WO2014030556A1 - カーボンナノ材料、組成物、導電性材料及びその製造方法 - Google Patents

カーボンナノ材料、組成物、導電性材料及びその製造方法 Download PDF

Info

Publication number
WO2014030556A1
WO2014030556A1 PCT/JP2013/071689 JP2013071689W WO2014030556A1 WO 2014030556 A1 WO2014030556 A1 WO 2014030556A1 JP 2013071689 W JP2013071689 W JP 2013071689W WO 2014030556 A1 WO2014030556 A1 WO 2014030556A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ionic liquid
soluble polymer
carbon nanomaterial
composition
Prior art date
Application number
PCT/JP2013/071689
Other languages
English (en)
French (fr)
Inventor
毅 関谷
隆夫 染谷
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to EP13831736.7A priority Critical patent/EP2889267B1/en
Priority to CN201380043801.XA priority patent/CN104583118B/zh
Priority to US14/423,358 priority patent/US20150224210A1/en
Priority to JP2014531585A priority patent/JPWO2014030556A1/ja
Publication of WO2014030556A1 publication Critical patent/WO2014030556A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/08Carbon ; Graphite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • A61N1/0496Patch electrodes characterised by using specific chemical compositions, e.g. hydrogel compositions, adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to a carbon nanomaterial, a composition, a conductive material, and a method for producing the same.
  • Non-Patent Documents 1 and 2 Non-Patent Documents 1 and 2.
  • Patent Document 1 includes an actuator element electrode layer made of a gel material composed of a gel of carbon nanotubes and an ionic liquid, and a highly flexible conductor material for actuator elements, and a gel-like composition of carbon nanotubes, an ionic liquid and a polymer. It is disclosed. When the gel or gel-like composition is formed, by performing a fragmentation treatment under shearing force, the entanglement of the carbon nanotubes is reduced, and the “cation- ⁇ ” interaction is generated on the surface of the entangled carbon nanotubes.
  • Patent Documents 1 and 2 do not assume that the materials disclosed therein are used as a material for the surface of a human body or a device attached to the body, so that carbon nanotubes are not affected by the living body. There is no description or suggestion about the structure provided in the material.
  • Patent Document 2 describes that an ionic liquid molecule is bonded to the surface of a carbon nanotube. The surface of the carbon nanotube is covered with an ionic liquid molecule, and a layer on the ionic liquid molecule layer is further elevated.
  • Patent Document 1 discloses an electrode layer composed of a gel-like composition of carbon nanotubes, an ionic liquid, and a polymer, and the polymer is blended to maintain mechanical strength (paragraph). 0026 etc.). Therefore, an electrode layer made of a gel-like composition obtained by a technique of heating and mixing a gel of carbon nanotubes and ionic liquid and a polymer to form an electrode layer made of the gel-like composition (Example 1 etc.) It is only disclosed.
  • the present invention has been made in view of the above circumstances, has biocompatibility, can be applied to a living body for a long time, has excellent followability with respect to the shape of a wrinkle of an organ, and the like.
  • An object of the present invention is to provide a carbon nanomaterial, a composition, a conductive material, and a method for producing the same, which can form a very good interface between them.
  • the present inventors paid attention to the fact that the molecules of the ionic liquid are strongly bonded to the surface of the carbon nanotubes, and as a result of intensive studies, the inventors have shown that the carbon nanotubes covered with the molecules of the ionic liquid are further covered with a polymer. I came up with a new idea. According to such a material, the carbon nanotube is doubly coated with the ionic liquid and the polymer, and the carbon nanotube is not exposed from the surface of the material, and even if the carbon nanotube is embedded in the living body, the carbon nanotube can avoid touching the living cell. .
  • the present inventors conducted a “cytotoxicity test by colony formation method” in accordance with the international standard ISO10993-6 for biocompatibility for materials found by searching based on such ideas, and confirmed that there is no cytotoxicity. did. Furthermore, the “rabbit implantation test” according to the standard was carried out, and it was confirmed that the rejection reaction of the living body was smaller than that of the conventional Au electrode, and the present invention was completed.
  • the present invention employs the following means.
  • the carbon nanomaterial according to one embodiment of the present invention is double-coated with a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer.
  • a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer There is not enough research on the effects of ionic liquids on living bodies.
  • the carbon nanomaterial according to one embodiment of the present invention employs a double coating structure in which molecules constituting the ionic liquid bonded to the carbon nanomaterial are covered with a water-soluble polymer. Therefore, even when this configuration is used in a mode of touching the living body, it is possible to avoid the molecules constituting the ionic liquid from touching the living body.
  • the carbon nanomaterial body (the carbon nanomaterial itself before being covered with the molecules and water-soluble polymer constituting the ionic liquid) is double-covered with the molecules constituting the ionic liquid and the water-soluble polymer. Even when this configuration (double-coated carbon nanomaterial) is used in a manner of touching a living body, the carbon nanomaterial main body can be prevented from touching the living body.
  • a carbon nanomaterial covered with molecules constituting a hydrophilic ionic liquid is dispersed in a water-soluble polymer medium, and the carbon nanomaterial is a molecule constituting an ionic liquid. And a water-soluble polymer.
  • the composition according to one embodiment of the present invention employs a double coating structure in which molecules constituting the ionic liquid bonded to the carbon nanomaterial are covered with a water-soluble polymer. Therefore, even when the composition having this configuration is used in a manner in which it touches the living body, it can be avoided that the molecules constituting the ionic liquid touch the living body.
  • the carbon nanomaterial body (the carbon nanomaterial itself before being covered with the molecules and water-soluble polymer constituting the ionic liquid) is double-covered with the molecules constituting the ionic liquid and the water-soluble polymer. Even if it is a case where the composition of this structure is used in the aspect which touches a biological body, it can avoid that a carbon nanomaterial main body touches a biological body.
  • This composition may be in the form of a gel (having lost fluidity) or liquid (having fluidity). Moreover, a part may be gel form and a part may be liquid form.
  • the carbon nanomaterial dispersed in the water-soluble polymer medium may be a carbon nanotube. Further, the “water-soluble polymer medium” may be cured by applying energy (heat, light, electron beam, etc.).
  • double coating refers to coating with a layer of molecules constituting an ionic liquid and a layer of a water-soluble polymer.
  • the composition of the present invention is a state in which a carbon nanomaterial coated with a layer of ionic liquid molecules, a water-soluble polymer and water are mixed and the water-soluble polymer is dissolved in water, that is, the water-soluble polymer is small.
  • the water-soluble polymer is also covered in layers.
  • the carbon nanotubes and ionic liquid gel and polymer are heated and mixed. Since it is formed (Example 1 etc.), even if the ionic liquid molecules cover the carbon nanotubes in layers, the polymer does not cover the carbon nanotubes in layers (via the ionic liquid molecules). Further, in the composition of the present invention, the molecules constituting the ionic liquid and the water-soluble polymer are layered and cover the carbon nanomaterial, so that the layer of molecules constituting the ionic liquid having a substantially uniform thickness is substantially uniform.
  • the carbon nanomaterial can be coated with a layer of a water-soluble polymer having a proper thickness. That is, compared with the gel composition described in Patent Document 1, a carbon nanomaterial typified by carbon nanotubes can be uniformly coated at the molecular level. In addition, since the molecules of the ionic liquid are firmly bonded to the carbon nanomaterial, coating can be performed without pinholes.
  • the “substantially uniform thickness” of the molecular layer constituting the ionic liquid means that the molecular layer constituting the ionic liquid of 70% or more, preferably 90% or more, is a monomolecular layer.
  • the “substantially uniform thickness” of the water-soluble polymer layer is 70% or more, preferably 90% or more of the water-soluble polymer layer, and the thickness variation is 20 nm or less, preferably 10 nm or less. More preferably, it means 5 nm or less.
  • the carbon nanomaterial is first completely covered with the molecules of the ionic liquid, and then the water-soluble polymer covers it. can do.
  • the water-soluble polymer that coats the carbon nanomaterial through the molecules of the ionic liquid and the water-soluble polymer (medium) in which the coated carbon nanomaterial is dispersed may be the same type or different types.
  • Such a configuration is, for example, mixing a carbon nanomaterial coated with molecules of an ionic liquid, a water-soluble polymer and water, and coating the carbon nanomaterial with a water-soluble polymer via the molecules of the ionic liquid, It can be obtained by mixing a carbon nanomaterial coated with a water-soluble polymer via molecules of an ionic liquid and the same or different type of water-soluble polymer and water.
  • the carbon nanomaterial in the above composition, may be covered with a monomolecular film of molecules constituting the ionic liquid.
  • the carbon nanomaterial By covering the surface of the carbon nanomaterial with ionic liquid molecules and rinsing (rinsing) the ionic liquid molecules that are not bound to the surface of the carbon nanomaterial, the carbon nanomaterial is able to cover the ionic liquid. It is coated with a monomolecular film of the constituent molecules.
  • biocompatible composition according to one aspect of the present invention is composed of the composition according to any one of the above aspects.
  • “biocompatibility” means that there is no cytotoxicity and the rejection of the living body is smaller than that of the Au electrode.
  • a “cytotoxicity test using a colony formation method” is performed, and there is no cytotoxicity.
  • Biocompatibility means that the rejection of the living body is smaller than that of the living body.
  • the biocompatible composition according to one embodiment of the present invention employs a double-coating configuration in which molecules constituting an ionic liquid bonded to a carbon nanomaterial are covered with a water-soluble polymer. Therefore, even when this configuration is used in a mode of touching the living body, it is possible to avoid the molecules constituting the ionic liquid from touching the living body.
  • the carbon nanomaterial body (the carbon nanomaterial itself before being covered with the molecules and water-soluble polymer constituting the ionic liquid) is double-covered with the molecules constituting the ionic liquid and the water-soluble polymer. Even when the biocompatible composition having this configuration is used in a manner of touching a living body, the carbon nanomaterial main body can be prevented from touching the living body.
  • a carbon nanomaterial double-coated with a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer is dispersed in a water-soluble polymer medium,
  • the functional polymer is crosslinked.
  • the amount of the hydrophilic ionic liquid is adjusted to an amount that can cover all the carbon nanomaterials, the carbon nanomaterial is first covered with the molecules of the ionic liquid, and the water-soluble polymer covers the carbon nanomaterial.
  • the carbon nanomaterial dispersed in the water-soluble polymer medium may be a carbon nanotube.
  • the biocompatible conductive material in the biocompatible conductive material according to one embodiment of the present invention, a carbon nanomaterial that is doubly coated with a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer is dispersed in a water-soluble polymer medium.
  • the water-soluble polymer is crosslinked.
  • the biocompatible conductive material according to one embodiment of the present invention employs a double-coating structure in which molecules constituting the ionic liquid bonded to the carbon nanomaterial are covered with a water-soluble polymer. Therefore, even when this configuration is used in a mode of touching the living body, it is possible to avoid the molecules constituting the ionic liquid from touching the living body.
  • the carbon nanomaterial body (the carbon nanomaterial itself before being covered with the molecules and water-soluble polymer constituting the ionic liquid) is double-covered with the molecules constituting the ionic liquid and the water-soluble polymer. Even when the biocompatible conductive material having this configuration is used in a manner of touching the living body, the carbon nanomaterial main body can be prevented from touching the living body.
  • a hydrophilic ionic liquid, a carbon nanomaterial, and water are mixed, and the carbon nanomaterial covered with the molecules constituting the ionic liquid is dispersed.
  • a first step of obtaining one dispersion, a carbon nanomaterial covered with molecules constituting an ionic liquid and a water-soluble polymer by mixing the first dispersion, a water-soluble polymer, and water.
  • a water-soluble polymer that coats the carbon nanomaterial through the molecules of the ionic liquid by using a plurality of types of water-soluble polymers, a water-soluble polymer that coats the carbon nanomaterial through the molecules of the ionic liquid, and a water-soluble polymer in which the coated carbon nanomaterial is dispersed.
  • Different types of polymer (medium) can be used.
  • a plurality of types of water-soluble polymers that coat carbon nanomaterials via ionic liquid molecules can be used. As a result, it is possible to adjust the hardness of the material and to control the electrical conductivity and the optical characteristics.
  • the carbon nanomaterial may be subdivided by applying a shearing force in the first step.
  • the water-soluble polymer is crosslinked to disperse the carbon nanomaterial in the water-soluble polymer medium.
  • this cross-linking step by mixing a water-soluble polymer of a different type from the water-soluble polymer used in the second step and cross-linking, it is possible to control the hardness of the material and to control the conductivity, optical properties, etc. It becomes possible.
  • the method for producing a conductive material according to one embodiment of the present invention may further include a rinsing step in order to remove molecules constituting the ionic liquid that are not bonded to the carbon nanomaterial.
  • This rinsing step can be performed with, for example, physiological saline, ethanol, or a liquid that does not break the gel.
  • the method for manufacturing a conductive material according to one embodiment of the present invention includes the rinsing step, thereby manufacturing a conductive material that covers a molecule constituting the ionic liquid bonded to the carbon nanomaterial with a water-soluble polymer. Is.
  • the obtained conductive material avoids molecules constituting the ionic liquid from touching living cells.
  • This rinsing step may be performed at any stage, for example, after the first step, after the second step, and after the step of producing the composition.
  • By appropriately performing the rinsing step after the first step it becomes possible to ensure that the molecules of the ionic liquid covering the carbon nanomaterial are made into a single layer.
  • Further, by appropriately performing the rinsing step after the second step or after crosslinking the water-soluble polymer it becomes possible to remove molecules of the ionic liquid that are not bonded to the carbon nanomaterial. After the water-soluble polymer is cross-linked, the water-soluble polymer does not dissolve in the liquid used in the rinsing process, and thus the molecules of the ionic liquid are easily removed.
  • the carbon nanomaterial, the composition, the biocompatible composition, the conductive material, the biocompatible conductive material and the method for producing the conductive material according to the above aspect of the present invention are not particularly limited to application to a living body. Needless to say, it can be applied to all fields where the effect can be exerted.
  • the contained carbon nanomaterial is doubled by an ionic liquid molecule and a water-soluble polymer. Since the coated configuration is adopted, the carbon nanomaterial itself does not substantially touch the cells in the living body even when applied to the living body (or the area in contact with the cells is significantly reduced). Further, since it has high flexibility, it has excellent followability with respect to the surface of an organ or the like in a living body, and an extremely good interface can be formed between the organ and the like. Furthermore, it can have high conductivity by adjusting the content of the carbon nanomaterial.
  • the electrical conductivity between carbon nanomaterials can be made high by making the ionic liquid molecule
  • Electrodes that can stimulate an organ or the like in a living body such as a pacemaker's stimulating electrode, but can be applied to the living body for a long period of time. There was nothing that could be applied in the body for a long time. This is because, when an electrode made of a conventional material is inserted into a living body, a foreign body reaction (inflammatory reaction) will soon occur between the electrode and a tissue such as an organ, making it difficult to detect an electrical signal. It is.
  • An electrode that provides a stimulus can fulfill the purpose of giving a stimulus even if such a foreign body reaction occurs, but an electrode that detects a signal of an organ or the like in a living body is difficult to fulfill the purpose of detecting a signal.
  • the carbon nanomaterial, composition, biocompatible composition, conductive material or biocompatible conductive material of the present invention can be stored in the living body for a long time.
  • the composition according to one embodiment of the present invention, the biocompatible composition, the conductive material, or the biocompatible conductive material is used as an electrode or the like that stably reads out an electrical signal from an organ in a living body for a long period of time. It is the first material that can be used.
  • the carbon nanomaterial, composition, biocompatible composition, conductive material or biocompatible conductive material of the present invention has a small antibody reaction even when placed in a living body for a long period of time, and has a high reliability for a living body. It can be used as an electrode material. Further, since the carbon nanomaterial, composition, biocompatible composition, conductive material or biocompatible conductive material of the present invention is very soft, it can cover the surface of the living tissue without damaging the living tissue. it can. In addition, although some cell tissues have a size of about several hundred ⁇ m, the carbon nanomaterial, composition, biocompatible composition, conductive material, or biocompatible conductive material of the present invention can enable photocrosslinking. Therefore, it is also suitable for producing a fine electrode applicable to the cell tissue.
  • an electrode made of the carbon nanomaterial, composition, biocompatible composition, conductive material or biocompatible conductive material of the present invention is brought into close contact with an organ in the living body, and the organ etc. stably for a long period of time. Therefore, it is possible to amplify a signal from an organ or the like by using an organic transistor (for example, NATURE MATERIALS, 9, 2010, 1015-1022). This makes it possible to extract very weak signals with high accuracy.
  • the magnitude is proportional to the surface area of the electrode.
  • the electrode is conventionally used. Compared with the metal electrode, it is much softer and can adhere to an organ or the like, so that a substantial contact area is increased. Therefore, the detection sensitivity of a substantial capacity for obtaining an electric signal is very high as compared with a conventional metal electrode, and the electrode can be further downsized.
  • the carbon nanomaterial, composition, biocompatible composition, conductive material or biocompatible conductive material according to one embodiment of the present invention includes a carbon nanomaterial having a high specific surface area. Has a high signal detection capability.
  • a conductive material having a desired conductivity can be produced by adjusting the type and content of the carbon nanomaterial.
  • the layer thickness is more uniform than when covering with water-soluble polymer without ionic liquid molecules
  • a conductive material covered with a water-soluble polymer can be produced.
  • the molecular layer of the ionic liquid enveloping the carbon nanomaterial can be a monomolecular layer. Furthermore, by selecting a water-soluble polymer that can be thinly formed into a monomolecular layer of an ionic liquid, it is possible to increase the density of the carbon nanomaterial and manufacture a conductive material with higher conductivity.
  • FIG. 1 is a photograph showing a composition or a conductive material according to the present invention, wherein (a) is a photograph showing a composition in which carbon nanotubes covered with molecules constituting DEMEBF 4 are dispersed in polyrotaxane; (A) is a photograph of a sheet obtained by photocrosslinking the composition shown in (a), and (c) is a photocrosslink of the composition shown in FIG. 1 (a) and has a line width of about 50 ⁇ m. It is an optical microscope photograph of what patterned fine structure.
  • TEM image It is a high-resolution cross-sectional transmission electron microscope image (TEM image), (a) is a TEM image of a carbon nanotube that can be used in the present invention, (b) is a carbon nanotube and a polyrotaxane in water without an ionic liquid. It is the TEM image of the carbon nanotube covered with the polyrotaxane obtained by mixing and stirring while subdividing with a jet mill, (c) is the same conditions as the preparation conditions of the composition shown in FIG. It is a TEM image of the carbon nanomaterial or composition obtained by (1). It is a graph which shows the surface resistance of the composition (or electroconductive material) of this invention, and its carbon nanotube content dependency.
  • (C) is a photo of carbon nanotubes put into deionized water and stirred for one week in the same manner, and then a jet mill.
  • (D) shows a state after carbon nanotubes and DEMEBF 4 60 mg were put into deionized water, similarly stirred for 1 week, and then treated with a jet mill.
  • (E) puts carbon nanotubes, DEMEBF 4 and microfibrillated cellulose in deionized water and stirs for one week in the same manner. It is a photograph which shows the state after processing the paste obtained by a jet mill after that.
  • the carbon nanomaterial according to an embodiment of the present invention is doubly coated with a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer.
  • a carbon nanomaterial covered with molecules constituting a hydrophilic ionic liquid is dispersed in a water-soluble polymer medium, and the carbon nanomaterial constitutes an ionic liquid. Double-coated with molecules and water-soluble polymer.
  • the carbon nanomaterial is preferably coated with a monomolecular film of molecules constituting an ionic liquid.
  • a carbon nanomaterial that is doubly coated with a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer is dispersed in a water-soluble polymer medium.
  • a water-soluble polymer is crosslinked.
  • the ionic liquid is also referred to as a normal temperature molten salt or simply a molten salt, and is a salt that exhibits a molten state in a wide temperature range including normal temperature.
  • a hydrophilic ionic liquid among various conventionally known ionic liquids can be used.
  • the carbon nanomaterial is a component composed of carbon atoms and structured in a nanometer size (for example, one CNT), and the carbon atoms of the component are generally van der Waals forces.
  • carbon nanotubes, carbon nanofibers (of carbon fibers having a diameter of 10 nm or less), carbon nanohorns, and fullerenes are generally van der Waals forces.
  • a fine carbon nanomaterial having a diameter of 10 nm or less exhibits good dispersibility in water.
  • the carbon nanotube has a structure in which a graphene sheet in which carbon atoms are arranged in a hexagonal network is a single layer or a multilayer and is rounded in a cylindrical shape (single-wall nanotube (SWNT), double-wall nanotube (DWNT), multilayer
  • SWNT single-wall nanotube
  • DWNT double-wall nanotube
  • the carbon nanotube that can be used as the carbon nanomaterial is not particularly limited, and any of SWNT, DWNT, and MWNT may be used.
  • Carbon nanotubes can generally be produced by laser ablation, arc discharge, thermal CVD, plasma CVD, gas phase, combustion, etc., but carbon nanotubes produced by any method may be used. A plurality of types of carbon nanotubes may be used.
  • Carbon nanotubes are likely to aggregate due to van der Waals forces between the carbon nanotubes, and usually a plurality of carbon nanotubes exist as bundles or aggregates.
  • the bundle or aggregate can be subdivided by applying a shearing force (reducing entanglement of carbon nanotubes).
  • a shearing force reducing entanglement of carbon nanotubes.
  • the van der Waals force that aggregates carbon nanotubes is weakened and separated into individual carbon nanotubes, and the ionic liquid is adsorbed on each individual carbon nanotube. Can do.
  • the means for applying the shearing force used in the subdividing step is not particularly limited, and a wet pulverizing apparatus capable of applying the shearing force, such as a ball mill, a roller mill, or a vibration mill, can be used.
  • the ionic liquid molecules bonded to the surface of the carbon nanotubes with reduced entanglement by the “cation- ⁇ ” interaction are connected via the ionic bonds. It is thought that it becomes a gel-like composition by combining (Patent Document 2).
  • Patent Document 2 As will be described later, by rinsing the gel composition with, for example, physiological saline or ethanol, a single ionic liquid molecule layer can be formed on the surface of the carbon nanotube.
  • the carbon nanotubes covered with molecules constituting the ionic liquid are dispersed in the water-soluble polymer medium. Can be made.
  • the water-soluble polymer is not particularly limited as long as it is a polymer that can be dissolved or dispersed in water, and more preferably a polymer that can be crosslinked in water.
  • the following examples can be given.
  • Synthetic polymer (1) ionic polyacrylic acid (anionic) Polystyrene sulfonic acid (anionic) Polyethyleneimine (cationic) MPC polymer (Zwitterion) (2) Nonionic polyvinyl pyrrolidone (PVP) Polyvinyl alcohol (polyvinyl acetate saponified product) Polyacrylamide (PAM) Polyethylene oxide (PEO) 2.
  • Natural polymers (mostly polysaccharides) Starch Gelatin Hyaluronic acid Alginic acid Dextran protein (eg water-soluble collagen) 3.
  • Semi-synthetic polymer eg cellulose solubilized) Carboxymethylcellulose (CMC) Hydroxypropyl cellulose (HPC) Cellulose derivatives such as methylcellulose (MC) Water-soluble chitosan (can also be classified as “2. Natural polymers”)
  • polyrotaxane is cyclic at both ends (both ends of a linear molecule) of a pseudopolyrotaxane in which the opening of a cyclic molecule (rotator) is skewered by a linear molecule (axis).
  • a blocking group is arranged so that the molecule is not released.
  • polyrotaxane using ⁇ -cyclodextrin as a cyclic molecule and polyethylene glycol as a linear molecule can be used.
  • the water-soluble polymer medium a compound having a group that reacts with a crosslinking agent is more preferable because a strong film is formed by crosslinking.
  • the water-soluble polymer is preferably photocrosslinkable.
  • the molecular layer of the ionic liquid enclosing the carbon nanomaterial may be a monomolecular layer.
  • the surface of the carbon nanomaterial and the molecule of the ionic liquid are bonded by a “cation- ⁇ ” interaction. Therefore, by selecting a combination of the carbon nanomaterial and the ionic liquid in which the bond between the molecules of the ionic liquid is smaller than the bond due to the “cation- ⁇ ” interaction, the molecule of the ionic liquid that wraps around the carbon nanomaterial This layer can be a monomolecular layer.
  • the molecular layer can be a monomolecular layer.
  • polyrotaxane is selected as the water-soluble polymer, a thin polyrotaxane layer of about 5 nm can be formed on the monomolecular layer of DEMEBF 4 .
  • the composition thus obtained can have a high dispersion density of carbon nanotubes and can be a highly conductive material. In a conductive member such as an electrode made of such a conductive material, electrons move between carbon nanotubes through a thin DEMEBF 4 molecular layer and a polyrotaxane layer, and a current flows.
  • the ions bound to the surface of the carbon nanomaterial Liquid molecules do not exit the water-soluble polymer medium.
  • bonded with the surface of carbon nanomaterial can be removed by the rinse by the physiological saline or ethanol, for example.
  • the contained carbon nanomaterial is doubly covered with the ionic liquid molecule and the water-soluble polymer, so that it can be applied in vivo.
  • the carbon nanomaterial does not substantially touch the cells in the living body. Further, since it has high flexibility, it has excellent followability with respect to the surface of an organ or the like in a living body, and an extremely good interface can be formed between the organ and the like. Furthermore, it can have a high electrical conductivity.
  • a hydrophilic ionic liquid, a carbon nanomaterial, and water are mixed, and the carbon nanomaterial covered with molecules constituting the ionic liquid is dispersed.
  • a first step of obtaining one dispersion, a carbon nanomaterial covered with molecules constituting an ionic liquid, and a water-soluble polymer by mixing the first dispersion, a water-soluble polymer, and water.
  • the carbon nanomaterial may be subdivided by applying a shearing force. Thereby, the carbon nanomaterial can be covered with the hydrophilic ionic liquid in a state where the bundle or aggregation of the carbon nanomaterial is further dissolved.
  • the method further comprises the step of cross-linking the water-soluble polymer to disperse the carbon nanomaterial in the water-soluble polymer medium and producing a composition in which the water-soluble polymer is cross-linked. Also good. Thereby, a moldability and workability improve.
  • a rinsing step may be further provided to remove molecules constituting the ionic liquid that are not bonded to the carbon nanomaterial. Thereby, a moldability and workability improve.
  • This rinsing step can be performed with, for example, physiological saline, ethanol, or a liquid that does not break the gel. This rinsing process may be performed at any stage.
  • composition or conductive material of the present invention can contain other substances as long as the effects of the present invention are not impaired.
  • the manufacturing method of the electroconductive material of this invention can include another process in the range which does not impair the effect of this invention.
  • FIG. 1A shows carbon nanotubes covered with molecules constituting N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate (DEMEBF 4 ) dispersed in polyrotaxane. It is a photograph which shows the state of the composition before ultraviolet (UV) curing. It can be seen that the obtained composition is in the form of a gel (in the present specification, the term “gel” refers to a state in which the fluidity is lost or the fluidity is substantially reduced with respect to the fluid liquid.
  • UV ultraviolet
  • This composition was prepared by using 30 mg of commercially available carbon nanotubes (MWNT, length 10 ⁇ m, diameter 5 nm) and N, N-diethyl-N-methyl-N- (2-methoxyethyl), which is a hydrophilic ionic liquid.
  • the mixture was mixed with 60 mg of ammonium tetrafluoroborate (DEMEBF 4 ), and stirred in deionized water at 25 ° C. for 1 week at a rotation speed of 700 rpm or more using a magnetic stirrer.
  • the resulting suspension was treated with a high pressure jet mill homogenizer (60 MPa; Nano-jet pal, JN10, Jokoh) to give a black material.
  • FIG. 1B is a photograph of a sheet obtained by curing the composition shown in FIG. 1A by irradiating with ultraviolet rays (wavelength: 365 nm) for 5 minutes.
  • the Young's modulus of the obtained sheet was lower than 10 kPa. Since the Young's modulus of silicon is about 100 GPa and the Young's modulus of a conventional plastic film is 1 to 5 GPa, it can be seen that it is very soft.
  • the Young's modulus of the brain is 1 to 2 kPa and the Young's modulus of the cardiac muscle cells is ⁇ 100 kPa
  • the composition or the conductive material of one embodiment of the present invention has the same level or higher than that of the organ. It was found to have a high softness. For this reason, it has high followability on the surface of the organ and can form an extremely good interface with the organ.
  • FIG. 1 (c) shows a photo-crosslinking using an ultrafine digital type UV exposure system ("Digital Exposure Apparatus", manufactured by PMT Co., Ltd.) and patterning a fine structure with a line width of about 50 ⁇ m. It is an optical micrograph.
  • the composition or conductive material of one embodiment of the present invention is a material that can be finely processed. Since crosslinking can be performed at various wavelengths by changing the type of the photocrosslinking material, the crosslinking means is not limited to UV.
  • FIG. 2 is a high-resolution cross-sectional transmission electron microscope image (TEM image),
  • (a) is a TEM image of carbon nanotubes ((MWNT, length 10 ⁇ m, diameter 5 nm) that can be used in the present invention
  • (b) Without an ionic liquid, 30 mg of carbon nanotubes ((MWNT, length 10 ⁇ m, diameter 5 nm)) and 100 mg of polyrotaxane (“photocrosslinkable oscillating gel”, manufactured by Advanced Soft Materials Co., Ltd.) are mixed in water, and a jet mill
  • (c) is a composition obtained under the same conditions as the preparation conditions of the composition shown in FIG. It is a TEM image of.
  • HF-2000 Cold-FE TEM 80 kV, manufactured by Hitachi High-Technologies Corporation
  • the carbon nanotubes used consisted of three or four layers.
  • FIG. 2B it is understood that the single carbon nanotube is coated with polyrotaxane, but the layer thickness of the coating layer is not uniform.
  • FIG. 2C the layer thickness of the polyrotaxane layer covering the single carbon nanotube is very uniform, and it can be seen that it is clearly different from that shown in FIG.
  • the difference in the uniformity of the layer thickness of the coating layer is that the molecule of the hydrophilic ionic liquid DEMEBF 4 that covered the carbon nanotubes was peeled off, and the polyrotaxane did not cover the carbon nanotubes.
  • the polyrotaxane is covered on the molecular layer of the hydrophilic ionic liquid DEMEBF 4 that has been used. If the molecules of the hydrophilic ionic liquid DEMEBF 4 that covered the carbon nanotubes are peeled off and the polyrotaxane covers the carbon nanotubes, the thickness of the coating layer in FIG. 2C is the same as in FIG. Should be uneven. Further, since the bond between the carbon nanotube and the molecule of DEMEBF 4 is bonded by a high cation- ⁇ interaction comparable to a hydrogen bond, the molecule of the hydrophilic ionic liquid DEMEBF 4 covering the carbon nanotube is the above-described process. Then it is thought that it is not peeled off.
  • the surface of the carbon nanotube can be uniformly coated with the biocompatible material via the molecules of the ionic liquid.
  • FIG. 3 is a graph showing the sheet resistance of the composition (CNT-gel) according to one embodiment of the present invention and the dependence of the sheet resistance on the carbon nanotube content.
  • the surface resistance of a gel based on conventional saline (Saline-based gel) is also indicated by a dotted line.
  • the composition (CNT-gel) is a composition obtained under the same conditions as those for producing the composition shown in FIG. The size was 1 cm square and the thickness was 1 mm.
  • a saline-based gel (Saline-based gel) was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of rotaxane gel, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV. .
  • the size was 1 cm square and the thickness was 1 mm.
  • the sheet resistance of the composition according to one embodiment of the present invention was found to be 2 to 3 orders of magnitude lower than that of a conventional gel containing physiological saline as a main component.
  • FIG. 4 is a graph showing the electric capacity of the composition (CNT-rotaxane gel) according to one embodiment of the present invention and the frequency dependence of the electric capacity.
  • polyacrylamide gel Poly-acrylamide gel
  • saline-containing polyacrylamide gel Saline poly-acrylamide gel
  • saline-containing rotaxane gel Saline-rotaxane gel
  • the composition (CNT-rotaxane gel) is a composition obtained under the same conditions as those for producing the composition shown in FIG. The size was 1 cm square and the thickness was 1 mm.
  • a polyacrylamide gel was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of polyacrylamide, dissolving with 100 ml of deionized water, and then photocrosslinking with UV.
  • the size was 1 cm square and the thickness was 1 mm.
  • Saline-containing polyacrylamide gel Saline-containing polyacrylamide gel (Saline poly-acrylamide gel was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of polyacrylamide, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV.
  • the thickness was 1 cm square and the thickness was 1 mm.
  • Saline-rotaxane gel was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of rotaxane gel, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV. The size was 1 cm square and the thickness was 1 mm. As shown in FIG. 4, it was found that the electrical capacity of the composition according to one embodiment of the present invention was higher than that of the gel of the comparative example.
  • the composition or conductive material of the present invention contains carbon nanomaterials, and carbon nanomaterials, particularly carbon nanotubes, have a high specific surface area. It is.
  • the conductivity of the electrode produced using the composition or conductive material of the present invention is lower than that of the Au electrode, but when the signal is taken by capacitance, it is not the conductivity but has a large effective surface area. This is very important.
  • carbon nanotubes are used as carbon nanomaterials
  • N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate (DEMEBF 4 ) is used as an ionic liquid
  • polyrotaxane is used as a water-soluble polymer.
  • a method for manufacturing a conductive material according to an embodiment of the present invention will be described with reference to FIG. (1) First Step First, carbon nanotubes, DEMEBF 4 and water are mixed and stirred to obtain a first dispersion system in which carbon nanotubes covered with molecules constituting the ionic liquid are dispersed.
  • the step of rinsing the first dispersion with physiological saline, ethanol, a liquid that does not break the gel, or the like may be performed to remove DEMEBF 4 that is not bound to the carbon nanotubes.
  • carbon nanotubes covered with molecules constituting the ionic liquid are dispersed in water.
  • other carbon nanotubes (including bundled carbon nanotubes) and ionic liquids that are not fully covered or completely covered by the molecules that make up the ionic liquid May be included.
  • the carbon nanotubes are bundled by van der Waals force, so that each carbon nanotube is unwound, the degree of bundling (aggregation) is reduced, and each carbon nanotube is unraveled to a single carbon nanotube. It is also possible.
  • FIG. 7 shows the results of examining the dispersibility of the carbon nanotubes.
  • A shows a state after 30 mg of carbon nanotubes are put in deionized water at 25 ° C. and stirred for 1 week at a rotation speed of 700 rpm or more using a magnetic stirrer
  • B shows 30 mg of carbon nanotubes and 60 mg of DEMEBF 4.
  • C is a state after stirring for 1 week in the same manner at 25 ° C., and (C) is the same as above.
  • D shows 30 mg of carbon nanotubes and 60 mg of DEMEBF 4 in 25 ° C.
  • (D) and (E) show that the carbon nanotubes show high dispersibility in water. It can be seen that it is preferable to subdivide the bundled carbon nanotubes by applying a shearing force in order to obtain high dispersibility.
  • the first dispersion, polyrotaxane (“photocrosslinkable tumbling gel”, manufactured by Advanced Soft Materials Co., Ltd.) and water are mixed and stirred, and the ionic liquid is mixed.
  • a second dispersion system is obtained in which the carbon nanomaterial covered with the constituent molecules and the water-soluble polymer are dispersed.
  • the step of rinsing the second dispersion with saline, ethanol, a liquid that does not break the gel, or the like may be performed to remove DEMEBF 4 that is not bound to the carbon nanotubes.
  • a crosslinking agent can also be mixed.
  • the obtained second dispersion is a gel-like substance as shown in FIG.
  • composition (conductive material) according to one embodiment of the present invention can be obtained.
  • the second dispersion system is cast (cast) onto a glass substrate.
  • a cover glass is placed on the glass substrate through a spacer sheet having a desired thickness (50 ⁇ m in the illustrated example).
  • a sheet having a thickness of 50 ⁇ m can be obtained by exposure using an ultraviolet (365 nm) exposure apparatus.
  • an ultraviolet (365 nm) exposure apparatus When forming a line with a fine line width, as shown in FIG. 6D, for example, by using a digital ultraviolet (365 nm) exposure apparatus, for example, a line with a width of 50 ⁇ m is formed. Can be formed.
  • the present invention it is possible to provide a carbon nanomaterial, a composition, and a conductive material having sufficient conductivity and flexibility. Furthermore, it is possible to provide a carbon nanomaterial, a composition, and a conductive material having biocompatibility. Therefore, the present invention is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Transplantation (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本願により、生体適合性を有し、生体内に長期間適用可能であり、臓器等のしわの形状に対する追従性に優れ、臓器等との間に極めて良好な界面を形成できる組成物、導電性材料及びその製造方法が提供される。本発明の組成物は、親水性のイオン液体を構成する分子に覆われたカーボンナノ材料が水溶性高分子媒体中に分散されてなり、前記カーボンナノ材料は前記イオン液体を構成する分子と水溶性高分子とで二重に被覆されていることを特徴とする。

Description

カーボンナノ材料、組成物、導電性材料及びその製造方法
 本発明は、カーボンナノ材料、組成物、導電性材料及びその製造方法に関するものである。
 本願は、2012年8月23日に、日本に出願された特願2012-184492号に基づき優先権を主張し、その内容をここに援用する。
 有機半導体で作るフレキシブルエレクトロニクスは、素材の柔らかさから、人体の表面や体内に装着し、細胞や組織から直接生体情報を得る手段として近年、注目されている。
 従来、体内でエレクトロニクスを用いる場合、体内組織や細胞との電気的接触にはPt,Au等の金属が用いられてきた(非特許文献1、2)。
 しかしながら、Pt,Au等の金属が体内組織や細胞に直接触れると、生体細胞の抗体反応により電極と組織との間に炎症反応が生じるため、長期的な生体情報観測を行うことができないという問題があった。
 また、生体細胞にはしわ等の表面の起伏があるが、金属で形成された電極は一般に固く、表面形状への追従性に問題があった。このため、電極の接触が不安定となり、電気信号が不安定になるなどの問題があった。
 このように、生体細胞と直接接触する電極材料として、生体適合性を有し、生体細胞の表面を十分に覆うことが可能な表面形状への追従性に優れた材料の開発が望まれていた。
 ところで、カーボンナノチューブ(CNT)等のナノ材料はフレキシブルな導電材料として期待されている。
 特許文献1には、カーボンナノチューブとイオン液体とのゲルからなり、柔軟性に富むアクチュエータ素子用導電体材料や、カーボンナノチューブとイオン液体とポリマーとのゲル状組成物からなるアクチュエータ素子用電極層が開示されている。このゲル又はゲル状組成物の形成時にせん断力下における細分化処理を行うことにより、カーボンナノチューブの相互のからみ合いを減少させ、からみ合いの減少したカーボンナノチューブの表面に「カチオン-π」相互作用により結合したイオン液体の分子がイオン結合を介してカーボンナノチューブの束どうしを結びつけることにより、ゲル又はゲル状組成物が形成されるものと推測されている(特許文献2)。なお、「カチオン-π」相互作用は、水素結合(ファンデルワールス力の10倍程度)に匹敵する強さがある。
特許第4038685号公報 特許第3676337号公報
Jonathan VIenti et. Al., Nature Neurosicence, 2011, Vol.14, No.12, 1599-1607 Quan Qing et. al., PNAS, 2010, Vol.107, No.5, 1882-1887
 しかしながら、カーボンナノチューブ(CNT)等のナノ材料は、生体に与える影響について十分に理解が進んでいないこともあり、人体の表面や体内に装着するデバイスの材料として使用する研究は進んでいない。実際、特許文献1及び2には、それらに開示された材料は人体の表面や体内に装着するデバイスの材料として使用することが想定されていないため、カーボンナノチューブを生体に与える影響がない状態で材料内に備える構成については何ら記載も示唆もない。
 特許文献2には、カーボンナノチューブの表面にイオン液体の分子が結合することが記載されているが、カーボンナノチューブの表面をイオン液体の分子で覆い、さらにそのイオン液体の分子の層の上を高分子で覆う構成については何ら記載も示唆もない。
 また、特許文献1には、カーボンナノチューブとイオン液体とポリマーとのゲル状組成物からなる電極層が開示されているが、ポリマーは機械的な強度を保つために配合されるものである(段落0026等)。よって、カーボンナノチューブ及びイオン液体のゲルとポリマーとを加熱混合してそのゲル状組成物からなる電極層を形成する(実施例1等)という手法によって得られる、ゲル状組成物からなる電極層が開示されているに過ぎない。また、カーボンナノチューブを覆うイオン液体の分子を単層とするための濯ぎ工程や、カーボンナノチューブに結合していないイオン液体の分子を除去するための濯ぎ工程や、ポリマーを架橋する架橋工程については何ら記載も示唆もない。
 本発明は、上記事情に鑑みてなされたものであって、生体適合性を有し、生体内に長期間適用可能であり、臓器等のしわの形状に対して追従性に優れ、臓器等との間に極めて良好な界面を形成できるカーボンナノ材料、組成物、導電性材料及びその製造方法を提供することを目的とする。
 本発明者らは、イオン液体の分子がカーボンナノチューブの表面に強く結合されるという事実に注目し、鋭意検討の結果、イオン液体の分子で覆われたカーボンナノチューブを、さらに高分子で覆うという画期的なアイデアに想到した。かかる材料によれば、カーボンナノチューブはイオン液体と高分子とにより二重に被覆され、カーボンナノチューブが材料表面から露出せず、生体内に埋め込んだとしてもカーボンナノチューブは生体細胞に触れることを回避できる。本発明者らはかかるアイデアに基づいて探索して見い出した材料について、生体適合に関する国際標準規格ISO10993-6に則り、「コロニー形成法による細胞毒性試験」を実施して細胞毒性がないことを確認した。さらに、その規格による「ウサギ埋植試験」を実施して、従来のAu電極と比べて生体の拒絶反応が小さいことを確認して、本発明を完成させたのである。
 上記の目的を達成するために、本発明は以下の手段を採用した。
 本発明の一態様に係るカーボンナノ材料は、親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されているものである。
 イオン液体が生体に与える影響については十分に研究が進んでいない。しかし本発明の一態様に係るカーボンナノ材料は、カーボンナノ材料に結合されたイオン液体を構成する分子を水溶性高分子で覆う二重被覆の構成を採用している。そのため、この構成を生体に触れる態様で用いた場合であってもイオン液体を構成する分子が生体に触れることを回避できる。また、カーボンナノ材料本体(イオン液体を構成する分子及び水溶性高分子で覆われる前のカーボンナノ材料自体)は、イオン液体を構成する分子及び水溶性高分子で二重に覆われているので、この構成(二重被覆カーボンナノ材料)を生体に触れる態様で用いた場合であってもカーボンナノ材料本体が生体に触れることを回避できる。
 本発明の一態様に係る組成物は、親水性のイオン液体を構成する分子に覆われたカーボンナノ材料が水溶性高分子媒体中に分散されてなり、カーボンナノ材料はイオン液体を構成する分子と水溶性高分子とで二重に被覆されている組成物である。
 イオン液体が生体に与える影響については十分に研究が進んでいない。しかし本発明の一態様に係る組成物は、カーボンナノ材料に結合されたイオン液体を構成する分子を水溶性高分子で覆う二重被覆の構成を採用している。そのため、この構成の組成物を生体に触れる態様で用いた場合であってもイオン液体を構成する分子が生体に触れることを回避できる。また、カーボンナノ材料本体(イオン液体を構成する分子及び水溶性高分子で覆われる前のカーボンナノ材料自体)は、イオン液体を構成する分子及び水溶性高分子で二重に覆われているので、この構成の組成物を生体に触れる態様で用いた場合であってもカーボンナノ材料本体が生体に触れることを回避できる。
 この組成物は、ゲル状(流動性を失ったもの)、又は、液状(流動性を有するもの)であってもよい。また、一部がゲル状であり、一部が液状であってもよい。
 水溶性高分子媒体中に分散されているカーボンナノ材料は、カーボンナノチューブであってもよい。
 また、「水溶性高分子媒体」をエネルギー付与(熱、光、電子線等)により硬化してもよい。
 本明細書において「二重に被覆」とは、イオン液体を構成する分子の層と、水溶性高分子の層とで被覆されていることをいう。本発明の組成物は、イオン液体分子の層で被覆されたカーボンナノ材料と水溶性高分子と水とを混合して、水溶性高分子を水に溶解した状態すなわち、水溶性高分子が小サイズとなって分散した状態でイオン液体分子の層を覆うために、水溶性高分子も層状となって覆われる。これに対して、特許文献1に記載されている“カーボンナノチューブとイオン液体とポリマーとのゲル状組成物からなる電極層”の場合、カーボンナノチューブ及びイオン液体のゲルとポリマーとを加熱混合して形成されたもの(実施例1等)なので、イオン液体分子がカーボンナノチューブを層状に覆っていたとしても、ポリマーは層状で(イオン液体分子を介して)カーボンナノチューブを覆ってはいない。
 また、本発明の組成物では、イオン液体を構成する分子及び水溶性高分子が層状でカーボンナノ材料を覆っているので、ほぼ均一な厚さのイオン液体を構成する分子の層と、ほぼ均一な厚さの水溶性高分子の層とでカーボンナノ材料が被覆されたものとすることができる。すなわち、特許文献1に記載されているゲル状組成物と比較して、カーボンナノチューブに代表されるカーボンナノ材料を、分子レベルで均一にコーティングすることができる。また、イオン液体の分子が、カーボンナノ材料にしっかり結合されるのでピンホールなくコーティングすることができる。
 イオン液体を構成する分子の層の“ほぼ均一な厚さ”とは、70%以上、好ましくは90%以上のイオン液体を構成する分子の層が、単分子層であることをいう。
 また、水溶性高分子の層の“ほぼ均一な厚さ”とは、70%以上、好ましくは90%以上の水溶性高分子の層において、厚さのばらつきが20nm以下、好ましくは10nm以下、より好ましくは5nm以下であることをいう。
 親水性のイオン液体の量を、全てのカーボンナノ材料を被覆できる量に調整することにより、カーボンナノ材料をまず、イオン液体の分子が完全に覆い、その上を水溶性高分子が覆う構成とすることができる。
 カーボンナノ材料をイオン液体の分子を介して被覆する水溶性高分子と、被覆されたカーボンナノ材料が分散する水溶性高分子(媒体)は同じ種類でもよいし、異なる種類としてもよい。かかる構成は例えば、イオン液体の分子で被覆されたカーボンナノ材料と水溶性高分子と水とを混合して、カーボンナノ材料をイオン液体の分子を介して水溶性高分子で被覆し、次いで、イオン液体の分子を介して水溶性高分子で被覆されたカーボンナノ材料と、その水溶性高分子と同じ種類又は異なる種類の水溶性高分子と水とを混合することにより得ることができる。
 本発明の一態様に係る組成物は、上記組成物において、カーボンナノ材料が前記イオン液体を構成する分子の単分子膜で被覆されていてもよい。
 カーボンナノ材料の表面にイオン液体の分子を結合させて覆い、カーボンナノ材料の表面に結合していないイオン液体の分子を濯いで(リンスして)除去することにより、カーボンナノ材料はイオン液体を構成する分子の単分子膜で被覆されたものとなる。
 本発明の一態様に係る生体適合性組成物は、上記のいずれかの態様の組成物からなるものである。
 本明細書において「生体適合性」とは、細胞毒性がなく、かつ、Au電極と比べて生体の拒絶反応が小さいことを意味する。例えば、生体適合に関する国際標準規格ISO10993-6に則り、「コロニー形成法による細胞毒性試験」を実施して細胞毒性がなく、かつ、その規格による「ウサギ埋植試験」を実施して、Au電極と比べて生体の拒絶反応が小さいことを「生体適合性」は意味する。
 上述の通り、イオン液体が生体に与える影響については十分に研究が進んでいない。しかし本発明の一態様に係る生体適合性組成物は、カーボンナノ材料に結合されたイオン液体を構成する分子を水溶性高分子で覆う二重被覆の構成を採用している。そのため、この構成を生体に触れる態様で用いた場合であってもイオン液体を構成する分子が生体に触れることを回避できる。また、カーボンナノ材料本体(イオン液体を構成する分子及び水溶性高分子で覆われる前のカーボンナノ材料自体)は、イオン液体を構成する分子及び水溶性高分子で二重に覆われているので、この構成の生体適合性組成物を生体に触れる態様で用いた場合であってもカーボンナノ材料本体が生体に触れることを回避できる。
 本発明の一態様に係る導電性材料は、親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されたカーボンナノ材料が水溶性高分子媒体中に分散され、その水溶性高分子が架橋されてなるものである。
 親水性のイオン液体の量を、全てのカーボンナノ材料を被覆できる量に調整することにより、カーボンナノ材料をまず、イオン液体の分子が覆い、その上を水溶性高分子が覆う構成となる。
 水溶性高分子媒体中に分散されているカーボンナノ材料は、カーボンナノチューブであってもよい。
 本発明の一態様に係る生体適合性導電性材料は、親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されたカーボンナノ材料が水溶性高分子媒体中に分散され、その水溶性高分子が架橋されてなるものである。
 上述の通り、イオン液体が生体に与える影響については十分に研究が進んでいない。しかし本発明の一態様に係る生体適合性導電性材料は、カーボンナノ材料に結合されたイオン液体を構成する分子を水溶性高分子で覆う二重被覆の構成を採用している。そのため、この構成を生体に触れる態様で用いた場合であってもイオン液体を構成する分子が生体に触れることを回避できる。また、カーボンナノ材料本体(イオン液体を構成する分子及び水溶性高分子で覆われる前のカーボンナノ材料自体)は、イオン液体を構成する分子及び水溶性高分子で二重に覆われているので、この構成の生体適合性導電性材料を生体に触れる態様で用いた場合であってもカーボンナノ材料本体が生体に触れることを回避できる。
 本発明の一態様に係る導電性材料の製造方法は、親水性のイオン液体とカーボンナノ材料と水とを混合して、前記イオン液体を構成する分子に覆われたカーボンナノ材料が分散する第1の分散系を得る第1の工程と、前記第1の分散系と水溶性高分子と水とを混合して、イオン液体を構成する分子に覆われたカーボンナノ材料と水溶性高分子とが分散する第2の分散系を得る第2の工程と、を備えることを特徴とする。
 第2の分散系において、複数の種類の水溶性高分子を用いることにより、カーボンナノ材料をイオン液体の分子を介して被覆する水溶性高分子と、被覆されたカーボンナノ材料が分散する水溶性高分子(媒体)を異なる種類することができる。あるいは、カーボンナノ材料をイオン液体の分子を介して被覆する水溶性高分子を複数の種類とすることも可能になる。これにより、材料の硬さ調節や、導電性、光学特性等の制御も可能となる。
 本発明の一態様に係る導電性材料の製造方法では、上記第1の工程において、カーボンナノ材料にせん断力を加えて細分化してもよい。
 本発明の一態様に係る導電性材料の製造方法は、上記第2の工程の後に、水溶性高分子を架橋させて、カーボンナノ材料が水溶性高分子媒体中に分散され、その水溶性高分子が架橋されてなる組成物を作製する工程をさらに備えてもよい。
 この架橋工程の後に、第2の工程で用いた水溶性高分子と異なる種類の水溶性高分子を混ぜ込んで架橋することにより、材料の硬さ調節や、導電性、光学特性等の制御も可能となる。
 本発明の一態様に係る導電性材料の製造方法は、カーボンナノ材料に結合していない前記イオン液体を構成する分子を除去するために濯ぎ工程をさらに備えるものであってもよい。この濯ぎ工程は例えば、生理食塩水、エタノール、ゲルを破壊しない液体によって行うことができる。
 上述の通り、イオン液体が生体に与える影響については十分に研究が進んでいない。しかし本発明の一態様に係る導電性材料の製造方法は、この濯ぎ工程を備えることにより、カーボンナノ材料に結合されたイオン液体を構成する分子を水溶性高分子で覆う導電性材料を製造するものである。そのため、得られる導電性材料はイオン液体を構成する分子が生体細胞に触れることが回避される。
 この濯ぎ工程はいずれの段階で行ってもよく、例えば、上記第1の工程の後、上記第2の工程の後、上記組成物を作製する工程の後に行うことができる。
 濯ぎ工程を第1の工程の後に適切に行うことにより、カーボンナノ材料を覆うイオン液体の分子を確実に単層にすることが可能となる。また、濯ぎ工程を第2の工程の後や水溶性高分子を架橋した後等に適切に行うことにより、カーボンナノ材料に結合していないイオン液体の分子を除去することが可能となる。水溶性高分子の架橋後は水溶性高分子は濯ぎ工程に用いる液体に溶けないので、イオン液体の分子を除去しやすい。
 本発明の上記態様に係るカーボンナノ材料、組成物、生体適合性組成物、導電性材料、生体適合性導電性材料及び導電性材料の製造方法は、特に生体への適用に制限するものでなく、その効果を発揮できるあらゆる分野に適用できることはいうまでもない。
 本発明のカーボンナノ材料、組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料によれば、含有するカーボンナノ材料がイオン液体の分子と水溶性高分子とによって二重に被覆された構成を採用したので、生体内に適用してもカーボンナノ材料自体が生体内の細胞に実質的に触れることがない(あるいは、細胞に触れる面積を著しく低下している)。また、高い柔軟性を有するので、生体内の臓器等の表面に対して追従性に優れ、臓器等との間に極めて良好な界面を形成できる。さらにまた、カーボンナノ材料の含有量の調整等により、高い導電性を有するものとすることができる。また、カーボンナノ材料を被覆するイオン液体分子を単分子膜とすることにより、カーボンナノ材料間の導電性を高いものとすることができる。カーボンナノ材料をイオン液体の分子を介して被覆する水溶性高分子と、被覆されたカーボンナノ材料が分散する水溶性高分子(媒体)とを異なる種類とすることにより、一方のみを硬化することが可能となる。
 従来、ペースメーカーの刺激電極等のように、生体内で臓器等に刺激を与える電極では生体内に長期間適用できるものはあるが、生体内の臓器等から出てくる電気信号を読み出す電極では生体内に長期間適用できるものはなかった。これは、従来の材料で作製された電極を生体内に入れると、まもなく電極と臓器等の組織との間に異物反応(炎症反応)が生じて、電気信号を検出することが困難になるからである。刺激を与える電極ではかかる異物反応を生じても刺激を与えるという目的を果たすことができるが、生体内の臓器等の信号を検出する電極では信号を検出するという目的を果たすことが困難である。
 これに対して、本発明のカーボンナノ材料、組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料は生体内に長期間収めることができる。本発明の一態様に係る組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料は、生体内の臓器等から出てくる電気信号を、長期間安定的に読み出す電極等に用いることができる初めての材料である。
 このように本発明のカーボンナノ材料、組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料は、長期間生体内に入れても抗体反応が小さく、信頼性の高い生体用電極の材料として用いることができる。また、本発明のカーボンナノ材料、組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料は、非常に柔らかいため、生体組織を傷つけることなく、生体組織の表面を覆うことができる。また、細胞組織は数100μm程度のものもあるが、本発明のカーボンナノ材料、組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料は光架橋を可能とすることができるので、その細胞組織に適用可能な微細な電極を作製するのにも適している。
 また、本発明のカーボンナノ材料、組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料によって作製された電極は生体内の臓器等に密着させて長期間安定的に臓器等の信号を読み出すことができるので、有機トランジスタ(例えば、NATURE MATERIALS, 9, 2010, 1015-1022)を用いて臓器の傍で臓器等からの信号を増幅することが可能となる。これにより、非常に微弱な信号を高精度で取り出すことが可能となる。すなわち、生体からの微弱な信号は増幅しないと検出は困難であるが、有機トランジスタを用いて作製した柔らかいアンプと、本発明のカーボンナノ材料、組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料によって作製された電極とを用いて、生体内でその臓器等の近傍で生体からの微弱な信号を増幅することにより、生体からの微弱な信号を検出することが可能となる。
 また、臓器等の電気信号を容量結合で検出する際、その大きさは電極の表面積に比例する。本発明の一態様に係るカーボンナノ材料、組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料からなる電極を使って容量結合で電気信号を検出する場合、その電極は従来の金属電極に比べると格段に柔らかく、臓器等にぴったりと付着することができるために実質的な接触面積が大きくなる。そのため、電気信号を得るための実質的な容量の検出感度は従来の金属電極に比べて非常に高く、電極をより小型化することが可能となる。また、本発明の一態様に係るカーボンナノ材料、組成物、生体適合性組成物、導電性材料又は生体適合性導電性材料は、高い比表面積を有するカーボンナノ材料を含むもので、この点からも高い信号検出能力を有するものである。
 本発明の一態様に係る導電性材料の製造方法によれば、カーボンナノ材料の種類や含有量を調整することにより、所望の導電率を有する導電性材料を製造することができる。また、バンドルもしくは凝集が低減されたカーボンナノ材料をイオン液体の分子を介して水溶性高分子で覆うことにより、イオン液体の分子なしで水溶性高分子で覆う場合よりも層厚がより均一な水溶性高分子で覆われた導電性材料を製造することができる。また、カーボンナノ材料の表面とイオン液体の分子との「カチオン-π」相互作用による結合力が、イオン液体の分子同士の間の結合力よりも大きいカーボンナノ材料とイオン液体との組み合わせを選択することにより、カーボンナノ材料を包み込むイオン液体の分子の層を単分子層とすることができる。さらに、水溶性高分子としてイオン液体の単分子層に薄く形成可能なものを選択することにより、カーボンナノ材料の密度を高めてより導電率の高い導電性材料を製造することができる。
本発明の組成物又は導電性材料を示すものであって、(a)はDEMEBFを構成する分子に覆われたカーボンナノチューブがポリロタキサンに分散されてなる組成物を示す写真であり、(b)は(a)で示した組成物を光架橋して得られたシートの写真であり、(c)は図1(a)で示した組成物を光架橋すると共に、約50μm程度の線幅の微細構造をパターニングしたものの光学顕微鏡写真である。 高分解断面透過電子顕微鏡像(TEM像)であり、(a)は本発明で用いることができるカーボンナノチューブのTEM像であり、(b)はイオン液体なしで、カーボンナノチューブとポリロタキサンとを水中で混合し、ジェットミルで細分化を行いながら撹拌して得られたポリロタキサンで覆われたカーボンナノチューブのTEM像であり、(c)は図1(a)で示した組成物の作製条件と同じ条件で得られたカーボンナノ材料あるいは組成物のTEM像である。 本発明の組成物(又は導電性材料)の面抵抗とそのカーボンナノチューブ含有量依存性を示すグラフである。 本発明の(又は導電性材料)の電気容量とその周波数依存性を示すグラフである。 本発明の導電性材料の製造方法を説明するためのフロー図である。 本発明の導電性材料の製造方法の応用例を示すフロー図である。 カーボンナノチューブの分散性を調べた結果を示す写真であり、(A)はカーボンナノチューブを脱イオン水に入れ、1週間撹拌した後の状態を示す写真であり、(B)は、カーボンナノチューブとDEMEBFとを脱イオン水に入れ、同様にして1週間撹拌した後の状態を示す写真であり、(C)はカーボンナノチューブを脱イオン水に入れ、同様にして1週間撹拌し、その後、ジェットミルで処理した後の状態を示す写真であり、(D)はカーボンナノチューブとDEMEBF60mgとを脱イオン水に入れ、同様にして1週間撹拌し、その後、ジェットミルで処理した後の状態を示す写真であり、(E)はカーボンナノチューブとDEMEBFとミクロフィブリル化セルロースとを脱イオン水に入れ、同様にして1週間撹拌して得られたペーストを、その後、ジェットミルで処理した後の状態を示す写真である。
 以下、本発明の実施の形態を図面を参照して説明する。
 本発明の一実施形態に係るカーボンナノ材料は、親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されているものである。
 この二重被覆されたカーボンナノ材料を、例えば、紙に漉き込んで導電性の紙を作製することにより、カーボンナノ材料自体に直接触れることなく、この導電性の紙に触れることが可能となる。同様に、この二重被覆されたカーボンナノ材料を紙以外の物の材料に混ぜ込んでその物を作製することにより、カーボンナノ材料自体に直接触れることなく、その物に触れることが可能となる。
 本発明の一実施形態に係る組成物は、親水性のイオン液体を構成する分子に覆われたカーボンナノ材料が水溶性高分子媒体中に分散されてなり、カーボンナノ材料はイオン液体を構成する分子と水溶性高分子とで二重に被覆されている。
 上記カーボンナノ材料はイオン液体を構成する分子の単分子膜で被覆されていることが好ましい。
 本発明の一実施形態に係る導電性材料は、親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されたカーボンナノ材料が水溶性高分子媒体中に分散され、その水溶性高分子が架橋されてなるものである。
 本明細書においてイオン液体とは、常温溶融塩または単に溶融塩などとも称されるものであり、常温を含む幅広い温度域で溶融状態を呈する塩である。
 親水性のイオン液体としては、従来から知られている各種のイオン液体のうち、親水性のイオン液体を使用することができ、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)を挙げることができる。
 本明細書においてカーボンナノ材料とは、カーボン原子で構成され、ナノメートルサイズで構造化している構成要素(例えば、1本のCNT)が通常、その構成要素のカーボン原子同士がファンデルワールス力で結合しているもの、例えば、カーボンナノチューブ、カーボンナノファイバー(炭素繊維のうち、径が10nm以下のもの)、カーボンナノホーン、フラーレンをいう。径が10nm以下の微細なカーボンナノ材料であれば、水中で良好な分散性を発揮する。
 カーボンナノ材料は同じ種類のものだけが用いられていてもよいし、複数の種類のものが用いられていてもよい。
 カーボンナノチューブは、炭素原子が六角網目状に配列したグラフェンシートが単層で又は多層で円筒状に丸まった構造を有するものであるが(単層ナノチューブ(SWNT)、2層ナノチューブ(DWNT)、多層ナノチューブ(MWNT)と呼ばれる)、カーボンナノ材料として用いることができるカーボンナノチューブは特に制限はなく、SWNT、DWNT、MWNTのいずれでも構わない。また、カーボンナノチューブは一般にレーザーアブレーション法、アーク放電、熱CVD法、プラズマCVD法、気相法、燃焼法などで製造できるが、どのような方法で製造したカーボンナノチューブを用いても構わない。また、複数の種類のカーボンナノチューブを用いても構わない。
 カーボンナノチューブは、カーボンナノチューブ間のファンデルワールス力によって凝集しやすく、通常、複数本のカーボンナノチューブがバンドル(束)を形成したり、凝集体を形成して存在する。しかし、イオン液体の存在下で、そのバンドルもしくは凝集体にせん断力を加えて細分化する(カーボンナノチューブの絡み合いを低減する)ことができる。十分に細分化を行うことにより、カーボンナノチューブ同士を凝集しているファンデルワールス力を弱めて一本一本のカーボンナノチューブに分離すると共に、一本一本のカーボンナノチューブにイオン液体を吸着させることができる。その結果、イオン液体の分子が覆った単体のカーボンナノチューブを含む、カーボンナノチューブとイオン液体とからなる組成物を得ることできる。
 なお、細分化工程において用いるせん断力を付与する手段は特に限定されるものではなく、ボールミル、ローラーミル、振動ミルなどのせん断力を付与することができる湿式粉砕装置を使用することができる。
 カーボンナノチューブとイオン液体とを混ぜ、上記細分化工程を行うことにより、からみ合いが減少したカーボンナノチューブの表面に「カチオン-π」相互作用により結合したイオン液体の分子がイオン結合を介してカーボンナノチューブを結びつけることによりゲル状組成物になると考えられている(特許文献2)。後述するように、このゲル状組成物を、例えば、生理食塩水やエタノール等でリンスすることにより、カーボンナノチューブの表面に1層のイオン液体の分子の層を形成することができる。さらに、イオン液体を構成する分子に覆われたカーボンナノチューブに水と水溶性高分子とを混ぜることにより、イオン液体を構成する分子に覆われたカーボンナノチューブが水溶性高分子媒体中に分散されてなる組成物を作製することができる。
 本明細書において水溶性高分子(媒体)としては、水に溶解でき、あるいは、分散できる高分子であれば特に制限はなく、水中で架橋できるものであればより好ましい。例えば、以下の例を挙げることができる。
1.合成高分子
(1)イオン性
 ポリマクリル酸(アニオン性)
 ポリスチレンスルホン酸(アニオン性)
 ポリエチレンイミン(カチオン性)
 MPCポリマー(両性イオン)
(2)非イオン性
 ポリビニルピロリドン(PVP)
 ポリビニルアルコール(ポリ酢酸ビニル鹸化物)
 ポリアクリルアミド(PAM)
 ポリエチレンオキシド(PEO)
2.天然系高分子(多くは多糖類)
 デンプン
 ゼラチン
 ヒアルロン酸
 アルギン酸
 デキストラン
 タンパク質(例えば水溶性コラーゲンなど)
3.半合成高分子(例えばセルロースを可溶化したもの)
 カルボキシメチルセルロース(CMC)
 ヒドロキシプロピルセルロース(HPC)
 メチルセルロース(MC)、等のセルロース誘導体
 水溶性キトサン(「2.天然系高分子」に分類することもできる)
 また、水溶性高分子の具体的な化合物としては、例えば、ポリロタキサンを挙げることができる。ポリロタキサンは、環状分子(回転子:rotator)の開口部が直鎖状分子(軸:axis)によって串刺し状に包接されてなる擬ポリロタキサンの両末端(直鎖状分子の両末端)に、環状分子が遊離しないように封鎖基を配置して成る。例えば、環状分子としてα-シクロデキストリン、直鎖状分子としてポリエチレングリコールを用いたポリロタキサンを用いることができる。
 また、水溶性高分子媒体としては架橋剤と反応する基を有する化合物であれば、架橋により強固な膜を形成することから、より好ましい。
 本発明の組成物又は導電性材料を用いて、微細な形状のパターンを形成するには、水溶性高分子が光架橋性であることが好ましい。
 カーボンナノ材料を包み込むイオン液体の分子の層は単分子層であってもよい。カーボンナノ材料の表面とイオン液体の分子とは「カチオン-π」相互作用により結合する。そのため、イオン液体の分子同士の間の結合がその「カチオン-π」相互作用による結合よりも小さい、カーボンナノ材料とイオン液体との組み合わせを選択することにより、カーボンナノ材料を包み込むイオン液体の分子の層を単分子層とすることが可能となる。
 例えば、カーボンナノ材料としてカーボンナノチューブ、イオン液体としてN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)を選択することにより、カーボンナノチューブを包み込むDEMEBFの分子の層を単分子層とすることができる。さらに、水溶性高分子として例えば、ポリロタキサンを選択すると、DEMEBFの単分子層の上に5nm程度の薄いポリロタキサンの層を形成することができる。こうして得られる組成物はカーボンナノチューブの分散濃度を高密度とすることができ、導電性の高い材料とすることができる。かかる導電性材料で作製した電極等の導電部材では、薄いDEMEBF分子層及びポリロタキサン層を介してカーボンナノチューブ間を電子が移動して電流が流れる。
 本発明の組成物又は導電性材料において、カーボンナノ材料の表面とイオン液体の分子とは「カチオン-π」相互作用によって強く結合しているために、カーボンナノ材料の表面と結合しているイオン液体の分子は水溶性高分子媒体の外に出てこない。なお、カーボンナノ材料の表面と結合していないイオン液体の分子は、例えば、生理食塩水やエタノールによる濯ぎによって除去することができる。
 本発明の実施形態に係る組成物又は導電性材料によれば、含有するカーボンナノ材料がイオン液体の分子と水溶性高分子とによって二重に被覆されているので、生体内に適用してもカーボンナノ材料が生体内の細胞に実質的に触れることがない。また、高い柔軟性を有するので、生体内の臓器等の表面に対して追従性に優れ、臓器等との間に極めて良好な界面を形成できる。さらにまた、高い導電率を有するものとすることができる。
 本発明の一実施形態に係る導電性材料の製造方法は、親水性のイオン液体とカーボンナノ材料と水とを混合して、イオン液体を構成する分子に覆われたカーボンナノ材料が分散する第1の分散系を得る第1の工程と、第1の分散系と水溶性高分子と水とを混合して、イオン液体を構成する分子に覆われたカーボンナノ材料と水溶性高分子とが分散する第2の分散系を得る第2の工程と、を備えることを特徴とする。
 第1の工程において、カーボンナノ材料にせん断力を加えて細分化してもよい。
 これにより、カーボンナノ材料のバンドル又は凝集がより解けた状態で親水性のイオン液体でカーボンナノ材料を覆うことができる。
 第2の工程の後に、水溶性高分子を架橋させて、カーボンナノ材料が水溶性高分子媒体中に分散され、その水溶性高分子が架橋されてなる組成物を作製する工程をさらに備えてもよい。これにより、成形性や加工性が向上する。
 カーボンナノ材料に結合していない前記イオン液体を構成する分子を除去するために濯ぎ工程をさらに備えてもよい。これにより、成形性や加工性が向上する。
 この濯ぎ工程は例えば、生理食塩水、エタノール、ゲルを破壊しない液体によって行うことができる。この濯ぎ工程はいずれの段階で行ってもよい。
 なお、本発明の組成物又は導電性材料は、本発明の効果を損なわない範囲で他の物質を含むことができる。また、本発明の導電性材料の製造方法は、本発明の効果を損なわない範囲で他の工程を含むことができる。
 以下、本発明を実施例に基づいて具体的に説明する。但し、これらの実施例はあくまでも本発明を容易に理解するための一助として開示するためのものであって、本発明はこれによって限定されるものではない。
 図1(a)は、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)を構成する分子に覆われたカーボンナノチューブがポリロタキサンに分散されてなる組成物であって、紫外線(UV)硬化前のものの状態を示す写真である。得られた組成物は、ゲル状であることがわかる(なお、本明細書において「ゲル状」とは、流動性を有する液状に対して、流動性を失った状態、もしくは、流動性をほぼ失っている状態を意味する)。
 この組成物の作製は、市販のカーボンナノチューブ(MWNT、長さ10μm、径5nm)30mgと、親水性のイオン液体である、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)60mgと混合し、磁気スターラーを用いて700rpm以上の回転数で1週間、25℃で脱イオン水中で撹拌した。得られた懸濁液を、高圧ジェットミルホモジナイザー(60MPa;Nano-jet pal, JN10, Jokoh)によって処理して、黒い物質を得た。得られたCNTゲルを含む溶液を生理食塩水で濯いだ後に、光架橋剤(Irgacure2959、長瀬産業株式会社製)1mgと、ポリロタキサンゲル(「光架橋性環動ゲル」、アドバンストソフトマテリアルズ株式会社製)1000mgとを混合し、上記組成物を作製した。
 図1(b)は、図1(a)で示した組成物を、5分間、紫外線(波長:365nm)を照射して硬化して得られたシートの写真である。
 得られたシートのヤング率は10kPaよりも低かった。シリコンのヤング率は100GPa程度であり、従来のプラスチックフィルムのヤング率は1~5GPaであるから、非常に柔らかいことがわかる。また、脳のヤング率は1~2kPaであり、心臓の筋肉細胞のヤング率は~100kPaであるから、本発明の一実施形態の組成物又は導電性材料は、臓器と同程度あるいはそれ以上の高い柔らかさを有することがわかった。このため、臓器の表面に高い追従性を有し、臓器との間に極めて良好な界面を形成できる。
 図1(c)は、超微細デジタル型UV露光システム(「デジタル露光装置」、ピーエムティー株式会社製)を用いて、光架橋を行うと共に、約50μm程度の線幅の微細構造をパターニングしたものの光学顕微鏡写真である。本発明の一実施形態の組成物又は導電性材料は、このように、微細加工が可能な材料である。
 光架橋材料の種類を変えることで様々な波長で架橋できるので、架橋手段はUVには限定されない。
 図2は、高分解断面透過電子顕微鏡像(TEM像)であり、(a)は本発明で用いることができるカーボンナノチューブ((MWNT、長さ10μm、径5nm)のTEM像、(b)はイオン液体なしで、カーボンナノチューブ((MWNT、長さ10μm、径5nm)30mgと、ポリロタキサン(「光架橋性環動ゲル」、アドバンストソフトマテリアルズ株式会社製)100mgとを水中で混合し、ジェットミルで細分化を行いながら撹拌して得られた、ポリロタキサンで覆われたカーボンナノチューブのTEM像、(c)は図1(a)で示した組成物の作製条件と同じ条件で得られた組成物のTEM像である。
 高分解断面透過電子顕微としては、HF-2000Cold-FE TEM(80kV、株式会社日立ハイテクノロジーズ製)を用いた。
 図2(a)に示すように、用いたカーボンナノチューブは3層又は4層からなっていたことがわかる。
 図2(b)に示すように、単体のカーボンナノチューブにポリロタキサンが被覆しているが、その被覆層の層厚は不均一であることがわかる。これに対して、図2(c)に示すように、単体のカーボンナノチューブを被覆するポリロタキサン層の層厚が非常に均一であり、図2(b)に示すものとは明確に異なることわかる。
 この被覆層の層厚の均一性の違いは、後者がカーボンナノチューブを覆っていた親水性イオン液体DEMEBFの分子が剥がされて、ポリロタキサンがカーボンナノチューブを覆い直したのではなく、カーボンナノチューブを覆っていた親水性イオン液体DEMEBFの分子の層の上にポリロタキサンが覆ったものであることを示している。カーボンナノチューブを覆っていた親水性イオン液体DEMEBFの分子が剥がされて、ポリロタキサンがカーボンナノチューブを覆ったのであれば、図2(c)も図2(b)と同様に被覆層の層厚は不均一になるはずである。また、カーボンナノチューブとDEMEBFの分子との結合が水素結合にも匹敵する高いカチオン-π相互作用で結合しているので、カーボンナノチューブを覆っていた親水性イオン液体DEMEBFの分子は上記の工程では剥がされないと考えられる。
 図2に示すように、本発明の導電性材料の製造方法によれば、カーボンナノチューブの表面をイオン液体の分子を介して均一に生体適合性材料で被覆することが可能となる。
 図3は、本発明の一実施形態である組成物(CNT-gel)の面抵抗、及び、面抵抗のカーボンナノチューブ含有量依存性を示すグラフである。比較のために、従来の生理食塩水を主成分とするゲル(Saline-based gel)の面抵抗についても点線で示した。
 組成物(CNT-gel)は、図1(a)で示した組成物の作製条件と同じ条件で得られた組成物である。大きさは1cm角、厚みは1mmであった。
 生理食塩水を主成分とするゲル(Saline-based gel)は、300mgのロタキサンゲルに1mgの光架橋剤を入れて、100mlの生理食塩水で溶かし、その後にUVにより光架橋することにより得た。大きさは1cm角、厚みは1mmであった。
 図3に示すように、本発明の一実施形態である組成物の面抵抗は、従来の生理食塩水を主成分とするゲルに比べて、2桁~3桁以上低いことがわかった。
 図4は、本発明の一実施形態である組成物(CNT-rotaxane gel)の電気容量、及び、電気容量の周波数依存性を示すグラフである。比較のために、ポリアクリルアミドゲル(Poly-acrylamide gel)、生理食塩水含有ポリアクリルアミドゲル(Saline poly-acrylamide gel)、生理食塩水含有ロタキサンゲル(Saline-rotaxane gel)についても示した。
 組成物(CNT-rotaxane gel)は、図1(a)で示した組成物の作製条件と同じ条件で得られた組成物である。大きさは1cm角、厚みは1mmであった。
 ポリアクリルアミドゲル(Poly-acrylamide gel)は、300mgのポリアクリルアミドに1mgの光架橋剤を入れて、100mlの脱イオン水で溶かし、その後にUVにより光架橋することにより得た。大きさは1cm角、厚みは1mmであった。また、脱イオン水の代わりに生理食塩水100mlで溶かしてもよい。この場合、ゲルに含浸される水を生理食塩水で置換する手間を省いて生体に適用することができる。
 生理食塩水含有ポリアクリルアミドゲル(Saline poly-acrylamide gelは、300mgのポリアクリルアミドに1mgの光架橋剤を入れて、100mlの生理食塩水で溶かし、その後にUVにより光架橋することにより得た。大きさは1cm角、厚みは1mmであった。
 生理食塩水含有ロタキサンゲル(Saline-rotaxane gel)は、300mgのロタキサンゲルに1mgの光架橋剤を入れて、100mlの生理食塩水で溶かし、その後にUVにより光架橋することにより得た。大きさは1cm角、厚みは1mmであった。
 図4に示すように、本発明の一実施形態である組成物の電気容量は、比較例のゲルよりも高いことがわかった。
 電気信号を容量結合で検出する際、その大きさは電極の表面積に比例する。本発明の組成物で電極を形成して、その電極を使って容量結合で電気信号を検出する場合、本発明の組成物は従来の金属電極に比べると格段に柔らかく、電極は生体組織にぴったりと付着することができるために実質的な接触面積が大きくなる。そのため、電気信号を得るための実質的な容量の検出感度は従来の金属電極に比べて非常に高く、より小型の電極であっても高い検出能力を有するものとなる。
 また、本発明の組成物又は導電性材料は、カーボンナノ材料を含むものであり、カーボンナノ材料、特に、カーボンナノチューブは高い比表面積を有するものなので、この点からも高い信号検出能力を有するものである。また、本発明の組成物又は導電性材料を用いて作製した電極の導電率は、Au電極の導電率より低いが、信号を容量でとる場合には導電率ではなく、実効的な表面積が大きいことが重要である。
 以下では、カーボンナノ材料としてカーボンナノチューブを、イオン液体としてN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)を、また、水溶性高分子としてポリロタキサンを用いた場合を例にとって、本発明の一実施形態である導電性材料の製造方法について、図5を用いて説明する。
(1)第1の工程
 まず、カーボンナノチューブとDEMEBFと水とを混合し、撹拌して、イオン液体を構成する分子に覆われたカーボンナノチューブが分散する第1の分散系を得る。
 第1の分散系を、生理食塩水、エタノール、ゲルを破壊しない液体等によって濯ぐ工程を行って、カーボンナノチューブに結合していないDEMEBFを除去してもよい。
 この分散系においては、イオン液体を構成する分子に覆われたカーボンナノチューブが水に分散されている。カーボンナノチューブとイオン液体の量に依存して、他に、イオン液体を構成する分子に十分に覆われていない又は全く覆われていないカーボンナノチューブ(バンドル化されているカーボンナノチューブも含む)やイオン液体を構成する分子が含有されている場合がある。
 この工程において、ジェットミル等により、カーボンナノチューブにせん断力を加えて細分化するのが好ましい。この工程により、カーボンナノチューブは、ファンデルワールス力でバンドル化していた1本1本のカーボンナノチューブが解けて、バンドル化(凝集)の程度が低減し、1本1本のカーボンナノチューブにまで解くことも可能となるからである。
 図7は、カーボンナノチューブの分散性を調べた結果を示すものである。(A)は、カーボンナノチューブ30mgを25℃の脱イオン水に入れ、磁気スターラーを用いて700rpm以上の回転数で1週間撹拌した後の状態、(B)は、カーボンナノチューブ30mgと、DEMEBF60mgとを25℃の脱イオン水に入れ、同様にして1週間撹拌した後の状態、(C)は、カーボンナノチューブ30mgを25℃の脱イオン水に入れ、同様にして1週間撹拌し、その後、高圧ジェットミルホモジナイザー(60MPa;Nano-jet pal, JN10, Jokoh)で処理した後の状態、(D)は、カーボンナノチューブ30mgと、DEMEBF60mgとを25℃の脱イオン水に入れ、同様にして1週間撹拌し、その後、高圧ジェットミルホモジナイザーで処理した後の状態、(E)カーボンナノチューブ30mgと、DEMEBF60mgと、ミクロフィブリル化セルロース(10%セルロース含有の水溶液100mg、「セリッシュ(商品名)」、Daicel Chemical Industries社製)とを25℃の脱イオン水に入れ、同様にして1週間撹拌して得られたペーストを、その後、高圧ジェットミルホモジナイザーで処理した後の状態、を示すものであり、撹拌を終えてから1週間後に撮影した写真である。なお、「セリッシュ(商品名)」は、高度に精製した純植物繊維を原料とし、特殊な処理方法でミクロフィブリル化したセルロースナノファイバーであり、原料の繊維はこの処理によって数万本に引き裂かれ、繊維の太さは0.1-0.01μmまで微細化されている。
 (D)及び(E)は、水の中でカーボンナノチューブが高い分散性を示していることがわかる。高い分散性を得るには、せん断力を加えてバンドル化されているカーボンナノチューブを細分化することが好ましいことがわかる。
(2)第2の工程
 次に、上記第1の分散系とポリロタキサン(「光架橋性環動ゲル」、アドバンストソフトマテリアルズ株式会社製)と水とを混合し、撹拌して、イオン液体を構成する分子に覆われたカーボンナノ材料と水溶性高分子とが分散する第2の分散系を得る。
 第2の分散系を、生理食塩水、エタノール、ゲルを破壊しない液体等によって濯ぐ工程を行って、カーボンナノチューブに結合していないDEMEBFを除去してもよい。
 なお、図5に示すように、得られた組成物を架橋する場合には架橋剤も混合することができる。これによって、得られた第2の分散系は図5に示すようなゲル状の物質である。
(3)架橋工程
 次に、ポリロタキサンを架橋して、DEMEBFを構成する分子に覆われたカーボンナノチューブがポリロタキサン媒体中に分散され、そのポリロタキサンが架橋されてなる組成物(導電性材料)を得る。
 得られた組成物(導電性材料)を生理食塩水、エタノール、ゲルを破壊しない液体等によって濯ぐ工程を行って、カーボンナノチューブに結合していないDEMEBFを除去してもよい。
 以上の工程により、本発明の一実施形態に係る組成物(導電性材料)を得ることができる。
 次に、上記第2の分散系を用いて、本発明の一実施形態に係る組成物(導電性材料)からなるシートや、本発明の一実施形態に係る組成物(導電性材料)からなる微細な線幅のラインを形成する工程の一例について説明する。
 図6(a)に示すように、上記第2の分散系をガラス基板にキャスト(流延)する。次いで、図6(b)に示すように、所望の厚さ(図の例では50μm)のスペーサーシートを介してガラス基板上にカバーガラスを載せる。
 次に、シートを作製する場合は、図6(c)に示すように、例えば、紫外線(365nm)露光装置を用いて露光することにより、50μm厚のシートを得ることができる。また、微細な線幅のラインを形成する場合は、図6(d)に示すように、例えば、デジタル型の紫外線(365nm)露光装置を用いて露光することにより、例えば、50μm幅のラインを形成することができる。
 本発明によれば、十分な導電性と柔軟性を有するカーボンナノ材料、組成物、導電性材料を提供することができる。さらに、生体適合性をも有するカーボンナノ材料、組成物、導電性材料を提供することができる。そのため、本発明は産業上極めて有用である。

Claims (13)

  1.  親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されていることを特徴とするカーボンナノ材料。
  2.  親水性のイオン液体を構成する分子に覆われたカーボンナノ材料が水溶性高分子媒体中に分散されてなり、前記カーボンナノ材料は前記イオン液体を構成する分子と水溶性高分子とで二重に被覆されていることを特徴とする組成物。
  3.  前記カーボンナノ材料は前記イオン液体を構成する分子の単分子膜で被覆されていることを特徴とする請求項2に記載の組成物。
  4.  前記水溶性高分子が架橋されてなることを特徴とする請求項2又は3のいずれかに記載の組成物。
  5.  ゲル状、又は、液状であることを特徴とする請求項2~4のいずれか一項に記載の組成物。
  6.  前記カーボンナノ材料がカーボンナノチューブであることを特徴とする請求項2~5のいずれか一項に記載の組成物。
  7.  請求項2~6のいずれか一項に記載の組成物からなることを特徴とする生体適合性組成物。
  8.  親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されたカーボンナノ材料が水溶性高分子媒体中に分散され、前記水溶性高分子が架橋されてなることを特徴とする導電性材料。
  9.  親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されたカーボンナノ材料が水溶性高分子媒体中に分散され、前記水溶性高分子が架橋されてなることを特徴とする生体適合性導電性材料。
  10.  親水性のイオン液体とカーボンナノ材料と水とを混合して、前記イオン液体を構成する分子に覆われたカーボンナノ材料が分散する第1の分散系を得る第1の工程と、
     前記第1の分散系と水溶性高分子と水とを混合して、イオン液体を構成する分子に覆われたカーボンナノ材料と水溶性高分子とが分散する第2の分散系を得る第2の工程と、を備えることを特徴とする導電性材料の製造方法。
  11.  前記第1の工程において、カーボンナノ材料にせん断力を加えて細分化することを特徴とする請求項10に記載の導電性材料の製造方法。
  12.  前記第2の工程の後に、水溶性高分子を架橋させて、カーボンナノ材料が水溶性高分子媒体中に分散され、前記水溶性高分子が架橋されてなる組成物を作製する工程をさらに備えることを特徴とする請求項10又は11のいずれかに記載の導電性材料の製造方法。
  13.  前記カーボンナノ材料に結合していない前記イオン液体を構成する分子を除去するために濯ぎ工程をさらに備えることを特徴とする請求項10~12のいずれか一項に記載の導電性材料の製造方法。
PCT/JP2013/071689 2012-08-23 2013-08-09 カーボンナノ材料、組成物、導電性材料及びその製造方法 WO2014030556A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13831736.7A EP2889267B1 (en) 2012-08-23 2013-08-09 Carbon nanomaterial, composition, conductive material, and manufacturing method therefor
CN201380043801.XA CN104583118B (zh) 2012-08-23 2013-08-09 碳纳米材料、组合物、导电性材料及其制造方法
US14/423,358 US20150224210A1 (en) 2012-08-23 2013-08-09 Carbon nanomaterial, composition, conductive material, and method of producing the same
JP2014531585A JPWO2014030556A1 (ja) 2012-08-23 2013-08-09 高分子被覆カーボンナノ材料、組成物、導電性材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-184492 2012-08-23
JP2012184492 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030556A1 true WO2014030556A1 (ja) 2014-02-27

Family

ID=50149865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071689 WO2014030556A1 (ja) 2012-08-23 2013-08-09 カーボンナノ材料、組成物、導電性材料及びその製造方法

Country Status (5)

Country Link
US (1) US20150224210A1 (ja)
EP (1) EP2889267B1 (ja)
JP (1) JPWO2014030556A1 (ja)
CN (1) CN104583118B (ja)
WO (1) WO2014030556A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137206A1 (ja) * 2014-03-12 2015-09-17 東レ株式会社 サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料
JPWO2014054586A1 (ja) * 2012-10-02 2016-08-25 国立研究開発法人科学技術振興機構 信号検出装置および信号検出方法
WO2016148252A1 (ja) * 2015-03-18 2016-09-22 株式会社Adeka 層状物質含有液及びその製造方法
WO2018123496A1 (ja) * 2016-12-26 2018-07-05 キヤノン株式会社 樹脂組成物および樹脂成形物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348555A (zh) * 2015-12-03 2016-02-24 梅庆波 一种抗静电水凝胶的制备方法
CA3069424A1 (en) * 2017-06-08 2018-12-13 Neuronoff, Inc. Electrode cured and manufactured in the body, and related methods and devices
CN111265677A (zh) * 2020-03-22 2020-06-12 宁波威联生物科技有限公司 一种基于离子导电的检测液体及其制备方法和用于生物电阻抗测量的使用方法和用途

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438685B2 (ja) 1985-11-07 1992-06-25
JPH09158054A (ja) * 1995-11-30 1997-06-17 Toray Ind Inc 繊維構造物およびその製造方法
JP2001164419A (ja) * 1999-12-13 2001-06-19 Fuji Spinning Co Ltd 改質セルロース再生繊維の製造方法
JP2004523665A (ja) * 2000-11-10 2004-08-05 ビーケイアイ・ホールディング・コーポレーション 低保水値および低毛管放出圧を有するセルロース繊維
JP2005176428A (ja) * 2003-12-08 2005-06-30 Japan Science & Technology Agency アクチュエータ素子
JP3676337B2 (ja) 2002-10-23 2005-07-27 独立行政法人科学技術振興機構 カーボンナノチューブとイオン性液体とから成るゲル状組成物とその製造方法
WO2009102077A1 (ja) * 2008-02-11 2009-08-20 The University Of Tokyo カーボンナノチューブゴム組成物、配線、導電性ペースト、電子回路およびその製造方法
WO2009101985A1 (ja) * 2008-02-11 2009-08-20 The University Of Tokyo 導電紙とその製造方法、導電性セルロース組成物とその製造方法、物品、電子デバイス
WO2011055776A1 (ja) * 2009-11-06 2011-05-12 学校法人 芝浦工業大学 ナノカーボン材料含有ゲルの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW311949B (ja) * 1995-11-29 1997-08-01 Toray Industries
US6514610B2 (en) * 1999-12-13 2003-02-04 Fuji Spinning Co., Ltd. Method for manufacturing improved regenerated cellulose fiber
JP4134306B2 (ja) * 2003-02-25 2008-08-20 独立行政法人科学技術振興機構 カーボンナノチューブ/ポリマー複合体及びその製法
JP4873453B2 (ja) * 2005-03-31 2012-02-08 独立行政法人産業技術総合研究所 導電性薄膜、アクチュエータ素子及びその製造方法
US8284539B2 (en) * 2006-08-02 2012-10-09 Ada Technologies, Inc. High performance ultracapacitors with carbon nanomaterials and ionic liquids
JP2008162899A (ja) * 2006-12-27 2008-07-17 Tokyo Univ Of Agriculture & Technology 生体関連化合物からなるイオン液体
JP2009035619A (ja) * 2007-08-01 2009-02-19 Konica Minolta Holdings Inc 導電性組成物及び導電性膜
JP5612311B2 (ja) * 2007-11-27 2014-10-22 アドバンスト・ソフトマテリアルズ株式会社 ポリロタキサン又は架橋ポリロタキサン及び多成分分散媒体を含有する組成物
CN101693125B (zh) * 2009-10-12 2013-06-19 北京科技大学 生物相容性定向碳纳米管阵列增强复合水凝胶的制备方法
KR101196370B1 (ko) * 2009-12-07 2012-11-01 광 석 서 탄소나노튜브-고분자 이온성 액체 복합체 및 이를 이용하여 제조되는 탄소나노튜브-전도성 고분자 복합체
JP2012032358A (ja) * 2010-08-03 2012-02-16 National Institute Of Advanced Industrial & Technology 蛍光分子内包型カーボンナノチューブ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438685B2 (ja) 1985-11-07 1992-06-25
JPH09158054A (ja) * 1995-11-30 1997-06-17 Toray Ind Inc 繊維構造物およびその製造方法
JP2001164419A (ja) * 1999-12-13 2001-06-19 Fuji Spinning Co Ltd 改質セルロース再生繊維の製造方法
JP2004523665A (ja) * 2000-11-10 2004-08-05 ビーケイアイ・ホールディング・コーポレーション 低保水値および低毛管放出圧を有するセルロース繊維
JP3676337B2 (ja) 2002-10-23 2005-07-27 独立行政法人科学技術振興機構 カーボンナノチューブとイオン性液体とから成るゲル状組成物とその製造方法
JP2005176428A (ja) * 2003-12-08 2005-06-30 Japan Science & Technology Agency アクチュエータ素子
WO2009102077A1 (ja) * 2008-02-11 2009-08-20 The University Of Tokyo カーボンナノチューブゴム組成物、配線、導電性ペースト、電子回路およびその製造方法
WO2009101985A1 (ja) * 2008-02-11 2009-08-20 The University Of Tokyo 導電紙とその製造方法、導電性セルロース組成物とその製造方法、物品、電子デバイス
WO2011055776A1 (ja) * 2009-11-06 2011-05-12 学校法人 芝浦工業大学 ナノカーボン材料含有ゲルの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JONATHAN VIENTI, NATURE NEUROSCIENCE, vol. 14, no. 12, 2011, pages 1599 - 1607
NATURE MATERIALS, vol. 9, 2010, pages 1015 - 1022
QUAN QING, PNAS, vol. 107, no. 5, 2010, pages 1882 - 1887
See also references of EP2889267A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014054586A1 (ja) * 2012-10-02 2016-08-25 国立研究開発法人科学技術振興機構 信号検出装置および信号検出方法
US10295367B2 (en) 2012-10-02 2019-05-21 Japan Science And Technology Agency Signal detection device and signal detection method
WO2015137206A1 (ja) * 2014-03-12 2015-09-17 東レ株式会社 サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料
JPWO2015137206A1 (ja) * 2014-03-12 2017-04-06 東レ株式会社 サイジング剤塗布強化繊維、サイジング剤塗布強化繊維の製造方法、プリプレグおよび繊維強化複合材料
US10208173B2 (en) 2014-03-12 2019-02-19 Toray Industries, Inc. Sizing agent-coated reinforcing fibers, method for producing sizing agent-coated reinforcing fibers, prepreg, and fiber-reinforced composite material
WO2016148252A1 (ja) * 2015-03-18 2016-09-22 株式会社Adeka 層状物質含有液及びその製造方法
CN107429070A (zh) * 2015-03-18 2017-12-01 株式会社Adeka 层状物质含有液及其制造方法
JPWO2016148252A1 (ja) * 2015-03-18 2017-12-28 株式会社Adeka 層状物質含有液及びその製造方法
US10946360B2 (en) 2015-03-18 2021-03-16 Adeka Corporation Layered-substance-containing solution and method of manufacturing same
WO2018123496A1 (ja) * 2016-12-26 2018-07-05 キヤノン株式会社 樹脂組成物および樹脂成形物

Also Published As

Publication number Publication date
JPWO2014030556A1 (ja) 2016-07-28
EP2889267A4 (en) 2016-04-20
EP2889267B1 (en) 2018-01-17
CN104583118B (zh) 2018-02-16
EP2889267A1 (en) 2015-07-01
US20150224210A1 (en) 2015-08-13
CN104583118A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
JP6296530B2 (ja) 生体適合性電極構造体及びその製造方法、並びに、デバイス及びその製造方法
WO2014030556A1 (ja) カーボンナノ材料、組成物、導電性材料及びその製造方法
JP6212814B2 (ja) 多点プローブ及びそれを構成する電子接点シート、多点プローブアレイ並びに多点プローブの製造方法
Kim et al. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics
Hamedi et al. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes
WO2014054586A1 (ja) 信号検出装置および信号検出方法
Correa-Duarte et al. Layer-by-layer assembly of multiwall carbon nanotubes on spherical colloids
Yang et al. Functionalization of multiwalled carbon nanotubes by mild aqueous sonication
Antonietti et al. Single-wall carbon nanotube latexes
JP5024312B2 (ja) 導電膜およびその製造方法ならびに電子装置およびその製造方法
Trigueiro et al. Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals
BRPI0612595A2 (pt) processo para a produção de materiais compósitos reticulados porosos
Wu et al. Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils
KR101550442B1 (ko) 재분산성이 우수한 도전성 고상 조성물 및 그 제조방법
Kim et al. Exceptional mechanical properties of phase-separation-free Mo3Se3–-chain-reinforced hydrogel prepared by polymer wrapping process
Fortunati et al. Spin coated cellulose nanocrystal/silver nanoparticle films
KR101534298B1 (ko) 전자파 차폐필름용 조성물, 이를 이용한 전자파 차폐필름의 제조방법 및 이에 의하여 제조된 전자파 차폐필름
Cui et al. Multiwalled carbon-nanotube-embedded microcapsules and their electrochemical behavior
WO2015119208A1 (ja) 電極アレイおよび生体センサー
Choi et al. Mass production of 2D manifolds of graphene oxide by shear flow
Sun et al. Enhanced electrochemical stimuli multilayers based on a ferrocene-containing polymer
JP2017157339A (ja) 透明導電フィルム及びその製造方法
Kim et al. Research on optimizing ultrasonic frequencies for efficient single-walled carbon nanotube dispersion in water using a focused ultrasonic system
이정희 α-Synuclein-Mediated Two-Dimensional Assembly of Gold Nanoparticles and Its Applications
Farehanim et al. Preparation and characterization of MWCNT dispersed in various solutions

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 1403810

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130904

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831736

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014531585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14423358

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013831736

Country of ref document: EP