WO2014034696A1 - 金属酸化物と導電性カーボンとの複合材料の製造方法 - Google Patents

金属酸化物と導電性カーボンとの複合材料の製造方法 Download PDF

Info

Publication number
WO2014034696A1
WO2014034696A1 PCT/JP2013/072945 JP2013072945W WO2014034696A1 WO 2014034696 A1 WO2014034696 A1 WO 2014034696A1 JP 2013072945 W JP2013072945 W JP 2013072945W WO 2014034696 A1 WO2014034696 A1 WO 2014034696A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive carbon
transition metal
carbon powder
composite material
hydroxide
Prior art date
Application number
PCT/JP2013/072945
Other languages
English (en)
French (fr)
Inventor
勝彦 直井
和子 直井
智志 久保田
大介 米倉
修一 石本
賢次 玉光
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to EP13832566.7A priority Critical patent/EP2894700B1/en
Priority to US14/425,298 priority patent/US9859035B2/en
Priority to CN201380045719.0A priority patent/CN104603995B/zh
Publication of WO2014034696A1 publication Critical patent/WO2014034696A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/18Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/62Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O5]n-
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a composite material of metal oxide nanoparticles containing any one of Fe, Ni, Co, and Mn and conductive carbon powder.
  • Composite materials containing metal oxides and conductive carbon are widely used for fuel cells, secondary batteries, electrochemical capacitors, antistatic materials and the like.
  • composite oxides of transition metals such as Mn, Ni, Co, and Fe and typical metals belonging to Group 1 or Group 2 of the periodic table such as Li and Mg include lithium ion secondary batteries, magnesium ion secondary batteries, and the like. Therefore, composite materials of these composite oxides and conductive carbon have been frequently studied.
  • these composite materials are generally manufactured by a method of mixing metal oxide particles and conductive carbon powder, or a method of supporting a product on the conductive carbon powder in the production step of metal oxide. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2-109260
  • a lithium source such as lithium nitrate or lithium hydroxide is dissolved in water, manganese nitrate is added as a manganese source, and then heat treatment is performed.
  • a positive electrode of a lithium ion secondary battery in which the obtained LiMn 2 O 4 is mixed with acetylene black or the like as a conductive agent and pressure-molded is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2005-63677
  • a metal oxide powder such as manganese oxide, cobalt oxide, and nickel oxide
  • a conductive agent such as conductive carbon black powder.
  • Patent Document 3 Japanese Patent Laid-Open No. 2007-160151
  • shear stress is applied to the reactant in the rotating reactor.
  • This document describes a composite material in which nanoparticles such as titanium oxide and ruthenium oxide are highly dispersed and supported on a conductive carbon powder by a sol-gel reaction accelerated by applying shear stress and centrifugal force. It has been shown to be suitable for the positive or negative electrode.
  • a high reaction activity is expected if the metal oxide has a fine and high surface area.
  • a composite oxide is obtained by reacting two kinds of metal compounds as in Patent Document 1, it is expected that a homogeneous composite oxide can be obtained quickly if the compound as a raw material is fine. .
  • the reaction method disclosed in Patent Document 3 in which shearing stress and centrifugal force are applied to a reactant in a swirling reactor has one or more metal oxide nanoparticles supported on conductive carbon powder. Therefore, it is preferable.
  • the metal oxide is supported on the conductive carbon powder, the step of further mixing the conductive agent is unnecessary, or the amount of the conductive agent can be reduced.
  • Patent Document 3 what is specifically shown in Patent Document 3 is a sol-gel reaction accelerated by applying shear stress and centrifugal force, and application of this reaction method has not been sufficiently studied yet.
  • an object of the present invention is to efficiently convert metal oxide nanoparticles of uniform size into conductive carbon powder by utilizing a reaction method in which shear stress and centrifugal force are applied to the reactants in this swirling reactor. And it is providing the method which can be made to adhere with dispersibility.
  • a transition metal compound selected from the group consisting of Mn, Fe, Co, and Ni and conductive carbon powder are added to water to dissolve the transition metal compound in water, and the pH of the liquid is adjusted. After adjusting to the range of 9 to 11, when shear stress and centrifugal force are applied in the swirling reactor to this liquid, the transition metal hydroxide nuclei are formed, and these nuclei are fine particles of uniform size. It has been found that it is supported on the conductive carbon powder as well as that almost all of the transition metal contained in the raw material is efficiently supported as a hydroxide on the conductive carbon powder. The inventors have also found that when this conductive carbon powder carrying a hydroxide is heat-treated, a composite material containing metal oxide nanoparticles of uniform size and conductive carbon powder with good dispersibility can be obtained. discovered.
  • the present invention first A reaction liquid containing water, at least one compound containing a transition metal selected from the group consisting of Mn, Fe, Co and Ni and a conductive carbon powder and having a pH in the range of 9 to 11 can be swirled. Preparation process to be introduced into the reactor, The reactor is swirled to apply shear stress and centrifugal force to the reaction solution, thereby generating a transition metal hydroxide nucleus, and the transition metal hydroxide nucleus and the conductivity.
  • the present invention relates to a method for producing a composite material of metal oxide and conductive carbon (hereinafter referred to as “first production method”).
  • the present invention also provides A reaction liquid containing water, at least one compound containing a transition metal selected from the group consisting of Mn, Fe, Co and Ni and a conductive carbon powder and having a pH in the range of 9 to 11 can be swirled. Preparation process to be introduced into the reactor, The reactor is swirled to apply shear stress and centrifugal force to the reaction solution, thereby generating a transition metal hydroxide nucleus, and the transition metal hydroxide nucleus and the conductivity.
  • a reaction liquid containing water, at least one compound containing a transition metal selected from the group consisting of Mn, Fe, Co and Ni and a conductive carbon powder and having a pH in the range of 9 to 11 can be swirled. Preparation process to be introduced into the reactor, The reactor is swirled to apply shear stress and centrifugal force to the reaction solution, thereby generating a transition metal hydroxide nucleus, and the transition metal hydroxide nucleus and the conductivity.
  • a metal oxide comprising: a heat treatment step of reacting the transition metal hydroxide supported on the conductive carbon powder with the typical metal compound to convert it into composite oxide nanoparticles by treatment.
  • the present invention relates to a method for producing a composite material of carbon and conductive carbon (hereinafter referred to as “second production method”).
  • Oxide hydroxides or hydrated oxides such as Co (OH) 3 (Co 2 O 3 .nH 2 O), Ni (OH) 3 (Ni 2 O 3 .nH 2 O) are also in the range of hydroxides.
  • Nanoparticles mean particles having a particle size of 1 to 100 nm, preferably 5 to 50 nm, particularly preferably 10 to 40 nm.
  • solid solutions are also included in the range of metal oxides and composite oxides.
  • hydroxide nuclei are generated by the shear stress and centrifugal force due to the swirling, that is, by mechanical energy.
  • the nuclei grow uniformly while being dispersed in the rotating reactor, and are supported on the conductive carbon powder as fine particles of uniform size.
  • the efficiency is good. If the pH of the reaction solution is less than 9, the production efficiency of hydroxide nuclei in the process of applying shear stress and centrifugal force to the reaction solution and the loading efficiency of the produced hydroxide on the conductive carbon powder are low, and the pH is low.
  • the insolubilization rate of the hydroxide in the supporting step is too fast, and it is difficult to obtain a fine hydroxide. Therefore, by adjusting the pH of the reaction solution in the range of 9 to 11 and applying mechanical energy in a rotating reactor to this reaction solution, hydroxide nuclei are efficiently generated in the reaction solution. As a result, the hydroxide can be supported on the conductive carbon powder as fine particles of uniform size.
  • the hydroxide in the heat treatment step, is supported on the conductive carbon powder by heat-treating the conductive carbon powder supported as fine particles having a uniform size. To oxide nanoparticles.
  • the conductive carbon powder in which the hydroxide is supported as fine particles having a uniform size is used, the oxidation reaction of the hydroxide proceeds quickly and uniformly, and the resulting oxide nano-particles are obtained. The particles are also fine and uniform in size.
  • the conductive carbon powder in which the hydroxide is supported as fine particles having a uniform size is used as a compound of a typical metal belonging to Groups 1 and 2 of the periodic table.
  • the composite oxide is formed on the conductive carbon powder by reacting the transition metal hydroxide with the typical metal compound by heating with a hydroxide, preferably a lithium hydroxide, particularly preferably lithium hydroxide. To form nanoparticles.
  • a hydroxide preferably a lithium hydroxide, particularly preferably lithium hydroxide.
  • the reaction between the transition metal hydroxide and the typical metal compound can be performed quickly and uniformly.
  • the resulting complex oxide nanoparticles also have a fine and uniform size.
  • the reaction liquid introduced into the swirlable reactor in the preparation process is not particularly limited as long as the pH is in the range of 9 to 11, but the conductive carbon powder and the above are added to water.
  • the centrifugal force applied to the reaction solution by the rotation of the reactor in the supporting step is a centrifugal force in a range generally referred to as “ultracentrifugal force”, preferably 1500 kgms ⁇ 2 or more, particularly preferably 70000 kgms. -2 or more centrifugal force.
  • the centrifugal force in this range the hydroxide is supported on the conductive carbon powder as fine particles having a uniform size.
  • the process of applying shear stress and centrifugal force to the reaction solution in a swirling reactor may be referred to as “ultracentrifugation process”.
  • any reactor can be used as long as it can apply a supercentrifugal force to the reaction solution.
  • a reactor having a cylindrical concentric cylinder, a through hole provided in the side surface of the inner cylinder that can be swiveled, and a crest plate disposed in the opening of the outer cylinder is preferably used.
  • the description regarding the reactor in Patent Document 3 is incorporated herein by reference.
  • the distance between the outer surface of the inner cylinder and the inner wall surface of the outer cylinder is preferably 5 mm or less, and more preferably 2.5 mm or less.
  • the heat treatment conditions of the heat treatment step are not particularly limited as long as an oxide is obtained, but it is preferable to perform the heat treatment at a temperature of 200 to 300 ° C. in an oxygen-containing atmosphere. This is because if the temperature is 300 ° C. or lower, the conductive carbon powder is not burnt down even in an oxygen-containing atmosphere, and the metal oxide can be obtained with good crystallinity.
  • the oxide may be reduced, and the target oxide may not be obtained.
  • the composite material of the metal oxide and the conductive carbon obtained by the method of the present invention includes an electrode catalyst in a fuel cell, an electrode active material of a secondary battery such as a lithium ion secondary battery and a magnesium ion secondary battery, and electrochemical It can be suitably used as an electrode active material for capacitors, an antistatic material, and the like.
  • a layered rock salt type LiMO 2 a layered Li 2 MnO 3 —LiMO 2 solid solution, or a spinel type LiM obtained by using a lithium compound as the above-mentioned typical metal compound in the heat treatment step.
  • Carbon powder supporting nanoparticles of 2 O 4 (M means Mn, Fe, Co, Ni or a combination thereof), preferably nanoparticles having a primary particle size of 10 to 40 nm, is lithium
  • M means Mn, Fe, Co, Ni or a combination thereof
  • a hydrothermal treatment is performed in the heat treatment step following the heat treatment at a temperature of 200 to 300 ° C. in an oxygen-containing atmosphere. preferable.
  • spinel is generated together with the composite oxide having a layered structure in the heat treatment step. However, the spinel is converted into the layered structure by the hydrothermal treatment, and a layered structure with high purity can be obtained.
  • the carbon powder can be used without any particular limitation as long as it has conductivity, but it is preferable to use carbon nanotubes as at least a part of the conductive carbon powder. This is because a composite material having excellent conductivity can be obtained, and a positive electrode active material leading to a lithium ion secondary battery having particularly excellent rate characteristics can be obtained.
  • uniform metal oxide nanoparticles are converted into conductive carbon. It can adhere to the powder efficiently and with good dispersibility.
  • a SEM photograph of the powder in the process of producing a composite material of LiMn 2 O 4 and the conductive carbon is a photograph of the comparative example
  • (b) is a photograph for Example.
  • X-ray powder diffraction diagram for a composite material of LiMn 2 O 4 and the conductive carbon embodiment of the present invention.
  • a SEM photograph of a composite material of LiMn 2 O 4 and the conductive carbon (a) is a photograph of the comparative example
  • (b) is a photograph for Example. It is a TEM photograph of the composite material of LiMn 2 O 4 and the conductive carbon embodiment of the present invention.
  • a TG-DTA analysis results for the composite material of Mn 3 O 4 and the conductive carbon (a) is a result of the comparative example, and (b) is the result for Example.
  • the composite material of Mn 3 O 4 and the conductive carbon embodiment of the present invention is a charge-discharge curve of the half-cell in which the cathode active material.
  • the preparation process and the supporting process are common, and only the heat treatment process is different.
  • the preparation process and the supporting process in the first manufacturing method and the second manufacturing method will be described together, and only the heat treatment process will be described separately.
  • the preparation step includes water, at least one compound containing a transition metal selected from the group consisting of Mn, Fe, Co, and Ni, and a conductive carbon powder.
  • a reaction solution having a pH is introduced into a swirlable reactor.
  • water is used as a solvent.
  • An organic solvent may be contained within a range that does not affect the present invention, but the solvent is preferably water alone.
  • any carbon powder having conductivity can be used without particular limitation.
  • Examples include carbon black such as ketjen black, acetylene black, channel black, fullerene, carbon nanotube, carbon nanofiber, amorphous carbon, carbon fiber, natural graphite, artificial graphite, graphitized ketjen black, activated carbon, mesoporous carbon And so on.
  • vapor grown carbon fiber can be used. These carbon powders may be used alone or in combination of two or more. It is preferable that at least a part of the carbon powder is a carbon nanotube.
  • a water-soluble compound can be used without any particular limitation.
  • the above transition metal halides, inorganic metal salts such as nitrates and sulfates, organic metal salts such as formates and acetates, or mixtures thereof can be used. These compounds may be used alone or in combination of two or more. You may mix and use the compound containing a different transition metal by predetermined amount.
  • the pH of the reaction solution is preferably adjusted with an aqueous solution in which an alkali metal, that is, a hydroxide of Li, Na, K, Rb, Cs, or Fr is dissolved.
  • an alkali metal that is, a hydroxide of Li, Na, K, Rb, Cs, or Fr is dissolved.
  • Alkali metal hydroxides may be used alone or in admixture of two or more.
  • an aqueous solution of alkali oxide, ammonia and amine can also be used.
  • a single compound may be used for adjusting the pH, or two or more compounds may be mixed and used.
  • the reaction liquid for ultracentrifugation is obtained by adding the conductive carbon powder and the transition metal water-soluble salt to water to dissolve the water-soluble salt, and alkali metal hydroxide in water. It can be easily prepared by mixing a solution in which is dissolved.
  • the pH of the reaction solution is adjusted to a range of 9-11.
  • the pH is less than 9, the generation efficiency of hydroxide nuclei in the following supporting process and the supporting efficiency of the generated hydroxide on the conductive carbon powder are low.
  • the pH exceeds 11, the hydroxide in the supporting process The insolubilization rate is too high, and it is difficult to obtain fine hydroxides.
  • any reactor can be used as long as it can apply a supercentrifugal force to the reaction solution.
  • the outer cylinder and the inner cylinder described in FIG. A reactor in which a through-hole is provided in the side surface of a rotatable inner cylinder and a sill plate is disposed in the opening of the outer cylinder is preferably used.
  • the form which uses this suitable reactor is demonstrated.
  • the reaction liquid for ultracentrifugation is introduced into the inner cylinder of the reactor.
  • a reaction liquid prepared in advance may be introduced into the inner cylinder, or may be introduced by preparing the reaction liquid in the inner cylinder.
  • Water, conductive carbon powder, and transition metal water-soluble salt were placed in the inner cylinder, the inner cylinder was swirled to dissolve the transition metal water-soluble salt in water, and the conductive carbon powder was dispersed in the liquid. After that, it is preferable that the turning of the inner cylinder is temporarily stopped, and then a solution in which an alkali metal hydroxide is dissolved in water is put into the inner cylinder to adjust the pH, and the inner cylinder is turned again. This is because the dispersion of the conductive carbon powder is improved by the first turning, and the dispersibility of the supported metal oxide nanoparticles is improved.
  • the reactor is swirled to apply shear stress and centrifugal force to the reaction liquid, thereby generating transition metal hydroxide nuclei.
  • the core and the conductive carbon powder are dispersed, and at the same time, a transition metal hydroxide is supported on the conductive carbon powder.
  • the formation of hydroxide nuclei is thought to be realized by the mechanical energy of shear stress and centrifugal force applied to the reaction solution, and this shear stress and centrifugal force are applied to the reaction solution by the rotation of the reactor. Caused by.
  • the centrifugal force applied to the reaction liquid in the reactor is in a range generally referred to as “ultracentrifugal force”, and is generally 1500 kgms ⁇ 2 or more, preferably 70000 kgms ⁇ 2 or more, particularly preferably 270000 kgms ⁇ 2 or more. is there.
  • the distance between the inner cylinder outer wall surface and the outer cylinder inner wall surface is preferably 5 mm or less, more preferably 2.5 mm or less, and particularly preferably 1.0 mm or less.
  • the distance between the inner cylinder outer wall surface and the outer cylinder inner wall surface can be set by the width of the reactor plate and the amount of the reaction liquid introduced into the reactor.
  • the turning time of the inner cylinder there is no strict limit on the turning time of the inner cylinder, and it varies depending on the amount of the reaction solution and the turning speed of the inner cylinder (the value of the centrifugal force), but is generally in the range of 0.5 to 10 minutes. .
  • the value of the centrifugal force By ultracentrifugation, most of the transition metal contained in the reaction solution is supported on the conductive carbon powder as a hydroxide in a short time.
  • the inner cylinder stops turning, and the conductive carbon powder carrying the transition metal hydroxide fine particles having a uniform size is recovered.
  • the conductive carbon powder supporting hydroxide fine particles generally forms an aggregate having a small diameter of 1000 nm or less and a relatively uniform size.
  • Heat treatment step a Heat treatment step in the first production method
  • the recovered conductive carbon powder carrying the transition metal hydroxide fine particles is washed as necessary, and then heat-treated to conduct the conduction.
  • the hydroxide is converted to oxide nanoparticles on the conductive carbon powder.
  • the oxidation reaction of the transition metal hydroxide is performed quickly and uniformly.
  • the resulting oxide nanoparticles also have a fine and uniform size.
  • Heat treatment in a vacuum heat treatment in an inert atmosphere such as nitrogen or argon, or heat treatment in an oxygen-containing atmosphere such as oxygen or air may be used.
  • the temperature and time of the heat treatment is performed at a temperature of 200 to 300 ° C. for 10 hours.
  • Heat treatment in an inert atmosphere is performed at a temperature of 250 to 600 ° C. for 10 minutes to 10 hours
  • heat treatment in a vacuum is performed at a temperature of room temperature to 200 ° C. for 10 minutes to 10 hours.
  • the heat treatment is preferably performed at a temperature of 200 to 300 ° C. in an oxygen-containing atmosphere. This is because if the temperature is 300 ° C. or lower, the conductive carbon powder is not burnt down even in an oxygen-containing atmosphere, and the metal oxide can be obtained with good crystallinity. When heat treatment is performed in an atmosphere not containing oxygen, the oxide may be reduced, and the target oxide may not be obtained.
  • the composite material of the metal oxide and conductive carbon obtained by the first production method of the present invention is suitable as an electrode material for batteries and electrochemical capacitors, and in particular, Fe 2 O 3 , MnO, MnO 2 , A composite material of Mn 2 O 3 , Mn 3 O 4 , CoO, Co 3 O 4 , NiO, Ni 2 O 3 and conductive carbon is suitable as a negative electrode active material in a lithium ion secondary battery.
  • the collected conductive carbon powder carrying the transition metal hydroxide fine particles is washed as necessary, and then the group 1 of the periodic table and The transition metal hydroxide supported on the conductive carbon powder and the typical metal are mixed with at least one compound containing a typical metal selected from the group consisting of elements belonging to Group 2 and heated. Is converted to composite oxide nanoparticles.
  • the reaction between the transition metal hydroxide and the typical metal compound proceeds rapidly and uniformly.
  • the resulting composite oxide nanoparticles also have a fine and uniform size.
  • Typical metals belonging to group 1 of the periodic table ie Li, Na, K, Rb, Cs, Fr, or typical metals belonging to group 2 of the periodic table, ie Be, Mg, Ca, Sr, Ba
  • compounds containing these metals can be used without any particular limitation.
  • inorganic metal salts such as hydroxides, carbonates, halides, nitrates, sulfates, and the like of these metals, Organometallic salts such as formate, acetate, oxalate and lactate, or mixtures thereof can be used. These compounds may be used alone or in combination of two or more.
  • a compound containing different typical metals may be mixed and used in a predetermined amount.
  • Use of a hydroxide is preferable because impurities such as a sulfur compound and a nitrogen compound do not remain and a composite oxide can be obtained quickly.
  • a kneaded product is obtained by kneading while evaporating.
  • a dispersion medium for kneading any medium that does not adversely affect the composite material can be used without particular limitation, and water, methanol, ethanol, isopropyl alcohol, and the like can be preferably used. It can be particularly preferably used.
  • Heat treatment in a vacuum heat treatment in an inert atmosphere such as nitrogen or argon, or heat treatment in an oxygen-containing atmosphere such as oxygen or air may be used.
  • the temperature and time of the heat treatment is performed at a temperature of 200 to 300 ° C. for 10 minutes.
  • Heat treatment in an inert atmosphere for about 10 hours at a temperature of about 250 to 600 ° C. for 10 minutes to 10 hours, and heat treatment in a vacuum at a temperature of room temperature to about 200 ° C. for 10 minutes to 10 hours .
  • the heat treatment is preferably performed at a temperature of 200 to 300 ° C. in an oxygen-containing atmosphere. This is because if the temperature is 300 ° C. or lower, the conductive carbon powder is not burnt down even in an oxygen-containing atmosphere, and a composite oxide can be obtained with good crystallinity. When heat treatment is performed in an atmosphere not containing oxygen, the composite oxide may be reduced, and the target composite oxide may not be obtained.
  • the composite material of the composite oxide and conductive carbon obtained by the second production method of the present invention is suitable as an electrode material for batteries and electrochemical capacitors.
  • a layered rock salt type LiMO 2 a layered Li 2 MnO 3 —LiMO 2 solid solution, or a spinel type LiM 2 O 4 (in the formula, obtained by using lithium hydroxide as the hydroxide of the typical metal in the heat treatment step) (M represents Mn, Fe, Co, Ni, or a combination thereof)
  • a composite material of nanoparticles and conductive carbon is suitable as a positive electrode active material of a lithium ion secondary battery.
  • Examples of layered rock salt type LiMO 2 , layered Li 2 MnO 3 —LiMO 2 solid solution, spinel type LiM 2 O 4 include LiCoO 2 , LiNiO 2 , LiNi 4/5 Co 1/5 O 2 , LiNi 1/3 Co 1 / 3 Mn 1/3 O 2, LiNi 1/2 Mn 1/2 O 2, LiFeO 2, LiMnO 2, Li 2 MnO 3 -LiCoO 2, Li 2 MnO 3 -LiNiO 2, Li 2 MnO 3 -LiNi 1 / 3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 —LiNi 1/2 Mn 1/2 O 2 , Li 2 MnO 3 —LiNi 1/2 Mn 1/2 O 2 —LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 , LiMn 2 O 4 , LiMn 3/2 Ni 1/2 O 4 .
  • a composite material containing these composite oxide nanoparticles and conductive carbon powder with good dispersibility can be obtained.
  • a composite material containing nanoparticles having a primary particle size of 10 to 40 nm is extremely suitable as a positive electrode active material for a lithium ion secondary battery, and provides a lithium ion secondary battery having excellent rate characteristics.
  • a composite material using carbon nanotubes as at least a part of the conductive carbon powder is a positive electrode active material that leads to a lithium ion secondary battery having high conductivity and particularly excellent rate characteristics.
  • spinel may be generated at the same time.
  • hydrothermal treatment following the above-described heat treatment, preferably heat treatment at a temperature of 200 to 300 ° C. in an oxygen-containing atmosphere.
  • the spinel is denatured into a layered structure by hydrothermal treatment, and a layered structure with good purity can be obtained.
  • Hydrothermal treatment can be carried out in hot water at 100 ° C. or higher and 1 atm or higher after introducing heat-treated powder and water, preferably a lithium hydroxide aqueous solution, into the autoclave.
  • the inner cylinder was swung for 300 seconds so that a centrifugal force of 70000 kgms- 2 was applied to the reaction solution again.
  • a nucleus of Mn hydroxide was formed between the inner wall of the outer cylinder and the outer wall of the inner cylinder, and this nucleus grew and was supported on the surface of the ketjen black.
  • the ketjen black was collected by filtration and dried in air at 100 ° C. for 12 hours. When the filtrate was confirmed by ICP spectroscopic analysis, it was found that 95% or more of Mn contained in the Mn (CH 3 COO) 2 .4H 2 O raw material was supported.
  • the dried powder and an aqueous solution containing LiOH.H 2 O in an amount of Mn: Li of 2: 1 are mixed and kneaded. After drying, heat treatment is performed at 280 ° C. in air for 1 hour, and the composite material Got.
  • Example 2 The procedure of Example 1 was repeated except that the heat treatment was performed in air at 300 ° C. for 1 hour instead of the heat treatment in air at 280 ° C. for 1 hour.
  • Example 3 The procedure of Example 1 was repeated except that the heat treatment was performed in air at 350 ° C. for 1 hour instead of the heat treatment in air at 280 ° C. for 1 hour.
  • Example 6 The composite material of Example 2 was mixed with acetylene black as a conductive agent in an amount of 5% by mass of the composite material.
  • FIG. 1 shows an SEM photograph of the material after the supporting process and before the heat treatment process.
  • (A) is a SEM photograph of the material in Comparative Example 1
  • (b) is a SEM photograph of the material in Example 5. From the SEM photograph of (b), in Example 5, it can be seen that the carbon mixture on which hydroxide fine particles are supported forms a relatively uniform aggregate having a diameter of 1000 nm or less.
  • the SEM photograph of (a) in Comparative Example 1 although some aggregates are observed, most of the compounds are amorphous, and this amorphous compound covers the carbon mixture. Recognize.
  • FIG. 2 shows X-ray powder diffractograms of the composite materials of Examples 1 to 3. At any temperature, LiMn 2 O 4 crystals were observed. In particular, LiMn 2 O 4 in the composite materials of Examples 2 and 3 subjected to heat treatment at 300 ° C. or higher showed high crystallinity.
  • FIG. 3 shows the results of evaluating TG measurement of the composite materials of Examples 1 to 3 in an air atmosphere at a temperature rising rate of 1 ° C./min and the weight loss as carbon content. In the composite material of Example 3 which was heat-treated at 350 ° C., almost no weight loss was observed any more, and it was judged that ketjen black was burned out during the heat treatment. Therefore, it was found that heat treatment at 300 ° C. in air is particularly preferable.
  • FIG. 4 shows an SEM photograph of the composite material after the heat treatment step.
  • (A) is a SEM photograph of the composite material of Comparative Example 1
  • (b) is a SEM photograph of the composite material of Example 5. From the SEM photograph of (b), it can be seen that in Example 5, particles of uniform size were formed.
  • FIG. 5 is a TEM photograph of the composite material of Example 5. It can be seen that primary particles of LiMn 2 O 4 having a diameter of 10 to 40 nm are formed with good dispersibility.
  • the composite material of Comparative Example 1 contains grains of various sizes, and also contains large aggregates, and LiMn 2 O 4 It can be seen that the dispersibility is insufficient. This difference is considered to reflect the difference in the form of the compound on the conductive carbon powder in the material before the heat treatment step after the supporting step shown in FIG.
  • FIG. 6 is a diagram showing the relationship between the rate and the discharge capacity for the half-cells using the composite materials of Example 2, Example 6 and Comparative Example 1
  • FIG. 5 is a diagram showing a relationship between a rate and a discharge capacity for a half battery using the composite material of No. 5 and Comparative Example 1.
  • Example 6 As can be seen from FIG. 6, by using the composite material of Example 2 compared to the case of using the composite material of Comparative Example 1 in which the dispersibility of LiMn 2 O 4 is insufficient, the discharge of the half-cell Capacity and rate characteristics could be improved. Also, by mixing a conductive agent with the composite material of Example 2 (Example 6), the discharge capacity of the half-cell can be improved, and the rate characteristic is excellent, showing a gentle decrease in capacity as the rate increases. A half-cell was obtained. Further, as can be seen from FIG. 7, by changing a part of the ketjen black of the composite material of Example 2 to carbon nanotubes (Examples 4 and 5), the conductive material is not mixed into the composite material.
  • the difference between the discharge capacity and rate characteristics of the half-cell and the discharge capacity and rate characteristics of the half-cell using the composite material of Comparative Example 1 is the dispersibility of LiMn 2 O 4 in the composite material shown in FIGS. This is considered to reflect the difference.
  • the turning of the inner cylinder was once stopped, and a solution obtained by dissolving 0.6 g of LiOH.H 2 O in water was added to the inner cylinder.
  • the pH of the liquid was 10.
  • the inner cylinder was swung for 300 seconds so that a centrifugal force of 70000 kgms- 2 was applied to the reaction solution again.
  • nuclei of Mn hydroxide and Ni hydroxide were formed between the inner wall of the outer cylinder and the outer wall of the inner cylinder, and these nuclei grew and were supported on the surface of the carbon mixture.
  • the carbon mixture was collected by filtration and dried in air at 100 ° C. for 12 hours.
  • FIG. 8 is a TEM photograph of the composite material of Example 7 and Comparative Example 2. It can be seen that the composite material of Example 7 contains uniform crystals having a particle size of about 20 nm. On the other hand, the composite material of Comparative Example 2 included crystals having a particle size of 5 nm or less and large crystals having a length of about 100 nm, and the crystal sizes were varied.
  • hydroxide fine particles are supported on the carbon mixture with good dispersibility, but in Comparative Example 2, the agglomerates of various sizes and the amorphous compound formed the carbon mixture. It is thought that this reflects the fact that only the covering material can be obtained.
  • Example 7 in the heat treatment and hydrothermal treatment, a uniform reaction proceeds to form composite oxide nanoparticles having a uniform size with good dispersibility.
  • Comparative Example 2 in the heat treatment step, It is considered that a heterogeneous reaction proceeds and complex oxides of various sizes are formed.
  • Example 7 and Comparative Example 2 were molded by adding 10% by mass of polyvinylidene fluoride as a positive electrode, and a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as the electrolyte.
  • a half battery with lithium as the counter electrode was prepared.
  • the charge / discharge characteristics of the obtained half battery were evaluated under a wide range of current density conditions. Although this evaluation is an evaluation as a half battery, the same effect can be expected in all batteries using a negative electrode.
  • FIG. 9 is a diagram showing the relationship between the rate and the discharge capacity for a half battery using the composite material of Example 7 and Comparative Example 2.
  • the half-cell using the composite material of Comparative Example 2 showed a significantly smaller capacity than the half-cell using the composite material of Example 7, and the capacity decreased greatly as the rate increased. Almost no capacity was shown in the region beyond.
  • the half-cell using the composite material of Example 7 had very good rate characteristics, and had a capacity exceeding 50 mAhg ⁇ 1 even at a rate of 100C.
  • Example 8 A liquid obtained by adding 2.41 g of Mn (CH 3 COO) 2 .4H 2 O and 0.5 g of ketjen black (particle size of about 40 nm) to 75 mL of water was added to the inner cylinder of the reactor used in Example 1. Then, the inner cylinder was swirled for 300 seconds so that a centrifugal force of 70000 kgms- 2 was applied to the reaction solution to dissolve Mn (CH 3 COO) 2 .4H 2 O and disperse Ketjen black. The turning of the inner cylinder was once stopped, and 0.3N NaOH aqueous solution was added into the inner cylinder. The pH of the liquid was 10.5.
  • the inner cylinder was swung for 300 seconds so that a centrifugal force of 70000 kgms- 2 was applied to the reaction solution again. During this time, a nucleus of Mn hydroxide was formed between the inner wall of the outer cylinder and the outer wall of the inner cylinder, and this nucleus grew and was supported on the surface of the ketjen black. After the inner cylinder stopped rotating, the ketjen black was collected by filtration and dried in air at 100 ° C. for 12 hours. Furthermore, it heat-processed at 130 degreeC in the air for 16 hours, and obtained the composite material.
  • Comparative Example 3 A liquid obtained by adding 2.41 g of Mn (CH 3 COO) 2 .4H 2 O and 0.5 g of ketjen black (particle size of about 40 nm) to 75 mL of water was added to the inner cylinder of the reactor used in Example 1. The inner cylinder was swung for 300 seconds so that a centrifugal force of 70000 kgms- 2 was applied to the reaction solution. Ketjen black was recovered by filtration, dried, and then heat-treated at 130 ° C. in air for 16 hours to obtain a composite material.
  • FIG. 10 shows the results of TG-DTA measurement for the composite materials of Example 8 and Comparative Example 3 in the air atmosphere at a temperature rising rate of 1 ° C./min.
  • FIG. 11 shows an X-ray powder diffraction pattern of the composite material of Example 8. As understood from FIG. 11, Mn 3 O 4 was generated in the composite material of Example 8. From FIG. 10, it can be seen that a weight loss of about 90% was observed for the composite material of Comparative Example 3, and a weight loss of about 40% was recognized for the composite material of Example 8. This weight loss is due to ketjen black burnout.
  • Example 8 A composite material of Example 8 in which 10% by mass of polyvinylidene fluoride was added and molded was used as a positive electrode, a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte, and a counter electrode was lithium.
  • a battery was created. The charge / discharge characteristics of the obtained half battery were evaluated. The result is shown in FIG. A capacity of about 800 mAhg ⁇ 1 was observed in the range of 0 to 2.5 V with respect to Li / Li + , and was found to be suitable for a negative electrode in a lithium ion secondary battery.
  • a composite material of metal oxide and conductive carbon which is suitable for a fuel cell, a secondary battery, an electrochemical capacitor, an antistatic material or the like, can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 均一な大きさの金属酸化物のナノ粒子を導電性カーボン粉末に効率良く且つ分散性良く付着させる方法を提供する。 本発明は、水と、Mn、Fe、Co及びNiから成る群から選択された遷移金属を含む化合物と、導電性カーボン粉末とを含み、9~11の範囲のpHを有する反応液を、旋回可能な反応器内に導入する調製工程;上記反応器を旋回させて上記反応液にずり応力と遠心力とを加えることにより、上記遷移金属の水酸化物の核を生成させ、この生成した遷移金属の水酸化物の核と上記導電性カーボン粉末とを分散させると同時に上記導電性カーボン粉末に上記遷移金属の水酸化物を担持させる担持工程;及び上記遷移金属の水酸化物を担持させた導電性カーボン粉末を加熱処理することにより、上記導電性カーボン粉末に担持された水酸化物を酸化物のナノ粒子に転化する熱処理工程;を含む。

Description

金属酸化物と導電性カーボンとの複合材料の製造方法
 本発明は、Fe、Ni、Co、Mnのいずれかを含む金属酸化物のナノ粒子と導電性カーボン粉末との複合材料の製造方法に関する。
 金属酸化物と導電性カーボンとを含む複合材料は、燃料電池、二次電池、電気化学キャパシタ、帯電防止材料等のために広く応用されている。特に、Mn、Ni、Co、Fe等の遷移金属とLi、Mg等の周期表の1族又は2族に属する典型金属との複合酸化物は、リチウムイオン二次電池、マグネシウムイオン二次電池等の二次電池の正極活物質として期待されており、これらの複合酸化物と導電性カーボンとの複合材料が頻繁に検討されてきた。
 ところで、これらの複合材料は一般に、金属酸化物粒子と導電性カーボン粉末とを混合する方法、或いは、金属酸化物の生成工程において導電性カーボン粉末に生成物を担持させる方法、により製造されている。
 例えば、特許文献1(特開平2-109260号公報)には、硝酸リチウム、水酸化リチウム等のリチウム源を水に溶解させ、マンガン源としての硝酸マンガンを添加した後、加熱処理を施すことにより得られたLiMnを、導電剤としてのアセチレンブラック等と混合して加圧成形した、リチウムイオン二次電池の正極が開示されている。また、特許文献2(特開2005-63677号公報)には、酸化マンガン、酸化コバルト、酸化ニッケルのような金属酸化物の粉末と導電性カーボンブラック粉末のような導電剤とを混合し、得られた混合物を導電性多孔質基材上に塗布することにより製造した、燃料電池の電極触媒が開示されている。
 金属酸化物の生成工程において導電性カーボン粉末に生成物を担持させる方法として、出願人は、特許文献3(特開2007-160151号公報)において、旋回する反応器内で反応物にずり応力と遠心力を加えて化学反応を進行させる反応方法を提案している。この文献には、ずり応力と遠心力を加えて加速化したゾルゲル反応により導電性カーボン粉末上に酸化チタン、酸化ルテニウム等のナノ粒子を高分散担持させた複合材料が、電池や電気化学キャパシタの正極又は負極のために適していることが示されている。
特開平2-109260号公報 特開2005-63677号公報 特開2007-160151号公報
 特に電池や電気化学キャパシタの電極材料として使用される金属酸化物と導電性カーボンとを含む複合材料において、金属酸化物が微細で高い表面積を有していれば、高い反応活性が期待される。また、特許文献1のように2種類の金属化合物を反応させて複合酸化物を得る場合にも、原料となる化合物が微細であれば、均質な複合酸化物が迅速に得られると期待される。
 この点に関し、特許文献3に開示された旋回する反応器内で反応物にずり応力と遠心力を加える反応方法は、一種又は二種以上の金属酸化物のナノ粒子を導電性カーボン粉末に担持させることができるため、好適である。また、導電性カーボン粉末上に金属酸化物が担持されているため、導電剤をさらに混合する工程も不要であるか、或いは導電剤の量を減少させることができる。しかしながら、特許文献3に具体的に示されているのは、ずり応力と遠心力を加えて加速化したゾルゲル反応であり、この反応方法の応用が未だ十分に検討されていない。
 そこで、本発明の目的は、この旋回する反応器内で反応物にずり応力と遠心力を加える反応方法を利用して、均一な大きさの金属酸化物ナノ粒子を導電性カーボン粉末に効率よく且つ分散性良く付着させることができる方法を提供することである。
 発明者らは、特許文献3の技術を基礎として鋭意検討した。その結果、水に、Mn、Fe、Co及びNiから成る群から選択された遷移金属の化合物と、導電性カーボン粉末とを添加して上記遷移金属の化合物を水に溶解させ、液のpHを9~11の範囲に調整した後、この液に旋回する反応器内でずり応力と遠心力を加えると、上記遷移金属の水酸化物の核が生成し、この核が均一な大きさの微粒子として導電性カーボン粉末上に担持されること、また、原料に含まれる遷移金属のほとんど全てが効率よく水酸化物として導電性カーボン粉末上に担持されることを発見した。発明者らはまた、この水酸化物を担持した導電性カーボン粉末を加熱処理すると、均一な大きさの金属酸化物ナノ粒子と導電性カーボン粉末とを分散性良く含む複合材料が得られることを発見した。
 したがって、本発明はまず、
 水と、Mn、Fe、Co及びNiから成る群から選択された遷移金属を含む少なくとも一種の化合物と、導電性カーボン粉末とを含み、9~11の範囲のpHを有する反応液を、旋回可能な反応器内に導入する調製工程、
 上記反応器を旋回させて上記反応液にずり応力と遠心力とを加えることにより、上記遷移金属の水酸化物の核を生成させ、この生成した遷移金属の水酸化物の核と上記導電性カーボン粉末とを分散させると同時に上記導電性カーボン粉末に上記遷移金属の水酸化物を担持させる担持工程、及び、
 上記遷移金属の水酸化物を担持させた導電性カーボン粉末を加熱処理することにより、上記導電性カーボン粉末に担持された上記遷移金属の水酸化物を酸化物のナノ粒子に転化する熱処理工程
 を含む、金属酸化物と導電性カーボンとの複合材料の製造方法(以下、「第1の製造方法」という。)に関する。
 本発明はまた、
 水と、Mn、Fe、Co及びNiから成る群から選択された遷移金属を含む少なくとも一種の化合物と、導電性カーボン粉末とを含み、9~11の範囲のpHを有する反応液を、旋回可能な反応器内に導入する調製工程、
 上記反応器を旋回させて上記反応液にずり応力と遠心力とを加えることにより、上記遷移金属の水酸化物の核を生成させ、この生成した遷移金属の水酸化物の核と上記導電性カーボン粉末とを分散させると同時に上記導電性カーボン粉末に上記遷移金属の水酸化物を担持させる担持工程、及び、
 上記遷移金属の水酸化物を担持させた導電性カーボン粉末と、周期表の1族及び2族に属する元素から成る群から選択された典型金属を含む少なくとも一種の化合物と、を混合して加熱処理することにより、上記導電性カーボン粉末に担持された上記遷移金属の水酸化物と上記典型金属の化合物とを反応させて、複合酸化物のナノ粒子に転化する熱処理工程
 を含む、金属酸化物と導電性カーボンとの複合材料の製造方法(以下、「第2の製造方法」という。)に関する。
 本発明では、実在しないものの慣用的に水酸化物として表される、Mn(OH)(Mn・nHO)、Fe(OH)(Fe・nHO)、Co(OH)(Co・nHO)、Ni(OH)(Ni・nHO)のような酸化水酸化物或いは水和酸化物も、水酸化物の範囲に含まれる。また、ナノ粒子とは、1~100nm、好ましくは5~50nm、特に好ましくは10~40nmの粒径を有する粒子を意味する。また、本発明では、固溶体も金属酸化物及び複合酸化物の範囲に含まれる。
 Mn、Fe、Co及びNiから成る群から選択された遷移金属の化合物を水に溶解させた液のpHを上げていくと、Mn、Fe、Co及びNiにOHが配位するようになり、さらにpHを上げると、やがてはこれらの遷移金属の水酸化物が不溶化する。本発明の調製工程では、pHを9~11の範囲に調整した反応液を旋回可能な反応器内に入れ、或いは、旋回可能な反応器内で上記反応液を調製する。反応液中に不溶化した上記遷移金属の水酸化物が認められる場合があるが、調製段階では、反応液中の遷移金属のほとんどは導電性カーボン粉末上に担持されていない。
 次いで、担持工程において、反応器を旋回させると、この旋回によるずり応力と遠心力により、すなわち、機械的エネルギーにより、水酸化物の核が生成する。この核は、旋回している反応器内で、分散されつつ均一に成長し、均一な大きさの微粒子として導電性カーボン粉末上に担持される。また、反応液中の遷移金属のほとんど全てが水酸化物として導電性カーボン粉末上に担持されるため、効率が良い。反応液のpHが9未満では、反応液にずり応力と遠心力とを加える工程における水酸化物の核の生成効率及び生成した水酸化物の導電性カーボン粉末への担持効率が低く、pHが11を超えると、担持工程における水酸化物の不溶化速度が速すぎて、微細な水酸化物が得られにくい。したがって、反応液のpHを9~11の範囲に調整した上で、この反応液に旋回する反応器中で機械的エネルギーを印加することにより、反応液中に水酸化物の核を効率よく生成させることができ、ひいては水酸化物を均一な大きさの微粒子として導電性カーボン粉末に担持させることができる。
 そして、本発明の第1の製造方法では、熱処理工程において、水酸化物が均一な大きさの微粒子として担持された導電性カーボン粉末を加熱処理することにより、導電性カーボン粉末上で水酸化物を酸化物ナノ粒子に転化する。この第1の製造方法では、水酸化物が均一な大きさの微粒子として担持された導電性カーボン粉末を使用するため、水酸化物の酸化反応が迅速且つ均一に進み、得られる酸化物のナノ粒子も微細で均一な大きさとなる。また、本発明の第2の製造方法では、熱処理工程において、水酸化物が均一な大きさの微粒子として担持された導電性カーボン粉末を、周期表の1族及び2族に属する典型金属の化合物、好ましくは水酸化物、特に好ましくは水酸化リチウム、と混合して加熱処理することにより、遷移金属の水酸化物と典型金属の化合物とを反応させて、導電性カーボン粉末上で複合酸化物のナノ粒子を形成させる。この第2の製造方法では、水酸化物が均一な大きさの微粒子として担持された導電性カーボン粉末を使用するため、遷移金属の水酸化物と典型金属の化合物との反応が迅速且つ均一に進み、得られる複合酸化物のナノ粒子も微細で均一な大きさを有する。
 本発明において、調製工程において旋回可能な反応器に導入される反応液は、pHが9~11の範囲であれば、その製造方法に特に限定がないが、水に上記導電性カーボン粉末と上記遷移金属の水溶性塩とを添加して該水溶性塩を溶解させた液と、水にアルカリ金属の水酸化物、好ましくは水酸化リチウムを溶解させた液と、を混合することにより調製するのが、反応液のpHを効率よく調製することができるため好ましい。
 本発明において、担持工程において上記反応器の旋回により上記反応液に印加される遠心力は、一般に「超遠心力」といわれる範囲の遠心力であり、好ましくは1500kgms-2以上、特に好ましくは70000kgms-2以上の遠心力である。この範囲の遠心力により、水酸化物が均一な大きさの微粒子として導電性カーボン粉末上に担持される。本明細書において、旋回する反応器内で反応液にずり応力と遠心力とを印加する処理を、「超遠心処理」ということがある。
 上記旋回可能な反応器としては、反応液に超遠心力を印加可能な反応器であれば特に限定なく使用することができるが、特許文献3の図1に記載されている、外筒と内筒の同心円筒からなり、旋回可能な内筒の側面に貫通孔が設けられ、外筒の開口部にせき板が配置されている反応器が好適に使用される。特許文献3における反応器に関する記載は、参照により本明細書に組み入れられる。この反応器を使用すると、内筒の旋回による遠心力によって、内筒内の反応液が上記貫通孔を通じて外筒に移動し、内筒外壁面と外筒内壁面の間で反応液が外筒内壁上部にずり上がる。その結果、反応液にずり応力と遠心力が加わり、この機械的なエネルギーにより、内筒外壁面と外筒内壁面の間で、上記遷移金属の水酸化物の核が生成する。そしてこの核が反応器の旋回により分散されつつ均一に成長し、成長した水酸化物が導電性カーボン粉末に均一な大きさの微粒子として担持される。
 上述した外筒と内筒とを有する反応器において、内筒外壁面と外筒内壁面との間隔が狭いほど、反応液に大きな機械的エネルギーを印加できるため好ましい。内筒外壁面と外筒内壁面との間隔は、5mm以下であるのが好ましく、2.5mm以下であるのがより好ましい。
 本発明において、熱処理工程の加熱処理条件には、酸化物が得られれば特に限定がないが、酸素含有雰囲気中で200~300℃の温度で加熱処理を行うのが好ましい。300℃以下であれば、酸素含有雰囲気においても導電性カーボン粉末が焼失せず、金属酸化物が結晶性良く得られるからである。酸素を含まない雰囲気で加熱処理を行うと、酸化物が還元され、目的の酸化物が得られない場合がある。
 本発明の方法により得られた金属酸化物と導電性カーボンとの複合材料は、燃料電池における電極触媒、リチウムイオン二次電池やマグネシウムイオン二次電池等の二次電池の電極活物質、電気化学キャパシタの電極活物質、帯電防止材料等として好適に使用することができる。特に、本発明の第2の製造方法において、熱処理工程において上記典型金属の化合物としてリチウム化合物を用いることによって得られる、層状岩塩型LiMO、層状LiMnO-LiMO固溶体、又はスピネル型LiM(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)のナノ粒子、好ましくは10~40nmの一次粒子径を有するナノ粒子を担持したカーボン粉末は、リチウムイオン二次電池の正極活物質として極めて好適であり、レート特性に優れたリチウムイオン二次電池を与える。また、層状岩塩型LiMO、層状LiMnO-LiMO固溶体の製造において、熱処理工程において、酸素含有雰囲気中での200~300℃の温度での加熱処理に続いて水熱処理を行うのが好ましい。熱処理工程において層状構造を有する複合酸化物と共にスピネルが発生する場合があるが、水熱処理によりスピネルが層状構造体に転化され、純度の良い層状構造体を得ることができる。
 カーボン粉末としては、導電性を有していれば特に限定なく使用することができるが、上記導電性カーボン粉末の少なくとも一部としてカーボンナノチューブを使用するのが好ましい。導電性に優れた複合材料が得られ、特に優れたレート特性を有するリチウムイオン二次電池へと導く正極活物質が得られるからである。
 本発明の旋回する反応器内で反応物にずり応力と遠心力を加えて金属酸化物と導電性カーボンとの複合材料を製造する方法によると、均一な金属酸化物のナノ粒子を導電性カーボン粉末に効率良く且つ分散性良く付着させることができる。
LiMnと導電性カーボンとの複合材料の製造途中における粉末のSEM写真であり、(a)は比較例についての写真であり、(b)は実施例についての写真である。 本発明の実施例のLiMnと導電性カーボンとの複合材料についてのX線粉末回折図である。 本発明の実施例のLiMnと導電性カーボンとの複合材料についてのTG分析結果である。 LiMnと導電性カーボンとの複合材料のSEM写真であり、(a)は比較例についての写真であり、(b)は実施例についての写真である。 本発明の実施例のLiMnと導電性カーボンとの複合材料についてのTEM写真である。 LiMnと導電性カーボンとの複合材料を正極活物質とした半電池のレート特性を評価した結果である。 LiMnと導電性カーボンとの複合材料を正極活物質とした半電池のレート特性を評価した結果である。 0.7LiMnO・0.3LiNi0.5Mn0.5と導電性カーボンとの複合材料のTEM写真である。(a)は比較例についての写真であり、(b)は実施例についての写真である。 0.7LiMnO・0.3LiNi0.5Mn0.5と導電性カーボンとの複合材料を正極活物質とした半電池のレート特性を評価した結果である。 Mnと導電性カーボンとの複合材料についてのTG-DTA分析結果であり、(a)は比較例についての結果であり、(b)は実施例についての結果である。 本発明の実施例のMnと導電性カーボンとの複合材料についてのX線粉末回折図である。 本発明の実施例のMnと導電性カーボンとの複合材料を正極活物質とした半電池の充放電曲線である。
 本発明の第1の製造方法と第2の製造方法とは、調製工程と担持工程とが共通であり、熱処理工程のみが異なる。以下では、第1の製造方法と第2の製造方法における調製工程と担持工程をまとめて説明し、熱処理工程についてのみ別々に説明する。
 (1)調製工程
 調製工程では、水と、Mn、Fe、Co及びNiから成る群から選択された遷移金属を含む少なくとも一種の化合物と、導電性カーボン粉末とを含み、9~11の範囲のpHを有する反応液を、旋回可能な反応器内に導入する。本発明では、水を溶媒として使用する。本発明に影響しない範囲内で有機溶媒が含まれていてもよいが、溶媒は水のみであるのが好ましい。
 カーボン粉末としては、導電性を有しているカーボン粉末であれば特に限定なく使用することができる。例としては、ケッチェンブラック、アセチレンブラック、チャネルブラックなどのカーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノファイバ、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、活性炭、メソポーラス炭素などを挙げることができる。また、気相法炭素繊維を使用することもできる。これらのカーボン粉末は、単独で使用しても良く、2種以上を混合して使用しても良い。カーボン粉末の少なくとも一部がカーボンナノチューブであるのが好ましい。
 Mn、Fe、Co及びNiから成る群から選択された遷移金属を含む少なくとも一種の化合物としては、水溶性の化合物を特に限定なく使用することができる。例としては、上記遷移金属のハロゲン化物、硝酸塩、硫酸塩等の無機金属塩、ギ酸塩、酢酸塩等の有機金属塩、或いはこれらの混合物を使用することができる。これらの化合物は、単独で使用しても良く、2種以上を混合して使用しても良い。異なる遷移金属を含む化合物を所定量で混合して使用しても良い。
 反応液のpHの調整は、アルカリ金属、すなわち、Li、Na、K、Rb、Cs、Frの水酸化物を溶解させた水溶液により行うのが好ましい。アルカリ金属の水酸化物は、単独で使用しても良く、2種以上を混合して使用しても良い。このほか、酸化アルカリ、アンモニア及びアミンの水溶液を使用することもできる。pHの調整のために単独の化合物を用いても良く、2種以上の化合物を混合して用いても良い。
 超遠心処理に付すための反応液は、水に上記導電性カーボン粉末と上記遷移金属の水溶性塩とを添加して該水溶性塩を溶解させた液と、水にアルカリ金属の水酸化物を溶解させた液と、を混合することにより容易に調製することができる。このとき、反応液のpHを、9~11の範囲に調整する。pHが9未満では、以下の担持工程における水酸化物の核の生成効率及び生成した水酸化物の導電性カーボン粉末への担持効率が低く、pHが11を超えると、担持工程における水酸化物の不溶化速度が速すぎて、微細な水酸化物が得られにくい。
 旋回可能な反応器としては、反応液に超遠心力を印加可能な反応器であれば特に限定なく使用することができるが、特許文献3の図1に記載されている、外筒と内筒の同心円筒からなり、旋回可能な内筒の側面に貫通孔が設けられ、外筒の開口部にせき板が配置されている反応器が好適に使用される。以下、この好適な反応器を使用する形態について説明する。
 超遠心処理に付すための反応液は、上記反応器の内筒内に導入される。予め調整した反応液を内筒内に導入しても良く、内筒内で反応液を調製することにより導入しても良い。内筒内に水と導電性カーボン粉末と遷移金属の水溶性塩とを入れ、内筒を旋回させて遷移金属の水溶性塩を水に溶解させるとともに導電性カーボン粉末を液中に分散させた後、内筒の旋回を一旦停止させ、次いで、水にアルカリ金属の水酸化物を溶解させた液を内筒内に入れてpHを調整し、再度内筒を旋回させるのが好ましい。最初の旋回により導電性カーボン粉末の分散が良好になり、結果的に担持される金属酸化物ナノ粒子の分散性が良好になるからである。
 (2)担持工程
 担持工程では、反応器を旋回させて反応液にずり応力と遠心力とを加えることにより、遷移金属の水酸化物の核を生成させ、この生成した遷移金属の水酸化物の核と導電性カーボン粉末とを分散させると同時に導電性カーボン粉末に遷移金属の水酸化物を担持させる。
 水酸化物の核の生成は反応液に加えられるずり応力と遠心力の機械的エネルギーによって実現されると考えられるが、このずり応力と遠心力は反応器の旋回により反応液に加えられる遠心力によって生じる。反応器内の反応液に加えられる遠心力は、一般に「超遠心力」といわれる範囲の遠心力であり、一般には1500kgms-2以上、好ましくは70000kgms-2以上、特に好ましくは270000kgms-2以上である。
 上述した外筒と内筒とを有する好適な反応器を使用する形態について説明すると、反応液を導入した反応器の内筒を旋回させると、内筒の旋回による遠心力によって、内筒内の反応液が貫通孔を通じて外筒に移動し、内筒外壁と外筒内壁の間の反応液が外筒内壁上部にずり上がる。その結果、反応液にずり応力と遠心力が加わり、この機械的なエネルギーにより、内筒外壁面と外筒内壁面の間で、上記遷移金属の水酸化物の核が生成する。そしてこの核が反応器内で分散されつつ成長し、導電性カーボン粉末上に担持される。
 上記反応において、内筒外壁面と外筒内壁面との間隔が狭いほど、反応液に大きな機械的エネルギーを印加できるため好ましい。内筒外壁面と外筒内壁面との間隔は、5mm以下であるのが好ましく、2.5mm以下であるのがより好ましく、1.0mm以下であるのが特に好ましい。内筒外壁面と外筒内壁面との間隔は、反応器のせき板の幅及び反応器に導入される反応液の量によって設定することができる。
 内筒の旋回時間には厳密な制限がなく、反応液の量や内筒の旋回速度(遠心力の値)によっても変化するが、一般的には0.5分~10分の範囲である。超遠心処理により、短時間で、反応液に含まれる遷移金属のほとんどが水酸化物として導電性カーボン粉末に担持される。
 反応終了後に、内筒の旋回を停止し、均一な大きさを有する上記遷移金属の水酸化物の微粒子を担持させた導電性カーボン粉末を回収する。回収物において、水酸化物の微粒子を担持させた導電性カーボン粉末は一般に、1000nm以下の小さな直径を有し且つ比較的均一な大きさを有する凝集体を形成している。
 (3)熱処理工程
 a.第1の製造方法における熱処理工程
 第1の製造方法では、回収した上記遷移金属の水酸化物の微粒子を担持させた導電性カーボン粉末を、必要に応じて洗浄した後、加熱処理して、導電性カーボン粉末上で水酸化物を酸化物ナノ粒子に転化する。この第1の製造方法では、水酸化物が均一な大きさの微粒子として導電性カーボン粉末上に担持されている複合材料を使用するため、遷移金属の水酸化物の酸化反応が迅速且つ均一に進み、得られる酸化物のナノ粒子も微細で均一な大きさを有する。
 加熱処理の雰囲気には厳密な制限がない。真空中での加熱処理でも良く、窒素、アルゴン等の不活性雰囲気中での加熱処理でも良く、酸素、空気等の酸素含有雰囲気中での加熱処理でも良い。加熱処理の温度及び時間にも厳密な制限がなく、目的とする酸化物の組成や処理量によっても変化するが、一般には、酸素含有雰囲気中での加熱処理は200~300℃の温度で10分~10時間、不活性雰囲気中での加熱処理は250~600℃の温度で10分~10時間、真空中での熱処理は常温~200℃の温度で10分~10時間の範囲である。
 加熱処理は、酸素含有雰囲気中で200~300℃の温度で加熱処理を行うのが好ましい。300℃以下であれば、酸素含有雰囲気においても導電性カーボン粉末が焼失せず、金属酸化物が結晶性良く得られるからである。酸素を含まない雰囲気で加熱処理を行うと、酸化物が還元され、目的の酸化物が得られない場合がある。
 本発明の第1の製造方法により得られた金属酸化物と導電性カーボンとの複合材料は、電池や電気化学キャパシタの電極材料として好適であり、特に、Fe、MnO、MnO、Mn、Mn、CoO、Co、NiO、Niと導電性カーボンとの複合材料はリチウムイオン二次電池における負極活物質として好適である。
 b.第2の製造方法における熱処理工程
 第2の製造方法では、回収した上記遷移金属の水酸化物の微粒子を担持させた導電性カーボン粉末を、必要に応じて洗浄した後、周期表の1族及び2族に属する元素から成る群から選択された典型金属を含む少なくとも一種の化合物と混合して加熱処理することにより、上記導電性カーボン粉末に担持された上記遷移金属の水酸化物と上記典型金属の化合物とを反応させて、複合酸化物のナノ粒子に転化する。この製造方法では、水酸化物が均一な大きさの微粒子として担持されている導電性カーボン粉末を使用するため、遷移金属の水酸化物と典型金属の化合物との反応が迅速且つ均一に進み、得られる複合酸化物のナノ粒子も微細で均一な大きさを有する。
 周期表の1族に属する典型金属、すなわち、Li、Na、K、Rb、Cs、Frの化合物、或いは、周期表の2族に属する典型金属、すなわち、Be、Mg、Ca、Sr、Ba、Raの化合物としては、これらの金属を含んでいる化合物を特に限定なく使用することができ、例えば、これらの金属の水酸化物、炭酸塩、ハロゲン化物、硝酸塩、硫酸塩等の無機金属塩、ギ酸塩、酢酸塩、シュウ酸塩、乳酸塩等の有機金属塩、或いはこれらの混合物を使用することができる。これらの化合物は、単独で使用しても良く、2種以上を混合して使用しても良い。異なる典型金属を含む化合物を所定量で混合して使用しても良い。水酸化物を使用すると、イオウ化合物、窒素化合物等の不純物が残留しない上に、複合酸化物が迅速に得られるため好ましい。
 上記担持工程で得られた遷移金属の水酸化物の微粒子を担持させた導電性カーボン粉末と、上記典型金属の化合物とを、必要に応じて適量の分散媒と組み合わせ、必要に応じて分散媒を蒸発させながら混錬することにより、混錬物を得る。混錬のための分散媒としては、複合材料に悪影響を及ぼさない媒体であれば特に限定なく使用することができ、水、メタノール、エタノール、イソプロピルアルコールなどを好適に使用することができ、水を特に好適に使用することができる。
 加熱処理の雰囲気には厳密な制限がない。真空中での加熱処理でも良く、窒素、アルゴン等の不活性雰囲気中での加熱処理でも良く、酸素、空気等の酸素含有雰囲気中での加熱処理でも良い。加熱処理の温度及び時間にも厳密な制限がなく、目的とする酸化物の組成や処理量によっても変化するが、一般に、酸素含有雰囲気中での加熱処理は200~300℃の温度で10分~10時間、不活性雰囲気中での加熱処理は約250~600℃の温度で10分~10時間、真空中での熱処理は常温~約200℃の温度で10分~10時間の範囲である。
 加熱処理は、酸素含有雰囲気中で200~300℃の温度で加熱処理を行うのが好ましい。300℃以下であれば、酸素含有雰囲気においても導電性カーボン粉末が焼失せず、複合酸化物が結晶性良く得られるからである。酸素を含まない雰囲気で加熱処理を行うと、複合酸化物が還元され、目的の複合酸化物が得られない場合がある。
 本発明の第2の製造方法により得られた複合酸化物と導電性カーボンとの複合材料は、電池や電気化学キャパシタの電極材料として好適である。特に、熱処理工程において上記典型金属の水酸化物として水酸化リチウムを用いることによって得られる、層状岩塩型LiMO、層状LiMnO-LiMO固溶体、又はスピネル型LiM(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)のナノ粒子と導電性カーボンとの複合材料は、リチウムイオン二次電池の正極活物質として好適である。
 層状岩塩型LiMO、層状LiMnO-LiMO固溶体、スピネル型LiMの例としては、LiCoO、LiNiO、LiNi4/5Co1/5、LiNi1/3Co1/3Mn1/3、LiNi1/2Mn1/2、LiFeO、LiMnO、LiMnO-LiCoO2、LiMnO-LiNiO、LiMnO-LiNi1/3Co1/3Mn1/3、LiMnO-LiNi1/2Mn1/2、LiMnO-LiNi1/2Mn1/2-LiNi1/3Co1/3Mn1/3、LiMn、LiMn3/2Ni1/2が挙げられる。本発明の第2の製造方法により、これらの複合酸化物のナノ粒子と導電性カーボン粉末とを分散性良く含む複合材料が得られる。特に、10~40nmの一次粒子径を有するナノ粒子を含む複合材料は、リチウムイオン二次電池の正極活物質として極めて好適であり、レート特性に優れたリチウムイオン二次電池を与える。中でも、導電性カーボン粉末の少なくとも一部としてカーボンナノチューブを用いた複合材料は、導電性が高く、特に優れたレート特性を有するリチウムイオン二次電池へと導く正極活物質である。
 熱処理工程において、層状岩塩型LiMO、層状LiMnO-LiMO固溶体を得たい場合でも、スピネルが同時に生成する場合がある。この場合には、上述した加熱処理、好ましくは酸素含有雰囲気中での200~300℃の温度での加熱処理に続いて、水熱処理を行うのが好ましい。水熱処理によりスピネルが層状構造体に変性し、純度の良い層状構造体を得ることができる。水熱処理は、オートクレーブ中に熱処理後の粉末と水、好ましくは水酸化リチウム水溶液を導入した後、100℃以上、1気圧以上の熱水下で行うことができる。
 本発明を以下の実施例を用いて説明するが、本発明は以下の実施例に限定されない。
 (1)LiMn(スピネル)と導電性カーボンとの複合材料
 a.複合材料の製造
 実施例1:
 特開2007-160151号公報の図1に示されている、外筒と内筒の同心円筒からなり、内筒の側面に貫通孔が設けられ、外筒の開口部にせき板が配置されている反応器の内筒に、2.45gのMn(CHCOO)・4HO及び0.225gのケッチェンブラック(粒径約40nm)を水75mLに添加した液を導入し、70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させ、Mn(CHCOO)・4HOを溶解させると共にケッチェンブラックを分散させた。一旦内筒の旋回を停止し、内筒内に0.6gのLiOH・HOを水に溶解させた液を添加した。液のpHは10であった。次に、再び70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させた。この間に、外筒の内壁と内筒の外壁との間でMn水酸化物の核が形成され、この核が成長してケッチェンブラックの表面に担持された。内筒の旋回停止後に、ケッチェンブラックをろ過して回収し、空気中100℃で12時間乾燥した。ろ液をICP分光分析により確認したところ、Mn(CHCOO)・4HO原料に含まれるMnの95%以上が担持されていることがわかった。次いで、乾燥後の粉末と、Mn:Liが2:1になる量のLiOH・HOを含む水溶液を混合して混練し、乾燥後に、空気中280℃で1時間加熱処理し、複合材料を得た。
 実施例2
 空気中280℃での1時間の加熱処理の代わりに、空気中300℃で1時間加熱処理したことを除いて、実施例1の手順を繰り返した。
 実施例3
 空気中280℃での1時間の加熱処理の代わりに、空気中350℃で1時間加熱処理したことを除いて、実施例1の手順を繰り返した。
 実施例4
 0.225gのケッチェンブラックの代わりに、質量比でケッチェンブラック(粒径約40nm):カーボンナノチューブ(直径約20nm、長さ数百nm)=3:1に混合したカーボン混合物0.225gを使用したことを除いて、実施例2の手順を繰り返した。
 実施例5
 0.225gのケッチェンブラックの代わりに、質量比でケッチェンブラック(粒径約40nm):カーボンナノチューブ(直径約20nm、長さ数百nm)=1:1に混合したカーボン混合物0.225gを使用したことを除いて、実施例2の手順を繰り返した。
 実施例6
 実施例2の複合材料に、導電剤としてのアセチレンブラックを複合材料の5質量%の量で混合した。
 比較例1
 実施例1において用いた反応器の内筒に、2.45gのMn(CHCOO)・4HO、0.33gのCHCOOLi(Mn:Li=2:1)及び0.225gの質量比でケッチェンブラック(粒径約40nm):カーボンナノチューブ(直径約20nm、長さ数百nm)=1:1に混合したカーボン混合物を水75mLに添加した液を導入し、70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させた。内筒の旋回停止後、液体部分を採取してICP分光分析により確認したところ、Mn(CHCOO)・4HO原料に含まれるMnの約30%しかカーボン混合物に担持されていなかった。そのため、反応器の内容物の全てを回収し、空気中100℃で蒸発乾固させた。次いで、空気中300℃で1時間加熱処理し、複合材料を得た。
 図1に、担持工程後熱処理工程前の材料のSEM写真を示す。(a)は比較例1における材料のSEM写真であり、(b)は実施例5における材料のSEM写真である。(b)のSEM写真より、実施例5では、水酸化物の微粒子が担持されたカーボン混合物が、1000nm以下の直径を有する比較的均一な大きさの凝集体を形成しているのがわかる。これに対し、(a)のSEM写真より、比較例1では、部分的に凝集体が認められるものの、ほとんどの化合物が無定形であり、この無定形の化合物がカーボン混合物を覆っているのがわかる。
 図2に、実施例1~3の複合材料のX線粉末回折図を示す。いずれの温度においてもLiMnの結晶が認められた。特に300℃以上の加熱処理を行った実施例2,3の複合材料におけるLiMnは高い結晶性を示した。図3には、実施例1~3の複合材料について、TG測定を空気雰囲気中で昇温速度1℃/分の条件で行い、重量減少量を炭素分として評価した結果を示す。350℃で熱処理を行った実施例3の複合材料では、もはや重量損失がほとんど認められず、ケッチェンブラックが加熱処理の過程で焼失していると判断された。したがって、空気中300℃での加熱処理が特に好ましいことがわかった。
 図4に、熱処理工程後の複合材料のSEM写真を示す。(a)は比較例1の複合材料のSEM写真であり、(b)は実施例5の複合材料のSEM写真である。(b)のSEM写真より、実施例5では、均一な大きさの粒子が形成されていることがわかる。図5は、実施例5の複合材料のTEM写真であるが、直径10~40nmのLiMnの一次粒子が分散性良く形成されていることがわかる。これに対し、図4の(a)のSEM写真より、比較例1の複合材料には、様々な大きさの粒が含まれており、大きな凝集体も含まれており、LiMnの分散性が不十分であることがわかる。この差は、図1に示した、担持工程後熱処理工程前の材料における導電性カーボン粉末上の化合物の形態の差を反映していると考えられる。
 b.半電池として評価
 実施例2,4~6及び比較例1の複合材料にポリフッ化ビニリデンを全体の10質量%加えて成形したものを正極とし、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとした半電池を作成した。得られた半電池について、広範囲の電流密度の条件下で充放電特性を評価した。この評価は半電池としての評価であるが、負極を用いた全電池においても同様の効果が期待できる。
 図6は、実施例2、実施例6及び比較例1の複合材料を用いた半電池についての、レートと放電容量との関係を示した図であり、図7は、実施例2,4,5及び比較例1の複合材料を用いた半電池についての、レートと放電容量との関係を示した図である。
 図6から把握されるように、LiMnの分散性が不十分である比較例1の複合材料を用いる場合に比較して、実施例2の複合材料を用いることにより、半電池の放電容量及びレート特性を向上させることができた。また、実施例2の複合材料に導電剤を混合することにより(実施例6)、半電池の放電容量を向上させることができ、レートの増加につれてなだらかな容量の低下を示す、レート特性の良好な半電池を得ることができた。また、図7から把握されるように、実施例2の複合材料のケッチェンブラックの一部をカーボンナノチューブに変更する(実施例4,5)ことにより、複合材料に導電剤を混入しなくても、半電池の放電容量及びレート特性を大幅に向上させることができた。これは、カーボンナノチューブの高い導電性に起因していると考えられる。これに対し、LiMnの分散性が不十分である比較例1の複合材料を用いた半電池では、複合材料中にカーボンナノチューブが含まれているにもかかわらず、容量が著しく小さく、また、レートの増加につれて容量が急速に低下した。実施例5と比較例1とは、いずれも、ケッチェンブラック:カーボンナノチューブ=1:1に混合したカーボン混合物を複合材料の製造に用いているが、実施例5の複合材料を用いた半電池の放電容量及びレート特性と、比較例1の複合材料を用いた半電池の放電容量及びレート特性と、の差は、図4,5に示した、複合材料中のLiMnの分散性の差を反映したものであると考えられる。
 (2)0.7LiMnO・0.3LiNi0.5Mn0.5と導電性カーボンとの複合材料
 a.複合材料の製造
 実施例7:
 実施例1において用いた反応器の内筒に、1.54gのMn(CHCOO)・4HO、0.274gのNi(CHCOO)及び0.21gの質量比でケッチェンブラック(粒径約40nm):カーボンナノチューブ(直径約20nm、長さ数百nm)=1:1に混合したカーボン混合物を水75mLに添加した液を導入し、70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させ、Mn(CHCOO)・4HO及びNi(CHCOO)を溶解させると共にカーボン混合物を分散させた。一旦内筒の旋回を停止し、内筒内に0.6gのLiOH・HOを水に溶解させた液を添加した。液のpHは10であった。次に、再び70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させた。この間に、外筒の内壁と内筒の外壁との間でMn水酸化物及びNi水酸化物の核が形成され、この核が成長してカーボン混合物の表面に担持された。内筒の旋回停止後に、カーボン混合物をろ過して回収し、空気中100℃で12時間乾燥した。ろ液をICP分光分析により確認したところ、Mn(CHCOO)・4HO原料及びNi(CHCOO)原料に含まれるMn及びNiの95%以上が担持されていることがわかった。次いで、乾燥後の粉末にMn:Liが1:2になる量のLiOH・HOの水溶液を混合して混練し、乾燥後に空気中250℃で1時間加熱処理した。さらに、オートクレーブ中に加熱処理後の粉末と2mol/LのLiOH水溶液とを導入し、飽和水蒸気中200℃で12時間水熱処理することにより、複合材料を得た。
 比較例2
 実施例1において用いた反応器の内筒に、1.54gのMn(CHCOO)・4HO、0.274gのNi(CHCOO)、0.78gのCHCOOLi(Mn:Li=1:2)及び0.21gの質量比でケッチェンブラック(粒径約40nm):カーボンナノチューブ(直径約20nm、長さ数百nm)=1:1に混合したカーボン混合物を水75mLに添加した液を導入し、70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させた。内筒の旋回停止後、液体部分を採取してICP分光分析により確認したところ、Mn(CHCOO)・4HO原料及びNi(CHCOO)原料の約30%のMn及びNiしかカーボン混合物に担持されていなかった。そのため、反応器の内容物の全てを回収し、空気中100℃で蒸発乾固させ、次いで、空気中250℃で1時間加熱処理し、複合材料を得た。
 図8は、実施例7と比較例2の複合材料についてのTEM写真である。実施例7の複合材料には、粒径が約20nmの均一な結晶が含まれていることがわかる。これに対し、比較例2の複合材料には、粒径5nm以下の結晶や長さ100nm程度の大きな結晶も含まれており、結晶の大きさがふぞろいであった。これは、担持工程において、実施例7では、水酸化物の微粒子がカーボン混合物に分散性良く担持されるが、比較例2では、ふぞろいな大きさの凝集体と無定形の化合物がカーボン混合物を覆っている材料しか得られないことを反映したものであると考えられる。すなわち、実施例7では、加熱処理及び水熱処理において、均一な反応が進行して均一な大きさを有する複合酸化物のナノ粒子が分散性良く形成されるものの、比較例2では、熱処理工程において、不均一な反応が進行してふぞろいな大きさの複合酸化物が形成されるものと考えられる。
 b.半電池として評価
 実施例7及び比較例2の複合材料にポリフッ化ビニリデンを全体の10質量%加えて成形したものを正極とし、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとした半電池を作成した。得られた半電池について、広範囲の電流密度の条件下で充放電特性を評価した。この評価は半電池としての評価であるが、負極を用いた全電池においても同様の効果が期待できる。
 図9は、実施例7と比較例2の複合材料を用いた半電池についての、レートと放電容量との関係を示した図である。比較例2の複合材料を用いた半電池は、実施例7の複合材料を用いた半電池に比較して、著しく小さい容量を示した上に、レートの増加につれて容量が大きく低下し、30Cを超える領域ではほとんど容量を示さなかった。これに対し、実施例7の複合材料を用いた半電池は、レート特性が極めて良好であり、レート100Cでも50mAhg-1を超える容量を有していた。
 (3)Mnと導電性カーボンとの複合材料
 実施例8:
 実施例1において用いた反応器の内筒に、2.41gのMn(CHCOO)・4HO及び0.5gのケッチェンブラック(粒径約40nm)を水75mLに添加した液を導入し、70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させ、Mn(CHCOO)・4HOを溶解させると共にケッチェンブラックを分散させた。一旦内筒の旋回を停止し、内筒内に0.3NのNaOH水溶液を添加した。液のpHは10.5であった。次に、再び70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させた。この間に、外筒の内壁と内筒の外壁との間でMn水酸化物の核が形成され、この核が成長してケッチェンブラックの表面に担持された。内筒の旋回停止後に、ケッチェンブラックをろ過して回収し、空気中100℃で12時間乾燥した。さらに、空気中130℃で16時間加熱処理し、複合材料を得た。
 比較例3
 実施例1において用いた反応器の内筒に、2.41gのMn(CHCOO)・4HO及び0.5gのケッチェンブラック(粒径約40nm)を水75mLに添加した液を導入し、70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させた。ケッチェンブラックをろ過して回収し、乾燥した後、空気中130℃で16時間加熱処理し、複合材料を得た。
 図10には、実施例8と比較例3の複合材料についてのTG-DTA測定を空気雰囲気中で昇温速度1℃/分の条件で行った結果を示す。また、図11には、実施例8の複合材料のX線粉末回折図を示す。図11から把握されるように、実施例8の複合材料中にはMnが生成していた。図10より、比較例3の複合材料については約90%の重量損失が認められ、実施例8の複合材料については約40%の重量損失が認められたことがわかる。この重量損失は、ケッチェンブラックの焼失によるものである。比較例3では、実施例8と同じ量のMn(CHCOO)・4HOを使用したにもかかわらず、ほとんどのMnがケッチェンブラックに担持されなかったことがわかる。これに対し、実施例8では、Mn(CHCOO)・4HO中のMnのほとんどがケッチェンブラックに担持されていた。
 実施例8の複合材料にポリフッ化ビニリデンを全体の10質量%加えて成形したものを正極とし、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとした半電池を作成した。得られた半電池について、充放電特性を評価した。その結果を図12に示す。Li/Liに対して0~2.5Vの範囲で約800mAhg-1の容量が認められ、リチウムイオン二次電池における負極のために好適であることがわかった。
 本発明により、燃料電池、二次電池、電気化学キャパシタ、帯電防止材料等のために好適である金属酸化物と導電性カーボンとの複合材料が得られる。

Claims (10)

  1.  水と、Mn、Fe、Co及びNiから成る群から選択された遷移金属を含む少なくとも一種の化合物と、導電性カーボン粉末とを含み、9~11の範囲のpHを有する反応液を、旋回可能な反応器内に導入する調製工程、
     前記反応器を旋回させて前記反応液にずり応力と遠心力とを加えることにより、前記遷移金属の水酸化物の核を生成させ、この生成した遷移金属の水酸化物の核と前記導電性カーボン粉末とを分散させると同時に前記導電性カーボン粉末に前記遷移金属の水酸化物を担持させる担持工程、及び、
     前記遷移金属の水酸化物を担持させた導電性カーボン粉末を加熱処理することにより、前記導電性カーボン粉末に担持された前記遷移金属の水酸化物を酸化物のナノ粒子に転化する熱処理工程
     を含む、金属酸化物と導電性カーボンとの複合材料の製造方法。
  2.  水と、Mn、Fe、Co及びNiから成る群から選択された遷移金属を含む少なくとも一種の化合物と、導電性カーボン粉末とを含み、9~11の範囲のpHを有する反応液を、旋回可能な反応器内に導入する調製工程、
     前記反応器を旋回させて前記反応液にずり応力と遠心力とを加えることにより、前記遷移金属の水酸化物の核を生成させ、この生成した遷移金属の水酸化物の核と前記導電性カーボン粉末とを分散させると同時に前記導電性カーボン粉末に前記遷移金属の水酸化物を担持させる担持工程、及び、
     前記遷移金属の水酸化物を担持させた導電性カーボン粉末と、周期表の1族及び2族に属する元素から成る群から選択された典型金属を含む少なくとも一種の化合物と、を混合して加熱処理することにより、前記導電性カーボン粉末に担持された前記遷移金属の水酸化物と前記典型金属の化合物とを反応させて、複合酸化物のナノ粒子に転化する熱処理工程
     を含む、金属酸化物と導電性カーボンとの複合材料の製造方法。
  3.  前記反応液が、水に前記導電性カーボン粉末と前記遷移金属の水溶性塩とを添加して該水溶性塩を溶解させた液と、水にアルカリ金属の水酸化物を溶解させた液と、を混合することにより得られた液である、請求項1又は2に記載の金属酸化物と導電性カーボンとの複合材料の製造方法。
  4.  前記担持工程において前記反応液に加えられる遠心力が1500kgms-2以上である、請求項1~3のいずれか1項に記載の金属酸化物と導電性カーボンとの複合材料の製造方法。
  5.  前記反応器が外筒と内筒の同心円筒からなり、内筒の側面に貫通孔が設けられ、外筒の開口部にせき板が配置されており、
     前記担持工程において、内筒の旋回による遠心力によって、内筒内の前記反応液を前記貫通孔を通じて外筒に移動させ、内筒外壁面と外筒内壁面の間で前記遷移金属の水酸化物の核を生成させる、請求項1~4のいずれか1項に記載の金属酸化物と導電性カーボンとの複合材料の製造方法。
  6.  前記反応器の内筒外壁面と外筒内壁面との間隔が5mm以下である、請求項5に記載の金属酸化物と導電性カーボンとの複合材料の製造方法。
  7.  前記熱処理工程における加熱処理を酸素含有雰囲気中で200~300℃の温度で行う、請求項1~6のいずれか1項に記載の金属酸化物と導電性カーボンとの複合材料の製造方法。
  8.  前記導電性カーボン粉末の少なくとも一部にカーボンナノチューブが含まれている、請求項1~7のいずれか1項に記載の金属酸化物と導電性カーボンとの複合材料の製造方法。
  9.  前記典型金属の化合物がリチウム化合物であり、前記複合酸化物のナノ粒子が、層状岩塩型LiMO、層状LiMnO-LiMO固溶体、又はスピネル型LiM(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)のナノ粒子である、請求項2~8のいずれか1項に記載の金属酸化物と導電性カーボンとの複合材料の製造方法。
  10.  前記典型金属の化合物が水酸化リチウムであり、前記複合酸化物のナノ粒子が、層状岩塩型LiMO、層状LiMnO-LiMO固溶体(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)であり、前記熱処理工程において、酸素含有雰囲気中での200~300℃の温度での加熱処理に続いて水熱処理を行う、請求項2~8のいずれか1項に記載の金属酸化物と導電性カーボンとの複合材料の製造方法。
PCT/JP2013/072945 2012-09-03 2013-08-28 金属酸化物と導電性カーボンとの複合材料の製造方法 WO2014034696A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13832566.7A EP2894700B1 (en) 2012-09-03 2013-08-28 Process for producing composite material of metal oxide with conductive carbon
US14/425,298 US9859035B2 (en) 2012-09-03 2013-08-28 Process for producing composite material of metal oxide with conductive carbon
CN201380045719.0A CN104603995B (zh) 2012-09-03 2013-08-28 金属氧化物和导电性碳的复合材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012193592A JP6178554B2 (ja) 2012-09-03 2012-09-03 金属酸化物と導電性カーボンとの複合材料の製造方法
JP2012-193592 2012-09-03

Publications (1)

Publication Number Publication Date
WO2014034696A1 true WO2014034696A1 (ja) 2014-03-06

Family

ID=50183504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072945 WO2014034696A1 (ja) 2012-09-03 2013-08-28 金属酸化物と導電性カーボンとの複合材料の製造方法

Country Status (5)

Country Link
US (1) US9859035B2 (ja)
EP (1) EP2894700B1 (ja)
JP (1) JP6178554B2 (ja)
CN (1) CN104603995B (ja)
WO (1) WO2014034696A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737090B2 (ja) * 2016-09-09 2020-08-05 日産自動車株式会社 電気デバイス用正極及びそれを用いたリチウムイオン電池
CN109813787B (zh) * 2019-03-13 2020-12-18 郑州轻工业学院 一种MnO2/Fe2O3@无定形碳复合材料、核酸适体传感器及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109260A (ja) 1988-10-18 1990-04-20 Matsushita Electric Ind Co Ltd リチウム二次電池用正極
JP2005063677A (ja) 2003-08-11 2005-03-10 Nitto Denko Corp 燃料電池
JP2007160151A (ja) 2005-12-09 2007-06-28 K & W Ltd 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子。
JP2009004371A (ja) * 2007-05-21 2009-01-08 Toda Kogyo Corp 非水電解質二次電池用オリビン型複合酸化物及びその製造方法、並びに二次電池
JP2009044009A (ja) * 2007-08-09 2009-02-26 Canon Inc 電極材料、その製造方法および電極
WO2010111103A1 (en) * 2009-03-27 2010-09-30 The Gillette Company Lithium cell with improved iron disulfide cathode
JP2011228062A (ja) * 2010-04-16 2011-11-10 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質の製造方法およびこれを用いた非水系電解質二次電池
WO2012147766A1 (ja) * 2011-04-28 2012-11-01 昭和電工株式会社 リチウム二次電池用正極材料及びその製造方法
JP2013211114A (ja) * 2012-03-30 2013-10-10 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964828B2 (en) * 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
CN101060172B (zh) * 2007-04-06 2010-04-14 武汉大学 纳米氢氧化镍/碳复合材料及其制备方法和用途
JP2010212309A (ja) * 2009-03-06 2010-09-24 Nippon Chemicon Corp 電極材料及びこの電極材料を含有する電極
JP2011253620A (ja) * 2009-09-30 2011-12-15 K & W Ltd 負極活物質、この負極活物質の製造方法、及びこの負極活物質を用いたリチウムイオン二次電池
JP5858395B2 (ja) * 2010-03-31 2016-02-10 日本ケミコン株式会社 金属化合物ナノ粒子とカーボンの複合体の製造方法
CN102386381B (zh) * 2010-08-30 2014-01-15 机械科学研究总院先进制造技术研究中心 一种锂离子电池纳米级正极材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109260A (ja) 1988-10-18 1990-04-20 Matsushita Electric Ind Co Ltd リチウム二次電池用正極
JP2005063677A (ja) 2003-08-11 2005-03-10 Nitto Denko Corp 燃料電池
JP2007160151A (ja) 2005-12-09 2007-06-28 K & W Ltd 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子。
JP2009004371A (ja) * 2007-05-21 2009-01-08 Toda Kogyo Corp 非水電解質二次電池用オリビン型複合酸化物及びその製造方法、並びに二次電池
JP2009044009A (ja) * 2007-08-09 2009-02-26 Canon Inc 電極材料、その製造方法および電極
WO2010111103A1 (en) * 2009-03-27 2010-09-30 The Gillette Company Lithium cell with improved iron disulfide cathode
JP2011228062A (ja) * 2010-04-16 2011-11-10 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質の製造方法およびこれを用いた非水系電解質二次電池
WO2012147766A1 (ja) * 2011-04-28 2012-11-01 昭和電工株式会社 リチウム二次電池用正極材料及びその製造方法
JP2013211114A (ja) * 2012-03-30 2013-10-10 Sumitomo Metal Mining Co Ltd リチウム二次電池用正極活物質の前駆体とその製造方法および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池

Also Published As

Publication number Publication date
JP6178554B2 (ja) 2017-08-09
EP2894700A1 (en) 2015-07-15
CN104603995A (zh) 2015-05-06
US9859035B2 (en) 2018-01-02
JP2014049395A (ja) 2014-03-17
US20150228370A1 (en) 2015-08-13
EP2894700B1 (en) 2017-11-29
CN104603995B (zh) 2017-10-27
EP2894700A4 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP4829557B2 (ja) リチウム鉄複合酸化物の製造方法
TWI627783B (zh) 鋰離子二次電池用電極材料、此電極材料的製造方法及鋰離子二次電池
JP4804045B2 (ja) リチウム鉄複合酸化物の製造方法
WO2011122448A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質の前駆体、ならびに該正極活物質を用いた非水系電解質二次電池
JP6099038B2 (ja) 電極材料の製造方法
JP2007230784A (ja) リチウム鉄複合酸化物の製造方法
KR100946387B1 (ko) 리튬 전지용 올리빈형 양극 활물질 전구체, 리튬 전지용올리빈형 양극 활물질, 이의 제조 방법, 및 이를 포함하는리튬 전지
JP6095331B2 (ja) リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
JP7293576B2 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
US20150372295A1 (en) Metal tin-carbon composites, method for producing said composites, anode active material for non-aqueous lithium secondary batteries which is produced using said composites, anode for non-aqueous lithium secondary batteries which comprises said anode active material, and non-aqueous lithium secondary battery
JP7464102B2 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
JP7121734B2 (ja) リチウムイオン電池用途用高性能チタン酸リチウム負極材料を製造する方法
Fang et al. Simple glycerol-assisted and morphology-controllable solvothermal synthesis of lithium-ion battery-layered Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode materials
JP7206819B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、及び、リチウムイオン二次電池
JP6081782B2 (ja) リチウムイオン二次電池用電極材料、リチウムイオン二次電池用電極材料の製造方法、及びリチウムイオン二次電池
JP2022545945A (ja) 発熱的に製造されたジルコニウム含有酸化物でコーティングされた混合リチウム遷移金属酸化物
JP6178554B2 (ja) 金属酸化物と導電性カーボンとの複合材料の製造方法
CN111653782A (zh) 正极材料及其制备方法和应用
US20220149368A1 (en) Transition metal oxide particles encapsulated in nanostructured lithium titanate or lithium aluminate, and the use thereof in lithium ion batteries
JP2022177291A (ja) 高強度リチウムイオン二次電池用正極活物質、及び、該正極活物質を用いたリチウムイオン二次電池
KR20130029604A (ko) 사염화 티타늄을 이용한 나노 구형 화이버 티탄산리튬의 제조 및 성능 향상방법
US20220306486A1 (en) Mixed lithium transition metal oxide coated with pyrogenically produced zirconium-containing oxides
TWI671264B (zh) 一種具尖晶石結構的鋰鎳錳陰極材料的製造方法及其用途
Li et al. Performance of flower-like ZnO/NiO/C bimetallic nanomaterials as anodes of lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14425298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013832566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013832566

Country of ref document: EP