WO2014030236A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2014030236A1
WO2014030236A1 PCT/JP2012/071263 JP2012071263W WO2014030236A1 WO 2014030236 A1 WO2014030236 A1 WO 2014030236A1 JP 2012071263 W JP2012071263 W JP 2012071263W WO 2014030236 A1 WO2014030236 A1 WO 2014030236A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature side
low
composition
circulation circuit
Prior art date
Application number
PCT/JP2012/071263
Other languages
English (en)
French (fr)
Inventor
杉本 猛
野本 宗
智隆 石川
啓輔 高山
池田 隆
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/071263 priority Critical patent/WO2014030236A1/ja
Priority to CN201280073544.XA priority patent/CN104334982A/zh
Priority to US14/401,916 priority patent/US20150153076A1/en
Priority to EP12883413.2A priority patent/EP2889552A4/en
Priority to JP2014531454A priority patent/JPWO2014030236A1/ja
Publication of WO2014030236A1 publication Critical patent/WO2014030236A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/08Refrigeration machines, plants and systems having means for detecting the concentration of a refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2108Temperatures of a receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus that performs a dual refrigeration cycle.
  • CO 2 As the refrigerant in the low-temperature side circulation circuit, but using CO 2 has the following problems.
  • the temperature in the freezer is about ⁇ 50 ° C.
  • the evaporation temperature in the low temperature side evaporator needs to be about ⁇ 80 to ⁇ 60 ° C.
  • the triple point of CO 2 is ⁇ 56.6 ° C., and such an evaporation temperature cannot be realized. In other words, it is difficult to achieve an evaporation temperature of about ⁇ 80 ° C.
  • R404A in the low temperature side circulation circuit, the evaporation temperature can be lowered to about -65 ° C.
  • R404A has a GWP of 3920, and it may affect global warming if a refrigerant leaks. there were.
  • a low evaporation temperature that cannot be obtained by a single refrigerant can be obtained by using a non-azeotropic refrigerant mixed for a purpose as a refrigerant. Therefore, by using a non-azeotropic mixed refrigerant containing CO 2 as one of the mixed refrigerants, it can be expected to obtain a low GWP and a low evaporation temperature.
  • a non-azeotropic mixed refrigerant containing CO 2 as one of the mixed refrigerants
  • an evaporating temperature of 80 to -60 ° C. can be realized by using a non-azeotropic refrigerant mixture in which at least CO 2 and R 32 are mixed as a refrigerant in the low-temperature side circulation circuit.
  • the present inventors have found the composition of such a non-azeotropic refrigerant mixture and arrived at the present invention.
  • the present invention has been made to solve the above problems, and uses a non-azeotropic refrigerant mixture in which at least CO 2 and R32 are mixed as a refrigerant in the low-temperature side circulation circuit, and has a low GWP and a low temperature in the low-temperature side circulation circuit.
  • An object of the present invention is to provide a refrigeration apparatus capable of setting the evaporation temperature in the side evaporator to ⁇ 80 to ⁇ 60 ° C.
  • the refrigeration apparatus includes a high temperature side compressor, a high temperature side condenser, a high temperature side expansion valve, and a high temperature side circulation circuit configured by connecting a high temperature side evaporator of a cascade heat exchanger, Low-temperature side circulation configured by connecting a side compressor, a low-temperature side condenser of a cascade heat exchanger, a receiver for storing liquid refrigerant, a solenoid valve, a low-temperature side expansion valve, and a low-temperature side evaporator A non-azeotropic refrigerant mixture containing at least CO 2 and R32 as a refrigerant in the low-temperature side circulation circuit, wherein the RWP content is 50 to 74 mass% with respect to the total non-azeotropic refrigerant mixture, and the GWP is A refrigerant of 500 or less is used.
  • a low GWP refrigeration apparatus capable of realizing an evaporation temperature of ⁇ 80 to ⁇ 60 ° C. of the low temperature side evaporator.
  • CO 2 refrigerant mixture is a diagram showing a relation of CO 2 mole fraction and the freezing point. Refrigerating capacity by mixing ratio of CO 2 and R32 in accordance with the exemplary embodiment of the present invention, it shows a comparison of COP.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to an embodiment of the present invention.
  • the refrigeration apparatus includes a high temperature side circulation circuit A and a low temperature side circulation circuit B.
  • the high temperature side circulation circuit A is formed by connecting a high temperature side compressor 1, a high temperature side condenser 2, a high temperature side expansion valve 3, and a high temperature side evaporator 4 in series.
  • R410A, R134a, R32, and HFO refrigerant are used as the refrigerant.
  • the low temperature side circulation circuit B is formed by connecting a low temperature side compressor 5, a low temperature side condenser 6, a low temperature side expansion valve 9, and a low temperature side evaporator 10 in series.
  • a liquid receiver 7 for storing excess refrigerant and an electromagnetic valve 8 are provided at the outlet.
  • a non-azeotropic refrigerant mixture including at least CO 2 and R 32 is used as the refrigerant.
  • the non-azeotropic refrigerant mixture is a refrigerant in which two or more refrigerants having different boiling points are mixed, CO 2 is a low-boiling refrigerant, and R32 is a high-boiling refrigerant.
  • the high temperature side circulation circuit A and the low temperature side circulation circuit B are provided with a cascade capacitor 14 in common, and the high temperature side evaporator 4 and the low temperature side condenser 6 constitute the cascade capacitor 14.
  • the cascade condenser 14 is, for example, a plate heat exchanger, and performs heat exchange between the high temperature side refrigerant circulating in the high temperature side circulation circuit A and the low temperature side refrigerant (non-azeotropic refrigerant mixture) circulating in the low temperature side circulation circuit B.
  • the non-azeotropic refrigerant mixture has characteristics as shown in FIG.
  • FIG. 2 is a gas-liquid equilibrium diagram showing the characteristics of a non-azeotropic refrigerant mixture obtained by mixing two kinds of refrigerants.
  • the vertical axis represents temperature
  • the horizontal axis represents the circulation composition (composition ratio of low boiling point components; CO 2 is low boiling point, R32 is high boiling point)
  • the parameter is pressure.
  • Figure 2 shows the characteristics of the non-azeotropic refrigerant in each of the high pressure P H and the low pressure P L in the low-temperature side circulation circuit B.
  • a saturated vapor line and a saturated liquid line are determined by pressure as shown in FIG.
  • the circulation composition “0” represents only the high-boiling component
  • the circulation composition “1” represents the case of only the low-boiling component.
  • the mixed refrigerant as shown in FIG. Is decided.
  • Z represents the composition of the refrigerant sealed in the refrigeration cycle
  • points 1 to 4 represent the representative points of the refrigeration cycle
  • point 1 represents the compressor outlet
  • point 2 represents the condenser outlet
  • point 3 represents an evaporator inlet
  • point 4 represents a compressor inlet.
  • the composition of the refrigerant circulating in the refrigeration cycle does not necessarily match the refrigerant composition charged in the refrigeration cycle (filling composition). This is because, in the gas-liquid two-phase portion of the refrigeration cycle indicated by point A in FIG. 2, the liquid composition is X smaller than the circulation composition Z, and the vapor composition is Y larger than the circulation composition. In other words, the gas-liquid two-phase portion indicated by point A contains a liquid rich in high-boiling components and steam rich in low-boiling components.
  • liquid refrigerant in the liquid receiver 7 is separated into a liquid refrigerant rich in high-boiling components and a gas refrigerant rich in low-boiling components, and the liquid refrigerant rich in high-boiling components is stored in the liquid receiver 7. .
  • the circulating composition circulating in the low temperature side circulation circuit B has more low boiling components than the filling composition (circulating composition (composition ratio of low boiling components) increases. ) Show a trend.
  • the circulation composition in the refrigeration cycle changes.
  • the relationship between the refrigerant pressure and the saturation temperature changes, and the cooling capacity also changes, as can be seen from FIG. Therefore, in order to make the refrigeration cycle stable and exhibit a predetermined capacity, the circulation composition in the refrigeration cycle is accurately detected, and the number of rotations of the low-temperature side compressor 5 or the It is necessary to optimally control the opening degree of the low temperature side expansion valve 9, or both, and adjust the refrigerant flow rate.
  • Table 1 below is a table summarizing physical property values of a CO 2 mixed refrigerant in which one of the mixed refrigerants is CO 2 and three types of refrigerant candidates to be combined with CO 2 are listed.
  • Table 1 shows the GWP and flame retardancy of each refrigerant to be mixed, the mixing ratio of the refrigerant and CO 2 to be mixed (molar ratio, mass ratio), the GWP of the mixed refrigerant mixed at the mixing ratio, The freezing point and the -70 ° C temperature gradient of the mixed refrigerant are shown.
  • FIG. 3 shows the relationship between the CO 2 mole fraction and the freezing point in the CO 2 mixed refrigerant.
  • FIG. 3 (a) shows the mixed refrigerant with R32
  • FIG. 3 (b) shows the relationship with R125. The mixed refrigerant is shown.
  • R290, R32, R125, etc. are conceivable.
  • R290 has a flame retardancy of “x”, that is, is flammable, and the amount of refrigerant increases in a showcase, a unit cooler, or the like, so that it is difficult to use from the viewpoint of safety.
  • R125 has a single GWP of 3500 and exceeds 2000 even when mixed with CO 2 . For this reason, R125 is difficult to use from the viewpoint of preventing global warming.
  • R32 has a single GWP of 675, which is sufficiently smaller than R125, and can be further lowered by mixing with CO 2 . Therefore, it is suitable as a refrigerant that can prevent global warming. 3A that the freezing point can be lowered by reducing the CO 2 molar fraction, that is, by increasing the ratio of R32 in the mixed refrigerant.
  • FIG. 4 (a) shows the refrigeration capacity [W] according to the refrigerant mixture ratio of CO 2 and R32
  • FIG. 4 (b) shows COP [ ⁇ ] according to the refrigerant mixture ratio of CO 2 and R32.
  • FIG. 4 the horizontal axis indicates the range of the mixing ratio that allows the freezing point to be ⁇ 81 ° C. or lower.
  • the low temperature side (low source side) condensation temperature is ⁇ 25 ° C.
  • the low temperature side (low source side) evaporation temperature is ⁇ 60 ° C.
  • the low temperature side (low source side) compressor 5 displacement is 30 cc. Calculated.
  • FIG. 4 (a) and 4 (b) show the refrigeration capacity (5400 W) and COP (15400 W) of a 15 HP single-stage cycle (compressor ⁇ condenser ⁇ expansion valve ⁇ evaporator) using a conventional R404A as a comparative example. 0.701). From FIG. 4, it can be seen that a displacement of about 60 cc is required to produce a refrigerating capacity equivalent to 15 HP of the R404A single stage cycle.
  • the ratio of R32 may be increased as described above.
  • the ratio of R32 is increased, as is apparent from FIG. 4, the refrigeration capacity is decreased but the COP is increased.
  • increasing the ratio of R32 increases GWP.
  • GWP has CO 2 of 1, and R32 alone is 675 from Table 1, so for example, if the content of R32 with respect to the whole non-azeotropic refrigerant is 50% by mass, GWP is about 340, and the proportion of R32 is increased to 65% by mass.
  • GWP is about 440 and the ratio of R32 is further increased to 74 mass%, it will be about 500.
  • the freezing point and GWP are in a trade-off relationship. Increasing the ratio of R32 can lower the freezing point while increasing the GWP.
  • the GWP is set to a low GWP of 500 or less, which is smaller than the GWP 3920 of the R404A, and the refrigerant mixing ratio is determined with the aim of setting the COP to 80% or more of the case where the R404A is used. To do.
  • the line of 80% COP when using R404A is shown in FIG. 4B, and this point is satisfied when the ratio of R32 is 50% by mass or more.
  • the ratio of R32 may be 50 to 74% by mass and a non-azeotropic refrigerant mixed with CO 2 may be used. With this ratio, the freezing point of the non-azeotropic refrigerant mixture can be lower than the triple point of CO 2 , which is ⁇ 81 ° C. or lower, so that an evaporation temperature of ⁇ 80 ° C. to ⁇ 60 ° C. can be realized and low GWP A refrigeration apparatus can be configured.
  • the mixed refrigerant of CO 2 and R32 is a non-azeotropic mixed refrigerant, and there is a problem that the temperature gradient is large (11 to 12K) as shown in Table 1. For this reason, it is necessary to correctly detect the circulation composition for proper operation.
  • the configuration for detecting the circulation composition will be described with reference to FIG.
  • FIG. 5 is a diagram showing a configuration in which a configuration for detecting the circulation composition is added to the refrigerant circuit of FIG. 1.
  • a pressure detector 15, a temperature detector 16, and a composition calculator 17 are further added to the refrigerant circuit of FIG.
  • the pressure detector 15 detects the pressure of the liquid refrigerant in the liquid receiver 7.
  • the temperature detector 16 detects the temperature of the liquid refrigerant in the liquid receiver 7.
  • the pressure and temperature of the liquid refrigerant detected by the pressure detector 15 and the temperature detector 16 are input to the composition calculator 17.
  • the composition calculator 17 calculates the circulation composition of the non-azeotropic refrigerant mixture in the refrigeration cycle based on the input pressure and temperature of the liquid refrigerant.
  • the circulation composition calculated by the composition calculator 17 is output to the control device 20 that controls the entire refrigeration apparatus, and is used to control the low-temperature side circulation circuit B.
  • the composition calculation device of the present invention includes a pressure detector 15, a temperature detector 16, and a composition calculator 17.
  • the refrigerant discharged from the high temperature side compressor 1 is condensed by the high temperature side condenser 2 to become a liquid refrigerant.
  • This liquid refrigerant is decompressed by the high temperature side expansion valve 3 and then evaporated by the high temperature side evaporator 4 of the cascade heat exchanger to become a gas refrigerant, which is again sucked into the high temperature side compressor 1, and this circulation is repeated.
  • a gas refrigerant which is again sucked into the high temperature side compressor 1 and this circulation is repeated.
  • the vapor of the high-temperature high-pressure non-azeotropic refrigerant mixture compressed by the low-temperature side compressor 5 is condensed and liquefied by the low-temperature side condenser 6 and enters the liquid receiver 7.
  • the liquid refrigerant that has flowed out of the liquid receiver 7 passes through the opened electromagnetic valve 8, is decompressed by the low-temperature side expansion valve 9, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • Unit cooler 10 flows.
  • the refrigerant flowing into the low temperature side evaporator 10 evaporates by exchanging heat with the air in the showcase, and returns to the low temperature side compressor 5 again. By repeating this circulation, cooling air is generated by the low-temperature side evaporator 10 to cool the inside of the showcase.
  • FIG. 6 is a vapor-liquid equilibrium diagram of a non-azeotropic refrigerant mixture.
  • the composition calculator 17 takes in the pressure P and the temperature T of the liquid refrigerant in the liquid receiver 7 from the pressure detector 15 and the temperature detector 16.
  • the saturated liquid temperature of the non-azeotropic refrigerant mixture at the pressure P changes as shown in FIG. 6 according to the circulation composition in the refrigeration cycle. Therefore, assuming that the state of the refrigerant in the liquid receiver 7 is a saturated liquid, the refrigeration cycle is obtained from the temperature T and the pressure P detected by the temperature detector 16 and the pressure detector 15 by using the relationship of FIG.
  • the circulating composition Z can be detected. Therefore, if the relationship between the pressure, temperature, and circulation composition is stored in advance in the composition calculator 17, the circulation composition Z can be calculated from the pressure P and temperature T.
  • Detecting the circulation composition is not limited to the above method, and may be obtained as follows.
  • the circulation composition in the refrigeration cycle can be detected if the pressure, temperature, and dryness of the refrigerant in the gas-liquid two-phase state including saturated steam and saturated liquid are known. That is, the circulating composition in the refrigeration cycle can be detected using the temperature T detected by the temperature detector 16, the pressure P detected by the pressure detector 15, and the dryness in the liquid receiver 7.
  • the pressure detector 15 is provided in the liquid receiver 7, but the pressure detector 15 is provided on the discharge side of the low temperature side compressor 5 to detect the discharge pressure of the low temperature side compressor 5, and the low temperature side.
  • the pressure obtained by converting the pressure loss of the side condenser 6 may be the pressure of the liquid refrigerant flowing into the liquid receiver 7.
  • the temperature detector 16 is provided in the liquid receiver 7, but the liquid that is provided at the outlet of the low temperature side condenser 6 and the outlet liquid temperature of the low temperature side condenser 6 flows into the liquid receiver 7. It may be the temperature of the refrigerant.
  • the number of revolutions of the low temperature side compressor 5 of the low temperature side circulation circuit B and / or the opening degree of the low temperature side expansion valve 9 can be optimally controlled according to the circulation composition, and the evaporation temperature is about ⁇ 80 with low GWP. Realizes an ultra-low temperature freezer (tuna storage, etc.) at -60 °C.
  • the refrigerant of the low-temperature side circulation circuit B is a non-azeotropic refrigerant mixture including at least CO 2 and R32, the GWP is 500 or less, and the mixing ratio of R32 is 50. It was set to 74 mass%.
  • a low GWP refrigeration apparatus capable of setting the evaporation temperature in the low temperature side evaporator 10 to ⁇ 80 to ⁇ 60 ° C. can be obtained.
  • an ultra-low temperature freezer eg storage of tuna having a freezer temperature of about ⁇ 50 ° C. can be realized.
  • the circulation composition can be detected correctly, the rotational speed of the low-temperature side compressor 5 and / or the opening degree of the low-temperature side expansion valve 9 can be controlled in consideration of the change in the circulation composition in the low-temperature side circulation circuit B. Therefore, optimal control according to the circulation composition can be performed, and a refrigeration apparatus capable of stable operation can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 高温側圧縮機1と、高温側凝縮器2と、高温側膨張弁3と、カスケード熱交換器14の高温側蒸発器4とが接続されて構成される高温側循環回路Aと、低温側圧縮機5と、カスケード熱交換器14の低温側凝縮器6と、液冷媒を溜める受液器7と、電磁弁8と、低温側膨張弁9と、低温側蒸発器10とが接続されて構成される低温側循環回路Bとを備え、低温側循環回路Bの冷媒として、CO2 とR32とを少なくとも含む非共沸混合冷媒であって、非共沸混合冷媒全体に対するR32の含有量が50~74質量%でGWPが500以下の冷媒を用いた。

Description

冷凍装置
 本発明は、二元冷凍サイクルを行う冷凍装置に関する。
 従来より、低温側冷媒が循環する低温側循環回路と高温側冷媒が循環する高温側循環回路とをカスケードコンデンサで接続した冷凍装置がある。この種の冷凍装置では、低温側循環回路に冷媒として二酸化炭素(CO2 )を使用することが提案されている(例えば、特許文献1参照)。CO2 は、天然に存在する物質であり、地球温暖化係数(GWP)が小さいため、CO2 を使用することで冷凍サイクル装置から不測に漏れた場合も、オゾン層を破壊することなく、地球環境にやさしい冷凍装置を構成できる。
特開2004-190917号(第14頁、第1図)
 低GWPの冷凍装置とする観点からすると、低温側循環回路の冷媒としてCO2 を用いることが好ましいが、CO2 を用いると、以下の問題があった。例えばマグロ等の冷凍では冷凍庫内温度が-50℃程度であり、これを実現するためには、低温側蒸発器での蒸発温度を-80~-60℃程度とする必要がある。しかし、低温側循環回路にCO2 の単一冷媒を使用した場合、CO2 の三重点が-56.6℃であり、そのような蒸発温度を実現することができない。つまり、CO2 の単一冷媒を使用した二元冷凍サイクルを行う冷凍装置では、蒸発温度-80℃程度を実現するのが難しかった。低温側循環回路にR404Aを使用すれば蒸発温度を-65℃程度まで下げることが可能であるが、R404AはGWPが3920であり、万一冷媒が漏れた場合に地球温暖化に影響する恐れがあった。
 また、冷凍装置では、冷媒として目的に合わせた非共沸混合冷媒を使用することにより、単一冷媒では得られなかった低い蒸発温度を得ることができることは従来から知られている。よって、CO2 を混合冷媒の一つとして含む非共沸混合冷媒を用いることで、低GWPで且つ低い蒸発温度を得ることが期待できる。しかし、具体的には、他の混合冷媒として何を用いれば蒸発温度を80~-60℃にできるかについて、未だ十分な検討とした技術はない。
 本発明者らは、この点について検討するうちに、少なくともCO2 とR32とを混合した非共沸混合冷媒を低温側循環回路の冷媒として用いることにより、蒸発温度80~-60℃を実現可能な非共沸混合冷媒の組成を見出し、本発明に至ったものである。
 本発明は、上記の課題を解決するためになされたもので、少なくともCO2 とR32とを混合した非共沸混合冷媒を低温側循環回路の冷媒として用い、低GWPで低温側循環回路の低温側蒸発器における蒸発温度を-80~-60℃とすることが可能な冷凍装置を提供することを目的とする。
 本発明に係る冷凍装置は、高温側圧縮機と、高温側凝縮器と、高温側膨張弁と、カスケード熱交換器の高温側蒸発器とが接続されて構成される高温側循環回路と、低温側圧縮機と、カスケード熱交換器の低温側凝縮器と、液冷媒を溜める受液器と、電磁弁と、低温側膨張弁と、低温側蒸発器とが接続されて構成される低温側循環回路とを備え、低温側循環回路の冷媒として、CO2 とR32とを少なくとも含む非共沸混合冷媒であって、非共沸混合冷媒全体に対するR32の含有量が50~74質量%でGWPが500以下の冷媒を用いたものである。
 本発明によれば、低温側蒸発器の蒸発温度-80~-60℃を実現できる低GWPの冷凍装置を提供できる。
本発明の一実施の形態における冷凍装置の冷媒回路図である。 2種類の冷媒を混合した非共沸混合冷媒の特性を表す気液平衡線図である。 CO2 混合冷媒においてCO2 モル分率と凝固点との関係を表した図である。 本発明の一実施の形態におけるCO2 とR32との混合比による冷凍能力、COPを比較した図である。 図1の冷媒回路に循環組成を検出するための構成を追加した構成を示す図である。 図5の組成演算器における循環組成検知原理1を説明する図である。 図5の組成演算器における循環組成検知原理2を説明する図である。
 図1は、本発明の一実施の形態における冷凍装置の冷媒回路図である。
 冷凍装置は、高温側循環回路Aと低温側循環回路Bとを備えている。高温側循環回路Aは、高温側圧縮機1と、高温側凝縮器2と、高温側膨張弁3と高温側蒸発器4とを直列に接続して形成される。高温側循環回路Aでは、冷媒として例えばR410A、R134a、R32、HFO冷媒を使用する。
 低温側循環回路Bは、低温側圧縮機5と、低温側凝縮器6と、低温側膨張弁9と、低温側蒸発器10とを直列に接続して形成され、更に低温側凝縮器6の出口部に、余剰冷媒を溜める受液器7と、電磁弁8とを設けている。低温側循環回路Bでは、冷媒としてCO2 とR32とを少なくとも含む非共沸混合冷媒を使用する。非共沸混合冷媒とは、沸点が異なる冷媒を2種類、もしくは2種類以上混合した冷媒であり、CO は低沸点冷媒、R32は高沸点冷媒である。
 高温側循環回路Aと低温側循環回路Bとは、カスケードコンデンサ14を共通して備えており、高温側蒸発器4と低温側凝縮器6とによりカスケードコンデンサ14が構成されている。カスケードコンデンサ14は例えばプレート式熱交換器であり、高温側循環回路Aを循環する高温側冷媒と低温側循環回路Bを循環する低温側冷媒(非共沸混合冷媒)との熱交換を行う。
 次に、今回使用する非共沸混合冷媒を低温側循環回路Bに用いた冷凍装置の冷凍サイクル内を循環する冷媒組成の特徴を説明する。非共沸混合冷媒は、図2に示すような特性を有する。
 図2は、2種類の冷媒を混合した非共沸混合冷媒の特性を表す気液平衡線図である。図2において縦軸が温度、横軸が循環組成(低沸点成分の組成比;CO2 が低沸点、R32が高沸点)を表し、パラメータが圧力である。図2には、低温側循環回路Bにおける高圧PH と低圧PL のそれぞれにおける非共沸混合冷媒の特性を示している。非共沸2種混合冷媒では図2のように、圧力によって飽和蒸気線、飽和液線が定まる。循環組成が「0」は高沸点成分のみを表し、循環組成が「1」は低沸点成分のみの場合を表し、混合冷媒では、組成によって図2のように、飽和液線と飽和蒸気線とが決まる。
 飽和蒸気線より上側は過熱蒸気状態、飽和液線より下側は過冷却状態、飽和蒸気線と飽和液線で囲まれた領域は気液2相状態となっている。図2で、Zは冷凍サイクル内に封入された冷媒の組成を表し、点1から点4は冷凍サイクルの代表点を表し、点1は圧縮機出口部、点2は凝縮器出口部、点3は蒸発器入口部、点4は圧縮機入口部を表す。
 非共沸混合冷媒を用いた冷凍サイクルでは、冷凍サイクル内を循環する冷媒の組成(循環組成)と、冷凍サイクルに充填された冷媒組成(充填組成)とは必ずしも一致しない。これは、図2の点Aで示す冷凍サイクルの気液2相部では、液組成は循環組成Zよりも小さなXとなり、蒸気組成は循環組成よりも大きなYとなるためである。言い換えれば、点Aで示す気液2相部には、高沸点成分に富んだ液と、低沸点成分に富んだ蒸気とが存在する。
 受液器7内には、冷凍装置の運転条件や負荷条件に応じて発生した余剰な液冷媒が溜まる。受液器7内の冷媒は、高沸点成分に富んだ液冷媒と、低沸点成分に富んだガス冷媒とに分離され、高沸点成分に富んだ液冷媒が受液器7内に貯溜される。このため受液器7内に液冷媒が存在すると、低温側循環回路Bを循環する循環組成は、充填組成よりも低沸点成分が多くなる(循環組成(低沸点成分の組成比)が増加する)傾向を示す。
 運転条件や負荷条件が変化し、受液器7内に貯溜される冷媒量が変化すると、冷凍サイクル内の循環組成が変化する。冷凍サイクル内の循環組成が変化すると、図2からも判かるように冷媒の圧力と飽和温度の関係が変化すると共に、冷却能力も変化する。したがって、冷凍サイクルを安定にしかも所定の能力が発揮できるようにするためには、冷凍サイクル内の循環組成を正確に検出し、検出した循環組成に応じて、低温側圧縮機5の回転数又は低温側膨張弁9の開度、又はその両方などを最適に制御し、冷媒流量を調整する必要がある。
 以下の表1は、混合冷媒の一つをCO2 とし、CO2 との組合せる冷媒の候補を3種類挙げたCO2 混合冷媒の物性値をまとめた表である。表1には、混合する冷媒それぞれ単体でのGWP及び難燃性、混合する冷媒とCO2 との混合比(モル比、質量比)、その混合比で混合した混合冷媒のGWP、混合冷媒の凝固点、混合冷媒の-70℃温度勾配を示している。また、図3は、CO2 混合冷媒においてCO2 モル分率と凝固点との関係を表した図で、図3(a)にはR32との混合冷媒、図3(b)にはR125との混合冷媒について示している。
Figure JPOXMLDOC01-appb-T000001
 凝固点を-70℃より低くできる組合せとしては、表1に示したようにR290,R32,R125等が考えられる。しかし、R290は、難燃性が「×」、つまり可燃性であり、ショーケースやユニットクーラ等では冷媒量が多くなるため、安全性の面から使用が困難である。
 R125は、それ単体のGWPが3500であり、CO2 と混合したとしても2000を超える。このため、R125は、地球温暖化防止の観点から使用が難しい。
 R32は、それ単体のGWPが675であり、R125と比較して十分小さく、CO2 と混合することで更にGWPを低くすることができる。よって、地球温暖化防止対応可能な冷媒として適している。また、図3(a)より、CO2 モル分率を低くすれば、つまり混合冷媒におけるR32の割合を多くすれば、凝固点を下降させることができることがわかる。
 図4(a)は、CO2 とR32との冷媒混合比に応じた冷凍能力[W]を示す図、図4(b)はCO2 とR32との冷媒混合比に応じたCOP[-]を示す図である。なお、図4では、凝固点を-81℃以下とすることができる混合比の範囲内を横軸に示している。図4において低温側(低元側)の凝縮温度を-25℃、低温側(低元側)の蒸発温度を-60℃とし、低温側(低元側)圧縮機5の押しのけ量を30ccで算出している。また、図4(a)、(b)には、比較例として従来のR404Aを用いた15HPの単段サイクル(圧縮機→凝縮器→膨張弁→蒸発器)の冷凍能力(5400W)とCOP(0.701)とを記載している。この図4より、R404A単段サイクルの15HP相当の冷凍能力を出すには60cc程度の押しのけ量が必要であることがわかる。
 本発明の目的である、低温側蒸発器10の蒸発温度を-80℃~-60℃とするにあたり、凝固点を下降させるには、上述したようにR32の割合を増加させればよい。R32の割合を増加させると、図4から明らかなように、冷凍能力は低下するがCOPが上昇する。しかし、R32の割合を増加させるとGWPが上昇する。GWPは、CO2 が1、R32単体では表1より675であるため、例えば非共沸冷媒全体に対するR32の含有量を50質量%とするとGWPは約340、R32の割合を増やして65質量%とするとGWPは約440、R32の割合を更に増やして74質量%とすると約500となる。すなわち、凝固点とGWPとはトレードオフの関係にあり、R32の割合を増加させると、凝固点を下降させることができる一方、GWPが増加してしまう。
 よって、本実施の形態はGWPを、R404AのGWP3920よりも小さい500以下の低GWPにすることを狙うと共に、COPをR404Aを用いた場合の80%以上とすることを狙って冷媒混合比を決定する。R404Aを用いた場合の80%のCOPのラインは図4(b)に示しており、R32の割合が50質量%以上であればこの点については満足している。
 以上より、R32の割合を50~74質量%としてCO2 と混合した非共沸混合冷媒とすればよい。この割合とすると、非共沸混合冷媒の凝固点をCO2 の三重点よりも低い、-81℃以下にすることができるため、蒸発温度-80℃~-60℃を実現できると共に、低GWPの冷凍装置を構成できる。
 CO2 とR32の混合冷媒は非共沸混合冷媒であり、表1に示したように温度勾配が大きい(11~12K)という課題がある。このために、適切な運転を行うにあたり、循環組成を正しく検知する必要がある。次の図5により、循環組成を検知するための構成について説明する。
 図5は、図1の冷媒回路に循環組成を検知するための構成を追加した構成を示す図である。
 図5に示すように、図1の冷媒回路に更に、圧力検出器15と、温度検出器16と、組成演算器17とが追加されている。圧力検出器15は、受液器7内の液冷媒の圧力を検出する。温度検出器16は受液器7内の液冷媒の温度を検出する。圧力検出器15及び温度検出器16により検出された液冷媒の圧力及び温度は、組成演算器17に入力される。組成演算器17は、入力された液冷媒の圧力及び温度に基づいて冷凍サイクル内の非共沸混合冷媒の循環組成を演算する。組成演算器17により演算された循環組成は、冷凍装置全体の制御を行う制御装置20に出力され、低温側循環回路Bの制御に用いられる。本発明の組成演算装置は、圧力検出器15と、温度検出器16と、組成演算器17とを備えている。
 次に、冷凍装置の動作について説明する。
 高温側循環回路Aでは、高温側圧縮機1から吐出した冷媒が、高温側凝縮器2で凝縮されて液冷媒となる。この液冷媒は、高温側膨張弁3で減圧された後、カスケード熱交換器の高温側蒸発器4で蒸発してガス冷媒となり、再び高温側圧縮機1に吸入され、この循環を繰り返すことになる。
 一方、低温側循環回路Bでは、低温側圧縮機5で圧縮された高温高圧の非共沸混合冷媒の蒸気が、低温側凝縮器6で凝縮液化され、受液器7に入る。受液器7を流出した液冷媒は、開放された電磁弁8を通過し、低温側膨張弁9で減圧され、低温低圧の気液2相冷媒となって低温側蒸発器10(ショーケースやユニットクーラ)10へ流入する。低温側蒸発器10に流入した冷媒は、ショーケース内の空気と熱交換して蒸発し、再び低温側圧縮機5に戻る。この循環を繰り返すことにより、低温側蒸発器10で冷却空気を生成してショーケース内を冷却することになる。
 以上の動作において、運転条件や負荷条件によって発生した余剰な非共沸混合冷媒は、受液器7内に溜まる。そして、上述したように、受液器7内に貯溜される冷媒量が変化すると、冷凍サイクル内の循環組成が変化する。冷凍サイクル内の循環組成を組成演算器17で検出するその検出原理について、次の図6を参照して説明する。
 図6は、非共沸混合冷媒の気液平衡線図である。
 組成演算器17は、圧力検出器15及び温度検出器16から、受液器7の液冷媒の圧力P及び温度Tを取り込む。圧力Pにおける非共沸混合冷媒の飽和液温度は、冷凍サイクル内の循環組成に応じて図6に示すように変化する。したがって、受液器7内の冷媒の状態を飽和液と仮定すると、図6の関係を用いることにより、温度検出器16と圧力検出器15より検出された温度Tと圧力Pとより、冷凍サイクル内の循環組成Zを検知することができる。よって、圧力と温度と循環組成との関係を予め組成演算器17内に記憶させておけば、圧力Pと温度Tにより循環組成Zを演算することができる。
 循環組成の検知は上記の方法に限らず、以下の様にして求めても良い。非共沸2種混合冷媒の場合は、冷媒の乾き度X(=冷媒蒸気質量流量/全冷媒流量)と、この乾き度Xの冷媒の温度及び圧力とが判れば、循環組成を検出することができる。すなわち、非共沸2種混合冷媒においては、圧力P一定のもとでは、乾き度X=1となる飽和蒸気線及び乾き度X=0となる飽和液線も含めて、乾き度Xにおける冷媒の温度と循環組成Zの間には、図7の2種混合冷媒の循環組成検知原理を表す図7の一点鎖線で示すような関係が存在する。
 つまり、圧力Pにおける乾き度Xの気液2相状態の非共沸混合冷媒の温度は、冷凍サイクル内の循環組成により図7に示すように変化する。したがってこの関係を用いると、飽和蒸気及び飽和液も含めた気液2相状態の冷媒の圧力、温度、乾き度が判れば、冷凍サイクル内の循環組成を検出できることになる。つまり、温度検出器16により検出された温度Tと、圧力検出器15より検出された圧力Pと、受液器7内の乾き度とを用いて冷凍サイクル内の循環組成を検出できる。
 なお、本実施の形態では受液器7に圧力検出器15を設けたが、低温側圧縮機5の吐出側に圧力検出器15を設けて低温側圧縮機5の吐出圧力を検知し、低温側凝縮器6の圧損を換算して求めた圧力を、受液器7に流入した液冷媒の圧力としてもよい。また、本実施の形態では受液器7に温度検出器16を設けたが、低温側凝縮器6の出口に設け、低温側凝縮器6の出口液温を、受液器7に流入した液冷媒の温度としてもよい。
 このようにすれば、低温側循環回路BにCO2 とR32との非共沸2種混合冷媒を用いた場合の循環組成を正しく検知できる。よって、低温側循環回路Bの低温側圧縮機5の回転数又は低温側膨張弁9の開度、又はその両方を循環組成に応じて最適に制御でき、低GWPで且つ蒸発温度が約-80~-60℃の超低温の冷凍庫(マグロの保管等)を実現できる。
 以上説明したように、本実施の形態では、低温側循環回路Bの冷媒として、CO2 とR32とを少なくとも含む非共沸混合冷媒であって、GWPが500以下で且つR32の混合割合を50~74質量%とした。これにより、低温側蒸発器10における蒸発温度を-80~-60℃とすることが可能な低GWPの冷凍装置を得ることができる。この冷凍装置により、冷凍庫内温度が-50℃程度の超低温の冷凍庫(マグロの保管等)を実現できる。
 また、循環組成を正しく検知できることで、低温側循環回路B内の循環組成の変化を考慮して低温側圧縮機5の回転数又は低温側膨張弁9の開度、又はその両方を制御できる。よって、循環組成に応じた最適な制御を行うことができ、安定した運転ができる冷凍装置を得ることができる。
 1 高温側圧縮機、2 高温側凝縮器、3 高温側膨張弁、4 高温側蒸発器、5 低温側圧縮機、6 低温側凝縮器、7 受液器、8 電磁弁、9 低温側膨張弁、10 低温側蒸発器、14 カスケードコンデンサ、15 圧力検出器、16 温度検出器 、17 組成演算器、20 制御装置、A 高温側循環回路、B 低温側循環回路。

Claims (3)

  1.  高温側圧縮機と、高温側凝縮器と、高温側膨張弁と、カスケード熱交換器の高温側蒸発器とが接続されて構成される高温側循環回路と、
     低温側圧縮機と、前記カスケード熱交換器の低温側凝縮器と、液冷媒を溜める受液器と、電磁弁と、低温側膨張弁と、低温側蒸発器とが接続されて構成される低温側循環回路とを備え、
     前記低温側循環回路の冷媒として、CO2 とR32とを少なくとも含む非共沸混合冷媒であって、非共沸混合冷媒全体に対するR32の含有量が50~74質量%でGWPが500以下の冷媒を用いたこと特徴とする冷凍装置。
  2.  前記低温側循環回路を循環する前記冷媒の組成を求める組成演算装置と、
     前記組成演算装置により求められた前記冷媒の組成に基づいて前記低温側循環回路を制御する制御装置と
    を更に備えたことを特徴とする請求項1記載の冷凍装置。
  3.  前記組成演算装置は、
     前記受液器内の液冷媒の圧力を検出する圧力検出器と、
     前記受液器内の液冷媒の温度を検出する温度検出器と、
     前記圧力検出器により検出された圧力と前記温度検出器により検出された温度とに基づいて前記低温側循環回路を循環する前記冷媒の組成を求める組成演算器と
    を備えたことを特徴とする請求項2記載の冷凍装置。
PCT/JP2012/071263 2012-08-23 2012-08-23 冷凍装置 WO2014030236A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2012/071263 WO2014030236A1 (ja) 2012-08-23 2012-08-23 冷凍装置
CN201280073544.XA CN104334982A (zh) 2012-08-23 2012-08-23 冷冻装置
US14/401,916 US20150153076A1 (en) 2012-08-23 2012-08-23 Refrigeration apparatus
EP12883413.2A EP2889552A4 (en) 2012-08-23 2012-08-23 COOLER
JP2014531454A JPWO2014030236A1 (ja) 2012-08-23 2012-08-23 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071263 WO2014030236A1 (ja) 2012-08-23 2012-08-23 冷凍装置

Publications (1)

Publication Number Publication Date
WO2014030236A1 true WO2014030236A1 (ja) 2014-02-27

Family

ID=50149571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071263 WO2014030236A1 (ja) 2012-08-23 2012-08-23 冷凍装置

Country Status (5)

Country Link
US (1) US20150153076A1 (ja)
EP (1) EP2889552A4 (ja)
JP (1) JPWO2014030236A1 (ja)
CN (1) CN104334982A (ja)
WO (1) WO2014030236A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130227976A1 (en) * 2011-01-27 2013-09-05 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103824823A (zh) * 2014-03-10 2014-05-28 吴鸿平 内源及其加源流体换热系统
WO2015136706A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍装置
CN105261596A (zh) * 2015-09-23 2016-01-20 吴鸿平 照明led集成热移装置
CN105737426A (zh) * 2016-03-14 2016-07-06 西安交通大学 一种co2跨临界复叠热泵系统及其级间压缩机容量配比方法
JPWO2015140872A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍装置
JP2020533474A (ja) * 2017-09-08 2020-11-19 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 冷媒
JP2020533555A (ja) * 2017-09-14 2020-11-19 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 空調方法及び空調装置
WO2023012961A1 (ja) 2021-08-05 2023-02-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
WO2023012960A1 (ja) 2021-08-05 2023-02-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582236B2 (ja) * 2015-06-11 2019-10-02 パナソニックIpマネジメント株式会社 冷凍サイクル装置
CN105180496B (zh) * 2015-10-26 2017-12-05 天津商业大学 一种多功能复叠式跨临界二氧化碳制冷/热泵综合实验台
US11378318B2 (en) 2018-03-06 2022-07-05 Vilter Manufacturing Llc Cascade system for use in economizer compressor and related methods
EP3636982B1 (de) * 2018-10-09 2021-08-04 Weiss Technik GmbH Verfahren und vorrichtung zum bereitstellen zeotroper kältemittel
RU191781U1 (ru) * 2019-04-25 2019-08-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Приволжский исследовательский медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО "ПИМУ" Минздрава России) Функциональная модель гортани человека
CN114207366B (zh) * 2019-07-18 2024-01-09 普和希控股公司 冷冻装置、温度传感器安装管及温度传感器安装结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068555A (ja) * 1996-08-27 1998-03-10 Mitsubishi Heavy Ind Ltd 冷凍サイクルの循環冷媒組成検出方法並びにその検出方法を用いた冷凍装置
JP2004190917A (ja) 2002-12-10 2004-07-08 Sanyo Electric Co Ltd 冷凍装置
JP2004198063A (ja) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd 非共沸混合冷媒および冷凍サイクル、並びに冷凍装置
JP2008196758A (ja) * 2007-02-13 2008-08-28 Mac:Kk 冷凍サイクルの膨張弁の詰まり防止方法及びその装置
JP2009222366A (ja) * 2008-03-19 2009-10-01 Hitachi Appliances Inc 冷媒分配器
JP2010096486A (ja) * 2008-09-22 2010-04-30 Panasonic Corp 冷凍装置
JP2012093054A (ja) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp 冷凍装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153653A (ja) * 1985-12-23 1987-07-08 三菱電機株式会社 冷凍装置
KR100190185B1 (ko) * 1991-03-18 1999-06-01 크리스 로저 에이치 디플루오로메탄; 1,1,1-트리플루오로에탄; 또는 프로판을 함유하는 비공비성 냉매 조성물들
JP3211405B2 (ja) * 1992-10-01 2001-09-25 株式会社日立製作所 冷媒組成検出装置
JP2948105B2 (ja) * 1994-08-31 1999-09-13 三菱電機株式会社 非共沸混合冷媒を用いた冷凍空調装置
JP2943613B2 (ja) * 1994-07-21 1999-08-30 三菱電機株式会社 非共沸混合冷媒を用いた冷凍空調装置
JP3463710B2 (ja) * 1995-03-27 2003-11-05 三菱電機株式会社 非共沸混合冷媒搭載の冷凍装置
JP2869038B2 (ja) * 1996-06-05 1999-03-10 松下電器産業株式会社 3成分混合冷媒を用いたヒートポンプ装置
JPH10306949A (ja) * 1997-05-07 1998-11-17 Mitsubishi Electric Corp 空気調和機
US6003332A (en) * 1997-06-02 1999-12-21 Cyrogenic Applications F, Inc. Process and system for producing high-density pellets from a gaseous medium
JPH11211242A (ja) * 1998-01-26 1999-08-06 Mitsubishi Electric Corp 空気調和機
US6467279B1 (en) * 1999-05-21 2002-10-22 Thomas J. Backman Liquid secondary cooling system
JP2001141322A (ja) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd ヒートポンプ装置
JP2001248922A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
US7080522B2 (en) * 2000-01-04 2006-07-25 Daikin Industries, Ltd. Car air conditioner and car with its conditioner
JP3668842B2 (ja) * 2001-02-27 2005-07-06 株式会社日立製作所 冷凍装置
US6557361B1 (en) * 2002-03-26 2003-05-06 Praxair Technology Inc. Method for operating a cascade refrigeration system
JP2003314914A (ja) * 2002-04-24 2003-11-06 Mitsubishi Electric Corp 冷媒循環システム
US7238299B2 (en) * 2002-11-01 2007-07-03 Honeywell International Inc. Heat transfer fluid comprising difluoromethane and carbon dioxide
JP4294351B2 (ja) * 2003-03-19 2009-07-08 株式会社前川製作所 Co2冷凍サイクル
JP2005106314A (ja) * 2003-09-29 2005-04-21 Mitsubishi Electric Corp 冷凍装置
DE102004024663A1 (de) * 2004-05-18 2005-12-08 Emerson Electric Gmbh & Co. Ohg Steuereinrichtng für eine Kälte- oder Klimaanlage
DE202007008291U1 (de) * 2006-06-17 2007-10-18 Ineos Fluor Holdings Ltd., Runcorn Wärmeübertragungszusammensetzungen
FR2910016B1 (fr) * 2006-12-19 2009-02-20 Arkema France Compositions utilisables comme fluide frigorigene
JP2009062471A (ja) * 2007-09-07 2009-03-26 Panasonic Corp 混合作動流体およびそれを用いた冷凍サイクル装置
US8333901B2 (en) * 2007-10-12 2012-12-18 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US20100122545A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
GB0906547D0 (en) * 2009-04-16 2009-05-20 Ineos Fluor Holdings Ltd Heat transfer compositions
JP2011116822A (ja) * 2009-12-01 2011-06-16 Kansai Electric Power Co Inc:The 混合冷媒および混合冷媒循環システム
JP5627417B2 (ja) * 2010-11-26 2014-11-19 三菱電機株式会社 二元冷凍装置
EP2669597B1 (en) * 2011-01-27 2017-05-17 Mitsubishi Electric Corporation Air conditioner
WO2012101677A1 (ja) * 2011-01-27 2012-08-02 三菱電機株式会社 空気調和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068555A (ja) * 1996-08-27 1998-03-10 Mitsubishi Heavy Ind Ltd 冷凍サイクルの循環冷媒組成検出方法並びにその検出方法を用いた冷凍装置
JP2004190917A (ja) 2002-12-10 2004-07-08 Sanyo Electric Co Ltd 冷凍装置
JP2004198063A (ja) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd 非共沸混合冷媒および冷凍サイクル、並びに冷凍装置
JP2008196758A (ja) * 2007-02-13 2008-08-28 Mac:Kk 冷凍サイクルの膨張弁の詰まり防止方法及びその装置
JP2009222366A (ja) * 2008-03-19 2009-10-01 Hitachi Appliances Inc 冷媒分配器
JP2010096486A (ja) * 2008-09-22 2010-04-30 Panasonic Corp 冷凍装置
JP2012093054A (ja) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2889552A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157649B2 (en) * 2011-01-27 2015-10-13 Mitsubishi Electric Corporation Air-conditioning apparatus
US20130227976A1 (en) * 2011-01-27 2013-09-05 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103824823A (zh) * 2014-03-10 2014-05-28 吴鸿平 内源及其加源流体换热系统
CN105899889A (zh) * 2014-03-14 2016-08-24 三菱电机株式会社 制冷装置
WO2015136706A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍装置
JPWO2015136706A1 (ja) * 2014-03-14 2017-04-06 三菱電機株式会社 冷凍装置
EP3118540A4 (en) * 2014-03-14 2017-11-01 Mitsubishi Electric Corporation Refrigerating device
US10145598B2 (en) 2014-03-14 2018-12-04 Mitsubishi Electric Corporation Refrigeration apparatus
JPWO2015140872A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍装置
CN105261596A (zh) * 2015-09-23 2016-01-20 吴鸿平 照明led集成热移装置
CN105737426A (zh) * 2016-03-14 2016-07-06 西安交通大学 一种co2跨临界复叠热泵系统及其级间压缩机容量配比方法
JP2020533474A (ja) * 2017-09-08 2020-11-19 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 冷媒
JP2020533555A (ja) * 2017-09-14 2020-11-19 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 空調方法及び空調装置
WO2023012961A1 (ja) 2021-08-05 2023-02-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
WO2023012960A1 (ja) 2021-08-05 2023-02-09 三菱電機株式会社 冷凍サイクル装置、及び冷凍サイクル装置の制御方法

Also Published As

Publication number Publication date
JPWO2014030236A1 (ja) 2016-07-28
US20150153076A1 (en) 2015-06-04
CN104334982A (zh) 2015-02-04
EP2889552A1 (en) 2015-07-01
EP2889552A4 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2014030236A1 (ja) 冷凍装置
JP5995990B2 (ja) 冷凍装置
JP4069733B2 (ja) 空気調和機
JP6177424B2 (ja) 冷凍サイクル装置
JP6279069B2 (ja) 冷凍サイクル装置
CN107041145B (zh) 超低温用非共沸冷媒
WO2013027232A1 (ja) 冷凍サイクル装置
Yan et al. Theoretical investigation on the performance of a modified refrigeration cycle using binary zeotropic hydrocarbon mixture R170/R290
Zheng et al. Performance analysis of a novel vapor injection cycle enhanced by cascade condenser for zeotropic mixtures
GB2534510A (en) Refrigeration cycle device
JP6902390B2 (ja) 冷凍サイクル装置
WO2015063837A1 (ja) 冷凍サイクル装置
WO2014199445A1 (ja) 冷凍装置
JP2014129900A (ja) 冷凍装置
JP6393181B2 (ja) 冷凍サイクル装置
JP5963669B2 (ja) 冷凍装置
US20220325158A1 (en) Non-azeotropic mixed refrigerant and refrigerating apparatus using non-azeotropic mixed refrigerant
JP2012236884A (ja) 混合冷媒とそれを用いた空気調和機
TWI568984B (zh) Gas - liquid heat exchange type refrigeration device
JP2012251762A (ja) 空気調和機
JP2010096486A (ja) 冷凍装置
Chen et al. Theoretical study on a modified subcooling vapor-compression refrigeration cycle using hydrocarbon mixture R290/R600a
JP2015129609A (ja) 冷凍装置
JP2015140980A (ja) 冷凍装置
KR20160143278A (ko) 멀티증발기를 이용한 공기조화시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531454

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14401916

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012883413

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE