WO2014034021A1 - センサパッケージおよびその製造方法 - Google Patents

センサパッケージおよびその製造方法 Download PDF

Info

Publication number
WO2014034021A1
WO2014034021A1 PCT/JP2013/004665 JP2013004665W WO2014034021A1 WO 2014034021 A1 WO2014034021 A1 WO 2014034021A1 JP 2013004665 W JP2013004665 W JP 2013004665W WO 2014034021 A1 WO2014034021 A1 WO 2014034021A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
film
functional film
sensor chip
moisture sensitive
Prior art date
Application number
PCT/JP2013/004665
Other languages
English (en)
French (fr)
Inventor
幸太郎 安藤
隆重 齋藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112013004203.7T priority Critical patent/DE112013004203T5/de
Publication of WO2014034021A1 publication Critical patent/WO2014034021A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the present disclosure relates to a sensor package in which a sensor chip is sealed with a mold resin so that a functional film of the sensor chip is exposed, and a method for manufacturing such a sensor package.
  • the mold resin is molded by a mold, and by this mold molding, the sensor chip is sealed, and the opening is further exposed to the surface of the functional film. Yes.
  • the surface of the functional film is exposed through the opening of the mold resin, and sensing of the external environment is possible.
  • Such a sensor package is manufactured by installing a sensor chip having a functional film in a mold for resin molding, injecting a mold resin into the mold, and filling the mold.
  • the opposing part which opposes a functional film among the inner surfaces of a metal mold
  • the film absorbs irregularities on the surface of the functional film, and the film is brought into close contact with the functional film by this pressing. Then, an opening is formed by injecting mold resin in this state.
  • Patent Document 1 a stress relaxation layer is provided on the surface of the functional film, and the functional film is prevented from being deformed by pressing the functional film with a mold through the stress relaxation layer.
  • the pressing is performed when the functional film is pressed with a mold for molding the resin so as to expose the functional film.
  • the purpose is to reduce damage caused to the functional film by force as much as possible.
  • the sensor package includes a sensor chip having a functional film used for sensing on one side and a mold resin for sealing the sensor chip.
  • the surface of the functional film is exposed through an opening provided in the mold resin, and the functional film has a spacer for securing the film thickness of the functional film against the pressing force applied in the film thickness direction. Contained.
  • the functional film since the functional film has the strength to withstand the pressing force applied in the film thickness direction and the deformation in the film thickness direction is suppressed by the spacer contained in the functional film, the sensor chip is molded.
  • the functional film is pressed with a mold in order to expose the functional film in sealing with resin, damage caused to the functional film by the pressing force can be reduced as much as possible.
  • a method for manufacturing a sensor package includes a chip preparation step of preparing a sensor chip having a functional film used for sensing on one side, a sensor chip in a mold, and a mold A mold installation step in which a facing portion that faces the functional film is pressed against the functional film through a film that absorbs irregularities on the surface of the functional film, and a mold resin in the mold And sealing the sensor chip with the mold resin so that the surface of the functional surface is exposed through the opening provided in the mold resin.
  • the chip preparation step a sensor chip is prepared in which a functional film contains a spacer for securing the thickness of the functional film against the pressing force applied in the film thickness direction.
  • a mold having a concave portion for releasing the pressing force to the functional film is used as the mold.
  • the functional film due to the spacer contained in the functional film, the functional film has the strength to withstand the pressing force applied in the film thickness direction, and the deformation in the film thickness direction is suppressed. Furthermore, when the functional film is pressed by the facing portion of the mold for molding resin molding so as to expose the functional film, a concave portion for releasing the pressing force is provided in the facing portion. Damage can be reduced as much as possible.
  • the sensor package includes a sensor chip, a functional film that is provided so as to cover one surface of the sensor chip, and a part of which is a sensing unit used for sensing, and a sensor And a mold resin that seals the chip and the functional film.
  • the surface of the sensing part in the functional film is exposed through an opening provided in the mold resin.
  • a recess is provided between the end of the mold resin located outside the sensing unit and the sensing unit.
  • the dent portion is thinner than the portion other than the dent portion.
  • the surface of the functional film is pressed with a mold so that the mold resin does not flow into the functional film. In particular, it is necessary to expose the sensing part of the functional film.
  • the concave portion is formed by selectively pressing the outside of the sensing portion in the functional film with a mold, so that it is particularly desired to apply a pressing force on the surface of the functional film.
  • the non-sensing portion is not pressed by the mold and exposed from the mold resin. Therefore, the damage generated in the functional film can be reduced as much as possible.
  • a method for manufacturing a sensor package includes a preparation step of preparing a sensor chip coated on one side with a functional film having a sensing unit used for sensing, and the prepared sensor chip in a mold. And a mold installation process in which the facing part of the inner surface of the mold facing the functional film is pressed against the functional film through the film and the mold resin is injected into the mold. And a sealing step of sealing the sensor chip and the functional film with the mold resin so that the surface of the sensing unit is exposed through the opening provided in the mold resin.
  • a mold having a pressing portion that has a concave portion at a portion facing the sensing portion and protrudes around the concave portion is used as the mold.
  • the outer part of the sensing part is reduced in thickness by pressing the outer part of the sensing part with the pressing part without applying a pressing force to the sensing part by the concave part.
  • the mold resin is injected in this state.
  • the outside of the sensing part in the functional film is selectively pressed with a mold to form a dent to reduce the thickness, and the sensing part of the surface of the functional film is pressed with the mold. Without being exposed to the mold resin. Therefore, the damage generated in the functional film can be reduced as much as possible.
  • FIG. 2 is a schematic cross-sectional view of a sensor package according to a first embodiment of the present disclosure.
  • FIG. It is a top view in FIG. 1A. It is an enlarged view of the moisture sensitive film vicinity in FIG. 1A.
  • FIG. 1A It is a schematic sectional drawing which shows the metal mold
  • FIGS. 1A and 1B The sensor package according to the first embodiment of the present disclosure will be described with reference to FIGS. 1A and 1B.
  • FIG. 1B the outline of the mold resin 50 and the outline of the opening 51 of the mold resin 50 are indicated by broken lines, and the components that pass through the mold resin 50 and are located inside the mold resin 50 are shown.
  • the sensor package S1 of the present embodiment is broadly divided into a sensor chip 10, an island 20 on which the sensor chip 10 is mounted, a lead 30 electrically connected to the sensor chip 10 via a bonding wire 40, and each of these members. And a mold resin 50 for sealing 10 to 40.
  • the sensor chip 10 is a plate-shaped member made of a silicon semiconductor having one plate surface 11 as one surface 11 and the other plate surface as the other surface 12, and is configured as a humidity sensor here.
  • the sensor chip 10 has a moisture sensitive film 13 as a functional film used for humidity sensing on one surface 11 side.
  • the moisture sensitive film 13 is made of, for example, a hygroscopic polymer organic material, and specifically made of polyimide, cellulose acetate, or the like. Such a moisture sensitive film 13 is produced by applying the polymer organic material onto the one surface 11 of the sensor chip 10 by spin coating or printing, and curing it.
  • the moisture sensitive film 13 is a film in which the dielectric constant of the film changes greatly when moisture enters the film. Further, on the one surface 11 of the sensor chip 10, an electrode made of Al or the like (not shown) is provided inside the moisture sensitive film 13. A signal from the moisture sensitive film 13 is extracted by detecting the change in the dielectric constant of the moisture sensitive film 13 as, for example, a change in capacitance of the electrode.
  • the island 20 and the lead 30 are plate-like materials made of, for example, Cu or 42 alloy, and are made of, for example, a common lead frame material.
  • the island 20 has front and back plate surfaces 21 and 22 and has a rectangular plate shape that is slightly larger than the sensor chip 10.
  • a plurality of leads 30 are provided outside the end face of the island 20, and each lead 30 has a strip shape.
  • the sensor chip 10 is mounted on the one surface 21 of the island 20 with the one surface 21 of the island 20 and the other surface 12 of the sensor chip 10 facing each other.
  • a die bond material 60 such as solder or Ag paste is interposed between the sensor chip 10 and the island 20, and both members 10 and 20 are fixed by the die bond material 60.
  • the bonding wire 40 is made of Au, Al, Cu, or the like, and is formed by a typical wire bonding method.
  • the mold resin 50 is formed by a transfer molding method using a mold 100 for molding resin molding as will be described later, and is made of a typical molding material such as epoxy resin.
  • the mold resin 50 seals the sensor chip 10, the island 20, the leads 30, and the bonding wires 40.
  • an opening 51 that reaches the surface of the moisture sensitive film 13 from the outer surface of the mold resin 50 is provided at a position corresponding to the surface of the moisture sensitive film 13 in the mold resin 50. Although the surface of the moisture sensitive film 13 is exposed through the opening 51, other portions are sealed with the mold resin 50.
  • the island 20 and the bonding wire 40 are entirely sealed with the mold resin 50.
  • the inner lead portion on the connection side of the bonding wire 40 is sealed with the mold resin 50, but the outer lead portion on the connection side with the outside protrudes from the mold resin 50 and is exposed. .
  • the humidity of the external environment is detected on the surface of the moisture sensitive film 13 exposed from the mold resin 50, and the detection signal is transmitted from the bonding wire 40 through the lead 30. And is taken out to the outside.
  • the moisture sensitive film 13 is against the pressing force F applied in the film thickness direction (hereinafter simply referred to as the pressing force F).
  • the spacer 14 for ensuring the film thickness h1 of 13 is comprised as what was contained.
  • the spacer 14 is a bead-like material made of an electrically insulating material such as resin, ceramic or glass, and has a shape such as a spherical shape or a rod shape. A plurality of spacers 14 are provided in the moisture sensitive film 13 so as to be distributed in the film plane direction.
  • the moisture sensitive film 13 containing such a spacer 14 is produced by, for example, applying the above polymer organic material containing the spacer 14 by spin coating or printing as described above and curing it. .
  • the spacer 14 is preferably, for example, more rigid than the moisture sensitive film 13, and the spacer 14 prevents deformation of the moisture sensitive film 13 in the film thickness direction due to the pressing force F. .
  • the spacer 14 is not substantially crushed against the pressing force F, so that the moisture sensitive film 13 is deformed so as to become thin. Is suppressed. Therefore, as a result, the film thickness h1 of the moisture sensitive film 13 is substantially ensured to be larger than the size of the spacer 14.
  • the dimension h2 of the spacer 14 in the film thickness direction of the moisture sensitive film 13 is equal to or greater than the film thickness h1 of the moisture sensitive film.
  • the film thickness h1 of the moisture sensitive film 13 as a functional film is about 2 ⁇ m to 5 ⁇ m, but the dimension h2 of the spacer 14 is preferably about 1 to 1.5 times the film thickness h1.
  • the sensor chip 10 provided with the moisture sensitive film 13 containing the spacer 14 described above is prepared (chip preparation process).
  • the island 20 and the lead 30 are prepared, and the sensor chip 10 is mounted on the one surface 21 of the island 20 and fixed. Then, wire bonding is performed between the sensor chip 10 and the lead 30 to form the bonding wire 40. Thus, an integrated member in which the sensor chip 10, the island 20, the lead 30, and the wire 40 are integrated is formed.
  • the integrated member including the sensor chip 10 is installed in a mold 100 for molding the mold resin 50 (mold installation process).
  • a mold 100 for molding the mold resin 50 (mold installation process).
  • an upper mold 101 and a lower mold 102 are detachably matched to form a cavity 103 between the upper and lower molds 101 and 102.
  • the facing portion 110 that is a portion facing the moisture sensitive film 13 on the inner surface of the mold 100 is formed
  • the film is pressed against the moisture sensitive film 13 through the film 200 that absorbs the unevenness of the film, and is brought into close contact.
  • the pressing force F (see FIG. 2) is applied to the moisture sensitive film 13 by the facing portion 110 of the mold 100.
  • the facing portion 110 is for forming the opening 51 of the mold resin 50 by being in close contact with the surface of the moisture sensitive film 13 through the film 200 and exposing the surface of the moisture sensitive film 13.
  • the facing portion 110 is configured as a protruding tip surface of a portion protruding from the periphery of the facing portion 110.
  • the facing part 110 protrudes in a trapezoidal shape from the surrounding part.
  • the film 200 is made of, for example, a fluorine resin.
  • the film 200 is attached to the entire inner surface of the upper mold 101 including the opposing portion 111, but may be attached only to the opposing portion 110.
  • the mold 100 is provided with a concave portion 111 that allows the opposing portion 110 to release the pressing force F to the moisture sensitive film 13.
  • the recessed part 111 is comprised as a site
  • the integrated member is installed between the upper and lower molds 101 and 102, and the surface of the moisture sensitive film 13 is pressed through the film 200.
  • the dimension h2 of the spacer 14 is larger than the film thickness h1 of the moisture sensitive film 13
  • unevenness exists on the surface of the moisture sensitive film 13 due to a step difference between the moisture sensitive film 13 and the spacer 14. The unevenness is absorbed by the film 200, and the film 200 and the moisture sensitive film 13 achieve close contact with no gap.
  • the pressing force F is released by the recess 111 provided in the facing portion 110, so that the damage generated in the moisture sensitive film 13 is reduced accordingly.
  • the mold resin 50 is injected and filled into the mold 100 to seal the integrated member including the sensor chip 10 with the mold resin 50 (sealing process). At this time, the surface of the moisture sensitive film 13 is pressed by the facing portion 110 and thus exposed from the mold resin 50.
  • the workpiece is taken out from the mold 100, and lead cutting, lead shaping, etc. are performed as necessary.
  • the sensor package S1 of the present embodiment shown in FIG. 1 is completed.
  • the spacer 14 receives the pressing force F of the mold 100 and resists the pressing force F. Deformation of the film 13 in the film thickness direction is suppressed as much as possible. That is, even if the moisture-sensitive film 13 is deformed, the film thickness h1 is substantially ensured to be equal to or larger than the dimension h2 of the spacer 14 in the film thickness direction of the moisture-sensitive film 13, and is less than the spacer dimension h2. Is substantially prevented.
  • the moisture-sensitive film 13 has the strength to withstand the pressing force F applied in the film thickness direction by the spacers 14 contained in the moisture-sensitive film 13, and is deformed in the film thickness direction. Is suppressed. Therefore, when the moisture sensitive film 13 is pressed by the mold 100, damage caused to the moisture sensitive film 13 by the pressing force F can be reduced as much as possible.
  • the spacer 14 since the spacer 14 has a dimension h2 in the film thickness direction of the moisture sensitive film 13 equal to or greater than the film thickness h1, the moisture sensitive film 13 is pressed by the mold 100. At this time, the spacer 14 preferentially receives the pressing force F from the mold 100 rather than the moisture sensitive film 13. Therefore, it becomes easier to reduce the damage generated in the moisture sensitive film 13, and the deformation of the moisture sensitive film 13 in the film thickness direction can be minimized.
  • the concave portion 111 for releasing the pressing force F is provided in the facing portion 110 of the mold 100, when the moisture sensitive film 13 is pressed by the facing portion 110, the moisture sensitive film 13 is crushed immediately below the concave portion 111. If the entire moisture sensitive film 13 is reduced, deformation in the film thickness direction can be suppressed.
  • the said recessed part 111 may be abbreviate
  • the action of the spacer 14 can withstand the pressing force F of the mold 100 and the deformation of the moisture sensitive film 13 is suppressed, so that the damage caused to the moisture sensitive film 13 can be reduced as much as possible.
  • a mold provided with a suction hole 112 that communicates with the recess 111 from the outside of the mold 100 is used.
  • the upper mold 101 is provided with a suction hole 112 as a hole penetrating from the outer surface of the upper mold 101 to the recess 111, and suction is performed from the outside of the upper mold 101 by a pump or the like.
  • the film 200 is deformed by the suction through the suction hole 112 so as to follow the concave shape of the concave portion 111 as shown in FIG.
  • the facing portion 110 is pressed against the moisture sensitive film 13 in a state where the film 200 is deformed.
  • the film 200 in the portion of the recess 111, the film 200 is recessed toward the recess 111 and is separated without contacting the moisture sensitive film 13. Accordingly, since the contact area between the film 200 and the moisture sensitive film 13 is reduced, contamination of the moisture sensitive film 13 due to contact with the film 200 is prevented as much as possible.
  • a sensor package according to a third embodiment of the present disclosure will be described with reference to FIGS. 7A and 7B.
  • This package is different from the above embodiments in that the spacer contained in the moisture sensitive film 13 is constituted by the electrode 15 for taking out a signal from the moisture sensitive film 13, and this difference is mainly described. In the following.
  • the electrode 15 is provided inside the moisture-sensitive film 13 and is used to detect a signal obtained by converting a change in dielectric constant of the moisture-sensitive film 13 into a change in capacitance. As shown in FIG. 7A, the electrodes 15 are distributed in the moisture sensitive film 13 and are provided so as to extend from one surface 11 of the sensor chip 10 to the surface of the moisture sensitive film 13.
  • the electrode 15 protrudes from the one surface 11 of the sensor chip 10 onto the surface of the moisture-sensitive film 13, and the protruding tip 15a is located on the surface of the moisture-sensitive film 13.
  • the protruding height of the electrode 15 corresponds to the dimension h2 of the spacer in the film thickness direction of the moisture sensitive film 13 described above.
  • the dimension h2 of the electrode 15 as a spacer is larger than the film thickness h1.
  • the dimension h2 and the film thickness h1 of the electrode 15 may be equal.
  • the protruding tip portion 15a of the electrode 15 and the surface of the moisture sensitive film 13 are in a state of being substantially in the same plane.
  • planar pattern of the electrode 15 typically, as shown in FIG. 7B, for example, a pair of comb teeth can be arranged so that the comb teeth mesh with each other. This enables efficient capacity detection.
  • the electrodes 15 are dispersed and provided in the region of the one surface 11 of the sensor chip 10 where the moisture sensitive film 13 is formed, whereby the bead-like spacer 14 in each of the above embodiments. Is replaced with an electrode 15 to realize a configuration in which the electrode 15 is used as a spacer. According to this, the structure can be simplified by using the electrode 15 as a spacer.
  • the electrode 15 is made of Al or an Al alloy, or a metal such as Ti or Au, and is formed by plating, sputtering, vapor deposition, or the like.
  • membrane 13 is formed between the electrodes 15 with respect to the one surface 11 of the sensor chip 10 in which this electrode 15 is formed.
  • the sensor chip 10 formed up to the moisture sensitive film 13 is used to form the integrated member as in the first embodiment, and the integrated member is installed in the mold 100 similar to the above. And let the opposing part 110 of the metal mold
  • FIG. 1 The sensor chip 10 formed up to the moisture sensitive film 13 is used to form the integrated member as in the first embodiment, and the integrated member is installed in the mold 100 similar to the above. And let the opposing part 110 of the metal mold
  • the facing portion 110 has the protruding tip portion 15a of the electrode 15 before the moisture sensitive film 13 through the film 200. To touch. Therefore, the electrode 15 receives the pressing force F of the mold 100 preferentially over the moisture sensitive film 13, and the damage caused to the moisture sensitive film 13 is reduced.
  • the protruding tip portion 15 a that has been crushed and expanded in the opening 51 covers the surface of the moisture-sensitive film 13, and the moisture-sensitive film is interposed between the electrodes 15.
  • the width W at which the surface 13 is exposed is reduced. Furthermore, if the crushing becomes large, the surface of the moisture sensitive film 13 may be covered with the protruding tip 15a.
  • the protruding tip portion 15a of the electrode 15 as a spacer protrudes on the surface of the moisture sensitive film 13 and protrudes.
  • a tip having a volume smaller than that of the electrode portion located on the tip 15a side below the surface of the moisture sensitive film 13 is prepared.
  • the protruding tip portion 15a side of the electrode 15 is narrowed so as to form a triangular shape toward the protruding tip portion 15a.
  • Such an electrode 15 is formed, for example, by chamfering by etching such as sandblasting. Thereafter, the moisture sensitive film 13 is formed so as to fill a portion of the electrode 15 below the narrowed portion.
  • FIG. 12 shows a state in which the protruding tip 15a of the electrode 15 is crushed by the pressing force F from the facing portion 110 of the mold 100, but the protruding tip 15a spreads on the surface of the moisture sensitive film 13 in this way. Even so, since the volume of the projecting tip 15a is small, the expansion area due to the collapse can be reduced.
  • a sensor package according to a fourth embodiment of the present disclosure will be described with reference to FIGS. 13, 14, and 15.
  • the pressure-sensitive F causes damage to the moisture-sensitive film 13. It is to reduce as much as possible.
  • the sensor package S1 of the first embodiment is a QFP (quad flat package) having a full mold structure, but the sensor package S2 of the present embodiment is a QFN (quad flat non-lead package) having a half mold structure.
  • the QFP can be adopted also in the present embodiment, and the QFN may be adopted also in the first to third embodiments. That is, the sensor chip 10 having the moisture sensitive film 13 on the one surface 11 side and the mold resin 50 molded by the mold 100 and sealing the sensor chip 10 are provided, and the surface of the moisture sensitive film 13 is an opening of the mold resin 50. Any package exposed through the part 51 can be applied to all the embodiments.
  • the sensor package S2 of the present embodiment is broadly divided into a sensor chip 10, an island 20 on which the sensor chip 10 is mounted, a lead 30 electrically connected to the sensor chip 10 via a bonding wire 40, and each of these members. And a mold resin 50 for sealing 10 to 40.
  • the mold resin 50 seals the sensor chip 10 side in the island 20 and the lead 30, and the sensor chip 10 and the bonding wire 40 are sealed by the mold resin 50.
  • the opposite sides of the island 20 and the leads 30 from the sensor chip 10 are exposed from the mold resin 50.
  • the end of the lead 30 and the outer shape of the mold resin 50 are substantially matched. That is, like the typical QFN structure, the lead 30 is located within the range of the planar outer shape of the mold resin 50 and does not protrude from the mold resin 50.
  • the moisture sensitive film 13 as a functional film is provided on the one surface 11 of the sensor chip 10 so as to cover the one surface 11.
  • a part of the moisture sensitive film 13 is a sensing unit 13a used for sensing.
  • the sensing unit 13a is a part that covers the electrode 15 (see the third embodiment) that detects a change in the dielectric constant of the moisture sensitive film 13 as a signal converted to a capacitance change in the moisture sensitive film 13. is there.
  • membranes 13 is a site
  • the sensor chip 10 and the moisture sensitive film 13 are sealed with the mold resin 50, but the surface of the sensing unit 13 a in the moisture sensitive film 13 is provided on the mold resin 50. It is exposed through the opening 51.
  • the sensing unit 13a in the moisture sensitive film 13 and the exposed configuration thereof are the same for the moisture sensitive film 13 of the first embodiment.
  • the recessed portion 13 b is thinner than the portion other than the recessed portion 13 b in the moisture sensitive film 13.
  • the recessed portion 13b has a continuous annular shape surrounding the sensing portion 13a.
  • the recessed portion 13b is exposed from the mold resin 50 at the opening 51, and the sensing portion 13a is exposed from the mold resin 50 on the inner peripheral side of the recessed portion 13b. Further, the outer surface of the recess 13 b in the moisture sensitive film 13 is sealed with a mold resin 50.
  • the sensing unit 13a is located at the center of the one surface 11 of the sensor chip 10, and an annular recess 13b forming a rectangular frame is provided outside the sensing unit 13a.
  • the depth of the recess 13b is not limited, but is, for example, about several nm to several ⁇ m.
  • the side surface of the opening 51 of the mold resin 50 is an inclined surface that extends from the surface side of the moisture sensitive film 13 that is the bottom side toward the opening side. Is a portion in contact with the moisture sensitive film 13 on the side surface.
  • this distance W may be zero.
  • the island 20 and the lead 30 in the sensor package S2 of the present embodiment are plate-shaped made of Cu, 42 alloy or the like, as in the first embodiment, and are formed of a common lead frame material, for example. is there.
  • the lead 30 has a rectangular plate shape, and a plurality of leads 30 are provided around the rectangular plate-like island 20 in the range of the planar outer shape of the mold resin 50.
  • a die bond material 60 such as solder or Ag paste is interposed between the sensor chip 10 and the island 20, and both members 10 and 20 are fixed by the die bond material 60.
  • the sensor chip 10 provided with the moisture sensitive film 13 on the one surface 11 is prepared (chip preparation process).
  • this integrated member is installed in a mold 100 for molding a mold resin 50 (mold installation process).
  • a cavity 103 is formed between the matched upper and lower molds 101 and 102 in the same manner as in the first embodiment.
  • the lower mold 102 is in close contact with the exposed surfaces of the island 20 and the leads 30 in order to form a QFN structure.
  • the facing portion 110 of the mold 100 is pressed against the moisture sensitive film 13 through the film 200 and is in close contact therewith.
  • the facing portion 110 has the same shape as that of the first embodiment, and its planar shape is the same as that of FIG. 4B. Specifically, the facing portion 110 has the recess 111 at a portion facing the central sensing portion 13a, and protrudes around the recess 111. A protruding portion around the recess 111 in the facing portion 110 is configured as a pressing portion 112 that holds the moisture sensitive film 13.
  • the integrated member is installed between the upper and lower molds 101 and 102, and the surface of the moisture sensitive film 13 is pressed through the film 200.
  • the surface of the moisture sensitive film 13 is pressed by the facing portion 110, no pressing force is applied to the sensing portion 13 a by the concave portion 110.
  • the outer side of the sensing part 13a is depressed by being pressed by the pressing part 112 through the film 200, that is, in a state where the recessed part 13b is formed. This state is shown in FIG.
  • the mold resin 50 is injected and filled into the mold 100, thereby sealing the integrated member including the sensor chip 10 with the mold resin 50. (Sealing process). At this time, the surface portion of the moisture sensitive film 13 that is pressed by the facing portion 110 including the sensing portion 13 a is exposed from the mold resin 50.
  • the workpiece is taken out from the mold 100, and the portion of the lead 30 that protrudes from the mold resin 50 is removed by lead cutting in order to obtain the above QFN structure.
  • the sensor package S2 of this embodiment as shown in FIGS. 13 to 15 is completed.
  • the depression 13b is formed by selectively pressing the outside of the sensing part 13a in the moisture sensitive film 13 with the pressing part 112 of the mold 100.
  • the sensing part 13 a that does not want to give a pressing force in particular on the surface of the moisture sensitive film 13 is exposed from the mold resin 50 because it is not pressed by the mold 100 by the recess 111.
  • the pressing portion 112 and the moisture sensitive film 13 of the mold 100 are pressed by the recessed portion 13b of the moisture sensitive film 13 through the film 200, and the stepped portion by the recessed portion 13b is pressed at this pressed portion. Is formed (see FIG. 17). Therefore, in the sealing process, an effect that the mold resin 50 is difficult to enter the sensing unit 13a can be expected.
  • the moisture sensitive film 13 and the sensor chip are formed in the recessed part 13b. An improvement in the adhesion with 10 can be expected.
  • the recess 13b has a continuous annular shape surrounding the sensing unit 13a. If it does in this way, the outer periphery of the sensing part 13a in the moisture sensitive film 13 will be hold
  • the moisture sensitive film 13 is pressed by the pressing portion 112 of the mold 100 having a planar shape that matches the recessed portion 13b, so that the flow of the mold resin 50 to the sensing portion 13a is more reliably performed. Can be prevented.
  • Modification Although this indication was described based on an embodiment, it is not limited to the embodiment or structure concerned. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
  • the functional film may be a film used for some sensing other than humidity, such as temperature, electric quantity, and mechanical quantity, and is not limited to the humidity sensitive film 13 of the humidity sensor described above.
  • a film having a solar cell function made of carbon or the like provided on an optical sensor chip made of a silicon semiconductor or the like may be used.
  • the material of the functional film is not limited to resin, and may be ceramic or the like depending on the case.
  • the moisture sensitive film 13 may further include a spacer 14 such as a bead.
  • the spacers 14 and 15 have the dimension h2 in the film thickness direction of the moisture sensitive film 13 equal to or greater than the film thickness h1.
  • the dimension h2 of the spacers 14 and 15 may be slightly smaller than the film thickness h1.
  • both sides of the one surface 21 on which the sensor chip 10 is mounted and the other surface 22 of the island 20 are sealed with the mold resin 50.
  • the other surface 22 side of the island 20 may be a half mold type exposed from the mold resin 50.
  • the member on which the sensor chip 10 is mounted may be, for example, a wiring board.
  • this wiring substrate or the like may be sealed with the mold resin 50, but if the sensor chip 10 is sealed so that the surface of the moisture sensitive film 13 is exposed, The sealing form of the wiring board or the like can be changed as appropriate.
  • the sensor chip 10 may be sealed with the mold resin 50 so that the surface of the moisture sensitive film 13 is exposed, and members such as the island 20 on which the sensor chip 10 is mounted are omitted. Also good.
  • membrane 13 makes the continuous annular

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Sensors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 センサパッケージは、センサチップ(10)とセンサチップを封止するモールド樹脂(50)とを備える。センサチップは、センシングに用いられる感湿膜(13)を一面(11)側に有する。感湿膜の表面は、モールド樹脂に設けられた開口部(51)を介して、露出している。感湿膜は、膜厚方向に加わる押力に抗して感湿膜の膜厚を確保するためのスペーサ(14、15)を有する。

Description

センサパッケージおよびその製造方法 関連出願の相互参照
 本開示は、2012年8月27日に出願された日本出願番号2012-186671号及び2013年3月13日に出願された日本出願番号2013-50480号に基づくもので、ここにその記載内容を援用する。
 本開示は、センサチップの機能膜を露出させるようにセンサチップをモールド樹脂で封止してなるセンサパッケージ、および、そのようなセンサパッケージの製造方法に関する。
 従来より、この種のセンサパッケージとしては、センシングに用いられる機能膜を一面側に有するセンサチップと、センサチップを封止するモールド樹脂と、を備えたものが提案されている(特許文献1参照)。
 ここで、モールド樹脂は、金型により成形されたものであり、この金型成形によって、センサチップを封止する形状であって、さらに機能膜の表面を露出させる開口部を有する形状とされている。そして、このモールド樹脂の開口部を介して、機能膜の表面が露出し、外部環境のセンシングが可能とされている。
 このようなセンサパッケージは、機能膜を有するセンサチップを、樹脂成形用の金型内に設置し、金型内にモールド樹脂を注入して、充填することにより製造される。ここで、上記開口部については、金型の内面つまりキャビティ内面のうち機能膜に対向する対向部を、フィルムを介して機能膜に押し付ける。
 ここで、フィルムは、当該機能膜の表面上の凹凸を吸収するものであり、この押し付けによりフィルムが機能膜に密着させた状態とされる。そして、この状態でモールド樹脂の注入を行うことにより開口部を形成する。
 このとき、機能膜は、金型で押さえ付けられるため、金型からの押力によって、機能膜が膜厚方向に変形し、ひいては機能膜の欠損等が生じ、センシング特性の劣化が発生しやすい。そこで、上記特許文献1では、機能膜の表面上に応力緩和層を設け、この応力緩和層を介して機能膜を金型で押さえることで、機能膜の変形等を防止している。
特開2010-50452号公報
 しかしながら、上記特許文献1のように、応力緩和層を設ける場合には、機能膜上に応力緩和層を設けることによる、センサ特性の劣化が生じる。具体的には、露出するべき機能膜の表面が応力緩和層で覆われる分、センシング領域が減少し、センサ特性の低下につながる。また、応力緩和層を設置するための工数が増加する。
 そこで、本開示は、機能膜を露出させるようにセンサチップをモールド樹脂で封止してなるセンサパッケージにおいて、機能膜を露出させるべくモールド樹脂成型用の金型で機能膜を押さえたときの押力によって機能膜に生じるダメージを、極力低減することを目的とする。
 本開示の第1の態様では、センサパッケージは、センシングに用いられる機能膜を一面側に有するセンサチップと、センサチップを封止するモールド樹脂と、を備える。機能膜の表面は、モールド樹脂に設けられた開口部を介して露出しており、機能膜は、膜厚方向に加わる押力に抗して機能膜の膜厚を確保するためのスペーサが、含有されている。
 それによれば、機能膜に含有されたスペーサによって、機能膜は、膜厚方向に加わる押力に耐える強度を有し、膜厚方向への変形が抑制されたものとなるから、センサチップをモールド樹脂で封止するにあたって機能膜を露出させるために金型で機能膜を押さえたとき、押力によって機能膜に生じるダメージを、極力低減することができる。
 本開示の第2の態様では、センサパッケージの製造方法は、センシングに用いられる機能膜を一面側に有するセンサチップを用意するチップ用意工程と、金型内にセンサチップを設置するとともに、金型の内面のうち機能膜に対向する対向部を、機能膜の表面上の凹凸を吸収するフィルムを介して機能膜に押し付けて密着させた状態とする金型設置工程と、金型内にモールド樹脂を注入して充填することにより、機能面の表面がモールド樹脂に設けられた開口部を介して露出するように、センサチップをモールド樹脂で封止する封止工程と、を備える。チップ用意工程では、センサチップとして、機能膜に、膜厚方向に加わる押力に抗して機能膜の膜厚を確保するためのスペーサが含有されたものを用意する。金型設置工程では、金型として、対向部に、機能膜への押力を逃がす凹部が設けられたものを用いる。
 それによれば、機能膜に含有されたスペーサによって、機能膜は、膜厚方向に加わる押力に耐える強度を有し、膜厚方向への変形が抑制されたものとなる。さらに、機能膜を露出させるべくモールド樹脂成型用の金型の対向部で機能膜を押さえたとき、対向部に押力を逃がす凹部を設けているから、本開示によれば、機能膜に生じるダメージを極力低減することができる。
 本開示の第3の態様では、センサパッケージは、センサチップと、センサチップの一面上に一面を被覆するように設けられ、一部がセンシングに用いられるセンシング部とされている機能膜と、センサチップおよび機能膜を封止するモールド樹脂と、を備える。機能膜のうちのセンシング部の表面は、モールド樹脂に設けられた開口部を介して露出している。開口部にて露出する機能膜の表面において、センシング部の外側に位置するモールド樹脂の端部とセンシング部との間には、凹み部が設けられている。機能膜において、凹み部では凹み部以外の部位よりも薄いものとされている。
 センサチップ上の機能膜を露出部としてモールド樹脂による封止を行う場合、機能膜にモールド樹脂が流入しないように、機能膜の表面を金型で押さえることになる。特に、機能膜のうちセンシング部を露出させることが必要である。
 このとき、第3の態様によれば、機能膜におけるセンシング部の外側を金型で選択的に押さえることで、上記凹み部が形成されるため、機能膜の表面のうち特に押力を与えたくないセンシング部は、金型で押さえられずに、モールド樹脂より露出することになる。それゆえ、機能膜に生じるダメージを極力低減することができる。
 本開示の第4の態様では、センサパッケージの製造方法は、センシングに用いられるセンシング部を有する機能膜で一面が被膜されたセンサチップを用意する用意工程と、用意されたセンサチップを金型内に設置するとともに、金型の内面のうち機能膜に対向する対向部を、フィルムを介して、機能膜に押し付けて密着させた状態とする金型設置工程と、金型内にモールド樹脂を注入して充填することにより、センシング部の表面が、モールド樹脂に設けられた開口部を介して露出するように、センサチップおよび機能膜をモールド樹脂で封止する封止工程と、を備える。金型設置工程では、金型として、対向部が、センシング部に対向する部分では凹部を有し、凹部の回りでは突出した押さえ部を備えるものを用いる。そして、機能膜の表面を対向部で押さえるときに、凹部によってセンシング部には押力を付与せずに、センシング部の外側を押さえ部で押さえることによってセンシング部の外側を減厚させて凹ませた状態とし、この状態でモールド樹脂の注入を行う。
 第4の態様によれば、機能膜におけるセンシング部の外側を金型で選択的に押さえることで凹みを形成して減厚させ、機能膜の表面のうちのセンシング部は、金型で押さえられることなく、モールド樹脂より露出させることができる。それゆえ、機能膜に生じるダメージを極力低減することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
本開示の第1実施形態にかかるセンサパッケージの概略断面図である。 図1A中の上面図である。 図1Aにおける感湿膜近傍の拡大図である。 上記第1実施形態にかかるセンサパッケージの製造方法における金型設置工程を示す概略断面図である。 図3における感湿膜近傍の拡大図である。 図4Aにおける対向部110の下面図である。 上記第1実施形態における他の例としての金型設置工程を示す概略断面図である。 本開示の第2実施形態にかかるセンサパッケージの製造方法における金型設置工程を示す概略断面図である。 本開示の第3実施形態にかかるセンサパッケージの要部を示す概略断面図である。 上記第3実施形態における感湿膜中の電極の平面形状を示す概略平面図である。 上記第3実施形態にかかるセンサパッケージの製造方法における金型設置工程を示す概略断面図である。 上記第3実施形態において電極の突出先端部が潰れた構成の例を示す概略断面図である。 上記第3実施形態における他の例としてのチップ用意工程にて用意されたセンサチップの感湿膜近傍を示す一部断面斜視図である。 上記第3実施形態における他の例としての金型設置工程を示す概略断面図である。 上記第3実施形態における他の例としてのセンサパッケージの要部を示す概略断面図である。 本開示の第4実施形態にかかるセンサパッケージの概略断面図である。 図13中の上面図である。 図13における感湿膜近傍の拡大図である。 上記第4実施形態にかかるセンサパッケージの製造方法における金型設置工程を示す概略断面図である。 図16における感湿膜近傍の拡大図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
(第1実施形態)
 本開示の第1実施形態にかかるセンサパッケージについて、図1A、図1Bを参照して述べる。なお、図1Bでは、モールド樹脂50の外郭およびモールド樹脂50の開口部51の内郭を破線で示すとともに、モールド樹脂50を透過してモールド樹脂50の内部に位置する構成要素を示している。
 本実施形態のセンサパッケージS1は、大きくは、センサチップ10と、センサチップ10を搭載するアイランド20と、センサチップ10とボンディングワイヤ40を介して電気的に接続されたリード30と、これら各部材10~40を封止するモールド樹脂50と、を備えて構成されている。
 センサチップ10は、一方の板面11を一面11、他方の板面を他面12とするシリコン半導体等よりなる板状のもので、ここでは湿度センサとして構成されている。このセンサチップ10は、一面11側に湿度のセンシングに用いられる機能膜としての感湿膜13を有する。
 この感湿膜13は、たとえば吸湿性の高分子有機材料よりなるもので、具体的にはポリイミドや酢酸セルロース等よりなる。このような感湿膜13は、スピンコートや印刷等により、上記高分子有機材料をセンサチップ10の一面11上に塗布し、これを硬化させることにより作製される。
 ここで、感湿膜13は、膜中に水分が侵入すると膜の誘電率が大きく変化するものである。また、センサチップ10の一面11にて、感湿膜13内部には、図示しないAl等よりなる電極が設けられている。そして、この感湿膜13の誘電率変化を、たとえば当該電極の容量変化として検出することによって、感湿膜13からの信号が取り出されるようになっている。
 アイランド20およびリード30は、たとえばCuや42アロイ等よりなる板状のもので、たとえば共通のリードフレーム素材より形成されたものである。ここでは、アイランド20は、表裏の板面21、22を有し、センサチップ10よりも一回り大きい矩形板状をなしている。また、リード30は、アイランド20の端面の外方に複数個設けられ、個々のリード30は短冊板状をなしている。
 そして、アイランド20の一面21とセンサチップ10の他面12とが対向した状態で、センサチップ10は、アイランド20の一面21上に搭載されている。センサチップ10とアイランド20との間には、はんだやAgペースト等のダイボンド材60が介在し、このダイボンド材60により両部材10、20は固定されている。
 また、センサチップ10の一面11とリード30とが、ボンディングワイヤ40を介して電気的に接続されている。このボンディングワイヤ40は、AuやAlあるいはCu等よりなるもので、典型的なワイヤボンディング法により形成される。
 また、モールド樹脂50は、後述するようにモールド樹脂成型用の金型100を用いたトランスファーモールド法により成形されるもので、エポキシ樹脂等の典型的なモールド材料よりなる。
 ここでは、モールド樹脂50は、センサチップ10、アイランド20、リード30、ボンディングワイヤ40を封止している。ここで、モールド樹脂50のうち感湿膜13の表面に対応する位置には、モールド樹脂50の外面から感湿膜13表面まで到達する開口部51が設けられており、センサチップ10については、感湿膜13の表面が開口部51を介して露出するが、その他の部位はモールド樹脂50で封止されている。
 また、アイランド20およびボンディングワイヤ40については、全体がモールド樹脂50で封止されている。また、リード30については、ボンディングワイヤ40の接続側であるインナーリード部がモールド樹脂50で封止されているが、外部との接続側であるアウターリード部はモールド樹脂50より突出し露出している。
 これにより、センサチップ10においては、モールド樹脂50より露出する感湿膜13の表面にて外部環境の湿度が検出されるようになっており、その検出信号は、ボンディングワイヤ40からリード30を介して、外部に取り出されるようになっている。
 さらに、図2に示されるように、本実施形態のセンサパッケージS1では、感湿膜13は、膜厚方向に加わる押力F(以下、単に押力Fという)に抗して当該感湿膜13の膜厚h1を確保するためのスペーサ14が、含有されたものとして構成されている。
 このスペーサ14は、電気絶縁性の材料、たとえば樹脂、セラミックあるいはガラス等よりなるビーズ状のものであり、たとえば球状または棒状等の形状をなす。スペーサ14は、感湿膜13内にて膜平面方向に分散して複数個設けられている。
 このようなスペーサ14を含有する感湿膜13は、たとえば上記高分子有機材料にスペーサ14を含有したものを、上述のスピンコートや印刷等により、塗布し、これを硬化させることにより作製される。
 スペーサ14は、感湿膜13よりもたとえば剛性が大きいものであることが望ましく、このスペーサ14により、押力Fによる感湿膜13の膜厚方向への変形が防止されるようになっている。
 具体的には、感湿膜13に押力Fが印加されても、スペーサ14は押力Fに抗して実質的に潰れることはないから、感湿膜13が潰れて薄くなるように変形することが抑制される。そのため、結果的に、感湿膜13の膜厚h1は、実質的にスペーサ14のサイズ以上の大きさに確保される。
 ここで、スペーサ14の感湿膜13の膜厚方向における寸法h2は、感湿膜の膜厚h1と同等かそれ以上とされている。たとえば、機能膜としての感湿膜13の膜厚h1は、2μm~5μm程度であるが、スペーサ14の寸法h2は、その膜厚h1の1倍~1.5倍程度とすることが好ましい。
 これは、スペーサ14の寸法h2が大きすぎて感湿膜13の表面からの突出が大きすぎる場合、感湿膜13の表面とスペーサ14とによる凹凸が大きくなり、後述する金型設置工程(図3参照)にて、金型100の対向部110でフィルム200を介して感湿膜13を押さえるときに、当該凹凸をフィルム200で吸収しにくくなるためである。
 次に、図3も参照して、本センサパッケージS1の製造方法について述べる。まず、上記したスペーサ14を含有する感湿膜13が設けられたセンサチップ10を用意する(チップ用意工程)。
 一方で、アイランド20およびリード30を用意し、このセンサチップ10をアイランド20の一面21上に搭載し固定する。そして、センサチップ10とリード30との間でワイヤボンディングを行い、ボンディングワイヤ40を形成する。こうして、センサチップ10、アイランド20、リード30、ワイヤ40が一体化された一体化部材が形成される。
 次に、図3に示されるように、このセンサチップ10を含む一体化部材を、モールド樹脂50成型用の金型100に設置する(金型設置工程)。この金型100は、上型101と下型102とが取り外し可能に合致されることにより、当該上下型101、102の間にキャビティ103を形成するものである。
 ここで、金型設置工程では、図3、4A、4Bに示されるように、金型100の内面のうち感湿膜13に対向する部位である対向部110を、感湿膜13の表面上の凹凸を吸収するフィルム200を介して感湿膜13に押し付けて密着させた状態とする。このとき、金型100の対向部110によって感湿膜13には、上記押力F(図2参照)が印加される。
 対向部110は、フィルム200を介して、感湿膜13の表面に密着することにより、モールド樹脂50の開口部51を形成し、感湿膜13の表面を露出させるためのものである。ここでは、対向部110は、当該対向部110の周囲よりも突出した部位の突出先端面として構成されている。具体的には、対向部110は、周囲部分よりも断面台形状に突出している。
 フィルム200は、たとえばフッ素系樹脂等よりなるものである。ここでは、図3に示されるように、フィルム200は、対向部111を含めて上型101の内面全体に貼り付けられているが、対向部110のみに貼り付けられていてもよい。
 また、図3、4A、4Bに示されるように、金型設置工程では、金型100として、対向部110に、感湿膜13への押力Fを逃がす凹部111が設けられたものを用いる。ここでは、凹部111は、平坦面である対向部110の中央部を凹ませた部位として構成されている。つまり、露出するべき感湿膜13のうちの中央部に、凹部111が位置するものとされている。
 こうして、金型設置工程では、上下型101、102間に上記一体化部材を設置し、フィルム200を介して、感湿膜13の表面を押さえ付ける。このとき、スペーサ14の上記寸法h2が感湿膜13の膜厚h1より大きい場合には、感湿膜13とスペーサ14との段差等によって感湿膜13表面上に凹凸が存在するが、この凹凸はフィルム200により吸収され、フィルム200と感湿膜13とで隙間のない密着が実現される。
 また、対向部110で感湿膜13を押さえたとき、その押力Fは、対向部110に設けられた凹部111により逃されるので、その分、感湿膜13に発生するダメージが軽減される。
 こうして、金型設置工程を行った後、金型100内にモールド樹脂50を注入して充填することにより、センサチップ10を含む一体化部材をモールド樹脂50で封止する(封止工程)。このとき、感湿膜13の表面は対向部110で押さえ付けられているので、モールド樹脂50より露出する。
 この封止工程の後、金型100からワークを取り出し、必要に応じて、リードカットやリードの整形等を行う。こうして、上記図1に示される本実施形態のセンサパッケージS1ができあがる。
 ところで、本実施形態によれば、金型100の対向部110で感湿膜13を押さえたとき、スペーサ14が金型100の押力Fを受けて当該押力Fに抗するので、感湿膜13の膜厚方向への変形が極力抑制される。つまり、感湿膜13が変形したとしても、その膜厚h1は、実質的に感湿膜13の膜厚方向におけるスペーサ14の寸法h2以上に確保され、当該スペーサ寸法h2よりも薄くなることは実質的に防止される。
 このように、本実施形態によれば、感湿膜13に含有されたスペーサ14によって、感湿膜13は、膜厚方向に加わる押力Fに耐える強度を有し、膜厚方向への変形が抑制されたものとなる。そのため、金型100で感湿膜13を押さえたとき、当該押力Fによって感湿膜13に生じるダメージを、極力低減することができる。
 特に、本実施形態では、スペーサ14は、感湿膜13の膜厚方向における寸法h2を、当該膜厚h1と同等かそれ以上のものとしているので、金型100で感湿膜13を押さえたとき、感湿膜13よりもスペーサ14の方が、金型100からの押力Fを優先的に受けるものとなる。そのため、感湿膜13に生じるダメージをより低減しやすくなり、また、感湿膜13の膜厚方向への変形を極力小さくできる。
 さらに、金型100の対向部110に、押力Fを逃がす凹部111を設けているから、対向部110で感湿膜13を押さえたとき、凹部111の直下では、感湿膜13の潰れが小さくなり、感湿膜13全体でみれば、膜厚方向の変形が抑制されたものにできる。
 なお、本実施形態の金型設置工程においては、図5に示されるように、対向部110において上記凹部111が省略されたものであってもよい。この場合も、スペーサ14の作用により、金型100の押力Fに耐えて感湿膜13の変形が抑制されるため、感湿膜13に生じるダメージを極力低減することができる。
(第2実施形態)
 本開示の第2実施形態について、図6を参照して述べる。本実施形態は、上記第1実施形態において金型設置工程を一部変形したところが相違するものであり、この相違点を中心に述べることとする。
 図6に示されるように、本実施形態の金型設置工程では、金型100として金型100の外部から凹部111に通じる吸引孔112が設けられたものを用いる。具体的には、上型101において当該上型101の外面から凹部111まで貫通する孔としての吸引孔112を設け、上型101の外部からポンプ等により吸引を行う。
 この吸引孔112を介した吸引により、図6に示されるように、フィルム200は凹部111の凹形状に追従するように変形する。そして、金型設置工程では、このフィルム200を変形させた状態で、対向部110を感湿膜13に押し付ける。
 本実施形態によれば、凹部111の部分では、フィルム200が凹部111側に凹んで感湿膜13と接触せずに離れたものとされる。その分、フィルム200と感湿膜13との接触面積が低減されることから、フィルム200との接触による感湿膜13の汚染等が極力防止される。
 なお、凹部111は対向部110のうちの中央寄りの部位に位置するので、対向部110のうち凹部111周囲を取り巻く環状の周辺部では、フィルム200が感湿膜13に隙間なく密着するため、モールド樹脂50が侵入することはない。
(第3実施形態)
 本開示の第3実施形態にかかるセンサパッケージについて、図7A、図7Bを参照して述べる。本パッケージは、感湿膜13に含有されるスペーサを、感湿膜13からの信号を取り出すための電極15にて構成したところが、上記各実施形態と相違するものであり、この相違点を中心に述べる。
 上述したが、電極15は、感湿膜13内部に設けられ、感湿膜13の誘電率変化を容量変化に変換した信号として検出するためのものである。そして、図7Aに示されるように、電極15は、感湿膜13中に分散して配置されており、センサチップ10の一面11から感湿膜13の表面まで延びるように設けられている。
 図7Aの例では、電極15は、センサチップ10の一面11から感湿膜13の表面上に突出し、突出先端部15aが感湿膜13の表面上に位置したものとされている。ここで、電極15の突出高さが上記した感湿膜13の膜厚方向におけるスペーサの寸法h2に相当する。
 つまり、図7Aの例では、スペーサとしての電極15の寸法h2が膜厚h1よりも大きいものとされている。なお、本実施形態においても、当該電極15の寸法h2と膜厚h1とが同等であってもよい。この同等の場合には、電極15の突出先端部15aと感湿膜13の表面とが実質的に同一平面に位置する状態となる。
 また、電極15の平面パターンとしては、典型的には、図7Bに示されるように、たとえばそれぞれ櫛歯状をなす一対のものが、互いの櫛歯が噛み合うように配置されたものにできる。これにより、効率の良い容量検出が可能となる。
 このように、本実施形態は、センサチップ10の一面11のうち感湿膜13が形成される領域内にて、電極15を分散して設けることにより、上記各実施形態におけるビーズ状のスペーサ14を電極15に置き換え、この電極15をスペーサとした構成を実現している。それによれば、電極15をスペーサとして兼用し、構成の簡素化が図れる。
 ここで、電極15は、AlまたはAl合金、あるいは、Ti、Au等の金属よりなるもので、めっき、スパッタリング、蒸着等により形成される。そして、感湿膜13は、この電極15が形成されているセンサチップ10の一面11上に対して、電極15間に形成する。
 次に、本実施形態の金型設置工程について、図8を参照して述べる。感湿膜13まで形成されたセンサチップ10を用いて、上記第1実施形態と同様、上記一体化部材まで形成し、この一体化部材を上記同様の金型100に設置する。そして、金型100の対向部110を、フィルム200を介して感湿膜13に押し付けて密着させた状態とする。
 このとき、電極15の突出先端部15aが感湿膜13の表面上に突出しているので、対向部110は、フィルム200を介して、感湿膜13よりも先に電極15の突出先端部15aに接触する。そのため、感湿膜13よりも電極15の方が、金型100の押力Fを優先的に受けることになり、感湿膜13に生じるダメージが軽減される。
 そして、対向部110によるフィルム200の密着が完了した状態では、図8に示されるように、電極15と感湿膜13とによる感湿膜13表面上の凹凸は、フィルム200により吸収されている。ここまでが金型設置工程であり、その後は、上記同様の封止工程等を行うことにより、図7Aのようなセンサパッケージができあがる。
 ところで、図7A、図8に示される例のように、スペーサとしての電極15が、突出先端部15aが感湿膜13の表面上に突出する場合、金型設置工程にて金型100からの押力Fを受けて、電極15の突出先端部15aが潰れる可能性がある。
 そのような潰れが生じた場合、図9に示されるように、開口部51において、潰れて拡がった突出先端部15aが、感湿膜13の表面を覆ってしまい、電極15間において感湿膜13の表面が露出する幅Wが小さくなる。さらには、当該潰れが大きくなると、感湿膜13の表面が突出先端部15aで覆い尽くされてしまうおそれもある。
 この点を考慮した本実施形態の他の例について図10、図11、および図12を参照して述べる。この例では、まず、図10に示されるように、チップ用意工程で用意されるセンサチップ10として、スペーサである電極15の突出先端部15aが感湿膜13の表面上に突出するとともに、突出先端部15a側が感湿膜13の表面下に位置する電極部位よりも体積が小さいものであるものを用意する。
 ここでは、電極15の突出先端部15a側が、突出先端部15aに向かって三角形状をなすように細くなっている。このような電極15は、たとえばサンドブラスト等のエッチングにより面取り加工を行うことで形成される。その後、電極15のうち当該細くなっている部分よりも下側の部分を埋めるように感湿膜13を形成する。
 この図10に示されるようなセンサチップ10を用いて、図11に示されるように、金型設置工程を行う。そして、図12では、金型100の対向部110からの押力Fにより電極15の突出先端部15aが潰れた状態を示すが、このように突出先端部15aが感湿膜13の表面に拡がったとしても、当該突出先端部15aの体積を小さいものとしているので、当該潰れによる拡がり面積を小さくできる。
 つまり、当該電極15の潰れ部分によって感湿膜13の表面が覆い尽くされるのを防止でき、図12に示されるように、電極15間において感湿膜13の表面が露出する幅Wを広く確保することが可能となる。また、このことは、複数個の電極15において、隣同士の電極15間における短絡の防止につながる。
(第4実施形態)
 本開示の第4実施形態にかかるセンサパッケージについて、図13、図14、および図15を参照して述べる。本実施形態では、機能膜としての感湿膜13に上記スペーサ14、15を設けることなく、金型100で感湿膜13を押さえたとき、上記押力Fによって感湿膜13に生じるダメージを、極力低減するものである。
 上記第1実施形態のセンサパッケージS1は、フルモールド構造のQFP(クワッドフラットパッケージ)であったが、本実施形態のセンサパッケージS2は、ハーフモールド構造のQFN(クワッドフラットノンリードパッケージ)である。
 なお、本実施形態においても、上記QFPを採用できるし、上記第1~第3の各実施形態においても、上記QFNを採用してもよい。つまり、感湿膜13を一面11側に有するセンサチップ10と、金型100により成形されセンサチップ10を封止するモールド樹脂50と、を備え、感湿膜13の表面がモールド樹脂50の開口部51を介して露出しているパッケージならば、各実施形態のすべてに適用できるものである。
 本実施形態のセンサパッケージS2は、大きくは、センサチップ10と、センサチップ10を搭載するアイランド20と、センサチップ10とボンディングワイヤ40を介して電気的に接続されたリード30と、これら各部材10~40を封止するモールド樹脂50と、を備えて構成されている。
 ここで、モールド樹脂50は、アイランド20およびリード30においてセンサチップ10側を封止しており、このモールド樹脂50によりセンサチップ10およびボンディングワイヤ40が封止されている。そして、アイランド20およびリード30におけるセンサチップ10とは反対側は、モールド樹脂50より露出している。
 また、ここでは、リード30の端部とモールド樹脂50の外郭とが実質的に一致したものとされている。つまり、典型的なQFN構造と同様、リード30は、モールド樹脂50の平面外形の範囲内に位置しており、モールド樹脂50より突出していない。
 そして、本実施形態においても、機能膜としての感湿膜13は、センサチップ10の一面11上に当該一面11を被覆するように設けられている。ここで、感湿膜13の一部がセンシングに用いられるセンシング部13aとされている。
 具体的には、センシング部13aは、感湿膜13のうち感湿膜13の誘電率変化を容量変化に変換した信号として検出する上記電極15(上記第3実施形態参照)を被覆する部位である。
 つまり、感湿膜13は、この電極15に接触する部分にて当該電極15によって誘電率変化を検出されるようになっている。そして、この感湿膜13のうちセンシング部13aの外側の部位は、実質的にセンシング機能に供与しない部位である。
 そして、本実施形態においても、センサチップ10および感湿膜13は、モールド樹脂50で封止されているが、感湿膜13のうちのセンシング部13aの表面は、モールド樹脂50に設けられた開口部51を介して露出している。なお、この感湿膜13におけるセンシング部13aおよびその露出構成については、上記第1実施形態の感湿膜13についても同様である。
 ここにおいて、本実施形態のセンサパッケージS2では、開口部51にて露出する感湿膜13の表面において、センシング部13aの外側に位置するモールド樹脂50の端部50aとセンシング部13aとの間には、凹み部13bが設けられている。つまり、凹み部13bはモールド樹脂50の開口部51より露出するものである。そして、感湿膜13において、凹み部13bでは、感湿膜13における凹み部13b以外の部位よりも薄いものとされている。
 本実施形態では、凹み部13bは、センシング部13aを取り囲む連続した環状をなすものである。そして、凹み部13bは開口部51にてモールド樹脂50より露出するとともに、凹み部13bの内周側にてセンシング部13aがモールド樹脂50より露出している。また、感湿膜13のうち凹み部13bの外側の表面は、モールド樹脂50により封止されている。
 図示例では、センシング部13aはセンサチップ10の一面11の中央部に位置し、その外側に矩形枠をなす環状の凹み部13bが設けられている。この凹み部13bの凹み深さは、限定するものではないが、たとえば数nm~数μm程度である。
 また、ここでは、モールド樹脂50の開口部51の側面は、底側である感湿膜13の表面側から開口側に向かって拡がる傾斜面とされているが、モールド樹脂50の端部50aとは、当該側面のうちの感湿膜13と接する部位である。また、図13、図14では、凹み部13aと当該端部50aとは、距離Wを有して離れているが、この距離Wが0であってもよい。
 また、本実施形態のセンサパッケージS2におけるアイランド20およびリード30は、上記第1実施形態と同様、Cuや42アロイ等よりなる板状のもので、たとえば共通のリードフレーム素材より形成されたものである。たとえば、リード30は短冊板状をなし、モールド樹脂50の平面外形の範囲にて、矩形板状のアイランド20の周りに複数個設けられている。
 また、本実施形態においても、センサチップ10とアイランド20との間には、はんだやAgペースト等のダイボンド材60が介在し、このダイボンド材60により両部材10、20は固定されている。
 次に、図16、図17も参照して、本実施形態のセンサパッケージS2の製造方法について述べる。まず、一面11上に感湿膜13が設けられたセンサチップ10を用意する(チップ用意工程)。
 そして、このセンサチップ10をアイランド20に搭載し、ボンディングワイヤ40を形成することにより、上記第1実施形態と同様、センサチップ10、アイランド20、リード30、ワイヤ40が一体化された一体化部材を形成する。
 そして、図16に示されるように、この一体化部材をモールド樹脂50成型用の金型100に設置する(金型設置工程)。この金型100は、上記第1実施形態のものと同様、合致された上下型101、102の間にキャビティ103を形成するものである。ただし、ここでは、下型102は、QFN構造を形成するために、アイランド20およびリード30の露出面に密着するものである。
 ここで、本実施形態の金型設置工程においても、図16、図17に示されるように、金型100の対向部110を、フィルム200を介して感湿膜13に押し付けて密着させた状態とする。
 この対向部110は、上記第1実施形態のものと同様の形状であり、その平面形状は上記図4Bと同様である。具体的には、対向部110は、中央のセンシング部13aに対向する部分では上記凹部111を有し、この凹部111の回りでは突出している。この対向部110において凹部111周りの突出する部位が、感湿膜13を押さえる押さえ部112として構成されている。
 こうして、本実施形態の金型設置工程では、上下型101、102間に上記一体化部材を設置し、フィルム200を介して、感湿膜13の表面を押さえ付ける。この感湿膜13の表面を対向部110で押さえるときに、凹部110によってセンシング部13aには押力が付与されることはない。
 一方、センシング部13aの外側は、フィルム200を介して、押さえ部112で押さえられることによって減厚して凹んだ状態、すなわち上記凹み部13bが形成された状態となる。この状態が図17に示される。
 こうして、金型設置工程を行った後、図17の状態にて、金型100内にモールド樹脂50を注入して充填することにより、センサチップ10を含む一体化部材をモールド樹脂50で封止する(封止工程)。このとき、感湿膜13のうちセンシング部13aを含む対向部110で押さえ付けられている表面部分は、モールド樹脂50より露出する。
 この封止工程の後、金型100からワークを取り出し、上記QFN構造とするべく、リード30のうちモールド樹脂50より突出している部分をリードカットして除去する。こうして、上記図13~図15に示されるような本実施形態のセンサパッケージS2ができあがる。
 ところで、本実施形態によれば、感湿膜13におけるセンシング部13aの外側を金型100の押さえ部112で選択的に押さえることで、上記凹み部13bが形成される。一方で、感湿膜13の表面のうち特に押力を与えたくないセンシング部13aは、上記凹部111によって、金型100で押さえられないことで、モールド樹脂50より露出することになる。
 感湿膜13のうちセンシング部13aに対して金型100からの押力が加えられなければ、実質的に感湿膜13における機能的ダメージは回避される。それゆえ、本実施形態によれば、感湿膜13に生じるダメージを極力低減することができる。
 また、本実施形態によれば、金型100の押さえ部112と感湿膜13とは、感湿膜13の凹み部13bでフィルム200を介して押し付けられ、この押し付け部分では凹み部13bによる段差が形成される(図17参照)。そのため、封止工程においては、モールド樹脂50がセンシング部13aに入り込みにくくなる、という効果も期待できる。
 また、感湿膜13のうち凹み部13bは、金型100の押さえ部112で押し付けられて薄く変形したものとされるので(図17参照)、当該凹み部13bでは感湿膜13とセンサチップ10との密着力の向上が期待できる。
 また、本実施形態では、図13~15に示されるように、凹み部13bは、センシング部13aを取り囲む連続した環状をなすものとしている。このようにすれば、感湿膜13におけるセンシング部13aの外側全周を金型100の押さえ部112で押さえることになる。
 つまり、封止工程では、凹み部13bに一致した平面形状を有する金型100の押さえ部112により、感湿膜13が押さえられるため、センシング部13aへのモールド樹脂50の流入を、より確実に防止できる。
(変形例)
 本開示は、実施形態に準拠して記述されたが、当該実施形態や構造に限定されるものではない。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 なお、機能膜としては、湿度以外にも温度や電気量、力学量等、何らかのセンシングに用いられる膜であればよく、上記した湿度センサの感湿膜13に限定されるものではない。たとえばシリコン半導体等よりなる光センサチップ上に設けられたカーボン等よりなる太陽電池機能を有する膜などであってもよい。また、機能膜の材質も、樹脂に限定されるものではなく、場合に応じてセラミック等であってもよい。
 また、上記第3実施形態のように、電極15をスペーサとした例においても、さらに感湿膜13中にビーズ等のスペーサ14を含有させてもよい。
 また、上記各実施形態では、スペーサ14、15は、感湿膜13の膜厚方向における寸法h2が当該膜厚h1と同等かそれ以上のものとしたが、たとえば、多少変形しても感湿膜13の特性変化が問題ない程度に小さい場合等には、スペーサ14、15の寸法h2が膜厚h1よりも多少小さいものであってもかまわない。
 また、上記図1に示したセンサパッケージは、アイランド20において、センサチップ10が搭載されている一面21および他面22の両側がモールド樹脂50で封止されたものであったが、センサパッケージとしては、アイランド20における他面22側はモールド樹脂50より露出させたハーフモールドタイプのものであってもよい。
 また、センサチップ10を搭載する部材としては、リードフレームのアイランド20以外にも、たとえば配線基板等であってもよい。その場合、アイランド20と同様に、この配線基板等がモールド樹脂50で封止されていればよいが、感湿膜13の表面が露出するようにセンサチップ10が封止されていれば、当該配線基板等の封止形態は適宜変更可能である。
 さらには、感湿膜13の表面が露出するようにセンサチップ10のみがモールド樹脂50で封止されていてもよく、センサチップ10を搭載するアイランド20等の部材は省略された構成であってもよい。
 また、上記第4実施形態では、感湿膜13の凹み部13bは、センシング部13aを取り囲む連続した環状をなすものであったが、センシング部13aへのモールド樹脂50の流入が確保されるならば、センシング部13aの外側に不連続に点在するものであってもよい。この場合、上記金型100の対向部110における押さえ部112を、同様に不連続形状をなすものにすればよい。

Claims (9)

  1.  センシングに用いられる機能膜(13)を一面(11)側に有するセンサチップ(10)と、
     前記センサチップを封止するモールド樹脂(50)と、を備え、
     前記機能膜の表面は、前記モールド樹脂に設けられた開口部(51)を介して露出しており、
     前記機能膜は、膜厚方向に加わる押力に抗して当該機能膜の膜厚を確保するためのスペーサ(14、15)が含有されたものであることを特徴とするセンサパッケージ。
  2.  前記スペーサは、前記機能膜の膜厚方向における寸法(h2)が当該膜厚(h1)と同等かそれ以上のものであることを特徴とする請求項1に記載のセンサパッケージ。
  3.  前記スペーサは、前記センサチップの一面から前記機能膜の表面まで延びるように設けられ、前記機能膜からの信号を取り出すための電極(15)であることを特徴とする請求項1または2に記載のセンサパッケージ。
  4.  センシングに用いられる機能膜(13)を一面(11)側に有するセンサチップ(10)を用意するチップ用意工程と、
     金型(100)内に前記センサチップを設置するとともに、前記金型の内面のうち前記機能膜に対向する対向部(110)を、前記機能膜の表面上の凹凸を吸収するフィルム(200)を介して前記機能膜に押し付けて密着させた状態とする金型設置工程と、
     前記金型内にモールド樹脂(50)を注入して充填することにより、前記機能面の表面が前記モールド樹脂に設けられた開口部(51)を介して露出するように、前記センサチップを前記モールド樹脂で封止する封止工程と、を備え、
     前記チップ用意工程では、前記センサチップとして、前記機能膜に、膜厚方向に加わる押力に抗して当該機能膜の膜厚を確保するためのスペーサ(14、15)が含有されたものを用意し、
     前記金型設置工程では、前記金型として、前記対向部に、前記機能膜への押力を逃がす凹部(111)が設けられたものを用いることを特徴とするセンサパッケージの製造方法。
  5.  前記金型設置工程では、前記金型として当該金型の外部から前記凹部に通じる吸引孔(112)が設けられたものを用い、
     前記吸引孔を介して外部から吸引を行うことにより、前記フィルムを前記凹部の凹形状に追従するように変形させた状態で、前記対向部の前記機能膜への押し付けを行うことを特徴とする請求項4に記載のセンサパッケージの製造方法。
  6.  前記チップ用意工程では、前記センサチップとして、前記センサチップの一面から前記機能膜の表面上に突出するように設けられ、前記機能膜からの信号を取り出すための電極(15)が前記スペーサとされたものであって、前記電極の突出先端部(15a)側が前記機能膜の表面下に位置する部位よりも体積が小さいものであるものを用意し、
     前記金型設置工程では、前記フィルムを介して、前記対向部が前記機能膜よりも先に前記電極の突出先端部に接触するように、前記対向部の押し付けを行うようにすることを特徴とする請求項4または5に記載のセンサパッケージの製造方法。
  7.  センサチップ(10)と、
     前記センサチップの一面(11)上に当該一面を被覆するように設けられ、一部がセンシングに用いられるセンシング部(13a)とされている機能膜(13)と、
     前記センサチップおよび前記機能膜を封止するモールド樹脂(50)と、を備え、
     前記機能膜のうちの前記センシング部の表面は、前記モールド樹脂に設けられた開口部(51)を介して露出しており、
     前記開口部にて露出する前記機能膜の表面において、前記センシング部の外側に位置する前記モールド樹脂の端部と前記センシング部との間には、凹み部(13b)が設けられており、
     前記機能膜において、前記凹み部では前記凹み部以外の部位よりも薄いものとされていることを特徴とするセンサパッケージ。
  8.  前記凹み部は、前記センシング部を取り囲む連続した環状をなすものであることを特徴とする請求項7に記載のセンサパッケージ。
  9.  センシングに用いられるセンシング部(13a)を有する機能膜(13)で一面(11)が被膜されたセンサチップを用意する用意工程と、
     用意された前記センサチップを金型(100)内に設置するとともに、前記金型の内面のうち前記機能膜に対向する対向部(110)を、フィルム(200)を介して、前記機能膜に押し付けて密着させた状態とする金型設置工程と、
     前記金型内にモールド樹脂を注入して充填することにより、前記センシング部の表面が、前記モールド樹脂に設けられた開口部(51)を介して露出するように、前記センサチップおよび前記機能膜を前記モールド樹脂で封止する封止工程と、を備え、
     前記金型設置工程では、前記金型として、前記対向部が、前記センシング部に対向する部分では凹部(111)を有し、当該凹部の回りでは突出した押さえ部(112)を備えるものを用い、
     前記機能膜の表面を前記対向部で押さえるときに、前記凹部によって前記センシング部には押力を付与せずに、前記センシング部の外側を前記押さえ部で押さえることによって当該センシング部の外側を減厚させて凹ませた状態とし、この状態で前記モールド樹脂の注入を行うことを特徴とするセンサパッケージの製造方法。
PCT/JP2013/004665 2012-08-27 2013-08-01 センサパッケージおよびその製造方法 WO2014034021A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013004203.7T DE112013004203T5 (de) 2012-08-27 2013-08-01 Sensoreinheit und Verfahren zu deren Fertigung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-186671 2012-08-27
JP2012186671 2012-08-27
JP2013-050480 2013-03-13
JP2013050480A JP5708688B2 (ja) 2012-08-27 2013-03-13 センサパッケージの製造方法

Publications (1)

Publication Number Publication Date
WO2014034021A1 true WO2014034021A1 (ja) 2014-03-06

Family

ID=50182863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004665 WO2014034021A1 (ja) 2012-08-27 2013-08-01 センサパッケージおよびその製造方法

Country Status (3)

Country Link
JP (1) JP5708688B2 (ja)
DE (1) DE112013004203T5 (ja)
WO (1) WO2014034021A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952886B1 (en) * 2014-06-06 2020-09-23 Sensirion AG Method for manufacturing a gas sensor package
EP3168866B1 (en) * 2015-11-16 2020-12-30 ams AG Semiconductor humidity sensor device and manufacturing method thereof
DE102016201800A1 (de) * 2016-02-05 2017-08-10 Robert Bosch Gmbh Moldmodul, Verfahren zur Herstellung eines Moldmoduls und Moldwerkzeug für die Moldumspritzung eines Moldmoduls
JP6770238B2 (ja) 2017-03-31 2020-10-14 ミツミ電機株式会社 湿度センサ
JP2020085501A (ja) * 2018-11-16 2020-06-04 ミネベアミツミ株式会社 湿度検出装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221278A (ja) * 1994-01-24 1995-08-18 Lg Semicon Co Ltd 固体撮像素子及びその製造方法
JP2002261108A (ja) * 2000-12-28 2002-09-13 St Microelectron Srl 保護パッケージ形成方法および保護パッケージ成形用モールド
JP2003516539A (ja) * 1999-12-08 2003-05-13 ゼンジリオン アクチエンゲゼルシャフト 容量型センサー
JP2003154551A (ja) * 2001-11-26 2003-05-27 Sony Corp 半導体デバイス用モールド装置及び半導体デバイスの製造方法
JP2004266844A (ja) * 2004-03-26 2004-09-24 Mitsubishi Electric Corp 撮像装置及びその製造方法
JP2009099680A (ja) * 2007-10-15 2009-05-07 Panasonic Corp 光学デバイスおよびその製造方法
JP2009128306A (ja) * 2007-11-27 2009-06-11 Nitto Denko Corp 物質検知センサ
JP2010050452A (ja) * 2008-08-11 2010-03-04 Sensirion Ag 応力緩和層を備えたセンサ装置の製造方法
JP2010097991A (ja) * 2008-10-14 2010-04-30 Shinko Electric Ind Co Ltd 積層配線基板の樹脂封止方法及び樹脂封止装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221278A (ja) * 1994-01-24 1995-08-18 Lg Semicon Co Ltd 固体撮像素子及びその製造方法
JP2003516539A (ja) * 1999-12-08 2003-05-13 ゼンジリオン アクチエンゲゼルシャフト 容量型センサー
JP2002261108A (ja) * 2000-12-28 2002-09-13 St Microelectron Srl 保護パッケージ形成方法および保護パッケージ成形用モールド
JP2003154551A (ja) * 2001-11-26 2003-05-27 Sony Corp 半導体デバイス用モールド装置及び半導体デバイスの製造方法
JP2004266844A (ja) * 2004-03-26 2004-09-24 Mitsubishi Electric Corp 撮像装置及びその製造方法
JP2009099680A (ja) * 2007-10-15 2009-05-07 Panasonic Corp 光学デバイスおよびその製造方法
JP2009128306A (ja) * 2007-11-27 2009-06-11 Nitto Denko Corp 物質検知センサ
JP2010050452A (ja) * 2008-08-11 2010-03-04 Sensirion Ag 応力緩和層を備えたセンサ装置の製造方法
JP2010097991A (ja) * 2008-10-14 2010-04-30 Shinko Electric Ind Co Ltd 積層配線基板の樹脂封止方法及び樹脂封止装置

Also Published As

Publication number Publication date
JP5708688B2 (ja) 2015-04-30
DE112013004203T5 (de) 2015-06-25
JP2014062885A (ja) 2014-04-10

Similar Documents

Publication Publication Date Title
JP2842355B2 (ja) パッケージ
US9290379B2 (en) Chip package including a microphone structure and a method of manufacturing the same
CN102659069B (zh) 具有至少一个mems组件的部件及其制造方法
WO2014034021A1 (ja) センサパッケージおよびその製造方法
US20120139067A1 (en) Pressure sensor and method of packaging same
US20140374855A1 (en) Pressure sensor and method of packaging same
US11655143B2 (en) Semiconductor component and method for producing same
US11655142B2 (en) Method of manufacturing a sensor device and moulding support structure
CN116573605A (zh) Mems压力传感器的封装方法及封装结构
JP2006332685A (ja) 固体撮像装置
TWI729681B (zh) 光學封裝結構
JP6032171B2 (ja) モールドパッケージの製造方法
US20200152482A1 (en) Semiconductor device and method for producing the semiconductor device
JP6317956B2 (ja) 圧力センサ、及び圧力センサの製造方法
US9136399B2 (en) Semiconductor package with gel filled cavity
JP6561940B2 (ja) 半導体センサ及びその製造方法
JP7226680B2 (ja) 電子部品の製造方法
JP4840305B2 (ja) 半導体装置の製造方法
JP2000304638A (ja) センサチップの接合構造
JP5974774B2 (ja) センサ装置の製造方法
JP2005142334A (ja) プリモールド型の半導体パッケージ及びこれを用いた半導体装置
JP2009194057A (ja) 半導体装置およびその製造方法、並びに、電子機器
CN113148941A (zh) 一种压力传感器封装模组
JP2014126515A (ja) 圧力センサおよびその製造方法
JP2005340309A (ja) 樹脂封止型半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013004203

Country of ref document: DE

Ref document number: 1120130042037

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833275

Country of ref document: EP

Kind code of ref document: A1