 based on the blowout detection signal output from the blowout detection unit 132. The cross section when doing is shown.
- the fuel injection valve 128 arranged in the first state described above is denoted by reference numeral 128a
- the fuel injection valve 128 disposed in the second state described above is denoted by reference numeral 128b.
- the main body 210 rotates and the fuel injection valve 128a is arranged in the first state, that is, the through hole 220 in a direction intersecting the extending direction of the flow path 110c. Is arranged (see FIG. 3B), the swirl of the active gas sucked into the cylinder 110 (combustion chamber 140), that is, the direction along the swirl flow (broken arrow indicated by reference numeral 300 in FIG. 4) The fuel gas is injected in one direction (in the direction indicated by the solid line arrow 232 in FIG. 4).
- the direction along the swirling flow (swirl) of the active gas is not limited to the case where the flow direction of the active gas and the injection direction of the fuel gas are completely coincident with each other, and the fuel gas flows in the flow of the active gas. If there is a relationship to ride smoothly.
- an angle ⁇ (see FIG. 4) formed by the swirling flow direction (flow direction) of the active gas and the fuel gas injection direction is 0 ° ⁇ ⁇ 90. If it is °.
- the fuel gas injected from the fuel injection valve 128b in the second state only needs to be closer to the central axis side of the cylinder 110 than the fuel gas injected from the fuel injection valve 128a in the first state.
- the fuel injection valve 128b injects fuel gas in the horizontal direction toward the central axis of the cylinder 110, and the fuel injection valve 128a is in the horizontal direction as shown in FIG. 5B.
- the fuel gas is injected vertically upward.
- the injection angle in the vertical direction of the fuel gas injected from the fuel injection valve 128a and the fuel injection valve 128b may be set as appropriate. Therefore, for example, the fuel gas may be injected in the horizontal direction from the fuel injection valve 128a, or the fuel gas may be injected from the second fuel injection valve 128b vertically upward from the horizontal direction.
- the fuel from the fuel injection valve 128 is directed vertically downward (scavenging port 122 side) from the horizontal direction. May be injected.
- the fuel injection control unit 152 can switch the fuel injection valve 128 between the first state and the second state, that is, change the injection direction of the fuel gas injected from the fuel injection valve 128.
- the fuel gas can be injected to a suitable location according to the operating state of the uniflow scavenging two-cycle engine 100.
- the fuel injection control unit 152 controls the rotation of the fuel injection valve 128 to the first state.
- the fuel injection valve 128 injects fuel gas in the direction along the swirl of the active gas sucked into the cylinder 110 (combustion chamber 140).
- the fuel gas can be widely distributed throughout the cylinder 110 (combustion chamber 140). Therefore, the driving performance can be improved as compared with the conventional case.
- the fuel injection control unit 152 controls the rotation of the fuel injection valve 128 to the second state.
- the fuel injection valve 128 injects fuel gas toward the central axis of the cylinder 110.
- FIGS. 6A and 6B are diagrams for explaining a specific example of the flow path adjustment mechanism 230.
- the flow path adjustment mechanism 230 is provided in the injection port 212, and includes, for example, 12 movable pieces 232 as shown in FIGS. 6A and 6B.
- the flow path adjustment mechanism 230 In the first state shown in FIG. 6A, the flow path adjustment mechanism 230 has a maximum flow path cross-sectional area.
- each movable piece 232 is moved from the first state so that the tip portions 232a come into contact with each other, that is, the tip portions 232a are arranged inside the flow path adjustment mechanism 230. Transition to the second state.
- the flow path adjusting mechanism 230 can change the flow path cross-sectional area of the through hole 220.
- the flow path adjustment mechanism 230 is not limited to the injection port 212, and any flow path (directing portion 220 a, directing portion 220 a, or the like) from the introduction port 214 (inside the fuel injection valve 128) to the injection port 212 in the through hole 220 through which the fuel gas flows. It may be provided in the continuous part 220b). By providing the flow path adjustment mechanism 230, the flow rate of the fuel gas injected into the cylinder 110 from the injection port 212 of the fuel injection valve 128 can be adjusted.
- the flow path adjustment mechanism of the fuel injection valve 128 is not limited to the configuration of the flow path adjustment mechanism 230 described above as long as the fuel gas can be injected at a desired flow rate.
- a mechanism for opening and closing the directing unit 220a by providing a plurality of directing units 220a independently is a flow rate adjusting mechanism.
- the flow passage cross-sectional area of the through hole 220 may be variable by controlling the number of the directing portions 220a that are closed or open.
- FIG. 7 is a flowchart for explaining an example of a method for controlling the fuel injection valve 128 by the fuel injection control unit 152. The process shown in FIG. 7 is started when, for example, information on the fuel injection amount is input from the governor 150 to the fuel injection control unit 152.
- Step S301 When information is inputted to the fuel injection amount from the governor 150, the fuel injection control unit 152 has a fuel gas blow-off amount indicated by the blow-out detection signal input from the blow-out detection unit 132 equal to or greater than a predetermined first threshold value. It is determined whether or not there is. If the amount of blown fuel gas is greater than or equal to the first threshold value (Yes in step S301), the process proceeds to step S302, and if it is less than the first threshold value (No in step S301), the process proceeds to step S303. To do.
- Step S302 When the fuel gas blow-through amount is equal to or greater than the first threshold (Yes in step S301), the fuel injection control unit 152 controls the fuel injection valve 128 to change the fuel gas injection direction and the fuel gas blow-off amount is the first. It is directed toward the scavenging port 122 in the stroke direction of the piston 112 than when it is less than one threshold (when the blow-through of fuel gas is not detected).
- the exhaust port 116 is still open (see FIG. 2), so that depending on the gas flow state in the cylinder 110, the fuel gas is blown out. And a part of the fuel injected from the fuel injection valve 128 may be discharged from the exhaust port 116 as it is. Therefore, when the blow-out detection unit 132 detects a blow-through (when the amount of blow-through of the fuel gas is equal to or greater than the first threshold), the fuel gas injection direction by the fuel injection valve 128 is not detected. Rather, the amount of fuel gas blown out from the exhaust port 116 can be reduced by directing it toward the scavenging port 122 in the stroke direction of the piston 112.
- Step S303 When the amount of blown-through fuel gas is less than the first threshold (No in step S301), the fuel injection control unit 152 functions as a load determination unit, and based on information indicating the fuel injection amount input from the governor 150, It is determined whether or not the load state of the uniflow scavenging two-cycle engine 100 is a high load state. Specifically, the fuel injection control unit 152 determines whether or not the load of the uniflow scavenging two-cycle engine 100 is equal to or greater than a predetermined second threshold value.
- step S303 When the load of the uniflow scavenging two-cycle engine 100 is equal to or greater than a predetermined second threshold value (Yes in step S303), the load state of the uniflow scavenging two-cycle engine 100 is regarded as a high load state, and the process proceeds to step S304. Migrate processing. On the other hand, when the load of the uniflow scavenging two-cycle engine 100 is less than the predetermined second threshold (No in step S303), the load state of the uniflow scavenging two-cycle engine 100 is regarded as a low load state, and the step The process proceeds to S306.
- Step S304 When the load state of the uniflow scavenging two-cycle engine 100 is a high load state (Yes in step S303), the fuel injection control unit 152 controls the flow path adjusting mechanism of the fuel injection valve 128, so that the fuel injection valve 128 The cross-sectional area of the through hole 220 is set to a predetermined first area.
- Step S305 The fuel injection control unit 152 controls the fuel injection valve 128 to direct the fuel gas injection direction in the first direction (the direction along the swirling flow of the active gas sucked into the cylinder 110).
- Step S306 On the other hand, when the load state of the uniflow scavenging two-cycle engine 100 is a low load state (No in step S303), the fuel injection control unit 152 controls the flow path adjusting mechanism of the fuel injection valve 128 to control the fuel injection valve.
- the flow passage cross-sectional area of the through hole 220 at 128 is changed to a second area smaller than the predetermined first area.
- Step S307 the fuel injection control unit 152 controls the fuel injection valve 128 to direct the fuel gas injection direction in the second direction (the direction toward the central axis side of the cylinder 110 from the first direction).
- the fuel gas is obtained by setting the flow passage cross-sectional area of the through hole 220 in the fuel injection valve 128 to a relatively large first area. More fuel gas can be injected into the cylinder 110 in a high load state where the consumption of the fuel is relatively high.
- the fuel injection control unit 152 can spread the fuel gas widely throughout the cylinder 110 by setting the fuel gas injection direction by the fuel injection valve 128 to the first direction. .
- the possibility that the fuel gas becomes too concentrated locally in the cylinder 110 is reduced, and normal operation is avoided by avoiding abnormal combustion regardless of the engine operating conditions. Is possible.
- the fuel gas consumption is relatively reduced by setting the flow passage cross-sectional area of the through hole 220 in the fuel injection valve 128 to a relatively small second area.
- the load is low, a small amount of fuel gas can be injected into the cylinder 110 vigorously.
- the fuel injection control unit 152 injects fuel from the plurality of fuel injection valves 128 in the vicinity of the center of the cylinder 110 by setting the fuel gas injection direction by the fuel injection valve 128 to the second direction. It is possible to cause the fuel gas to collide with force and to intentionally generate a dense portion of the fuel gas, and to reliably bring about a combustion action.
- the fuel injection control unit 152 functions as a load determination unit
- the fuel injection control unit 152 and the load determination unit may be configured by different functional units.
- the fuel injection control unit 152 has described the configuration in which the fuel gas injection direction by the fuel injection valve 128 is the first direction in the high load state.
- the fuel injection control unit 152 controls the plurality of fuel injection valves 128 to select some of the fuel injection valves 128.
- the fuel gas injection direction at 128 may be the first direction
- the fuel gas injection direction at the other fuel injection valves 128 may be the second direction. As a result, the fuel gas can be spread over the entire cylinder 110 more uniformly.
- the fuel injection valve 128a that injects the fuel gas in the first direction and the fuel injection valve 128b that injects the fuel gas in the second direction may be alternately arranged. Therefore, even if the fuel gas is injected from all the fuel injection valves 128 at the same time, the fuel gas injected from the adjacent fuel injection valves 128 is less likely to interfere with each other in the cylinder 110 (combustion chamber 140). It becomes possible to distribute fuel gas.
- the fuel injection valve 128 having the configuration shown in FIGS. 3A, 3B, and 3C has been described as an example of the fuel injection valve 128.
- the fuel injection valve 128 only needs to be able to inject fuel gas in a desired direction, and its specific configuration may be designed as appropriate.
- the same number of the first fuel injection valves 128a and the second fuel injection valves 128b are provided, but the numbers of the first fuel injection valves 128a and the second fuel injection valves 128b are different. Moreover, these arrangements are not particularly limited.
- the configuration in which the fuel injection valve 128 includes the flow path adjustment mechanism has been described, but the flow path adjustment mechanism is not necessarily required.
- the present invention can be used in a uniflow scavenging two-cycle engine that burns a premixed gas generated by injecting fuel gas into active gas sucked from a scavenging port. Further, by devising the configuration of the fuel injection valve, the fuel gas can be spread widely throughout the cylinder, and the operating performance is further improved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
ユニフロー掃気式2サイクルエンジン(100)は、シリンダ(110)と、シリンダ内を摺動するピストン(112)と、シリンダの一端部に設けられた排気ポート(116)と、排気ポートを開閉する排気弁(120)と、シリンダにおけるピストンのストローク方向他端部側の内周面に設けられ、ピストンの摺動動作に応じて燃焼室(140)に活性ガスを吸入する掃気ポート(122)と、掃気ポートから燃焼室に吸入された活性ガスに燃料ガスを噴射して予混合気を生成する複数の燃料噴射弁(128)と、複数の燃料噴射弁(128)の一部または全部から噴射される燃料ガスの噴射方向を可変する燃料噴射制御部(152)を備える。
Description
本発明は、掃気ポートから吸入された活性ガスに燃料ガスを噴射して生成される予混合気を燃焼させるユニフロー掃気式2サイクルエンジンに関する。
本願は、2012年8月31日に、日本に出願された特願2012-191120号に基づき優先権を主張し、その内容をここに援用する。
本願は、2012年8月31日に、日本に出願された特願2012-191120号に基づき優先権を主張し、その内容をここに援用する。
例えば、特許文献1に示されるように、船舶の機関としても用いられるユニフロー掃気式2サイクルエンジン(2ストロークエンジン)は、シリンダにおけるピストンのストローク方向一端部に排気ポートが設けられ、シリンダにおけるピストンのストローク方向他端部側に掃気ポートが設けられている。吸気(給気)行程において掃気ポートから燃焼室に活性ガスが吸入されると、燃焼作用によって生じた排気ガスが、吸入される活性ガスによって排気ポートから押し出されるようにして排気される。
このとき、吸入された活性ガスに燃料ガスを噴射して予混合気を生成し、生成された予混合気を圧縮し、その中でパイロット燃料を噴射することにより、パイロット燃料の燃焼によって着火した予混合気の燃焼作用が得られ、この燃焼作用によって生じる爆発圧力によってピストンがシリンダ内で往復運動する。このように、シリンダには燃料ガスを噴射する燃料噴射弁が設けられている。しかしながら、船舶用の2サイクルエンジンなど、シリンダの径が大きい2サイクルエンジンにおいては、シリンダの周方向に複数の燃料噴射弁を設け、これら複数の燃料噴射弁から同時に燃料ガスを噴射する。
しかしながら、複数の燃料噴射弁が設けられた従来の2サイクルエンジンにおいては、全ての燃料噴射弁から、シリンダの中心に向けて同時に燃料ガスが噴射されるため、シリンダ内の全体に広く燃料ガスを行き渡らせることができない場合がある。2サイクルエンジンにおいて、シリンダ内の全体に広く燃料ガスを行き渡らせることができれば、より運転性能を向上することができることから、燃料ガスの噴射についてさらなる改良が望まれている。
そこで、本発明は、燃料噴射弁の構成を工夫することで、シリンダ内の全体に広く燃料ガスを行き渡らせることができ、より運転性能を向上することが可能なユニフロー掃気式2サイクルエンジンを提供することを目的としている。
本発明に係るユニフロー掃気式2サイクルエンジンは、内部に燃焼室が形成されるシリンダと、シリンダ内を摺動するピストンと、シリンダにおけるピストンのストローク方向一端部に設けられた排気ポートと、排気ポートを開閉する排気弁と、シリンダにおけるピストンのストローク方向他端部側の内周面に設けられ、ピストンの摺動動作に応じて燃焼室に活性ガスを吸入する掃気ポートと、掃気ポートから燃焼室に吸入された活性ガスに燃料ガスを噴射して予混合気を生成する複数の燃料噴射弁と、複数の燃料噴射弁の一部または全部から噴射される燃料ガスの噴射方向を可変する燃料噴射制御部と、を備える。
また、本発明に係るユニフロー掃気式2サイクルエンジンは、前記ユニフロー掃気式2サイクルエンジンが高負荷状態であるか低負荷状態であるかを判定する負荷判定部をさらに備え、燃料噴射制御部は、負荷判定部が検出した負荷状態が高負荷状態である場合、燃料ガスの噴射方向を、シリンダ内に吸入された活性ガスの旋回流に沿う方向である第1方向に向け、負荷判定部が検出した負荷状態が低負荷状態である場合、燃料ガスの噴射方向を第1方向よりもシリンダの中心軸側に向かう方向である第2方向に向けてもよい。
また、本発明に係るユニフロー掃気式2サイクルエンジンは、燃料ガスの排気ポートからの吹き抜け量を検知する吹抜検知部をさらに備え、燃料噴射制御部は、吹抜検知部によって検知される燃料ガスの吹き抜け量が閾値以上となった場合、燃料ガスの吹き抜け量が閾値未満である場合よりも、燃料ガスの噴射方向を、ピストンのストローク方向において掃気ポート側に向けてもよい。
複数の燃料噴射弁は、燃料ガスが流通するこの燃料噴射弁の内部から噴射口までのいずれかの流路において、流路断面積が可変でもよい。
本発明のユニフロー掃気式2サイクルエンジンによれば、燃料噴射弁の構成を工夫することで、シリンダ内の全体に広く燃料ガスを行き渡らせることができ、より運転性能を向上することが可能となる。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。本発明の実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定しない。本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
図1は、ユニフロー掃気式2サイクルエンジン100の全体構成を示す説明図である。本実施形態のユニフロー掃気式2サイクルエンジン100は、例えば、船舶等に用いられる。具体的に、ユニフロー掃気式2サイクルエンジン100は、シリンダ110(シリンダヘッド110a、シリンダブロック110b)と、ピストン112と、パイロット噴射弁114と、排気ポート116と、排気弁駆動装置118と、排気弁120と、掃気ポート122と、掃気室124と、燃料噴射ポート126と、燃料噴射弁128と、ロータリエンコーダ130と、吹抜検知部132と、燃焼室140と、を含んで構成され、ガバナー(調速機)150、燃料噴射制御部152、排気制御部154等の制御部によって制御される。
ユニフロー掃気式2サイクルエンジン100では、吸気(給気)、圧縮、燃焼、排気といった4つの連続する行程を通じて、不図示のクロスヘッドに連結されたピストン112がシリンダ110内を摺動自在に往復移動する。このようなクロスヘッド型のピストン112では、シリンダ110内でのストロークを比較的長く形成することができ、ピストン112に作用する側圧をクロスヘッドに受けさせることが可能なので、ユニフロー掃気式2サイクルエンジン100の高出力化を図ることができる。さらに、シリンダ110とクロスヘッドが収まる不図示のクランク室とが隔離されるので、低質燃料油を用いる場合においても汚損劣化を防止することができる。
パイロット噴射弁114は、シリンダ110のストローク方向一端部である、ピストン112の上死点より上方のシリンダヘッド110aに設けられ、エンジンサイクルにおける所望の時点で適量の燃料油を噴射する。この燃料油は、シリンダヘッド110aと、シリンダブロック110bにおけるシリンダライナと、ピストン112とに囲まれた燃焼室140の熱で自然着火し、僅かな時間で燃焼して、燃焼室140の温度を極めて高くするので、燃料ガスを含む予混合気を所望のタイミングで確実に着火し燃焼することができる。
排気ポート116は、シリンダ110におけるピストン112のストローク方向の一端側、すなわち、ピストン112の上死点より上方のシリンダヘッド110aの頂部に設けられた開口部であり、シリンダ110内で生じた燃焼後の排気ガスを排気するために開閉される。排気弁駆動装置118は、所定のタイミングで排気弁120を上下に摺動させ、排気ポート116を開閉する。このようにして排気ポート116を介して排気された排気ガスは、例えば、不図示の過給機のタービン側に供給された後、外部に排気される。
掃気ポート122は、シリンダ110におけるピストン112のストローク方向の他端側の内周面(シリンダブロック110bの内周面)に設けられた開口部であり、ピストン112の摺動動作に応じてシリンダ110内に活性ガスを吸入する。この活性ガスは、酸素、オゾン等の酸化剤、または、その混合気(例えば空気)を含む。掃気室124には、不図示の過給機のコンプレッサによって加圧された活性ガス(例えば空気)が封入され、掃気室124とシリンダ110内の差圧をもって掃気ポート122から活性ガスが吸入される。掃気室124の圧力は、ほぼ一定とすることができる。しかしながら、掃気室124の圧力が変化する場合には、掃気ポート122に圧力計を設け、その計測値に応じて燃料ガスの噴射量等、他のパラメータを制御してもよい。
燃料噴射ポート126は、シリンダ110内周面(排気ポート116と掃気ポート122との間)において、略周方向(厳密な周方向のみならず、ストローク方向への変位を許容する)に所定の間隔を空けて設けられた複数(本実施形態では8個)の開口部である。
燃料噴射弁128は、各燃料噴射ポート126内に配置され、燃料噴射制御部152からの指令を受けて、例えば、LNG(液化天然ガス)をガス化した燃料ガスを噴射する。このようにしてシリンダ110内に燃料ガスが供給される。また、燃料ガスは、LNGに限らず、例えば、LPG(液化石油ガス)、軽油、重油等をガス化したものを適用することもできる。
ロータリエンコーダ130は、不図示のクランク機構に設けられ、クランクの角度信号(以下、クランク角度信号と言う。)を検出する。
吹抜検知部132は、排気ポート116に連通する排気通路中に設けられ、燃料噴射弁128から噴射された燃料ガスが、燃焼室留まらず未燃のまま排気ポート116から排出される量(吹き抜け量)を検知する。この吹抜検知部132は、シリンダ110から排出される排気ガス中の炭化水素(ハイドロカーボン)濃度を検知することで、排気ポート116からの燃料ガスの吹き抜け量を検知する。吹抜検知部132は、吹き抜け量を検知すると、吹き抜け量を示す吹抜検知信号を燃料噴射制御部152に出力する。
ガバナー150は、上位の制御装置から入力されたエンジン出力指令値と、ロータリエンコーダ130からのクランク角度信号によるエンジン回転数に基づいて、燃料噴射量を導出し、燃料噴射制御部152に出力する。
燃料噴射制御部152は、ガバナー150から入力された燃料噴射量を示す情報と、ロータリエンコーダ130からのクランク角度信号、吹抜検知信号に基づいて、燃料噴射弁128を制御信号によって制御する。また、本実施形態において、燃料噴射制御部152は、負荷判定部としても機能し、ガバナー150から入力された燃料噴射量を示す情報に基づいて、ユニフロー掃気式2サイクルエンジン100が高負荷状態であるか低負荷状態であるかを判定する。
排気制御部154は、燃料噴射制御部152からの燃料噴射量を示す情報、および、ロータリエンコーダ130からのクランク角度信号に基づいて、排気弁駆動装置118に排気弁操作信号を出力する。以下、上述したユニフロー掃気式2サイクルエンジン100のエンジンサイクルにおける各制御部の動作について説明する。
図2は、各制御部の動作を示す説明図である。図2に示すように、燃焼行程後の排気行程では、排気ポート116および掃気ポート122が閉塞状態にあり、燃焼室140(シリンダ110内)には排気ガスが充満している。
燃焼室140の燃焼作用によって生じる爆発圧力により、ピストン112が下降し下死点に近づくと、排気制御部154は排気弁駆動装置118を通じて排気弁120を開弁し、また、ピストン112の摺動動作に応じて掃気ポート122が開口する(図2に示すt1)。これにより、掃気ポート122から活性ガスが吸入され、活性ガスは、燃料ガスの混合を促進するためのスワール(旋回流)を形成しながら上昇し、燃焼室140(シリンダ110内)の排気ガスを排気ポート116から押し出す。
ピストン112が下死点から上死点に向けて上昇する圧縮行程では、掃気ポート122が閉じられ、活性ガスの吸入が停止される。このとき、排気制御部154は、排気弁120を開弁状態に維持しており、ピストン112の上昇によって、引き続き、燃焼室140(シリンダ110内)の排気ガスは、排気ポート116から排出される。この間、燃料噴射制御部152は、ガバナー150から入力された燃料噴射量を示す情報や、ロータリエンコーダ130からのクランク角度信号によって導出されるエンジン回転数等に基づいて、ピストン112が燃料噴射弁128よりも下死点側にあるときに、燃料噴射弁128からシリンダ110内に燃料ガスを噴射する(図2に示すt2)。
これにより、掃気ポート122から吸入された活性ガスに燃料ガスが噴射され、燃焼室140(シリンダ110内)に予混合気が生成される。その後、さらにピストン112が上昇して、燃料噴射弁128よりも上死点に近づくと、排気制御部154は、排気弁120を閉弁して排気ポート116を閉じる(図2に示すt3)。
このようにして、燃焼室140において予混合気が燃焼することにより、上記のとおりに、排気、吸気(給気)、圧縮、燃焼、膨張行程が繰り返される。ここで、エンジンの運転状況にもよるが、例えば、エンジンが高負荷状態である場合、燃料ガスが局所的に噴射されると、場合によっては、ノッキングや過早着火が生じ、運転性能が低下する可能性がある。一方、常に、シリンダ110内(燃焼室140)の全体に広く燃料ガスを行き渡らせるように燃料噴射弁128を構成すると、エンジンが低負荷状態である場合に燃料ガスが燃焼しない可能性がある。そこで、本実施形態においては、運転状況に応じて、燃料ガスを適した場所に噴射するべく、燃料噴射弁128を次のように構成している。
図3A、図3B及び図3Cは、燃料噴射弁128を説明するための図であり、図3Aは、シリンダ110における燃料噴射ポート126が形成された位置の水平方向の断面を示し、図3B、図3Cは、図3Aにおける燃料噴射弁128の部分を拡大した図である。
図3Aに示すように、本実施形態のユニフロー掃気式2サイクルエンジン100は、シリンダ110に8つの燃料噴射ポート126が形成されており、これら8つの燃料噴射ポート126それぞれに燃料噴射弁128が設けられている。
本実施形態において、燃料噴射弁128は、燃料噴射制御部152から出力された制御信号に応じて、燃料ガスの噴射方向を可変することができる。
具体的に説明すると、図3B、図3Cに示すように、燃料噴射弁128は、シリンダブロック110bに形成された燃料ガスが流通する流路110cの径と略同一となる寸法関係を維持するとともに、軸P、軸Qの2つの軸を回転軸として回動する本体部210と、本体部210の一端側に形成された噴射口212と、本体部210の他端側に形成され、噴射口212より大径の導入口214と、噴射口212と導入口214とを連続するとともに本体部210を貫通する貫通孔220とを含んで構成される。また、貫通孔220は、噴射口212から連続するとともに、噴射口212と略同径の指向部220aと、指向部220aと導入口214とを連続する連続部220bからなる。
不図示の駆動部が、燃料噴射制御部152から出力された制御信号を受信すると、燃料噴射弁128の本体部210を回動制御して、燃料噴射弁128を、図3Bに示す第1状態と、図3Cに示す第2状態とに制御する。
図4は、燃料ガスの噴射方向を説明する図であり、シリンダ110における燃料噴射ポート126が形成された位置の水平方向の断面を示す。図5A、図5B及び図5Cは、シリンダ110における燃料噴射ポート126が形成された位置の鉛直方向の断面図であり、図5Aは、図4におけるV(a)-V(a)線の断面を示し、図5Bは、図4におけるV(b)-V(b)線の断面を示し、図5Cは、吹抜検知部132から出力された吹抜検知信号に基づいて、燃料噴射弁128を制御する場合の断面を示している。
図4中、上述した第1状態に配される燃料噴射弁128を符号128aで示し、上述した第2状態に配される燃料噴射弁128を符号128bで示す。
燃料噴射制御部152による制御信号に応じて、本体部210が回動し、燃料噴射弁128aが第1状態に配される場合、すなわち、流路110cの延伸方向と交差する方向に貫通孔220の中心線が配される場合(図3B参照)、シリンダ110(燃焼室140)内に吸入された活性ガスのスワールすなわち旋回流(図4中、符号300で示す破線矢印)に沿う方向(第1方向、図4中、符号232で示す実線矢印方向)に燃料ガスを噴射する。
一方、燃料噴射制御部152による制御信号に応じて、本体部210が回動し、燃料噴射弁128bが第2状態に配される場合、すなわち、流路110cの延伸方向に沿う方向に貫通孔220の中心線が配される場合(図3C参照)、第1状態の燃料噴射弁128aよりもシリンダ110の中心軸側(第2方向、本実施形態ではシリンダ110の中心軸、図4中、符号234で示す白抜き矢印方向)に向けて燃料ガスを噴射する。
ここで、活性ガスの旋回流(スワール)に沿う方向というのは、活性ガスの流動方向と、燃料ガスの噴射方向とが完全に一致している場合に限らず、活性ガスの流れに燃料ガスがスムーズに乗る関係にあればよい。具体的には、シリンダ110の水平方向の断面において、活性ガスの旋回流の方向(流動方向)と、燃料ガスの噴射方向とのなす角度α(図4参照)が、0°<α<90°であればよい。この場合、第2状態の燃料噴射弁128bから噴射される燃料ガスが、第1状態の燃料噴射弁128aから噴射される燃料ガスよりも、シリンダ110の中心軸側に向かっていればよい。
また、ここでは、燃料噴射弁128bは、図5Aに示すように、シリンダ110の中心軸に向かって水平方向に燃料ガスを噴射し、燃料噴射弁128aは、図5Bに示すように、水平方向よりも鉛直上方に向けて燃料ガスを噴射する。燃料噴射弁128aおよび燃料噴射弁128bから噴射される燃料ガスの、鉛直方向における噴射角度は、適宜設定すればよい。したがって、例えば、燃料噴射弁128aから水平方向に燃料ガスを噴射してもよいし、第2の燃料噴射弁128bから、水平方向よりも鉛直上方に向けて燃料ガスを噴射してもよい。
詳しくは後述するが、吹抜検知部132から出力された吹抜検知信号に基づいて、図5Cに示すように、燃料噴射弁128から、水平方向よりも鉛直下方(掃気ポート122側)に向けて燃料を噴射してもよい。
このように、燃料噴射制御部152によって、燃料噴射弁128を、第1状態と、第2状態に切り換え可能とする、すなわち、燃料噴射弁128から噴射される燃料ガスの噴射方向を可変することにより、ユニフロー掃気式2サイクルエンジン100の運転状態に応じて、燃料ガスを適した場所に噴射することができる。
例えば、ユニフロー掃気式2サイクルエンジン100が高負荷状態であると判定した場合、燃料噴射制御部152は、燃料噴射弁128を第1状態に回動制御する。これにより、燃料噴射弁128は、シリンダ110(燃焼室140)内に吸入された活性ガスのスワールに沿う方向に燃料ガスを噴射させる。こうすることで、シリンダ110(燃焼室140)内において、広く全体に燃料ガスを行き渡らせることが可能となる。従って、従来に比して運転性能を向上することができる。
また、ユニフロー掃気式2サイクルエンジン100が低負荷状態であると判定した場合、燃料噴射制御部152は、燃料噴射弁128を第2状態に回動制御する。これにより、燃料噴射弁128は、シリンダ110の中心軸に向けて燃料ガスを噴射させる。こうすることで、シリンダ110内において燃料ガスの濃い部分を意図的に生成することができ、確実に燃焼作用をもたらすことが可能となる。
さらに、燃料噴射弁128には、流路調整機構230が設けられている。図6A及び図6Bは、流路調整機構230の具体例を説明するための図である。流路調整機構230は、噴射口212に設けられており、図6A及び図6Bに示すように、例えば、12の可動片232で構成されている。流路調整機構230は、図6Aに示す第1の状態において、流路断面積が最大となっている。第1の状態から、先端部232a同士が接触するように、すなわち、流路調整機構230の内側に先端部232aが配されるように、各可動片232を可動することで、図6Bに示す第2の状態に変移させる。そうすると、第2の状態では、第1の状態と比較して流路断面積を小さくすることができる。このように、流路調整機構230は、貫通孔220の流路断面積を可変とすることが可能となる。流路調整機構230は、噴射口212に限らず、燃料ガスが流通する貫通孔220における導入口214(燃料噴射弁128の内部)から噴射口212までのいずれかの流路(指向部220a、連続部220b)に設けられていてもよい。流路調整機構230を備えることにより、燃料噴射弁128の噴射口212からシリンダ110内に噴射される燃料ガスの流量を調整することが可能となる。
また、燃料噴射弁128の流路調整機構は、所望の流量に燃料ガスを噴射することができればよく、上述した流路調整機構230の構成に限らない。例えば、指向部220aを独立して複数設けておき、指向部220aを開閉する機構を、流量調整機構とする。指向部220aを閉状態、または開状態にする数を制御することで、貫通孔220の流路断面積を可変としてもよい。
続いて、燃料噴射制御部152による燃料噴射弁128の制御方法について説明する。図7は、燃料噴射制御部152による燃料噴射弁128の制御方法の一例を説明するフローチャートである。この図7に示す処理は、例えば、ガバナー150から燃料噴射量に情報が燃料噴射制御部152に入力された場合に開始される。
(ステップS301)
燃料噴射制御部152は、ガバナー150から燃料噴射量に情報が入力されると、吹抜検知部132から入力された吹抜検知信号が示す燃料ガスの吹き抜け量が、予め定められた第1閾値以上であるか否かを判定する。そして、燃料ガスの吹き抜け量が第1閾値以上である場合(ステップS301におけるYes)、ステップS302に処理を移行し、第1閾値未満である場合(ステップS301におけるNo)、ステップS303に処理を移行する。
燃料噴射制御部152は、ガバナー150から燃料噴射量に情報が入力されると、吹抜検知部132から入力された吹抜検知信号が示す燃料ガスの吹き抜け量が、予め定められた第1閾値以上であるか否かを判定する。そして、燃料ガスの吹き抜け量が第1閾値以上である場合(ステップS301におけるYes)、ステップS302に処理を移行し、第1閾値未満である場合(ステップS301におけるNo)、ステップS303に処理を移行する。
(ステップS302)
燃料ガスの吹き抜け量が第1閾値以上である場合(ステップS301におけるYes)、燃料噴射制御部152は、燃料噴射弁128を制御して、燃料ガスの噴射方向を、燃料ガスの吹き抜け量が第1閾値未満である場合(燃料ガスの吹き抜けを検知していない場合)よりも、ピストン112のストローク方向において掃気ポート122側に向ける。
燃料ガスの吹き抜け量が第1閾値以上である場合(ステップS301におけるYes)、燃料噴射制御部152は、燃料噴射弁128を制御して、燃料ガスの噴射方向を、燃料ガスの吹き抜け量が第1閾値未満である場合(燃料ガスの吹き抜けを検知していない場合)よりも、ピストン112のストローク方向において掃気ポート122側に向ける。
上述したように、燃料噴射弁128から燃料を噴射する際には、排気ポート116がいまだ開口している(図2参照)ため、シリンダ110内のガスの流れの状況によっては、燃料ガスの吹き抜けが生じ、燃料噴射弁128から噴射した燃料の一部が、そのまま排気ポート116から排出されることもあり得る。そこで、吹抜検知部132が吹き抜けを検知した場合(燃料ガスの吹き抜け量が第1閾値以上である場合)、燃料噴射弁128による燃料ガスの噴射方向を、燃料ガスの吹き抜けを検知していない場合よりも、ピストン112のストローク方向において掃気ポート122側に向けることで、排気ポート116からの燃料ガスの吹き抜け量を低減することが可能となる。
(ステップS303)
燃料ガスの吹き抜け量が第1閾値未満である場合(ステップS301におけるNo)、燃料噴射制御部152は、負荷判定部として機能し、ガバナー150から入力された燃料噴射量を示す情報に基づいて、ユニフロー掃気式2サイクルエンジン100の負荷状態が高負荷状態であるか否かを判定する。具体的に説明すると、燃料噴射制御部152は、ユニフロー掃気式2サイクルエンジン100の負荷が予め定められた第2閾値以上であるか否かを判定する。ユニフロー掃気式2サイクルエンジン100の負荷が予め定められた第2閾値以上である場合(ステップS303におけるYes)、ユニフロー掃気式2サイクルエンジン100の負荷状態が高負荷状態であるとみなし、ステップS304に処理を移行する。一方、ユニフロー掃気式2サイクルエンジン100の負荷が予め定められた第2閾値未満である場合(ステップS303におけるNo)、ユニフロー掃気式2サイクルエンジン100の負荷状態が低負荷状態であるとみなし、ステップS306に処理を移行する。
燃料ガスの吹き抜け量が第1閾値未満である場合(ステップS301におけるNo)、燃料噴射制御部152は、負荷判定部として機能し、ガバナー150から入力された燃料噴射量を示す情報に基づいて、ユニフロー掃気式2サイクルエンジン100の負荷状態が高負荷状態であるか否かを判定する。具体的に説明すると、燃料噴射制御部152は、ユニフロー掃気式2サイクルエンジン100の負荷が予め定められた第2閾値以上であるか否かを判定する。ユニフロー掃気式2サイクルエンジン100の負荷が予め定められた第2閾値以上である場合(ステップS303におけるYes)、ユニフロー掃気式2サイクルエンジン100の負荷状態が高負荷状態であるとみなし、ステップS304に処理を移行する。一方、ユニフロー掃気式2サイクルエンジン100の負荷が予め定められた第2閾値未満である場合(ステップS303におけるNo)、ユニフロー掃気式2サイクルエンジン100の負荷状態が低負荷状態であるとみなし、ステップS306に処理を移行する。
(ステップS304)
ユニフロー掃気式2サイクルエンジン100の負荷状態が高負荷状態である場合(ステップS303におけるYes)、燃料噴射制御部152は、燃料噴射弁128の流路調整機構を制御して、燃料噴射弁128における貫通孔220の流路断面積を予め定められた第1面積にする。
ユニフロー掃気式2サイクルエンジン100の負荷状態が高負荷状態である場合(ステップS303におけるYes)、燃料噴射制御部152は、燃料噴射弁128の流路調整機構を制御して、燃料噴射弁128における貫通孔220の流路断面積を予め定められた第1面積にする。
(ステップS305)
そして、燃料噴射制御部152は、燃料噴射弁128を制御して、燃料ガスの噴射方向を、第1方向(シリンダ110内に吸入された活性ガスの旋回流に沿う方向)に向ける。
そして、燃料噴射制御部152は、燃料噴射弁128を制御して、燃料ガスの噴射方向を、第1方向(シリンダ110内に吸入された活性ガスの旋回流に沿う方向)に向ける。
(ステップS306)
一方、ユニフロー掃気式2サイクルエンジン100の負荷状態が低負荷状態である場合(ステップS303におけるNo)、燃料噴射制御部152は、燃料噴射弁128の流路調整機構を制御して、燃料噴射弁128における貫通孔220の流路断面積を予め定められた第1面積より小さい第2面積に変更する。
一方、ユニフロー掃気式2サイクルエンジン100の負荷状態が低負荷状態である場合(ステップS303におけるNo)、燃料噴射制御部152は、燃料噴射弁128の流路調整機構を制御して、燃料噴射弁128における貫通孔220の流路断面積を予め定められた第1面積より小さい第2面積に変更する。
(ステップS307)
そして、燃料噴射制御部152は、燃料噴射弁128を制御して、燃料ガスの噴射方向を、第2方向(第1方向よりもシリンダ110の中心軸側に向かう方向)に向ける。
そして、燃料噴射制御部152は、燃料噴射弁128を制御して、燃料ガスの噴射方向を、第2方向(第1方向よりもシリンダ110の中心軸側に向かう方向)に向ける。
上記の処理によれば、ユニフロー掃気式2サイクルエンジン100が高負荷状態である場合、燃料噴射弁128における貫通孔220の流路断面積を相対的に大きい第1面積にすることにより、燃料ガスの消費が相対的に多い高負荷状態である場合に、より多くの燃料ガスをシリンダ110内に噴射することができる。
さらに、高負荷状態である場合、燃料噴射制御部152は、燃料噴射弁128による燃料ガスの噴射方向を第1方向とすることにより、シリンダ110内の全体に広く燃料ガスを行き渡らせることができる。これにより、多量の燃料ガスが噴射された場合に、シリンダ110内において燃料ガスが局所的に濃くなりすぎる可能性が低減され、エンジンの運転状況に拘わらず、異常燃焼を回避して正常な運転が可能となる。
また、ユニフロー掃気式2サイクルエンジン100が低負荷状態である場合、燃料噴射弁128における貫通孔220の流路断面積を相対的に小さい第2面積にすることにより、燃料ガスの消費が相対的に少ない低負荷状態である場合に、少量の燃料ガスを、勢いよくシリンダ110内に噴射することができる。
さらに、低負荷状態である場合、燃料噴射制御部152は、燃料噴射弁128による燃料ガスの噴射方向を第2方向とすることにより、シリンダ110の中心近傍において、複数の燃料噴射弁128から噴射される燃料ガスを勢いよく衝突させ、燃料ガスの濃い部分を意図的に生成することができ、確実に燃焼作用をもたらすことが可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はこのような実施形態に限定されない。当業者であれば、請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属すると了解される。
例えば、上記実施形態においては、燃料噴射制御部152が負荷判定部として機能する場合を例に挙げて説明した。変更例では、燃料噴射制御部152と負荷判定部とを別の機能部で構成してもよい。
また、上述した実施形態では、高負荷状態である場合、燃料噴射制御部152は、燃料噴射弁128による燃料ガスの噴射方向を第1方向とする構成について説明した。しかし、ユニフロー掃気式2サイクルエンジン100が高負荷状態である場合、燃料噴射制御部152は、複数の燃料噴射弁128を制御して、複数の燃料噴射弁128のうち、一部の燃料噴射弁128における燃料ガスの噴射方向を第1方向とし、その他の燃料噴射弁128における燃料ガスの噴射方向を第2方向としてもよい。これにより、より均一にシリンダ110内の全体に広く燃料ガスを行き渡らせることができる。この場合、第1方向に燃料ガスを噴射する燃料噴射弁128aと、第2方向に燃料ガスを噴射する燃料噴射弁128bとを交互に配してもよい。従って、全ての燃料噴射弁128から同時に燃料ガスを噴射したとしても、隣接する燃料噴射弁128から噴射される燃料ガスが干渉しにくくなり、シリンダ110(燃焼室140)内において、より広く全体に燃料ガスを行き渡らせることが可能となる。
また、上述した実施形態において、燃料噴射弁128として、図3A、図3B及び図3Cに示した構成の燃料噴射弁128を例に挙げて説明した。燃料噴射弁128は、所望の方向に燃料ガスを噴射することができればよく、その具体的な構成は適宜設計すればよい。
また、上述した実施形態においては、第1の燃料噴射弁128aと第2の燃料噴射弁128bとを同数設けるが、第1の燃料噴射弁128aおよび第2の燃料噴射弁128bの数が異なっていてもよいし、また、これらの配置も特に限定されない。
また、上述した実施形態では、燃料噴射弁128が流路調整機構を備える構成について説明したが、流路調整機構は必ずしも必要ではない。
本発明は、掃気ポートから吸入された活性ガスに燃料ガスを噴射して生成される予混合気を燃焼させるユニフロー掃気式2サイクルエンジンに利用することができる。また、燃料噴射弁の構成を工夫することで、シリンダ内の全体に広く燃料ガスを行き渡らせることができ、より運転性能が向上する。
100 ユニフロー掃気式2サイクルエンジン
110 シリンダ
112 ピストン
116 排気ポート
120 排気弁
122 掃気ポート
128 燃料噴射弁
132 吹抜検知部
152 燃料噴射制御部(負荷判定部)
110 シリンダ
112 ピストン
116 排気ポート
120 排気弁
122 掃気ポート
128 燃料噴射弁
132 吹抜検知部
152 燃料噴射制御部(負荷判定部)
Claims (4)
- 内部に燃焼室が形成されるシリンダと、
前記シリンダ内を摺動するピストンと、
前記シリンダにおける前記ピストンのストローク方向一端部に設けられた排気ポートと、
前記排気ポートを開閉する排気弁と、
前記シリンダにおける前記ピストンのストローク方向他端部側の内周面に設けられ、前記ピストンの摺動動作に応じて前記燃焼室に活性ガスを吸入する掃気ポートと、
前記掃気ポートから前記燃焼室に吸入された活性ガスに燃料ガスを噴射して予混合気を生成する複数の燃料噴射弁と、
前記複数の燃料噴射弁の一部または全部から噴射される燃料ガスの噴射方向を可変する燃料噴射制御部と、を備えるユニフロー掃気式2サイクルエンジン。 - 前記ユニフロー掃気式2サイクルエンジンが高負荷状態であるか低負荷状態であるかを判定する負荷判定部をさらに備え、
前記燃料噴射制御部は、
前記負荷判定部が検出した負荷状態が高負荷状態である場合、前記燃料ガスの噴射方向を、前記シリンダ内に吸入された活性ガスの旋回流に沿う方向である第1方向に向け、前記負荷判定部が検出した負荷状態が低負荷状態である場合、前記燃料ガスの噴射方向を前記第1方向よりも前記シリンダの中心軸側に向かう方向である第2方向に向ける請求項1に記載のユニフロー掃気式2サイクルエンジン。 - 前記燃料ガスの前記排気ポートからの吹き抜け量を検知する吹抜検知部をさらに備え、
前記燃料噴射制御部は、
前記吹抜検知部によって検知される前記燃料ガスの吹き抜け量が閾値以上となった場合、前記燃料ガスの吹き抜け量が閾値未満である場合よりも、前記燃料ガスの噴射方向を、前記ピストンのストローク方向において前記掃気ポート側に向ける請求項1または2に記載のユニフロー掃気式2サイクルエンジン。 - 前記複数の燃料噴射弁は、
前記燃料ガスが流通する前記燃料噴射弁の内部から噴射口までのいずれかの流路において、流路断面積が可変である請求項1から3のいずれか1項に記載のユニフロー掃気式2サイクルエンジン。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380045289.2A CN104619981B (zh) | 2012-08-31 | 2013-08-29 | 单流扫气式二冲程发动机 |
EP13833096.4A EP2891790B1 (en) | 2012-08-31 | 2013-08-29 | Uniflow scavenging two-cycle engine |
KR1020157005736A KR101656323B1 (ko) | 2012-08-31 | 2013-08-29 | 유니플로 소기식 2사이클 엔진 |
DK13833096.4T DK2891790T3 (en) | 2012-08-31 | 2013-08-29 | LENGTH RINSE TOTAL ENGINE |
US14/634,113 US9810142B2 (en) | 2012-08-31 | 2015-02-27 | Uniflow-scavenging-type two-cycle engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-191120 | 2012-08-31 | ||
JP2012191120A JP5983196B2 (ja) | 2012-08-31 | 2012-08-31 | ユニフロー掃気式2サイクルエンジン |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/634,113 Continuation US9810142B2 (en) | 2012-08-31 | 2015-02-27 | Uniflow-scavenging-type two-cycle engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034796A1 true WO2014034796A1 (ja) | 2014-03-06 |
Family
ID=50183601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073188 WO2014034796A1 (ja) | 2012-08-31 | 2013-08-29 | ユニフロー掃気式2サイクルエンジン |
Country Status (7)
Country | Link |
---|---|
US (1) | US9810142B2 (ja) |
EP (1) | EP2891790B1 (ja) |
JP (1) | JP5983196B2 (ja) |
KR (1) | KR101656323B1 (ja) |
CN (1) | CN104619981B (ja) |
DK (1) | DK2891790T3 (ja) |
WO (1) | WO2014034796A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105569874A (zh) * | 2014-10-31 | 2016-05-11 | 温特图尔汽柴油公司 | 供气系统、气缸、往复活塞式内燃机及其操作方法 |
CN105569876A (zh) * | 2014-10-31 | 2016-05-11 | 温特图尔汽柴油公司 | 供气系统、气缸、往复活塞式内燃机及其操作方法 |
JP2017061927A (ja) * | 2015-09-23 | 2017-03-30 | ヴィンタートゥール ガス アンド ディーゼル アーゲー | 往復動ピストン内燃機関のためのガス供給システム及びシリンダ・ライナー、往復動ピストン内燃機関、並びに往復動ピストン内燃機関の運転方法 |
JP2020016171A (ja) * | 2018-07-24 | 2020-01-30 | 株式会社Ihi | 燃料噴射装置及びエンジンシステム |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5949183B2 (ja) | 2012-06-06 | 2016-07-06 | 株式会社Ihi | 2ストロークユニフローエンジン |
JP6019941B2 (ja) * | 2012-08-31 | 2016-11-02 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
WO2014181861A1 (ja) | 2013-05-10 | 2014-11-13 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
EP3015698A1 (de) * | 2014-10-31 | 2016-05-04 | Winterthur Gas & Diesel AG | Gaszuführsystem mit Schaftabdichtung und Zylinder für eine Hubkolbenbrennkraftmaschine, Hubkolbenbrennkraftmaschine, sowie Verfahren zum Betreiben einer Hubkolbenbrennkraftmaschine |
CN108291500B (zh) * | 2015-11-30 | 2021-01-01 | 株式会社 Ihi | 燃气发动机 |
CN106762186A (zh) * | 2016-12-29 | 2017-05-31 | 沪东重机有限公司 | 船用二冲程低速柴油机多模式燃油优化的应用方法 |
DK180103B1 (en) * | 2018-12-11 | 2020-05-04 | MAN Energy Solutions | Internal combustion engine |
CN111636969B (zh) * | 2020-06-05 | 2021-04-16 | 吉林大学 | 一种二冲程双燃料发动机的供油供气控制方法及系统 |
CN112682236B (zh) * | 2020-12-27 | 2022-08-23 | 常州市华辉油嘴油泵有限公司 | 一种可变径伞状喷口喷油器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61197757A (ja) * | 1985-02-25 | 1986-09-02 | Akira Suzuki | 燃料噴射方向可変式デイ−ゼル機関 |
JP2001027170A (ja) * | 1999-07-12 | 2001-01-30 | Nissan Motor Co Ltd | 筒内直噴式ガソリンエンジン及び燃料噴射弁 |
JP2012077742A (ja) | 2010-09-08 | 2012-04-19 | Ihi Corp | 2サイクルエンジン |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1216528A (fr) * | 1958-11-28 | 1960-04-26 | Renault | Dispositif doseur et émulseur de gaz et de liquide |
GB1254151A (en) * | 1968-01-08 | 1971-11-17 | Shigeru Onishi | Internal combustion engine |
US3646924A (en) * | 1971-03-23 | 1972-03-07 | Int Materials Corp | Fuel system for gaseous fueled engines |
JPS5985471A (ja) * | 1982-11-09 | 1984-05-17 | Mitsubishi Heavy Ind Ltd | デイ−ゼル機関の燃焼装置 |
JPS6199671U (ja) * | 1984-12-05 | 1986-06-25 | ||
JPS6450218A (en) | 1987-08-21 | 1989-02-27 | Hitachi Maxell | Magnetic recording medium and producing thereof |
DE4407360A1 (de) * | 1994-03-05 | 1995-09-07 | Otto C Pulch | Vorrichtung zum Einspritzen von Kraftstoff in die Zylinder von Verbrennungsmotoren |
JPH10318016A (ja) * | 1997-05-16 | 1998-12-02 | Mitsubishi Heavy Ind Ltd | エンジンの燃料噴射装置 |
KR100405784B1 (ko) | 2000-12-13 | 2003-11-15 | 현대자동차주식회사 | 인젝터용 입자 크기 조절장치 |
JP2004353514A (ja) * | 2003-05-28 | 2004-12-16 | Kawasaki Heavy Ind Ltd | 2ストロークディーゼル機関の窒素酸化物低減方法とその装置 |
US7270108B2 (en) | 2005-03-31 | 2007-09-18 | Achates Power Llc | Opposed piston, homogeneous charge pilot ignition engine |
US8972151B2 (en) | 2010-08-05 | 2015-03-03 | Ihi Corporation | Two-cycle engine |
DK2634398T3 (da) * | 2010-10-28 | 2020-11-09 | Ihi Corp | Totaktsmotor |
JP5811539B2 (ja) * | 2011-01-24 | 2015-11-11 | 株式会社Ihi | 2サイクルエンジン |
JP5811538B2 (ja) * | 2011-01-24 | 2015-11-11 | 株式会社Ihi | 2サイクルエンジン |
JP5949183B2 (ja) | 2012-06-06 | 2016-07-06 | 株式会社Ihi | 2ストロークユニフローエンジン |
JP6115045B2 (ja) | 2012-08-31 | 2017-04-19 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
JP6019941B2 (ja) | 2012-08-31 | 2016-11-02 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
JP6036128B2 (ja) | 2012-10-03 | 2016-11-30 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
WO2014181861A1 (ja) | 2013-05-10 | 2014-11-13 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
EP2995795B1 (en) | 2013-05-10 | 2019-07-10 | IHI Corporation | Uniflow scavenging 2-cycle engine |
CN105189968B (zh) | 2013-05-10 | 2018-04-13 | 株式会社 Ihi | 单流扫气式二冲程发动机 |
-
2012
- 2012-08-31 JP JP2012191120A patent/JP5983196B2/ja active Active
-
2013
- 2013-08-29 EP EP13833096.4A patent/EP2891790B1/en active Active
- 2013-08-29 KR KR1020157005736A patent/KR101656323B1/ko active IP Right Grant
- 2013-08-29 CN CN201380045289.2A patent/CN104619981B/zh active Active
- 2013-08-29 DK DK13833096.4T patent/DK2891790T3/en active
- 2013-08-29 WO PCT/JP2013/073188 patent/WO2014034796A1/ja active Application Filing
-
2015
- 2015-02-27 US US14/634,113 patent/US9810142B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61197757A (ja) * | 1985-02-25 | 1986-09-02 | Akira Suzuki | 燃料噴射方向可変式デイ−ゼル機関 |
JP2001027170A (ja) * | 1999-07-12 | 2001-01-30 | Nissan Motor Co Ltd | 筒内直噴式ガソリンエンジン及び燃料噴射弁 |
JP2012077742A (ja) | 2010-09-08 | 2012-04-19 | Ihi Corp | 2サイクルエンジン |
Non-Patent Citations (1)
Title |
---|
See also references of EP2891790A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105569874A (zh) * | 2014-10-31 | 2016-05-11 | 温特图尔汽柴油公司 | 供气系统、气缸、往复活塞式内燃机及其操作方法 |
CN105569876A (zh) * | 2014-10-31 | 2016-05-11 | 温特图尔汽柴油公司 | 供气系统、气缸、往复活塞式内燃机及其操作方法 |
EP3015679B1 (de) | 2014-10-31 | 2018-12-05 | Winterthur Gas & Diesel AG | Zylinder für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine |
EP3015699B1 (de) | 2014-10-31 | 2018-12-05 | Winterthur Gas & Diesel AG | Gaszuführsystem mit einem Kontrollsystem und Zylinder für eine Hubkolbenbrennkraftmaschine, Hubkolbenbrennkraftmaschine, sowie Verfahren zum Betreiben einer Hubkolbenbrennkraftmaschine |
JP2017061927A (ja) * | 2015-09-23 | 2017-03-30 | ヴィンタートゥール ガス アンド ディーゼル アーゲー | 往復動ピストン内燃機関のためのガス供給システム及びシリンダ・ライナー、往復動ピストン内燃機関、並びに往復動ピストン内燃機関の運転方法 |
EP3147477B1 (de) | 2015-09-23 | 2018-10-17 | Winterthur Gas & Diesel AG | Gaszuführsystem und zylinderliner für eine hubkolbenbrennkraftmaschine, hubkolbenbrennkraftmaschine, sowie verfahren zum betreiben einer hubkolbenbrennkraftmaschine |
JP2020016171A (ja) * | 2018-07-24 | 2020-01-30 | 株式会社Ihi | 燃料噴射装置及びエンジンシステム |
JP2023022223A (ja) * | 2018-07-24 | 2023-02-14 | 株式会社Ihi | 燃料噴射装置 |
JP7474830B2 (ja) | 2018-07-24 | 2024-04-25 | 株式会社三井E&S Du | 燃料噴射装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2891790B1 (en) | 2018-01-03 |
EP2891790A1 (en) | 2015-07-08 |
KR101656323B1 (ko) | 2016-09-09 |
JP5983196B2 (ja) | 2016-08-31 |
DK2891790T3 (en) | 2018-02-05 |
KR20150038602A (ko) | 2015-04-08 |
JP2014047705A (ja) | 2014-03-17 |
CN104619981A (zh) | 2015-05-13 |
EP2891790A4 (en) | 2016-06-29 |
US9810142B2 (en) | 2017-11-07 |
US20150176475A1 (en) | 2015-06-25 |
CN104619981B (zh) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014034796A1 (ja) | ユニフロー掃気式2サイクルエンジン | |
JP6075086B2 (ja) | ユニフロー掃気式2サイクルエンジンおよびユニフロー掃気式2サイクルエンジンの燃料噴射方法 | |
WO2014034865A1 (ja) | ユニフロー掃気式2サイクルエンジン | |
JP6036128B2 (ja) | ユニフロー掃気式2サイクルエンジン | |
JP5811538B2 (ja) | 2サイクルエンジン | |
JP6115045B2 (ja) | ユニフロー掃気式2サイクルエンジン | |
JP6065974B2 (ja) | ユニフロー掃気式2サイクルエンジン | |
JP2012154189A (ja) | 2サイクルエンジン | |
JP5998671B2 (ja) | 2サイクルエンジン | |
JP5974379B2 (ja) | ユニフロー掃気式2サイクルエンジン | |
KR20190045799A (ko) | 선박용 엔진 및 선박용 엔진 제어방법 | |
JP5780033B2 (ja) | 2サイクルエンジンおよび燃料噴射制御方法 | |
JP6003288B2 (ja) | ユニフロー掃気式2サイクルエンジン | |
WO2015108144A1 (ja) | ユニフロー掃気式2サイクルエンジン | |
JP6633270B2 (ja) | ユニフロー掃気式2サイクルエンジン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13833096 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157005736 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013833096 Country of ref document: EP |