WO2014027610A1 - 固体燃料バーナを備えた燃焼装置 - Google Patents
固体燃料バーナを備えた燃焼装置 Download PDFInfo
- Publication number
- WO2014027610A1 WO2014027610A1 PCT/JP2013/071594 JP2013071594W WO2014027610A1 WO 2014027610 A1 WO2014027610 A1 WO 2014027610A1 JP 2013071594 W JP2013071594 W JP 2013071594W WO 2014027610 A1 WO2014027610 A1 WO 2014027610A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- solid fuel
- burner
- fuel
- furnace
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D1/00—Burners for combustion of pulverulent fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
- F23C7/004—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
- F23C7/006—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes adjustable
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/008—Flow control devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C99/00—Subject-matter not provided for in other groups of this subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K3/00—Feeding or distributing of lump or pulverulent fuel to combustion apparatus
- F23K3/02—Pneumatic feeding arrangements, i.e. by air blast
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L9/00—Passages or apertures for delivering secondary air for completing combustion of fuel
- F23L9/06—Passages or apertures for delivering secondary air for completing combustion of fuel by discharging the air into the fire bed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2201/00—Burners adapted for particulate solid or pulverulent fuels
- F23D2201/20—Fuel flow guiding devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K2203/00—Feeding arrangements
- F23K2203/008—Feeding devices for pulverulent fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K2203/00—Feeding arrangements
- F23K2203/20—Feeding/conveying devices
- F23K2203/201—Feeding/conveying devices using pneumatic means
Definitions
- the present invention provides a combustion apparatus equipped with a solid fuel burner, and more particularly a combustion apparatus suitable for reducing loss due to ash adhesion / corrosion on a water wall (furnace wall surface provided with a heat transfer tube) and particle dropping onto a hopper. About.
- the cross section of the outlet of the fuel nozzle of the solid fuel burner has a circular or nearly square shape, and the flame ignited outside the fuel-containing fluid jet in the furnace propagates to the center of the fuel-containing fluid jet. May require a significant distance.
- Patent Document 1 is a prior art related to the applicant's invention, and the outlet shape of the cross section of the fuel nozzle is a rectangular shape having a major axis portion and a minor axis portion, an elliptical shape, or a substantially elliptical shape.
- An invention is disclosed in which the burner capacity is increased by using a burner while the expansion of the unignited region is suppressed to prevent an increase in the concentration of NOx in the combustion gas and a decrease in the combustion efficiency of the fuel.
- WO 2009-125666 A1 also discloses a similar burner opening shape. Also, in the boiler plant, the fluid path for using the steam obtained by heating the fluid flowing in the heat transfer tubes with the high-temperature exhaust gas obtained by the solid fuel burner of the boiler furnace, and the obtained steam is reused When a fluid passes through a complicated fluid path, it is important to obtain a specified amount of heat transfer to the fluid in the heat transfer section where each heat transfer tube is installed. It is necessary to control the gas temperature and fluid flow rate. For this reason, there is an invention in which the amount of heat transfer to the fluid in each heat transfer tube can be controlled by changing the combustion position of the fuel in the furnace (WO 2009-041081A1). In the example described in the present invention, the gas injection nozzle outlet provided in the solid fuel burner is divided into two parts, upper and lower, and the fuel combustion position is changed up and down by independently adjusting the respective air flow rates. Is possible.
- a boiler using solid fuel uses pulverized coal as the solid fuel, and therefore, such a boiler may be hereinafter referred to as a pulverized coal burning boiler and a solid fuel burner as a pulverized coal burner.
- the fan is activated to supply air as combustion gas to a plurality of pulverized coal burners and a two-stage combustion air port installed in the boiler furnace.
- a flame is formed on the ignition torch of each burner, and this flame is detected by a flame detector (hereinafter referred to as FD), and then the liquid fuel ejected from the ignition burner is ignited by the flame of the ignition torch and the flame is applied to the ignition burner.
- FD flame detector
- the mill is started and gradually switched to pulverized coal combustion. That is, in the pulverized coal burner, in order to ignite the pulverized coal, an ignition burner using liquid fuel or the like is installed, and an ignition torch for igniting the ignition burner and an FD for detecting a flame are installed.
- an ignition burner is installed at the center, and the pulverized coal burner that flows the pulverized coal and the primary air as the conveying gas from the surrounding area and blows it into the furnace and supplies the combustion air from the surrounding area.
- the ignition torch and the FD do not disturb the flow of the pulverized coal and cause the pulverized coal to accumulate in the burner or cause poor flame holding, so not the pulverized coal outlet but the surrounding combustion air supply unit. It is installed.
- Patent Document 1 the shape of the nozzle outlet for injecting pulverized coal and pulverized coal transport gas into the furnace is a rectangular shape having a short diameter portion and a long diameter portion, an elliptical shape, or a straight portion and a circumferential portion.
- Patent Document 1 is a prior art related to the applicant's invention, and discloses a burner in which a fuel nozzle has a cross-sectional outlet shape of a rectangular shape, an elliptical shape or a substantially elliptical shape having a major axis and a minor axis. ing.
- the non-ignition region can be reduced and the combustion time after ignition can be secured.
- the fuel concentration distribution in the fuel-containing fluid in the vicinity of the inner wall of the fuel nozzle is determined in the circumferential direction.
- the fuel-containing fluid and combustion gas are placed in the furnace while maintaining a uniform air flow while making the combustion gas jets from the combustion gas (secondary air and tertiary air) nozzles around the fuel nozzle (periphery) appropriate.
- the combustion method of a general coal-fired boiler includes a combustion method called a corner fire in which burners are arranged at the four corners of a furnace having a rectangular cross section and a tangential fire in which burners are arranged on four water walls of the furnace.
- a method called an opposed combustion method in which burners are arranged on the front wall and the rear wall of the furnace.
- ash adhesion and corrosion occur when a combustion gas containing coal ash collides with two wall surfaces (referred to as furnace side walls) connecting the front wall and the rear wall.
- burner jets on the side walls located on the front and rear walls of the furnace collide at the center of the furnace, and the combustion gas containing coal ash is carried to the side walls, causing ash to adhere to the furnace side walls.
- corrosion by reducing gas occurs.
- the flame spreads in the wide direction of the fuel nozzle so depending on the arrangement of the burner, the spread burner jet (that is, the combustion gas containing coal ash) is likely to be carried to the side wall side. Therefore, there is a possibility that ash adhesion and corrosion will easily occur on the side wall surface.
- the “wide direction” refers to a direction parallel to the long diameter or long side of the flat shape.
- an ash removal device (hereinafter referred to as a wall blower) is usually installed on the furnace water wall to remove adhering ash, or spraying and overlaying to prevent corrosion on the water wall. Construction is performed.
- An object of the present invention is to use a burner having a flat type fuel nozzle capable of realizing high-efficiency and low NOx combustion with a large capacity and a single burner, by effectively utilizing the entire furnace, thereby burning high-efficiency and low NOx concentration.
- a combustion apparatus having a pulverized coal burner that prevents ash adhesion and corrosion on the furnace wall and reduces unburned loss due to unburned ash falling on the furnace hopper.
- the invention according to claim 1 is a furnace wall surface (18) having a solid fuel flow path (2) connected to a cylindrical fuel transfer pipe (22) through which a mixed fluid of a solid fuel and a transfer gas for the solid fuel flows.
- the solid fuel burners (31) having (10, 15) are installed in a plurality of stages in the vertical direction of at least one surface of the wall surface (18) of the furnace (11) or in a plurality of rows in the horizontal direction.
- the fuel nozzle (8) of the solid fuel burner (31) has a venturi (7) having a throttle portion for reducing the cross section of the solid fuel flow path (2) in the nozzle (8) in the fuel nozzle (8).
- a fuel concentrator (6) for changing the flow in the nozzle (8) outward on the downstream side of the venturi (7), and the fuel nozzle (8) further comprises (a) a boiler furnace wall surface
- the opening shape in the vicinity of the opening of (18) is a flat shape, and (b) the cross-sectional shape perpendicular to the nozzle central axis (C) of the outer peripheral wall of the fuel nozzle (8) is up to the throttle portion of the venturi (7).
- (C) A portion in which the degree of flatness gradually increases from the throttle portion of the venturi (7) to the opening (32) provided in the boiler furnace wall surface (18).
- the solid fuel burner is characterized in that in at least one solid fuel burner stage of the wall surface (18) of the furnace, the wide direction of the flat-shaped combustion nozzle (8) of the solid fuel burner (31) is arranged in the horizontal direction. Combustion equipment.
- the invention according to claim 2 is a furnace wall surface (18) having a solid fuel flow path (2) connected to a cylindrical fuel transfer pipe (22) through which a mixed fluid of solid fuel and a gas for transferring the solid fuel flows.
- the solid fuel burners (31) having (10, 15) are installed in a plurality of stages in the vertical direction of at least one surface of the wall surface (18) of the furnace (11) or in a plurality of rows in the horizontal direction.
- the fuel nozzle (8) of the solid fuel burner (31) has a venturi (7) having a throttle portion for reducing the cross section of the solid fuel flow path (2) in the nozzle (8) in the fuel nozzle (8).
- a fuel concentrator (6) for changing the flow in the nozzle (8) outward on the downstream side of the venturi (7), and the fuel nozzle (8) further comprises (a) a boiler furnace wall surface
- the opening shape in the vicinity of the opening of (18) is a flat shape, and (b) the cross-sectional shape perpendicular to the nozzle central axis (C) of the outer peripheral wall of the fuel nozzle (8) is up to the throttle portion of the venturi (7).
- (C) A portion in which the degree of flatness gradually increases from the throttle portion of the venturi (7) to the opening (32) provided in the boiler furnace wall surface (18).
- a third aspect of the present invention provides a furnace wall surface (18) having a solid fuel flow path (2) connected to a cylindrical fuel transfer pipe (22) through which a mixed fluid of a solid fuel and a gas for transferring the solid fuel flows.
- a single or a plurality of combustion gas nozzles formed on the outer peripheral wall side of the fuel nozzle (8), in communication with a fuel nozzle (8) opened in the air and a wind box (3) through which the combustion gas of the solid fuel flows In the combustion apparatus in which the solid fuel burners (31) having (10, 15) are installed in a plurality of stages in the vertical direction of at least one surface of the wall surface (18) of the furnace (11), or in a plurality of rows in the horizontal direction.
- the fuel nozzle (8) of the solid fuel burner (31) has a venturi (7) having a throttle portion for reducing the cross section of the solid fuel flow path (2) in the nozzle (8) in the fuel nozzle (8).
- a fuel concentrator (6) for changing the flow in the nozzle (8) outward on the downstream side of the venturi (7), and the fuel nozzle (8) further comprises (a) a boiler furnace wall surface
- the opening shape in the vicinity of the opening of (18) is a flat shape, and (b) the cross-sectional shape perpendicular to the nozzle central axis (C) of the outer peripheral wall of the fuel nozzle (8) is up to the throttle portion of the venturi (7).
- (C) A portion in which the degree of flatness gradually increases from the throttle portion of the venturi (7) to the opening (32) provided in the boiler furnace wall surface (18).
- the combustion apparatus provided with the solid fuel burner is characterized in that the wide direction of the combustion nozzles (8) of all the solid fuel burners (31) is arranged in the horizontal direction, except that the wide direction is arranged in the vertical direction. .
- a burner stage in which a plurality of solid fuel burners (31) are arranged in at least one horizontal direction of the combustion apparatus provided with the solid fuel burner according to the first, second, or third aspect.
- the air ratio of the solid fuel burner (31) adjacent to the wall surface (18) of the furnace in which the fuel burner (31) is not disposed is higher than the air ratio of the other solid fuel burners (31).
- a combustion apparatus provided with a solid fuel burner.
- the fuel jet of the burner 31 in which the wide direction of the flat nozzle 8 is arranged in the horizontal direction is horizontal in the furnace 11. Dispersed in the direction, the space in the furnace 11 can be effectively used, and combustion at a low NOx concentration can be performed with high efficiency.
- the flat fuel nozzles 8 of the solid fuel burner 31 in the wide direction horizontally, even if the unit capacity of the burner 31 is increased, a region where no flame is formed is expanded.
- the burner 31 adjacent to the furnace wall surface 18 where the burner 31 is not disposed is provided.
- ash particles and corrosive gas do not spread from the spread burner flame to the furnace wall surface 18 where the burner 31 is not disposed, and ash does not adhere to the wall surface 18. The corrosion potential of the is reduced.
- the horizontal direction of the flat fuel nozzle 8 of the solid fuel burner 31 is horizontally arranged, so that the area where no flame is formed is expanded even if the single machine capacity of the burner 31 is increased.
- the furnace 11 can be effectively utilized, combustion with high efficiency and low NOx concentration is possible, and the burner 31 adjacent to the furnace wall 18 where the burner 31 is not disposed is provided for the lowermost burner 31.
- the flat wide direction of the fuel nozzle 8 is arranged in the horizontal direction, so that the flow of the fuel jet into the hopper portion having a low gas temperature can be suppressed, and the unburned loss in the entire furnace can be reduced.
- the air ratio of the burner 31 adjacent to the furnace wall surface (side wall) 18 where the burner 31 is not disposed is set to be free of the burner 31.
- the reduction zone at the center of the furnace 11 is further strengthened, and combustion with high efficiency and low NOx is promoted.
- the water wall corrosion potential can be reduced.
- FIG. 1 It is a figure (Drawing 1 (a), Drawing 1 (b), and Drawing 1 (c)) showing an example of arrangement to a furnace wall of a pulverized coal burner of one example of the present invention.
- FIG. 5A is a side sectional view of a pulverized coal burner according to an embodiment of the present invention (FIG. 5A), a front view as viewed from the furnace side (FIG. 5B), and a sectional view taken along line AA in FIG. A view (FIG. 5C) and a horizontal sectional view of the pulverized coal burner (FIG. 5D) are shown.
- FIG. 6 (a) is a sectional side view) and the front view (FIG.
- FIG. 6 (b)) seen from the furnace side are horizontal with a view explaining the flow state of the pulverized coal main flow in the pulverized coal nozzle of the pulverized coal burner of FIG. Sectional drawing (FIG.6 (c)) is shown. It is a figure which shows the pulverized coal density
- FIG. 8 is a side sectional view (FIG. 8A) of the entire furnace in which the burner of FIG. 1A is arranged, and a sectional view taken along line AA in FIG. 8A (FIG. 8B). It is the top view (FIG.
- FIG. 9 (a) of the flat plate provided in the inflow part of the secondary air flow path of the pulverized coal burner of one Example of this invention, and a perspective view (FIG. 9 (b)) of the half of this flat plate.
- Fig.10 (a) is a top view of the flat plate provided in the secondary air inflow part
- FIG.10 (b) is the said It is a perspective view of the half of a flat plate. It is a related figure of the measured value of the opening ratio of the secondary air inflow part of the pulverized coal burner of one Example of this invention, and the flow velocity distribution in the exit part of a secondary air flow path.
- FIG. 13A The secondary air in the case where a flat plate is not installed at the secondary air inlet of the secondary air flow path of the pulverized coal burner of one embodiment of the present invention (FIG. 13A) and the case where it is installed (FIG. 13B) It is a schematic diagram of the flow velocity distribution of an entrance part. It is a sectional side view of the pulverized coal burner of one Example of this invention.
- FIG. 15 is a cross-sectional view taken along line BB in FIG. 14.
- FIG. 15 is a modification of the pulverized coal burner of one embodiment of the present invention (a cross-sectional view taken along the line BB in FIG. 14).
- FIG. 15 is a modification of the pulverized coal burner of one embodiment of the present invention (a cross-sectional view taken along the line BB in FIG. 14).
- FIG. 15 is a modification of the pulverized coal burner of one embodiment of the present invention (a cross-sectional view taken along the line BB in FIG. 14).
- FIG. 19 (a) in which a burner having a pulverized coal nozzle having a circular cross sectional shape of a conventional pulverized coal burner is arranged.
- FIG. 19B The horizontal sectional view of the nozzle of the pulverized coal burner of the prior art (FIG. 20A), the sectional view taken along the line AA in FIG. 20A (FIG. 20B), and the fuel nozzle of FIG.
- the fuel concentration distribution in the horizontal width direction of the graph (FIG. 20 (c)) expressed as a relative value when the average concentration is 1.0 and the fuel concentration distribution (region) at the outlet exit cross section of the pulverized coal nozzle It is the figure (FIG.20 (d)) represented by the relative value when 1.0 is set to 1.0.
- FIG. 1 is a diagram (FIGS. 1 (a), 1 (b), and 1 (c)) showing an example of arrangement of solid fuel burners according to an embodiment of the present invention on a furnace wall.
- 2 is a perspective view of the furnace (FIG. 2 (a)) where the solid fuel burner of FIG. 1 (a) is arranged, and a horizontal sectional view at the burner arrangement location of FIG. 2 (a) (FIG. 2 (b)).
- 3 is a perspective view of a furnace (FIG. 3 (a)) where the pulverized coal burner of FIG. 1 (b) is arranged, and a horizontal sectional view at the place where the burner of FIG. 3 (a) is arranged. .
- FIG. 5 shows an embodiment of a burner having a flat pulverized coal nozzle used in the present invention.
- FIG. 5 The overall configuration of the solid fuel burner 31 (hereinafter sometimes referred to as pulverized coal burner 31) will be described.
- a starting burner 1 that uses oil or the like as a fuel at the center
- a flow path 2 of solid fuel (such as pulverized coal) conveyed from the periphery by a conveying gas (such as air), and a combustion gas from the periphery thereof (Air) is divided into two in the wind box 3, and the flow path 4 of the secondary combustion gas (hereinafter also referred to as secondary air) and the tertiary combustion gas (hereinafter also referred to as tertiary air) flow.
- Road 5 is installed.
- a venturi 7 and a fuel concentrator 6 that are once narrowed and then expanded are provided in the flow path 2 of the mixed fluid of the solid fuel and the transfer gas, and a fuel nozzle 8 (hereinafter sometimes referred to as a pulverized coal nozzle 8).
- a flame holder 9 is installed on the outer periphery of the outlet portion.
- FIG. 5 (b) shows a front view of the pulverized coal burner viewed from the furnace 11 side.
- the flame holder 9 is provided in a ring shape at the tip of the pulverized coal nozzle 8 so as to form a circulation flow on the downstream side of the flame holder 9 to enhance the ignitability and the flame holding effect. You may use what formed the tooth-like protrusion on the pulverized coal nozzle 8 side.
- the shapes of the pulverized coal nozzle 8 and the secondary air nozzle 10 of the pulverized coal burner 31 are flat when viewed from the furnace 11 side. Secondary air flows into the secondary air flow path 4 from the secondary air inflow portion 17 of the secondary air flow path 4 and supplies secondary air for combustion around the pulverized coal nozzle 8 from the outlet on the boiler furnace 11 side. To do.
- the tertiary air inflow portion 12 is provided with a plurality of opening members 13 whose opening area can be adjusted. Further, the tertiary air nozzle 15 at the outlet portion on the furnace 11 side is expanded outward, and the tertiary air is supplied outward in the furnace 11.
- the mixed fluid 21 of pulverized coal and transport gas is guided to the burner introduction part 23 through the fuel transport pipe 22.
- the mixed fluid flow path 2 of the pulverized coal and the conveying gas after the burner introducing portion 23 is once throttled by the venturi 7 and then expanded.
- the vertical expansion of the venturi 7 remains in a range smaller than the inner diameter of the pulverized coal nozzle 8 of the burner introduction portion 23, and then the upper and lower walls of the pulverized coal nozzle 8 constituting the mixed fluid flow path 2 are in the furnace 11 (FIG. 2).
- the horizontal expansion of the mixed fluid flow path 2 in the vicinity of the venturi 7 continues to the vicinity of the outlet of the pulverized coal nozzle 8, and the cross-sectional shape of the pulverized coal nozzle 8 changes from a circular shape to a flat shape in the expansion process.
- the flatness (rate) increases little by little as it expands.
- a straight line portion after the expansion of the pulverized coal nozzle 8 in the horizontal direction is provided for attaching the flame holder 9, and by devising a method of attaching the flame holder 9, the horizontal direction of the pulverized coal nozzle 8 is provided. May be continued up to the flame holder 9.
- the flatness (rate) is maximized at the outlet of the pulverized coal nozzle 8, that is, in the region of the flame holder 9.
- FIG. 6 shows the main flow of pulverized coal in the pulverized coal nozzle 8 from the burner introduction part 23 to the outlet of the pulverized coal nozzle 8.
- 6 (a) is a longitudinal sectional view of the pulverized coal nozzle 8
- FIG. 6 (b) is a front view of the pulverized coal nozzle 8 viewed from the furnace side, and FIG. It is horizontal direction sectional drawing.
- a spotted portion 25 in FIG. 6 schematically represents a region where the pulverized coal is concentrated.
- the mixed fluid of the pulverized coal and the carrier gas becomes a contracted flow toward the central axis C in the throttle process of the venturi 7 and forms an annular flow along the fuel concentrator support pipe 24.
- this flow reaches the combustion concentrator 6, the flow is changed outward by the inclined portion on the front surface of the fuel concentrator 6.
- the flow of the horizontal component is changed to the straight traveling direction, and the outward velocity component given by the inclined portion on the front surface of the fuel concentrator 6 is stored up to the outlet of the pulverized coal nozzle 8, and the main flow of pulverized coal is the pulverized coal nozzle It continues to expand even after flowing into the furnace 11 after the 8th exit.
- the flow of the pulverized coal is flattened and the flatness (rate) is increased after the outlet of the pulverized coal nozzle 8.
- the fuel concentration distribution in the vicinity of the inner peripheral wall of the pulverized coal nozzle 8 around can be made uniform in the circumferential direction.
- FIG. 7 shows an example in which the distribution of fuel concentration is measured at the outlet of the pulverized coal nozzle 8 of this embodiment.
- the fuel concentration in the outermost peripheral part of the pulverized coal nozzle 8 closest to the flame holder 9 important for ignition is concentrated to about 1.5 times the average concentration, and the enrichment deviation in this region is suppressed to about ⁇ 0.1 times. It has been.
- FIG. 20 shows a horizontal sectional view of the pulverized coal nozzle 40
- FIG. 20 (b) shows FIG. A sectional view taken along line AA in a) is shown.
- FIG. 20C is a relative value when the average concentration is 1.0 with respect to the fuel concentration distribution in the width direction of the pulverized coal nozzle 40 corresponding to the horizontal sectional view of the pulverized coal nozzle 40 of FIG.
- FIG. 20 (d) is a diagram showing the relative value when the average concentration is 1.0 with respect to the fuel concentration distribution (region) in the opening exit cross section of the pulverized coal nozzle 40.
- the concentration in the central portion in the horizontal direction is high, the fuel concentration decreases with increasing distance from both ends, and the average value is 0 at both ends farthest from the center. It will drop to about 5 times. This is because the air flow spreads in the horizontal direction as in the nozzle shape, whereas the pulverized coal, which is solid particles, does not disperse in the horizontal direction, etc., but concentrates in the center without spreading along the nozzle shape. It is. Accordingly, a horizontally dispersed jet shape such as the fuel jet of the present invention shown in FIG. 6C cannot be obtained.
- the ignitability is reduced near both ends.
- the fuel (pulverized coal) concentration is concentrated to about 1.5 times the average concentration at both ends in the horizontal direction, so that the ignitability is maintained.
- the secondary air nozzle 10 in the embodiment shown in FIG. 5 of the present invention has a flat shape that makes the gap between the flame holder 9 uniform in the circumferential direction over the entire circumference (see FIG. 5C).
- the inner peripheral wall of the secondary air nozzle 10 corresponds to the outer peripheral wall of the pulverized coal nozzle (fuel nozzle) 8.
- the gap between the secondary air nozzle 10 and the flame stabilizer 9 is substantially uniform in the circumferential direction over the entire circumference, so the circumference formed in the vicinity of the inner circumferential wall of the pulverized coal nozzle 8.
- the secondary air can also be uniformly supplied in the circumferential direction. That is, the local fuel / combustion gas flow rate ratio of the fuel in the region where the fuel concentration is high in the vicinity of the inner peripheral wall of the pulverized coal nozzle 8 and the outer secondary air surrounding the region is set to the entire circumference of the outlet portion of the pulverized coal nozzle 8. Since it can be made uniform in the region, optimum combustion can be obtained in the entire circumferential region.
- the tertiary air nozzle 15 has a circular outlet shape, and the tertiary air flow path 5 is arranged above and below with the pulverized coal nozzle 8 interposed therebetween (FIG. 5). 5 (c)).
- the tertiary air flow path 5 is arranged above and below with the pulverized coal nozzle 8 interposed therebetween (FIG. 5). 5 (c)).
- the water wall pipe constituting the furnace wall surface 18 needs to be processed so as to bypass the burner opening 32 of the furnace wall surface 18, the degree of processing becomes more prominent as the capacity of the burner 31 is increased.
- the outlet shape of the outermost tertiary air nozzle 15 is circular, in order to form the burner opening 32, the water wall tube processed into a curved shape can have a smooth shape with a relatively large curvature. Thereby, the water wall tube can be easily processed, stress concentration during bending can be reduced, and an increase in resistance of the internal fluid flowing through the water wall tube can be suppressed.
- the structure of the pulverized coal nozzle 8 of the present invention and the conventional pulverized coal nozzle 40 shown in FIGS. 20A and 20B that do not correspond to the combination of the venturi 7 and the fuel concentrator 6 are shown in FIG. As shown in 20 (c) and FIG. 20 (d), the fuel concentration is low at both ends in the horizontal direction. Therefore, it is difficult to spread the flame in the horizontal direction by diffusing fuel beyond the horizontal direction in the furnace, particularly in the width direction of the pulverized coal nozzle 40 (inclination angle with respect to the central axis).
- the pulverized coal fuel is simply concentrated on the partition wall side (in the vicinity of the flame stabilizer 9 when it is installed) between the pulverized coal nozzle 8 and the secondary air nozzle 10 on the outer periphery thereof.
- the fuel distribution on the horizontal section of the pulverized coal nozzle 8 (when the burner 31 is viewed from above and below) (specification)
- the value obtained by integrating the fuel in the vertical direction at the horizontal position) is greater at the both end portions than in the vicinity of the central portion in the horizontal direction (nozzle wide direction).
- the inflow portion 17 (see FIG. 5) of the secondary air flow path 4 is provided with a gas inflow direction perpendicular to the furnace wall surface 18.
- the secondary air flow path 4 has a structure in which the flow path cross-sectional area decreases from the secondary air inflow portion 17 toward the secondary air outlet on the furnace side.
- FIG. 9 shows an embodiment relating to the shape of the flat plate 17 a provided in the secondary air inflow portion 17 of the secondary air flow path 4.
- FIG. 9A shows a plan view of the flat plate 17a of the secondary air inflow portion 17, and
- FIG. 9B shows a half perspective view of the flat plate 17a.
- a plurality of circular openings 17aa are provided vertically and horizontally symmetrically on a rounded rectangular flat plate 17a.
- the large circular opening inside is an installation portion of the pulverized coal nozzle 8.
- the flat plate 17a has a halved structure on the left and right as shown in FIG. In this embodiment, the opening ratio of the flat plate 17a provided in the secondary air inflow portion 17 is about 9%.
- FIG. 10 shows another embodiment of the secondary air inflow portion 17 of the secondary air flow path 4.
- the arrangement of the opening for the pulverized coal nozzle 8 is slightly different from the embodiment shown in FIG. 9, the structure is the same, and the opening ratio of the flat plate 17 b provided in the secondary air inflow portion 17 is about 11%.
- FIG. 10A shows a plan view of the flat plate 17b of the secondary air inflow portion 17, and
- FIG. 10B shows a half perspective view of the flat plate 17b.
- the opening of the secondary air inflow portion 17 is circular.
- the present invention is not limited to such a shape, and may be a polygon such as an ellipse or a rectangle. Good.
- the flat plates 17 a and 17 b can adopt not only a rounded rectangular shape but also various shapes such as a circular shape and a square shape.
- the arrangement of the openings of the flat plates 17a and 17b arranged in the secondary air inflow portion 17 is vertically and horizontally symmetrical. It is desirable to be.
- positioned at this secondary air inflow part 17 is shown below.
- the relationship between the opening ratio and the flow velocity distribution at the outlet of the secondary air flow path 4 was evaluated from experiments using a flow test apparatus that was independently assembled by the inventors.
- the apparatus is manufactured in the same shape as the pulverized coal burner 31 having the outlet shape shown in FIG. 4, and the opening ratio of the flat plates 17a and 17b is changed so that the outlet portion of the secondary air flow path 4 is 16 in the circumferential direction.
- the flow velocity of each part was measured with a hot-wire anemometer.
- the fluid used was room temperature air.
- the ratio between the maximum flow velocity and the minimum flow velocity was evaluated. The results are shown in FIG. From the results shown in FIG. 11, the ratio of the maximum flow velocity to the minimum flow velocity was the minimum near the opening ratio 0.10, and the ratio of the maximum flow velocity to the minimum flow velocity was 2 or less when the opening ratio was 0.30 or less. However, if the opening ratio is too small, the amount of gas flowing in will be drastically reduced. Therefore, the opening ratio of the flat plates 17a and 17b may be set to 0.05 to 0.30 at the secondary air outflow portion. It is desirable to make the flow velocity uniform in the circumferential direction.
- FIG. 12 shows the relationship between the reduction ratio of the cross-sectional area of the secondary air outlet portion with respect to the cross-sectional area of the secondary air inflow portion 17 to be evaluated and the ratio of the maximum flow velocity and the minimum flow velocity in the secondary air flow path 4.
- the flat plates 17a and 17b are not installed in the secondary air inflow portion 17 here.
- the opening ratio of the secondary air inflow portion (secondary air inlet portion) 17 was constant at 0.15.
- the cross-sectional area reduction ratio on the horizontal axis in FIG. 12 is defined below. *
- Cross-sectional area reduction ratio (1 ⁇ outlet cross-sectional area / inflow cross-sectional area) ⁇ 100 (%)
- the ratio of the maximum flow rate to the minimum flow rate decreases until a reduction rate of 40%, and hardly changes thereafter.
- the reduction ratio was 30% or more
- the ratio of the maximum flow rate to the minimum flow rate was 2 or less.
- the cross-sectional area reduction rate of the secondary air channel 4 is preferably set to 30 to 80%. .
- the secondary air inlet portion 17 of the secondary air flow path 4 is installed when the flat plates 17a and 17b with the openings 17aa and 17ba shown in FIGS. 9 and 10 are not installed (FIG. 13 (a)).
- the schematic diagram of the flow-velocity distribution of the secondary air inlet part 17 in a case (FIG.13 (b)) is shown.
- the direction and strength of secondary air flow are indicated by the direction and length of the arrow.
- the secondary air is supplied from the upper left of the drawing in the direction of the gas flow in the wind box 3 (in the example shown in FIG. 13).
- a drift occurs, and the flow velocity distribution also differs in the cross section of the secondary air inlet portion 17. It is inferred that such drift and flow velocity distribution affect the flow velocity distribution at the secondary air outlet.
- the flat plates 17a and 17b with the openings 17aa and 17ba of the secondary air inlet portion 17 shown in FIG. 13B are installed, the difference between the drift and flow velocity distribution is eliminated by the resistance of the flat plates 17a and 17b.
- the air flow flowing into the secondary air inlet portion 17 is only a straight flow having a uniform flow velocity in the circumferential direction.
- a flame detector (FD) 40 is installed in the secondary air nozzle 10 to detect a flame from the ignition burner 1 and a pulverized coal flame at the outlet of the burner 31. Further, the ignition torch 41 is provided to surely ignite the ignition burner 1.
- FIG. 14 shows a side sectional view of the pulverized coal burner 31 of one embodiment of the present invention
- FIG. 15 shows a sectional view taken along the line BB of FIG. 14 is the same as the side sectional view of the pulverized coal burner 31 shown in FIG. 5, but some of the members are not shown.
- the exit shape of the pulverized coal nozzle 8 of the pulverized coal burner 31 shown in FIGS. 14 and 15 is a rectangular shape having a short diameter portion and a long diameter portion, an elliptical shape, or a substantially elliptic shape having a straight portion and a circumferential portion.
- the outer peripheral part has an elliptical or substantially elliptical secondary air nozzle 10, and the outer peripheral tertiary air nozzle 15 is concentric with the ignition (starting) burner 1.
- a partition plate 14 that divides the upper and lower sides of the horizontal cross section of the burner center is inserted into the tertiary air nozzle 15, so that the flow rate of the tertiary air that is introduced up and down can be changed. That is, the partition plate 14 is installed on the outer peripheral wall of the secondary air nozzle 10 and the inner peripheral wall of the tertiary air nozzle 15, and the tertiary air flow path 5 is divided into two vertically by the partition plate 14.
- the partition plate 14 is also a partition plate 14 that bisects the inside of the wind box 3.
- the FD 40 and ignition torch 41 are installed in the secondary air nozzle 10 above the pulverized coal nozzle 8.
- the FD 40 has the purpose of detecting a flame and a pulverized coal flame from the ignition burner 1 installed at the center of the burner 31, and the flame from the burner 31 installed on the front and rear side wall surfaces 18 of the boiler furnace 11 is buoyant and Since it bends upward due to the upward flow, it is desirable that the FD 40 be installed above the horizontal line including the burner center.
- the FD 40 also has the purpose of detecting the flame of the ignition torch 41, it is desirable that the FD 40 and the ignition torch 41 are installed on the same plane, and therefore the ignition torch 41 is also installed above the horizontal line including the center of the burner. desirable.
- the flow rate of the secondary air is greater on the outer peripheral wall of the long diameter portion than on the outer periphery of the short diameter portion.
- the ignition torch 41 is desirably installed in a place where the combustion air flow rate is small.
- the FD 40 is installed in a place where the amount of combustion air is large from the viewpoint of preventing burnout, if the outlet shape of the pulverized coal nozzle 8 is rectangular, elliptical, or substantially elliptical, the fuel is placed on both ends of the outlet. Therefore, the flame detection sensitivity is better when the FD 40 is installed so as to see the fuel-rich region as much as possible.
- the FD 40 and the ignition torch 41 are desirably installed in a region where the amount of combustion air is small, the fuel is high, and the possibility of burning is reduced.
- the embodiment shown in FIG. 15 is an example in which the outlet shape of the pulverized coal nozzle 8 is a substantially oval shape having a straight portion and a circumferential portion, and the outer peripheral wall of the straight portion has a wide secondary air flow path 4 and a circumferential portion. Since the secondary air flow path 4 is narrow on the outer periphery of the FD, the FD 40 and the ignition torch 41 are desirably installed on the contact point between the linear portion and the circumferential portion.
- FIG. 16 (the cross-sectional view taken along the line BB in FIG. 14) is a case where the outlet shape of the pulverized coal nozzle 8 is rectangular, and the secondary air flow path 4 on the long diameter side is wide and short.
- the secondary air flow path 4 on the diameter side is narrow. Therefore, it is not desirable to install the pulverized coal nozzle 8 at the center of the long diameter portion or the short diameter portion of the outlet shape, and it is desirable to install it on both ends of the long diameter portion.
- FIG. 17 (the cross-sectional view taken along the line BB in FIG. 14) is a case where the outlet shape of the pulverized coal nozzle 8 is an ellipse, and the secondary air flow path 4 is wide at the outer periphery between the focal points.
- the outer peripheral wall has a narrow secondary air passage 4. Therefore, in this case, it is desirable to install the FD 40 and the ignition torch 41 on the outer peripheral wall outside the focus of the pulverized coal nozzle 8.
- FIGS. 15 to 17 when the pulverized coal burner 31 is viewed from the furnace 11 side, the FD 40 is arranged at the upper left and the ignition torch 41 is arranged at the upper right.
- the embodiment shown in FIG. 18 (sectional view taken along the line BB in FIG. 14) is an example when the burner shown in FIG. 15 is rotated 90 degrees. That is, this is an example in which the circumferential portion constituting the outer peripheral wall of the outlet of the pulverized coal nozzle 8 is positioned up and down, and the linear portion is positioned on the left and right.
- the FD 40 and the ignition torch 41 are desirably installed above the horizontal line including the center of the burner 31.
- FIG. 8 is a diagram schematically illustrating that when the pulverized coal burner 31 shown in FIG. 1A is used, the space of the furnace 11 can be effectively utilized as compared with the conventional technology.
- 8A is a side sectional view of the entire furnace 11 in which the burner 31 of FIG. 1A is arranged
- FIG. 8B is a sectional view taken along the line AA in FIG. 8A. is there.
- FIG. 19 shows a configuration of the prior art.
- FIG. 19 (a) is a side sectional view of the entire furnace 11 in which a burner having a pulverized coal nozzle having a circular cross-sectional shape and not a flat shape is arranged
- FIG. 19 (b) is a cross-sectional view of FIG. FIG.
- the fuel jets are dispersed in the horizontal direction in the furnace 11 by horizontally arranging the wide direction of the flat pulverized coal nozzle 8 with the total number of the pulverized coal burners 31, and the space in the furnace 11. Can be effectively utilized, and fuel can be burned with high efficiency and low NOx concentration.
- the total number of burners 31 arranged on the furnace wall surface 18 is horizontally arranged in the wide direction of the flat-shaped pulverized coal nozzle 8, so that the prior art shown in FIG. Compared with the technology, the flame spreads in the horizontal direction in the furnace 11, and the unused space in the furnace 11 becomes smaller.
- the area of the cross section through which the flame passes in the horizontal section in the furnace 11 is increased, the time for the flame to stay in the furnace 11 is increased, the fuel efficiency is improved, and the NOx concentration of the combustion gas is increased. Can be lowered.
- the structure of the pulverized coal nozzle 8 of the present invention and the conventional pulverized coal nozzle 40 shown in FIGS. 20A and 20B that do not correspond to the combination of the venturi 7 and the fuel concentrator 6 are shown in FIG. As shown in 20 (c) and FIG. 20 (d), the fuel concentration is low at both ends in the horizontal direction. Therefore, it is difficult to spread the flame in the horizontal direction by diffusing fuel beyond the horizontal direction in the furnace, particularly in the width direction of the pulverized coal nozzle 40 (inclination angle with respect to the central axis).
- the pulverized coal fuel is simply concentrated on the partition wall side (in the vicinity of the flame stabilizer 9 when it is installed) between the pulverized coal nozzle 8 and the secondary air nozzle 10 on the outer periphery thereof.
- the fuel distribution on the horizontal section of the pulverized coal nozzle 8 (when the burner 31 is viewed from above and below) (a specific horizontal direction)
- the value obtained by integrating the fuel in the vertical direction at the position) is larger at both end portions than in the vicinity of the central portion in the horizontal direction (in the wide nozzle direction).
- FIG. 1 (b) shows another burner arrangement example of the present invention focusing on preventing ash adhesion and corrosion on the side wall (furnace wall surface where no burner 31 is arranged) 18. Since the degree of ash adhesion and corrosion depends on the charcoal properties used (the amount of ash and the amount of sulfur in the coal), this arrangement is effective as an arrangement when, for example, coal with a high ash content or a high sulfur content in the coal is used. It is. Specifically, the pulverized coal nozzle 8 of the burner 31 disposed on the wall surface 18 adjacent to the side wall (furnace wall surface on which the burner 31 is not disposed) 18 is disposed such that the wide direction faces the vertical direction, and is disposed on the side other than the sidewall side. The pulverized coal nozzle 8 of the burner 31 is arranged with the wide direction facing the horizontal direction.
- the ash removal device is installed in this area (the area where the jet spreads) in order to reduce ash adhesion and corrosion on the water wall.
- this area the area where the jet spreads
- FIG. 1 (a) how the ash adhesion and corrosion area on the boiler side wall without the burner 31 change is shown in the perspective view of the furnace of FIG. 2 (a) and FIG. 2 (b). This is shown in the horizontal sectional view of the burner arrangement location in FIG. FIG. 2 (b) is the same as FIG. 8 (b).
- FIG. 3 (b) is a horizontal sectional view of the arrangement location of the burner 31 in FIG. 3 (a).
- FIG.1 (b) and FIG. 3 have shown the example arrange
- the wide direction of the flat pulverized coal nozzle 8 of only a part of the burners 31 (for example, only the uppermost burner 31) from the side wall where the burners 31 are not arranged is vertically arranged, and the other burners
- a configuration in which the width direction of the 31 flat-shaped pulverized coal nozzles 8 is arranged in the horizontal direction is also included in the present invention.
- FIG. 1 (c) shows an example of the arrangement of another burner 31 of the present invention for the purpose of reducing the unburned loss of coal in the entire furnace.
- the burner 31 near the side wall where the burner 31 in which the combustion gas containing coal ash is easy to flow is not disposed, only the lowermost burner stage has the flat direction of the flat pulverized coal nozzle 8 oriented in the horizontal direction, In the other burner stage, the wide direction of the flat pulverized coal nozzle 8 of the burner 31 from the side wall is arranged in the vertical direction.
- the wide direction of the pulverized coal nozzle 8 of the burner 31 from the side wall where the burner 31 is not arranged in the lowest burner stage is arranged in the vertical direction.
- the wide direction of the flat pulverized coal nozzle 8 when the wide direction of the flat pulverized coal nozzle 8 is horizontally arranged, the flame spreads in the horizontal direction, which is the wide direction, and therefore the vertical flame spread becomes narrower than that of the conventional type. Therefore, the inflow of combustion gas to the furnace hopper in the lowermost burner 31 is also reduced as compared with the conventional type. Therefore, when the wide direction of the pulverized coal nozzles 8 of all the burners 31 of the lowermost burner stage is horizontally arranged, the ratio of unburned combustion ash falling to the furnace hopper is smaller than that in the case where the conventional burner is installed. The unburned loss in the whole furnace is reduced.
- the air ratio of the solid fuel burner 31 adjacent to the wall surface (side wall) 18 of the furnace in which the pulverized coal burner 31 is not arranged Is made higher than the air ratio of the other pulverized coal burners 31 to further strengthen the reduction zone at the center of the furnace 11 and promote high-efficiency and low-NOx combustion, and the atmosphere near the side wall. By approaching the oxidizing atmosphere, the water wall corrosion potential can be reduced.
- Starter burner 2 Pulverized coal flow path 3 Wind box 4 Flow path of secondary air 5 Flow path of tertiary air 6 Fuel concentrator 7 Venturi 8 Pulverized coal nozzle 9 Flame holder 10 Secondary air nozzle 11 Furnace 12 Tertiary air inflow section 13 For tertiary air Opening member 14 Partition plate 15 Secondary air nozzle 17 Secondary air inflow portion 18 Furnace wall surface 21 Mixed fluid 22 Fuel transfer piping 23 Burner introduction portion 24 Fuel concentrator support tube 28 Burner flame 29 Gas supply port for two-stage combustion 31 Solid fuel ( Pulverized coal) Burner 32 Furnace opening (burner throat) 40 Flame detector 41 Ignition torch
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
Abstract
燃料流路2内に絞り部を有するベンチュリー7と濃縮器6を備え、絞り部付近までは横断面が円形であり、それから横断面が左右方向に順次扁平形状となり、火炉壁面の開口部32で扁平度合いが最大となる微粉炭ノズル8を有する微粉炭バーナ31を火炉壁面18の少なくとも一面に複数段、複数列配置した燃焼装置であって、該バーナ31の扁平形状のノズル8の幅広方向を上下、左右方向など適正に配置することによって、火炉内を有効活用し、高効率で低NOx濃度の燃焼を行うとともに、火炉側壁での灰付着、腐食を防止し、火炉ホッパに落下する未燃焼灰による未燃損失を低減することができる。
Description
本発明は固体燃料バーナを備えた燃焼装置、特に水壁(伝熱管を設けた火炉壁面)における灰付着・腐食、ホッパへの粒子落下に伴う未燃分による損失を軽減するに好適な燃焼装置に関する。
一般に固体燃料バーナの燃料ノズルの出口部の断面は円形又は正方形に近い形状をしており、火炉内において燃料含有流体噴流の外側で着火した火炎が燃料含有流体噴流の中心部まで伝播するにはかなりの距離を必要とする場合がある。燃料ノズルからの燃料含有流体の噴出方向における着火した火炎が燃料含有流体噴流の中心部まで伝播する距離、すなわち、未着火距離は燃料ノズルの直径又は外径部が大きくなるほど長くなり、未着火領域が拡大する。バーナ近傍の還元領域で燃焼を促進することが、燃焼ガス中のNOx発生を抑制する上で重要であるが、未着火領域の拡大は着火後の燃焼時間が短くなることを意味し、NOx抑制が不十分であったり、燃焼効率が低下したりする要因ともなる。
複数の固体燃料バーナを燃焼装置として備えたボイラプラントにおいて、バーナ容量の増加はコスト低減とバーナ本数削減による運用性向上のために有効な手法であるが、燃料ノズルの直径又は外径部の長さが長くなり、未着火領域が拡大して、NOxの増加と燃焼効率の低下の原因となる問題点があった。
この問題は、燃料含有流体噴流表面の着火領域から燃料含有流体噴流の中心部までの距離が大きいことが原因であった。
WO2008-038426A1(特許文献1)は、本出願人の発明に係わる先行技術であり、燃料ノズルの横断面の出口形状を長径部と短径部を有する矩形状、楕円形状又は略楕円形状とするバーナにより、バーナ容量を従来より大きくしながら、未着火領域の拡大を抑え、燃焼ガス中のNOx濃度の増加防止と燃料の燃焼効率の低下防止を図った発明が開示されている。
WO2008-038426A1(特許文献1)は、本出願人の発明に係わる先行技術であり、燃料ノズルの横断面の出口形状を長径部と短径部を有する矩形状、楕円形状又は略楕円形状とするバーナにより、バーナ容量を従来より大きくしながら、未着火領域の拡大を抑え、燃焼ガス中のNOx濃度の増加防止と燃料の燃焼効率の低下防止を図った発明が開示されている。
また、WO2009-125566A1にもこれに類似したバーナの開口形状が開示されている。
また、ボイラプラントにおいて、ボイラ火炉の固体燃料バーナにより得られる高温の排ガスにより複数の伝熱管内を流れる流体を加熱して得た蒸気を利用するための流体経路、さらに得られた蒸気を再利用するための複雑な流体経路を流体が通る場合に、各伝熱管が設置される伝熱部において流体への規定の伝熱量を得ることが重要であり、そのために各伝熱部に対して燃焼ガスの温度及び流体流量を制御する必要がある。そのため、火炉内での燃料の燃焼位置を変えることで各伝熱管内の流体への伝熱量を制御することができるという発明がある(WO2009-041081A1)。この発明に記載された例では、固体燃料バーナに設けた気体噴出ノズル出口を上下の2つに分割し、それぞれの空気流量を独立して調整することで燃料の燃焼位置を上下に変更することを可能にしている。
また、ボイラプラントにおいて、ボイラ火炉の固体燃料バーナにより得られる高温の排ガスにより複数の伝熱管内を流れる流体を加熱して得た蒸気を利用するための流体経路、さらに得られた蒸気を再利用するための複雑な流体経路を流体が通る場合に、各伝熱管が設置される伝熱部において流体への規定の伝熱量を得ることが重要であり、そのために各伝熱部に対して燃焼ガスの温度及び流体流量を制御する必要がある。そのため、火炉内での燃料の燃焼位置を変えることで各伝熱管内の流体への伝熱量を制御することができるという発明がある(WO2009-041081A1)。この発明に記載された例では、固体燃料バーナに設けた気体噴出ノズル出口を上下の2つに分割し、それぞれの空気流量を独立して調整することで燃料の燃焼位置を上下に変更することを可能にしている。
なお、一般に固体燃料を使用するボイラは、固体燃料として微粉炭を用いるので、このようなボイラを以下、微粉炭焚きボイラ、固体燃料バーナを微粉炭バーナということがある。微粉炭焚きボイラの起動時には、ファンを起動してボイラ火炉に設置された複数の微粉炭バーナおよび二段燃焼用空気口に燃焼用ガスとして空気を供給する。続いて、各バーナの点火トーチに火炎を形成させ、フレームディテクタ(以下FDという)でこの火炎を検知した後、点火トーチの火炎により点火バーナから噴出した液体燃料に着火させて点火バーナに火炎を形成する。点火バーナによる火炎が形成されたことをFDにより検知した後、点火トーチを消火して点火トーチ用ガンは焼損防止のため、炉外に取り除かれる。
次いで、点火バーナにより炉出口温度が設定温度に達するまで火炉を昇温した後、ミルを起動して徐々に微粉炭燃焼に切り替える。すなわち、微粉炭バーナにおいては、微粉炭に着火させるために、液体燃料等を用いた点火バーナを設置し、更にこの点火バーナを着火する点火トーチおよび火炎を検知するFDが設置されている。
微粉炭バーナの中には、中心に点火バーナを設置し、その周囲から微粉炭と搬送用ガスとしての一次空気を流して火炉内に噴出し、その周囲から燃焼用空気を供給する微粉炭バーナが用いられる。この場合、点火トーチとFDは、微粉炭の流れを乱して微粉炭のバーナ内での堆積や保炎不良を引き起こさないために、微粉炭出口部ではなく、周囲の燃焼用空気供給部に設置している。
近年、コスト削減及び運用性向上の観点から、微粉炭バーナの大容量化(バーナ本数低減)が進められ、大容量化に伴う燃焼排ガス中のNOx濃度の増加や効率低下を防止したバーナノズル形状が提案されている(例えば、WO2008-038426A1(特許文献1))。前記特許文献1記載のバーナ構造においては、微粉炭と微粉炭搬送用ガスを火炉に噴出するノズル出口の形状が、短径部と長径部を有する矩形状、楕円形状もしくは直線部と円周部を有する略楕円形状になっており、従来技術と同様に燃焼用空気供給部にFDや点火トーチを設置した場合、設置場所によってFDでの火炎検知や、点火トーチによる点火バーナでの安定した着火保炎に影響を及ぼす状況があった。
前記特許文献1は、本出願人の発明に係わる先行技術であり、燃料ノズルが横断面の出口形状を長径部と短径部を有する矩形状、楕円形状又は略楕円形状とするバーナを開示している。
このバーナによれば、燃料含有流体噴流表面の着火領域から燃料含有流体噴流の中心部までの距離を短縮することにより、未着火領域を縮小して着火後の燃焼時間を確保することができる。
その後、本出願人による継続的研究の結果、燃料ノズルのボイラ火炉壁面開口部近傍における開口形状が「扁平形状」となるバーナでは、燃料ノズル内壁近傍における燃料含有流体中の燃料濃度分布を周方向に均一に保ちながら、燃料ノズル周囲(外周)からの燃焼用ガス(二次空気、三次空気)ノズルからの燃焼用ガス噴流の噴出形態を適切にして、燃料含有流体及び燃焼用ガスを炉内に供給することが、燃焼効率を維持または向上させて燃料排ガス中のNOx濃度をさらに低減する上で効果的であることが明らかになった。
上記の特許文献1に示すような扁平型燃料ノズルを有する固体燃料バーナを用いることにより、バーナを大容量化した場合においても、燃料含有流体噴流表面の着火領域から燃料含有流体噴流中心部までの距離が短縮され、未着火領域を縮小して着火後の燃料時間を確保できることからバーナ単体において高効率で且つNOx濃度の低い燃焼ガスを生成する構成とすることができる。しかしボイラの実運用においては、バーナ単体だけでなく、火炉全体において高効率且つ低NOx燃焼を図る必要がある。
一般的な石炭焚きボイラの燃焼方式には、横断面が矩形の火炉内の四隅にバーナを配置するコーナファイヤリングや火炉の4つの水壁面にバーナを配置するタンジェンシャルファイヤリングと呼ばれる燃焼方式と、火炉の前壁、後壁にバーナを配置する対向燃焼方式と呼ばれる方式がある。いずれの燃焼方式においても、前壁と後壁を繋ぐ二つの壁面(火炉側壁という)に石炭灰を含む燃焼ガスが衝突することにより、灰付着や腐食が生じる。
対向燃焼方式の場合、火炉前壁及び後壁に配置された側壁側のバーナ噴流が火炉中央部で衝突し、石炭灰を含んだ燃焼ガスが側壁側に運ばれることによって、火炉側壁に灰付着や、還元性ガスによる腐食が起きると考えられている。また扁平型バーナを用いる対向燃焼方式の場合は燃料ノズルの幅広方向に火炎が広がるため、バーナの配置によっては、広がったバーナ噴流(すなわち石炭灰を含んだ燃焼ガス)が側壁側に運ばれやすくなり、側壁面への灰付着、腐食がおきやすくなる可能性がある。なお、ここで、「幅広方向」とは、扁平形状の長径あるいは長辺に平行な方向を指す。
このような問題を軽減するため火炉水壁には通常付着灰を除去するための灰除去装置(以下ウォールブロワ)を設置したり、水壁に対して腐食を防止するための溶射、肉盛の施工が行われる。燃焼ガスが運ばれる領域が広いほど、灰付着、腐食のポテンシャルは高くなり、その分、ウォールブロワの台数が増加する、溶射、肉盛などの水壁施工範囲が増えるなど、ボイラ火炉の設備コストの増加は免れないことから、これら水壁での灰付着、腐食を防止するためのバーナ配置というのは非常に重要である。
本発明の課題は、大容量かつバーナ単体で高効率、低NOx燃焼を実現できる扁平型燃料ノズルを有するバーナを用いるにあたり、火炉全体を有効に活用することによって、高効率で低NOx濃度の燃焼を実現し、かつ火炉壁面における灰付着及び腐食を防止すると共に、火炉ホッパに落下する未燃焼灰による未燃損失を低減する微粉炭バーナを有する燃焼装置を提供することである。
上記の課題は次の解決手段により達成される。
請求項1記載の発明は、固体燃料と該固体燃料の搬送用ガスとの混合流体が流れる円筒状の燃料搬送配管(22)に接続する固体燃料流路(2)を有する火炉壁面(18)に開口した燃料ノズル(8)と、前記固体燃料の燃焼用ガスが流れる風箱(3)に連通し、前記燃料ノズル(8)の外周壁側に形成される単一もしくは複数の燃焼用ガスノズル(10、15)を有する固体燃料バーナ(31)を火炉(11)の壁面(18)の少なくとも一面の上下方向に複数段、又は水平方向に複数列設置した燃焼装置において、
前記固体燃料バーナ(31)の燃料ノズル(8)は、前記燃料ノズル(8)内に当該ノズル(8)内の固体燃料流路(2)の横断面を縮小させる絞り部を有するベンチュリー(7)と当該ベンチュリー(7)の後流側に当該ノズル(8)内の流れを外向きに変える燃料濃縮器(6)を備えており、さらに燃料ノズル(8)は、(a)ボイラ火炉壁面(18)の開口部近傍における開口形状が扁平形状であり、(b)燃料ノズル(8)の外周壁のノズル中心軸(C)に直交する断面形状が、前記ベンチュリー(7)の絞り部まで横断面が円形であり、(c)前記ベンチュリー(7)の絞り部から前記ボイラ火炉壁面(18)に設けられた開口部(32)に至るまでの間は、徐々に扁平度合いが増大する部分を有し、(d)ボイラ火炉壁面(18)の開口部(32)において、扁平度合いが最大の扁平形状となるように形成されており、
火炉の壁面(18)の少なくとも一段の固体燃料バーナ段において、固体燃料バーナ(31)の扁平形状の燃焼ノズル(8)の幅広方向を水平方向に配置したことを特徴とする固体燃料バーナを備えた燃焼装置である。
請求項1記載の発明は、固体燃料と該固体燃料の搬送用ガスとの混合流体が流れる円筒状の燃料搬送配管(22)に接続する固体燃料流路(2)を有する火炉壁面(18)に開口した燃料ノズル(8)と、前記固体燃料の燃焼用ガスが流れる風箱(3)に連通し、前記燃料ノズル(8)の外周壁側に形成される単一もしくは複数の燃焼用ガスノズル(10、15)を有する固体燃料バーナ(31)を火炉(11)の壁面(18)の少なくとも一面の上下方向に複数段、又は水平方向に複数列設置した燃焼装置において、
前記固体燃料バーナ(31)の燃料ノズル(8)は、前記燃料ノズル(8)内に当該ノズル(8)内の固体燃料流路(2)の横断面を縮小させる絞り部を有するベンチュリー(7)と当該ベンチュリー(7)の後流側に当該ノズル(8)内の流れを外向きに変える燃料濃縮器(6)を備えており、さらに燃料ノズル(8)は、(a)ボイラ火炉壁面(18)の開口部近傍における開口形状が扁平形状であり、(b)燃料ノズル(8)の外周壁のノズル中心軸(C)に直交する断面形状が、前記ベンチュリー(7)の絞り部まで横断面が円形であり、(c)前記ベンチュリー(7)の絞り部から前記ボイラ火炉壁面(18)に設けられた開口部(32)に至るまでの間は、徐々に扁平度合いが増大する部分を有し、(d)ボイラ火炉壁面(18)の開口部(32)において、扁平度合いが最大の扁平形状となるように形成されており、
火炉の壁面(18)の少なくとも一段の固体燃料バーナ段において、固体燃料バーナ(31)の扁平形状の燃焼ノズル(8)の幅広方向を水平方向に配置したことを特徴とする固体燃料バーナを備えた燃焼装置である。
請求項2記載の発明は、固体燃料と該固体燃料の搬送用ガスとの混合流体が流れる円筒状の燃料搬送配管(22)に接続する固体燃料流路(2)を有する火炉壁面(18)に開口した燃料ノズル(8)と、前記固体燃料の燃焼用ガスが流れる風箱(3)に連通し、前記燃料ノズル(8)の外周壁側に形成される単一もしくは複数の燃焼用ガスノズル(10、15)を有する固体燃料バーナ(31)を火炉(11)の壁面(18)の少なくとも一面の上下方向に複数段、又は水平方向に複数列設置した燃焼装置において、
前記固体燃料バーナ(31)の燃料ノズル(8)は、前記燃料ノズル(8)内に当該ノズル(8)内の固体燃料流路(2)の横断面を縮小させる絞り部を有するベンチュリー(7)と当該ベンチュリー(7)の後流側に当該ノズル(8)内の流れを外向きに変える燃料濃縮器(6)を備えており、さらに燃料ノズル(8)は、(a)ボイラ火炉壁面(18)の開口部近傍における開口形状が扁平形状であり、(b)燃料ノズル(8)の外周壁のノズル中心軸(C)に直交する断面形状が、前記ベンチュリー(7)の絞り部まで横断面が円形であり、(c)前記ベンチュリー(7)の絞り部から前記ボイラ火炉壁面(18)に設けられた開口部(32)に至るまでの間は、徐々に扁平度合いが増大する部分を有し、(d)ボイラ火炉壁面(18)の開口部(32)において、扁平度合いが最大の扁平形状となるように形成されており、
火炉の壁面(18)の少なくとも一段の固体燃料バーナ段において、少なくとも固体燃料バーナ(31)を配置していない火炉の壁面である側壁(18)に隣接する固体燃料バーナ(31)の扁平形状の燃焼ノズル(8)の幅広方向を鉛直方向に配置し、それ以外の固体燃料バーナ(31)の燃焼ノズル(8)の幅広方向を水平方向に配置したことを特徴とする固体燃料バーナを備えた燃焼装置である。
前記固体燃料バーナ(31)の燃料ノズル(8)は、前記燃料ノズル(8)内に当該ノズル(8)内の固体燃料流路(2)の横断面を縮小させる絞り部を有するベンチュリー(7)と当該ベンチュリー(7)の後流側に当該ノズル(8)内の流れを外向きに変える燃料濃縮器(6)を備えており、さらに燃料ノズル(8)は、(a)ボイラ火炉壁面(18)の開口部近傍における開口形状が扁平形状であり、(b)燃料ノズル(8)の外周壁のノズル中心軸(C)に直交する断面形状が、前記ベンチュリー(7)の絞り部まで横断面が円形であり、(c)前記ベンチュリー(7)の絞り部から前記ボイラ火炉壁面(18)に設けられた開口部(32)に至るまでの間は、徐々に扁平度合いが増大する部分を有し、(d)ボイラ火炉壁面(18)の開口部(32)において、扁平度合いが最大の扁平形状となるように形成されており、
火炉の壁面(18)の少なくとも一段の固体燃料バーナ段において、少なくとも固体燃料バーナ(31)を配置していない火炉の壁面である側壁(18)に隣接する固体燃料バーナ(31)の扁平形状の燃焼ノズル(8)の幅広方向を鉛直方向に配置し、それ以外の固体燃料バーナ(31)の燃焼ノズル(8)の幅広方向を水平方向に配置したことを特徴とする固体燃料バーナを備えた燃焼装置である。
請求項3記載の発明は、固体燃料と該固体燃料の搬送用ガスとの混合流体が流れる円筒状の燃料搬送配管(22)に接続する固体燃料流路(2)を有する火炉壁面(18)に開口した燃料ノズル(8)と、前記固体燃料の燃焼用ガスが流れる風箱(3)に連通し、前記燃料ノズル(8)の外周壁側に形成される単一もしくは複数の燃焼用ガスノズル(10,15)を有する固体燃料バーナ(31)を火炉(11)の壁面(18)の少なくとも一面の上下方向に複数段、又は水平方向に複数列設置した燃焼装置において、
前記固体燃料バーナ(31)の燃料ノズル(8)は、前記燃料ノズル(8)内に当該ノズル(8)内の固体燃料流路(2)の横断面を縮小させる絞り部を有するベンチュリー(7)と当該ベンチュリー(7)の後流側に当該ノズル(8)内の流れを外向きに変える燃料濃縮器(6)を備えており、さらに燃料ノズル(8)は、(a)ボイラ火炉壁面(18)の開口部近傍における開口形状が扁平形状であり、(b)燃料ノズル(8)の外周壁のノズル中心軸(C)に直交する断面形状が、前記ベンチュリー(7)の絞り部まで横断面が円形であり、(c)前記ベンチュリー(7)の絞り部から前記ボイラ火炉壁面(18)に設けられた開口部(32)に至るまでの間は、徐々に扁平度合いが増大する部分を有し、(d)ボイラ火炉壁面(18)の開口部(32)において、扁平度合いが最大の扁平形状となるように形成されており、
火炉の壁面(18)の最下段の固体燃料バーナ段において、固体燃料バーナ(31)の燃焼ノズル(8)の幅広方向を全て水平方向に配置し、
最下段の固体燃料バーナ段以外の固体燃料バーナ段において、固体燃料バーナ(31)を配置していない火炉の壁面(18)に隣接する固体燃料バーナ(31)の扁平形状の燃焼ノズル(8)の幅広方向を鉛直方向に配置する他は、全ての固体燃料バーナ(31)の燃焼ノズル(8)の幅広方向を水平方向に配置したことを特徴とする固体燃料バーナを備えた燃焼装置である。
前記固体燃料バーナ(31)の燃料ノズル(8)は、前記燃料ノズル(8)内に当該ノズル(8)内の固体燃料流路(2)の横断面を縮小させる絞り部を有するベンチュリー(7)と当該ベンチュリー(7)の後流側に当該ノズル(8)内の流れを外向きに変える燃料濃縮器(6)を備えており、さらに燃料ノズル(8)は、(a)ボイラ火炉壁面(18)の開口部近傍における開口形状が扁平形状であり、(b)燃料ノズル(8)の外周壁のノズル中心軸(C)に直交する断面形状が、前記ベンチュリー(7)の絞り部まで横断面が円形であり、(c)前記ベンチュリー(7)の絞り部から前記ボイラ火炉壁面(18)に設けられた開口部(32)に至るまでの間は、徐々に扁平度合いが増大する部分を有し、(d)ボイラ火炉壁面(18)の開口部(32)において、扁平度合いが最大の扁平形状となるように形成されており、
火炉の壁面(18)の最下段の固体燃料バーナ段において、固体燃料バーナ(31)の燃焼ノズル(8)の幅広方向を全て水平方向に配置し、
最下段の固体燃料バーナ段以外の固体燃料バーナ段において、固体燃料バーナ(31)を配置していない火炉の壁面(18)に隣接する固体燃料バーナ(31)の扁平形状の燃焼ノズル(8)の幅広方向を鉛直方向に配置する他は、全ての固体燃料バーナ(31)の燃焼ノズル(8)の幅広方向を水平方向に配置したことを特徴とする固体燃料バーナを備えた燃焼装置である。
請求項4記載の発明は、前記請求項1、2又は3に記載の固体燃料バーナを備えた燃焼装置の少なくとも一つの水平方向に複数の固体燃料バーナ(31)を配置したバーナ段において、固体燃料バーナ(31)を配置していない火炉の壁面(18)に隣接する固体燃料バーナ(31)の空気比を、その他の固体燃料バーナ(31)の空気比よりも高くすることを特徴とする固体燃料バーナを備えた燃焼装置である。
請求項1記載の発明によれば、固体燃料バーナ31の扁平形状のノズル8を火炉壁面18の少なくとも一面の上下方向に複数段、又は水平方向に複数列設置した火炉(燃焼装置)11の少なくとも一つのバーナ段において、前記扁平形状の燃料ノズル8の幅広方向を水平方向に配置することにより、扁平型ノズル8の幅広方向が水平方向に配置されたバーナ31の燃料噴流が火炉11内で水平方向に分散され、火炉11内の空間の有効活用が可能となり、高効率で低NOx濃度の燃焼が可能となる。
請求項2記載の発明によれば、固体燃料バーナ31の扁平形状の燃料ノズル8の幅広方向を水平に配置することで、バーナ31の単機容量が増加しても火炎の形成されない領域が拡大することなく、火炉11を有効活用でき、高効率で低NOx濃度の燃焼が可能となるということを扁平形状のノズル8の利点がある上に、バーナ31を配置しない火炉壁面18に隣接したバーナ31の扁平形状のノズル8を鉛直方向に向けることで、広がったバーナ火炎から灰粒子や腐食性ガスがバーナ31を配置しない火炉壁面18に広がらなくなり、前記壁面18に灰が付着しなくなり、火炉壁の腐食のポテンシャルが低下する。
請求項3記載の発明によれば、固体燃料バーナ31の扁平形状の燃料ノズル8の幅広方向を水平に配置することで、バーナ31の単機容量が増加しても火炎の形成されない領域が拡大することなく、火炉11を有効活用でき、高効率で低NOx濃度の燃焼が可能となるという利点がある上に、最下段のバーナ31について、バーナ31を配置しない火炉壁面18に隣接したバーナ31の燃料ノズル8の扁平形状の幅広方向を水平方向に配置し、ガス温度の低いホッパ部への燃料噴流の流れ込みを抑制し、火炉全体での未燃損失を低減することができる。
請求項4記載の発明によれば、請求項1、2又は3記載の発明の効果に加えて、バーナ31を配置しない火炉壁面(側壁)18に隣接するバーナ31の空気比をバーナ31のない側壁に隣接しない固体燃料バーナ31の空気比よりも高くすることにより、火炉11の中央部での還元域をさらに強化し、高効率で低NOxの燃焼が促進される他、側壁近傍の雰囲気を酸化雰囲気に近づけることにより水壁腐食ポテンシャルを軽減することができる。
本発明の実施例を図面と共に説明する。
図1は、本発明の一実施例の固体燃料バーナの火炉壁への配列例を示す図(図1(a)、図1(b)、 図1(c))である。また、図2には図1(a)の固体燃料バーナが配置される火炉斜視図(図2(a))、図2(a)のバーナ配置箇所での水平断面図(図2(b))を示し、図3には、図1(b)の微粉炭バーナが配置される火炉斜視図(図3(a))、図3(a)のバーナの配置箇所での水平断面図を示す。
図1は、本発明の一実施例の固体燃料バーナの火炉壁への配列例を示す図(図1(a)、図1(b)、 図1(c))である。また、図2には図1(a)の固体燃料バーナが配置される火炉斜視図(図2(a))、図2(a)のバーナ配置箇所での水平断面図(図2(b))を示し、図3には、図1(b)の微粉炭バーナが配置される火炉斜視図(図3(a))、図3(a)のバーナの配置箇所での水平断面図を示す。
これらの微粉炭バーナの火炉壁への配列例の説明の前に、本発明で使用する扁平型微粉炭ノズルを有するバーナの実施例を示す。図5には本発明で使用する扁平型微粉炭ノズルを有するバーナの実施例を示す。
固体燃料バーナ31(以下、微粉炭バーナ31ということがある。)の全体の構成について説明する。図5では、中心に油などを燃料とする起動用バーナ1、その周囲から搬送用ガス(空気など)によって搬送される固体燃料(微粉炭など)の流路2、さらにその周囲から燃焼用ガス(空気)を風箱3内で二分割して、二次燃焼用ガス(以下二次空気ということがある。)の流路4と三次燃焼用ガス(以下三次空気ということがある。)流路5が設置されている。上記固体燃料と搬送用ガスの混合流体の流路2には一旦流路を絞ってその後拡大するベンチュリー7および燃料濃縮器6を設け、燃料ノズル8(以下微粉炭ノズル8ということがある。)の出口部の外周には保炎器9が設置されている。
図5(b)には火炉11側から見た微粉炭バーナの正面図を示す。保炎器9は、該保炎器9の後流側に循環流を形成して着火性と保炎効果を高めるように微粉炭ノズル8の先端部にリング状に設けられる。微粉炭ノズル8側にはさめ歯状の突起を形成したものを用いても良い。
また、この微粉炭バーナ31の微粉炭ノズル8および二次空気ノズル10の形状は火炉11側から見て扁平形状となっている。二次空気流路4の二次空気流入部17から二次空気が二次空気流路4内に流入し、ボイラ火炉11側の出口から微粉炭ノズル8の周囲に燃焼用二次空気を供給する。
三次空気流入部12には開口面積を調節できる複数の開口部材13を設けている。また、火炉11側の出口部の三次空気ノズル15は外側に拡げられ、三次空気は火炉11内では外側に向けて供給される。
次に、微粉炭ノズル8の構造の詳細と本構造による特有の効果について説明する。
微粉炭と搬送用ガスとの混合流体21は燃料搬送配管22を通してバーナ導入部23に導かれる。バーナ導入部23以降の微粉炭と搬送用ガスとの混合流体流路2は、ベンチュリー7で一旦絞られた後、拡大する。ベンチュリー7の上下方向への拡大は、バーナ導入部23の微粉炭ノズル8の内径よりも小さい範囲に留まり、その後、混合流体流路2を構成する微粉炭ノズル8の上下壁は火炉11(図2参照)に向かった直進方向に延長される。ベンチュリー7付近での混合流体流路2の水平方向への拡大は、微粉炭ノズル8の出口近傍まで続き、拡大過程で微粉炭ノズル8の断面形状は円形から扁平形状へと変化し、水平方向への拡大に伴い扁平度合い(率)は少しずつ増加する。微粉炭ノズル8の水平方向への拡大終了後の直線部分は、保炎器9を取り付けるために設けられており、保炎器9の取り付け方法を工夫することにより、微粉炭ノズル8の水平方向の拡大は保炎器9の部分まで続けても良い。扁平度合い(率)は微粉炭ノズル8の出口部、すなわち保炎器9の領域で最大となる。
微粉炭と搬送用ガスとの混合流体21は燃料搬送配管22を通してバーナ導入部23に導かれる。バーナ導入部23以降の微粉炭と搬送用ガスとの混合流体流路2は、ベンチュリー7で一旦絞られた後、拡大する。ベンチュリー7の上下方向への拡大は、バーナ導入部23の微粉炭ノズル8の内径よりも小さい範囲に留まり、その後、混合流体流路2を構成する微粉炭ノズル8の上下壁は火炉11(図2参照)に向かった直進方向に延長される。ベンチュリー7付近での混合流体流路2の水平方向への拡大は、微粉炭ノズル8の出口近傍まで続き、拡大過程で微粉炭ノズル8の断面形状は円形から扁平形状へと変化し、水平方向への拡大に伴い扁平度合い(率)は少しずつ増加する。微粉炭ノズル8の水平方向への拡大終了後の直線部分は、保炎器9を取り付けるために設けられており、保炎器9の取り付け方法を工夫することにより、微粉炭ノズル8の水平方向の拡大は保炎器9の部分まで続けても良い。扁平度合い(率)は微粉炭ノズル8の出口部、すなわち保炎器9の領域で最大となる。
バーナ導入部23から微粉炭ノズル8の出口までの、微粉炭ノズル8内の微粉炭の主流の流れを図6に示す。図6(a)は微粉炭ノズル8の縦方向断面図であり、図6(b)は火炉側から見た微粉炭ノズル8の正面図であり、図6(c)は微粉炭ノズル8の水平方向断面図である。微粉炭ノズル8内のベンチュリー7以降の流れにおいて、図6の中で斑点模様を施した部分25は、微粉炭の濃縮された領域を模式的に表示したものである。
前記微粉炭と搬送ガスの混合流体はベンチュリー7の絞り過程において中心軸Cに向かって縮流となり、燃料濃縮器サポート管24に沿った円環状の流れを形成する。この流れが燃焼濃縮器6に到達すると、燃料濃縮器6の前面の傾斜部により外向きに流れが変えられる。
バーナ導入部23で微粉炭ノズル8内の微粉炭の流量分布が周方向に均一でない場合においても、ベンチュリー7の絞り部で燃料が一旦、中心軸C方向に集められ、その後、燃料濃縮器6で拡げられる過程で、周方向の燃料流量分布は周方向に均一化される。燃料濃縮器6で拡げられた微粉炭の流れの中で、鉛直方向成分の流れは図6(a)に示すようにすぐに上下の微粉炭ノズル8の内周壁の水平部に衝突して、直進方向に変えられ、水平方向成分の流れは燃料濃縮器6の前面の傾斜部で与えられた外向きの速度成分が微粉炭ノズル8の出口部まで保存され、微粉炭の主流は微粉炭ノズル8の出口以降の火炉11に流入後も拡がり続ける。
上記した微粉炭ノズル8の構造及びベンチュリー7と燃料濃縮器6の組合せにより、微粉炭の流れを扁平形状として扁平度合い(率)を微粉炭ノズル8の出口以降も拡大させるとともに、保炎器9の周りの微粉炭ノズル8の内周壁の近傍の燃料濃度分布を周方向に均一とすることができる。
図7は本実施例の微粉炭ノズル8の出口部で燃料濃度の分布を測定した一例を示す。着火に重要な保炎器9に最も近い微粉炭ノズル8の最外周部の燃料濃度は平均濃度の1.5倍程度に濃縮され、本領域の濃縮度偏差は±0.1倍程度に抑えられている。
ここで、上記した微粉炭ノズル8の構造及びベンチュリー7と燃料濃縮器6の組合せに該当しない図20に示す従来技術の燃料ノズル40の出口部での濃度分布を調べた。なお図20の燃料ノズル40は、前記特許文献1に示されたバーナ形状であり、図20(a)には微粉炭ノズル40の水平断面図を示し、図20(b)には図20(a)のA-A線断面矢視図を示す。
図20(c)は、図20(a)の微粉炭ノズル40の水平断面図に対応する微粉炭ノズル40の横幅方向における燃料濃度分布について平均濃度を1.0としたときの相対値で表した図であり、図20(d)は、微粉炭ノズル40の開口部出口断面における燃料濃度分布(領域)について平均濃度を1.0としたときの相対値で表した図である。
このように図20に示す比較例では水平方向(ノズル幅広方向)中央部の濃度が高く、両端部側へ離れるにしたがって燃料濃度が低下し、中央部から最も離れた両端部では平均値の0.5倍程度にまで低下してしまう。これは、空気の流れがノズル形状と同じように水平方向に広がるのに対し、固体粒子である微粉炭は水平方向などに分散せず、ノズル形状に沿って広がらずに中央部に集中するためである。従って、図6(c)に示す本発明の燃料噴流のような、水平に分散する噴流形状は得られない。
ここで仮に特許文献1の図等に示されたような、微粉炭ノズル40の幅広方向全域にわたって、微粉炭ノズル40の上下方向に燃料を濃縮させる形態の燃料濃縮器を設置したとしても、上下方向のノズル40の開口部上辺側および下辺側には燃料が濃縮されるものの、ノズル40の水平方向(横幅方向)中央部の微粉炭濃度が高く、両端部側へ離れるにしたがって微粉炭濃度が低下し、中央部から最も離れた両端部の微粉炭濃度が低いことには変わりがない。
従って、当該両端部付近では着火性が低下してしまう。しかし、本実施例では水平方向の両端部においても燃料(微粉炭)濃度は平均濃度の1.5倍程度に濃縮されているので着火性が保たれる。
次に、本発明の図5に示す実施例における二次空気ノズル10について説明する。図5の二次空気ノズル10は、保炎器9との間の隙間を全周にわたって周方向に均一とするような扁平形状としている(図5(c)参照)。なお、本実施例では、二次空気ノズル10の内周壁は、微粉炭ノズル(燃料ノズル)8の外周壁に相当する。
図5(c)に示すように、二次空気ノズル10と保炎器9の間の隙間は全周にわたってほぼ周方向に均一となるので、微粉炭ノズル8の内周壁近傍に形成された周方向に均一な燃料濃度分布に応じて、二次空気も周方向に均一な供給が可能となる。すなわち、微粉炭ノズル8の内周壁近傍の燃料濃度が高い領域の燃料と、該領域を取り囲む外側の二次空気の局所的燃料/燃焼用ガス流量比率を微粉炭ノズル8の出口部の全周域で均等とできるため、該全周域で最適な燃焼が得られる。
図5に示す本実施例の微粉炭バーナ31においては、三次空気ノズル15は円形の出口形状を有しており、三次空気流路5は微粉炭ノズル8を挟んで上下に配置される(図5(c)参照)。その結果、三次空気と燃料の混合は抑制され、低NOx燃焼が促進される。
また、微粉炭バーナ31の最外周の三次空気ノズル15の出口形状を円形とすることで、新設バーナとしての適用のみならず、円形のバーナ開口部を有する既設バーナの改造への適用も容易となる。
火炉壁面18を構成する水壁管は、火炉壁面18のバーナ開口部32を迂回するように加工する必要があるが、その加工する度合いはバーナ31を大容量化するほど顕著になる。最外周の三次空気ノズル15の出口形状が円形であれば、バーナ開口部32を形成するために、湾曲状に加工される水壁管の曲率が比較的大きい滑らかな形状にできる。これにより当該水壁管の加工が行いやすく、曲げ加工時の応力集中を緩和できるほか、水壁管の内部を流れる内部流体の抵抗増大を抑制することができる。
前述の通り、本発明の微粉炭ノズル8の構造及びベンチュリー7と燃料濃縮器6の組合せに該当しない図20(a),図20(b)に示す従来技術の微粉炭ノズル40の場合、図20(c)と図20(d)に示すように水平方向両端部で燃料濃度が低い分布となる。よって、火炉内の水平方向、特に微粉炭ノズル40の幅方向への拡がり(中心軸に対する傾斜角度)を超えて外側へ燃料を拡散させ、火炎を水平方向に広げるようにすることが難しい。
これに比べ、本発明の実施例では、単に微粉炭ノズル8とその外周の二次空気ノズル10との隔壁側(保炎器9が設置される場合は、その近傍)に微粉炭燃料を濃縮させ、微粉炭ノズル8の開口部全周にわたって周方向に均一に着火できるようにするのみならず、微粉炭ノズル8の水平断面上(バーナ31を上下方向から見たとき)の燃料分布(特定の水平方向位置において上下方向の燃料を積分した値)は、水平方向(ノズル幅広方向)中央部付近よりも、両端部側の方が多くなる。
このため、炉内水平方向、特に微粉炭ノズル8の幅方向への拡がり(中心軸Cに対する傾斜角度)を超えて外側燃料を拡散させ、火炎を水平方向に広げるようにすることができる。
従って、バーナ単機容量が拡大して火炉水平方向に隣り合うバーナ31同士の距離が大きくなっても火炎の形成されない領域が拡大することなく、火炉空間を有効に利用できる。
次に二次空気流路4の二次空気ノズル10からの二次空気の噴出を周方向で均等化することで火炎の安定を図るための構成について説明する。
二次空気流路4の流入部17(図5参照)は、ガス流入方向を火炉壁面18に垂直な向きに設けている。また、二次空気流路4は、二次空気流入部17から火炉側の二次空気出口に向かって流路断面積が縮小する構造となっている。
二次空気流路4の流入部17(図5参照)は、ガス流入方向を火炉壁面18に垂直な向きに設けている。また、二次空気流路4は、二次空気流入部17から火炉側の二次空気出口に向かって流路断面積が縮小する構造となっている。
図9には、二次空気流路4の二次空気流入部17に設けた平板17aの形状に関する実施例を示す。図9(a)には二次空気流入部17の平板17aの平面図を示し、図9(b)には該平板17aの半分の斜視図を示す。
図9(a)に示す実施例では、角丸長方形の平板17aに複数の円形開口部17aaを上下および左右対称に設けている。なお、内部の大きな円形開口部は微粉炭ノズル8の設置部である。また、この平板17aは取り付けやすくするために図9(b)に示すように、左右に半割り構造となっている。この実施例では、二次空気流入部17に設けた平板17aの開口比率は、約9%である。
図10には、二次空気流路4の二次空気流入部17の他の実施例を示す。図9に示す実施例とは微粉炭ノズル8用の開口部の配置が若干異なるが、同様な構造であり、二次空気流入部17に設けた平板17bの開口比率は約11%である。図10(a)には二次空気流入部17の平板17bの平面図を示し、図10(b)には該平板17bの半分の斜視図を示す。
なお、図9と図10に示す実施例では、二次空気流入部17の開口部を円形としたが、本発明はこのような形状に限定されなく、楕円形、四角形などの多角形としてもよい。また、二次空気流入部17の構造によって、平板17a,17bも角丸長方形だけでなく、円形、角型など様々な形状を採用することができる。しかし、二次空気流路4の出口部の横断面方向での流速を均等にするためには、二次空気流入部17に配置する平板17a,17bの開口部の配置は上下および左右対称であることが望ましい。
この二次空気流入部17に配置する平板17a,17bの開口比率について検討した結果を以下に示す。
本発明者らが独自に組み上げた流動試験装置を用いて、前記開口比率と二次空気流路4の出口部での流速分布との関係を実験から評価した。装置は図4に示す出口形状を有する微粉炭バーナ31と同形状のものを製作し、平板17a,17bの開口比率を変化させて、二次空気流路4の出口部を周方向で16等分して各部の流速を熱線風速計で測定した。
本発明者らが独自に組み上げた流動試験装置を用いて、前記開口比率と二次空気流路4の出口部での流速分布との関係を実験から評価した。装置は図4に示す出口形状を有する微粉炭バーナ31と同形状のものを製作し、平板17a,17bの開口比率を変化させて、二次空気流路4の出口部を周方向で16等分して各部の流速を熱線風速計で測定した。
なお、流体は常温の空気を用いた。流速の均等化を示す指標としては、最大流速と最小流速の比をとって評価した。結果を図11に示す。
図11の結果から、前記開口比率0.10付近で最大流速と最小流速の比が最小となり、開口比率0.30以下において最大流速と最小流速の比が2以下であった。しかし、開口比率をあまり小さくすると、流入するガス量が極端に減少してしまうため、平板17a,17bの開口比率は、0.05~0.30に設定することが二次空気流出部での流速を周方向に均一にするために望ましい。
図11の結果から、前記開口比率0.10付近で最大流速と最小流速の比が最小となり、開口比率0.30以下において最大流速と最小流速の比が2以下であった。しかし、開口比率をあまり小さくすると、流入するガス量が極端に減少してしまうため、平板17a,17bの開口比率は、0.05~0.30に設定することが二次空気流出部での流速を周方向に均一にするために望ましい。
次に、二次空気流路4の出口部での流速分布に対する二次空気流入部17の断面積と二次空気流路4の出口部付近の断面積との比の影響を同様の試験から検討した。図12に評価対象とした二次空気流入部17の断面積に対する二次空気出口部の断面積の縮小率と二次空気流路4での最大流速と最小流速の比の関係を示す。ただし、ここでは2次空気流入部17に平板17a、17bを設置していない。また、二次空気流入部(二次空気入口部)17の開口比率は0.15で一定とした。図12における横軸の断面積縮小率は下記で定義したものである。
断面積縮小率=(1-出口部断面積/流入部断面積)×100(%)
この結果、縮小率40%までは最大流速と最小流速の比が減少し、それ以降はほとんど変化しない。縮小率30%以上にすると、最大流速と最小流速の比が2以下であった。しかし、断面積縮小率をあまり大きくすると、開口比率と同様に流入するガス量が減少してしまうため、二次空気流路4の断面積縮小率は、30~80%に設定するのが望ましい。
この結果、縮小率40%までは最大流速と最小流速の比が減少し、それ以降はほとんど変化しない。縮小率30%以上にすると、最大流速と最小流速の比が2以下であった。しかし、断面積縮小率をあまり大きくすると、開口比率と同様に流入するガス量が減少してしまうため、二次空気流路4の断面積縮小率は、30~80%に設定するのが望ましい。
図13に、二次空気流路4の二次空気入口部17に図9や図10に示す開口部17aa,17ba付きの平板17a,17bを設置しない場合(図13(a))と設置した場合(図13(b))における二次空気入口部17の流速分布の模式図を示す。二次空気の流れる方向と強さを矢印の向きと長さで示す。
図13(a)に示す平板17a,17bを設置しない場合、ウインドボックス3内のガス流の方向により(図13に示す例では図面の左上方から二次空気が供給されている。)、二次空気流路4の二次空気入口部17に二次空気が流入すると偏流となり、流速分布も二次空気入口部17の断面で差異が生じてしまう。このような偏流や流速分布は、二次空気出口部の流速分布に影響することが推察される。一方、図13(b)に示す二次空気入口部17の開口部17aa,17ba付きの平板17a,17bを設置した場合は、平板17a,17bによる抵抗で、前記偏流や流速分布の差異は解消されて、二次空気入口部17に流入する空気流は、ほぼ周方向に均一流速の直進流のみとなる。
以下、二次空気ノズル10内にフレームディテクタ(FD)40を設置して、点火バーナ1からの火炎やバーナ31の出口での微粉炭火炎を検知する構成について説明する。また、点火トーチ41は点火バーナ1を確実に着火させるために設けられる。
図14に本発明の一実施例の微粉炭バーナ31の側断面図を示し、図15に図14のB-B線断面矢視図を示す。なお図14は図5に示す微粉炭バーナ31の側断面図と同一であるが、一部部材の図示を省略している。
図14,図15に示す微粉炭バーナ31の微粉炭ノズル8の出口形状は、短径部と長径部を有する矩形状、楕円形状もしくは直線部と円周部を有する略楕円形状になっており、その外周部は楕円もしくは略楕円形状の二次空気ノズル10があり、更に外周の三次空気ノズル15の形状は点火(起動用)バーナ1と同心円状である。
三次空気ノズル15には、バーナ中心水平断面の上下を分割する仕切り板14が挿入されており、上下に投入する三次空気流量を変化させることができる。
すなわち、二次空気ノズル10の外周壁と三次空気ノズル15の内周壁には仕切り板14が設置され、該仕切り板14で三次空気流路5を上下に二分割している。該仕切り板14はウインドボックス3内を上下に二分する仕切り板14でもある。そのため上下に二分割した三次空気流路5に導入するウインドボックス3から三次空気量を各々ダンパ30a~30dで調整することにより、各々の流路を流れる燃焼用空気の運動量に偏差を与えることが可能となり、微粉炭バーナ31から噴出する火炎を火炉11内で上下方向に偏向させることができる。
すなわち、二次空気ノズル10の外周壁と三次空気ノズル15の内周壁には仕切り板14が設置され、該仕切り板14で三次空気流路5を上下に二分割している。該仕切り板14はウインドボックス3内を上下に二分する仕切り板14でもある。そのため上下に二分割した三次空気流路5に導入するウインドボックス3から三次空気量を各々ダンパ30a~30dで調整することにより、各々の流路を流れる燃焼用空気の運動量に偏差を与えることが可能となり、微粉炭バーナ31から噴出する火炎を火炉11内で上下方向に偏向させることができる。
微粉炭ノズル8の上側の二次空気ノズル10内には、FD40と点火トーチ41が設置されている。FD40はバーナ31の中心部に設置した点火バーナ1からの火炎や微粉炭火炎を検知する目的を有しており、ボイラ火炉11の前後側壁面18に設置されたバーナ31からの火炎が浮力及び上昇流により上向きに曲がるため、FD40はバーナ中心を含む水平線より上側に設置することが望ましい。
また、FD40には点火トーチ41の火炎を検知する目的もあるため、FD40と点火トーチ41は同じ面に設置することが望ましく、従って点火トーチ41もバーナ中心を含む水平線より上側に設置することが望ましい。
FD40や点火トーチ41は、燃焼用空気ノズル10,15内にパイプを通すため、設置位置によっては、外周空気の流れを阻害することになる。二次空気ノズル10の噴出口は、微粉炭ノズル8の長径部の外周で断面積が広くなっていることから、短径部の外周よりも長径部の外周壁の方が二次空気の流量は多い。
微粉炭ノズル8の短径部の外周壁にFD40や点火トーチ41を設置した場合、燃焼用空気の流れを阻害するため、短径部外周壁には空気が流れなくなる。
その場合、FD40や点火トーチ41を冷却するものがなくなるため、火炉11からの輻射熱によりFD40や点火トーチ41が焼損するおそれがある。一方、微粉炭ノズル8の長径部外周壁は空気流量が多いため、焼損の可能性は低減するが、例えば点火トーチ41の場合は、燃焼用空気の流量が多いと点火バーナ1へのトーチ火炎が吹き飛ばされるため、燃焼用空気量の多いところに設置するのは望ましくない。
その場合、FD40や点火トーチ41を冷却するものがなくなるため、火炉11からの輻射熱によりFD40や点火トーチ41が焼損するおそれがある。一方、微粉炭ノズル8の長径部外周壁は空気流量が多いため、焼損の可能性は低減するが、例えば点火トーチ41の場合は、燃焼用空気の流量が多いと点火バーナ1へのトーチ火炎が吹き飛ばされるため、燃焼用空気量の多いところに設置するのは望ましくない。
点火トーチ41は、点火バーナ1を確実に着火させるためには、燃焼用空気流量が少ないところに設置することが望ましい。
FD40は、焼損防止の観点から燃焼用空気量の多いところに設置するのが望ましいが、微粉炭ノズル8の出口形状が矩形状や楕円形状、もしくは略楕円形状の場合、出口の両端上に燃料の濃い領域が形成されるため、FD40はなるべく燃料の濃い領域を見るように設置するほうが、火炎の検知感度が良好になる。
FD40は、焼損防止の観点から燃焼用空気量の多いところに設置するのが望ましいが、微粉炭ノズル8の出口形状が矩形状や楕円形状、もしくは略楕円形状の場合、出口の両端上に燃料の濃い領域が形成されるため、FD40はなるべく燃料の濃い領域を見るように設置するほうが、火炎の検知感度が良好になる。
従って、FD40や点火トーチ41は、燃焼用空気量が少なく、燃料の濃い領域で、かつ焼損の可能性が低減できる領域に設置するのが望ましい。
図15に示す実施例は、微粉炭ノズル8の出口形状が直線部と円周部を有する略楕円形状の例であり、直線部の外周壁は二次空気流路4が広く、円周部の外周は二次空気流路4が狭いため、FD40や点火トーチ41は、前記直線部と円周部の接点上に設置することが望ましい。
図15に示す実施例は、微粉炭ノズル8の出口形状が直線部と円周部を有する略楕円形状の例であり、直線部の外周壁は二次空気流路4が広く、円周部の外周は二次空気流路4が狭いため、FD40や点火トーチ41は、前記直線部と円周部の接点上に設置することが望ましい。
図16に示す実施例(図14のB-B線断面矢視図)は、微粉炭ノズル8の出口形状が矩形状の場合であり、長径部側の二次空気流路4が広く、短径部側の二次空気流路4が狭くなっている。従って、微粉炭ノズル8の出口形状の長径部や短径部の中央に設置することは望ましくなく、長径部の両端の上に設置することが望ましい。
図17に示す実施例(図14のB-B線断面矢視図)は、微粉炭ノズル8の出口形状が楕円の場合であり、焦点間の外周は二次空気流路4が広く、焦点外の外周壁は二次空気流路4が狭くなっている。従って、この場合は、微粉炭ノズル8の焦点外の外周壁上にFD40や点火トーチ41を設置することが望ましい。
なお、図15~図17において、微粉炭バーナ31を火炉11側から見たときにFD40を左上、点火トーチ41を右上に配置しているが、実際は逆でも問題は生じない。
図18に示す実施例(図14のB-B線断面矢視図)は、図15に示すバーナを90度回転させたときの例である。すなわち、微粉炭ノズル8の出口の外周壁を構成する円周部が上下に位置し、直線部が左右に位置している例である。この場合、FD40や点火トーチ41は、バーナ31の中心を含む水平線より上側に設置することが望ましい。
図18に示す実施例(図14のB-B線断面矢視図)は、図15に示すバーナを90度回転させたときの例である。すなわち、微粉炭ノズル8の出口の外周壁を構成する円周部が上下に位置し、直線部が左右に位置している例である。この場合、FD40や点火トーチ41は、バーナ31の中心を含む水平線より上側に設置することが望ましい。
次に、上記した各種の固体燃料バーナ31を火炉壁面18へ配列した本発明の実施例を図1(a)に示す。本実施例では、バーナ31は火炉壁面18に3段4列に設置されており、バーナ31の全てにおいて扁平形状の微粉炭ノズル8の幅広方向を水平としている。図8は、図1(a)に示す微粉炭バーナ31を用いた場合には従来技術適用時に比べ、火炉11の空間を有効に活用できることを模式的に説明した図である。図8(a)は図1(a)のバーナ31を配置した火炉11全体の側断面図、図8(b)は図8(a)のA-A線断面矢視図を示したものである。一方、比較のため、図19に従来技術の構成を示す。ここで、図19(a)は扁平形状でなく横断面形状が円形の微粉炭ノズルを有するバーナを配置した火炉11全体の側断面図、図19(b)は図19(a)のA-A線断面矢視図である。
図8に示すように微粉炭バーナ31の全数で、扁平形状の微粉炭ノズル8の幅広方向を水平に配置することにより燃料噴流は火炉11内で水平方向に分散されて、火炉11内の空間の有効活用が可能となり、燃料を高効率で、低NOx濃度で燃焼させることができる。
図8(a),図8(b)に示すように、火炉壁面18に配置するバーナ31の全数を扁平形状の微粉炭ノズル8の幅広方向を水平に配置することにより、図19に示す従来技術に比べて火炉11内で火炎は水平方向に拡がり、火炉11内の未活用空間が小さくなる。
すなわち、本実施例により火炉11内の水平断面で火炎が通過する断面の面積が大きくなり、火炎が火炉11内で滞留する時間が増加して、燃料効率がよくなり、燃焼ガスのNOx濃度を下げることができる。
前述の通り、本発明の微粉炭ノズル8の構造及びベンチュリー7と燃料濃縮器6の組合せに該当しない図20(a),図20(b)に示す従来技術の微粉炭ノズル40の場合、図20(c)と図20(d)に示すように水平方向両端部で燃料濃度が低い分布となる。よって、火炉内の水平方向、特に微粉炭ノズル40の幅方向への拡がり(中心軸に対する傾斜角度)を超えて外側へ燃料を拡散させ、火炎を水平方向に広げるようにすることが難しい。
これに比べ、本発明の実施例では、単に微粉炭ノズル8とその外周の二次空気ノズル10との隔壁側(保炎器9が設置される場合は、その近傍)に微粉炭燃料を濃縮させ、微粉炭ノズル8の開口部全周にわたって均一に着火できるようにするのみならず、微粉炭ノズル8の水平断面上(バーナ31を上下方向から見たとき)の燃料分布(特定の水平方向位置において上下方向の燃料を積分した値)は、水平方向(ノズル幅広方向)中央部付近よりも、両端部側の方が多くなる。
このため、炉内水平方向、特に微粉炭ノズル8の幅方向への拡がり(中心軸Cに対する傾斜角度)を超えて外側燃料を拡散させ、火炎を水平方向に広げるようにすることできる。
従って、バーナ単機容量が拡大して火炉水平方向に隣り合うバーナ31同士の距離が大きくなっても火炎の形成されない領域が拡大することなく、火炉空間を有効に利用できる。
図1(b)は特に側壁(バーナ31を配置しない火炉壁面)18での灰付着、腐食を防止することに着目した、本発明の他のバーナ配置例を示したものである。灰の付着や腐食の程度は使用炭性状(灰分量、石炭中S量)に依存することから、本配置は例えば、灰分が多い、石炭中硫黄分が多い石炭等を焚く場合の配置として有効である。具体的には、側壁(バーナ31を配置しない火炉壁面)18に隣接した壁面18に配置するバーナ31の微粉炭ノズル8を幅広方向が鉛直方向に向くように配置し、側壁側以外に配置するバーナ31の微粉炭ノズル8は幅広方向を水平方向に向けて配置する。
次にこの理由について述べる。石炭焚きボイラの火炉側壁(バーナ31を配置しない火炉壁面)18では、バーナ火炎とともにガス流れに乗って運ばれる石炭灰や腐食性ガスが火炉水壁(伝熱管を配置した火炉壁)に衝突し、これが原因で火炉の灰付着や腐食を生じる。
微粉炭ノズル8の幅広方向を水平に配置することで、バーナ単機容量が増加しても火炎の形成されない領域が拡大することなく、火炉11を有効活用できるということを扁平形状ノズルを有するバーナの利点として述べたが、逆にデメリットとして、火炉側壁側で水平方向に広がったバーナ火炎から灰粒子や腐食性ガスが水壁に運ばれやすくなり、原理的には火炉壁への灰付着や火炉壁の腐食のポテンシャルが増加する傾向にある。
実設計においては、燃料噴流の広がりを考慮してバーナと側壁との間隔を確保するほか、水壁での灰付着、腐食を軽減するために、該領域(噴流が広がる領域)に灰除去装置を設置する、腐食防止のための溶射や肉盛を火炉壁に施工する等の手法も有効であるが、バーナ31の配置を工夫することによってこれらの点は改善できる。
石炭には石炭の他に重量割合で1,2割の灰分が含まれていることから石炭を使用する場合、火炉壁面18には灰の付着は避けられないこと、溶射や肉盛もその施工範囲によってはコスト高になることを考慮すると、使用する石炭によって、このバーナ配置による改善を図ることは重要である。特に腐食に関しては、腐食性ガスである硫化水素(H2S)が低NOx運用(燃焼排ガス中のNOx濃度を少なくする運用)に必要な強還元域で生成することから、このような対策は、低NOx運用が不可欠とされる場合も重要となる。
図1(a)のバーナ31の基本配置において、バーナ31のないボイラ側壁への灰付着、腐食領域がどのように変化するかを図2(a)の火炉斜視図及び図2(b)の図2(a)のバーナ配置箇所での水平断面図に図示した。なお図2(b)は図8(b)と同じ図である。また図1(b)の灰付着、腐食に考慮したバーナ31の配置において、前記ボイラ側壁への灰付着、腐食領域35がどのように変化するかを図3(a)の火炉斜視図及び図3(b)の図3(a)のバーナ31の配置箇所での水平断面図に図示した。図3(b)は側壁側のバーナ31を微粉炭ノズル8の幅広方向が鉛直方向になるように配置しているために、前記側壁へ衝突する火炎ガスの流れが抑制され、前記側壁への灰付着、腐食の領域35が縮小されることがわかる。
なお、図1(b)と図3にはバーナ31を配置しない側壁寄りのバーナ31の扁平形状の微粉炭ノズル8の幅広方向が鉛直方向を向くように配置した例を示しているが、図1(c)に示すように、バーナ31を配置しない側壁よりの一部のバーナ31のみ(例えば最上段バーナ31のみ)の扁平形状の微粉炭ノズル8の幅広方向を鉛直配置とし、他のバーナ31の扁平形状の微粉炭ノズル8の幅広方向は水平方向に向けて配置する構成も本発明に含まれる。
図1(c)は特に火炉全体での石炭の未燃損失分を低減させることを目的とした、本発明の他のバーナ31の配列例を示したものである。本配列例では、石炭灰を含んだ燃焼ガスが流れやすいバーナ31を配置しない側壁寄りのバーナ31において、最下段のバーナ段のみは扁平形状の微粉炭ノズル8の幅広方向を水平方向に向け、それ以外のバーナ段においては側壁よりのバーナ31の扁平形状の微粉炭ノズル8の幅広方向を鉛直方向に向けて配置している。
通常石炭焚きボイラでは、最下段バーナ31から、該最下段バーナ31の下方にあるホッパ部にかけてはガス温度が低く、この領域、すなわち、ボイラ下部に落下した石炭は燃え残り、すなわち未燃損失となる。石炭の燃焼性が問題となる場合、例えば、一般的にボイラで燃焼させる石炭の場合、燃焼性の目安となる燃料比(=石炭中の固定炭素量/揮発分量)が1~2程度であるのに対し、燃料比が高い高燃料比炭を焚いた場合や、ボイラ火炉が大きくガス温度が低い場合、石炭の粉砕粒度が低い(すなわち粒度が粗い)条件ではこのような未燃損失を下げる必要がある。
そこで、図1(c)に示すように最下段バーナ31のみ、全てのバーナ31の微粉炭ノズル8の幅広方向を水平に設置することにより、ガス温度の低いホッパ部への燃料噴流の流れ込みを抑制し、火炉全体での未燃損失を低減することができる。
なお、ここでは、扁平形状の微粉炭ノズル8を有するバーナ31を配置する場合において最下段バーナ段におけるバーナ31を配置しない側壁よりのバーナ31の微粉炭ノズル8の幅広方向を鉛直方向に配置した場合と水平方向に配置した場合での比較を述べたが、従来型バーナを配置した場合と、前記扁平形状の微粉炭ノズル8を有するバーナ31の微粉炭ノズル8の幅広方向を水平に配置した場合の比較についても述べる。
先に述べたように、扁平形状の微粉炭ノズル8の幅広方向を水平に配置すると、火炎は幅広方向である水平方向に広がるため、鉛直方向の火炎の広がりは従来型よりも狭くなる。このことから最下段のバーナ31における火炉ホッパ部への燃焼ガスの流入も従来型より軽減される。従って、最下段バーナ段の全てのバーナ31の微粉炭ノズル8の幅広方向を水平に配置した場合、火炉ホッパへ落下する未燃燃焼灰の割合は従来型バーナを設置した場合と比較して少なく、火炉全体での未燃損失は軽減される。
なお、図1(a)、図1(b)及び図1(c)に示すバーナ31の配置例では、扁平形状の微粉炭ノズル8の幅広方向は完全に鉛直方向または水平方向としているが、バーナ31周りの他の構造物の影響などで完全に鉛直方向または水平方向に配置できない場合は、傾きを持たせた配置としても良い。
また、火炉11の少なくとも一つの水平方向に複数の微粉炭バーナ31を配置したバーナ段において、微粉炭バーナ31を配置していない火炉の壁面(側壁)18に隣接する固体燃料バーナ31の空気比を、その他の微粉炭バーナ31の空気比よりも高くすることにより、火炉11の中央部での還元域をさらに強化し、高効率で低NOxの燃焼が促進される他、側壁近傍の雰囲気を酸化雰囲気に近づけることにより水壁腐食ポテンシャルを軽減することができる。
1 起動用バーナ 2 微粉炭の流路
3 風箱(ウィンドボックス) 4 二次空気の流路
5 三次空気の流路 6 燃料濃縮器
7 ベンチュリー 8 微粉炭ノズル
9 保炎器 10 二次空気ノズル
11 火炉 12 三次空気流入部
13 三次空気用開口部材 14 仕切り板
15 三次空気ノズル 17 二次空気流入部
18 火炉壁面 21 混合流体
22 燃料搬送配管 23 バーナ導入部
24 燃料濃縮器サポート管 28 バーナ火炎
29 二段燃焼用ガス供給口 31 固体燃料(微粉炭)バーナ
32 火炉開口部(バーナスロート部)
40 フレームディテクタ 41 点火トーチ
3 風箱(ウィンドボックス) 4 二次空気の流路
5 三次空気の流路 6 燃料濃縮器
7 ベンチュリー 8 微粉炭ノズル
9 保炎器 10 二次空気ノズル
11 火炉 12 三次空気流入部
13 三次空気用開口部材 14 仕切り板
15 三次空気ノズル 17 二次空気流入部
18 火炉壁面 21 混合流体
22 燃料搬送配管 23 バーナ導入部
24 燃料濃縮器サポート管 28 バーナ火炎
29 二段燃焼用ガス供給口 31 固体燃料(微粉炭)バーナ
32 火炉開口部(バーナスロート部)
40 フレームディテクタ 41 点火トーチ
Claims (4)
- 固体燃料と該固体燃料の搬送用ガスとの混合流体が流れる円筒状の燃料搬送配管に接続する固体燃料流路を有する火炉壁面に開口した燃料ノズルと、前記固体燃料の燃焼用ガスが流れる風箱に連通し、前記燃料ノズルの外周壁側に形成される単一もしくは複数の燃焼用ガスノズルを有する固体燃料バーナを火炉の壁面の少なくとも一面の上下方向に複数段、又は水平方向に複数列設置した燃焼装置において、
前記固体燃料バーナの燃料ノズルは、前記燃料ノズル内に当該ノズル内の固体燃料流路の横断面を縮小させる絞り部を有するベンチュリーと当該ベンチュリーの後流側に当該ノズル内の流れを外向きに変える燃料濃縮器を備えており、さらに燃料ノズルは、(a)ボイラ火炉壁面の開口部近傍における開口形状が扁平形状であり、(b)燃料ノズルの外周壁のノズル中心軸(C)に直交する断面形状が、前記ベンチュリーの絞り部まで横断面が円形であり、(c)前記ベンチュリーの絞り部から前記ボイラ火炉壁面に設けられた開口部に至るまでの間は、徐々に扁平度合いが増大する部分を有し、(d)ボイラ火炉壁面の開口部において、扁平度合いが最大の扁平形状となるように形成されており、
火炉の壁面の少なくとも一段の固体燃料バーナ段において、固体燃料バーナの扁平形状の燃焼ノズルの幅広方向を水平方向に配置したことを特徴とする固体燃料バーナを備えた燃焼装置。 - 固体燃料と該固体燃料の搬送用ガスとの混合流体が流れる円筒状の燃料搬送配管に接続する固体燃料流路を有する火炉壁面に開口した燃料ノズルと、前記固体燃料の燃焼用ガスが流れる風箱に連通し、前記燃料ノズルの外周壁側に形成される単一もしくは複数の燃焼用ガスノズルを有する固体燃料バーナを火炉の壁面の少なくとも一面の上下方向に複数段、又は水平方向に複数列設置した燃焼装置において、
前記固体燃料バーナの燃料ノズルは、前記燃料ノズル内に当該ノズル内の固体燃料流路の横断面を縮小させる絞り部を有するベンチュリーと当該ベンチュリーの後流側に当該ノズル内の流れを外向きに変える燃料濃縮器を備えており、さらに燃料ノズルは、(a)ボイラ火炉壁面の開口部近傍における開口形状が扁平形状であり、(b)燃料ノズルの外周壁のノズル中心軸(C)に直交する断面形状が、前記ベンチュリーの絞り部まで横断面が円形であり、(c)前記ベンチュリーの絞り部から前記ボイラ火炉壁面に設けられた開口部に至るまでの間は、徐々に扁平度合いが増大する部分を有し、(d)ボイラ火炉壁面の開口部において、扁平度合いが最大の扁平形状となるように形成されており、
火炉の壁面の少なくとも一段の固体燃料バーナ段において、少なくとも固体燃料バーナを配置していない火炉の壁面に隣接する固体燃料バーナの扁平形状の燃焼ノズルの幅広方向を鉛直方向に配置し、それ以外の固体燃料バーナの燃焼ノズルの幅広方向を水平方向に配置したことを特徴とする固体燃料バーナを備えた燃焼装置。 - 固体燃料と該固体燃料の搬送用ガスとの混合流体が流れる円筒状の燃料搬送配管に接続する固体燃料流路を有する火炉壁面に開口した燃料ノズルと、前記固体燃料の燃焼用ガスが流れる風箱に連通し、前記燃料ノズルの外周壁側に形成される単一もしくは複数の燃焼用ガスノズルを有する固体燃料バーナを火炉の壁面の少なくとも一面の上下方向に複数段、又は水平方向に複数列設置した燃焼装置において、
前記固体燃料バーナの燃料ノズルは、前記燃料ノズル内に当該ノズル内の固体燃料流路の横断面を縮小させる絞り部を有するベンチュリーと当該ベンチュリーの後流側に当該ノズル内の流れを外向きに変える燃料濃縮器を備えており、さらに燃料ノズルは、(a)ボイラ火炉壁面の開口部近傍における開口形状が扁平形状であり、(b)燃料ノズルの外周壁のノズル中心軸(C)に直交する断面形状が、前記ベンチュリーの絞り部まで横断面が円形であり、(c)前記ベンチュリーの絞り部から前記ボイラ火炉壁面に設けられた開口部に至るまでの間は、徐々に扁平度合いが増大する部分を有し、(d)ボイラ火炉壁面の開口部において、扁平度合いが最大の扁平形状となるように形成されており、
火炉の壁面の最下段の固体燃料バーナ段において、固体燃料バーナを配置していない火炉の壁面に隣接する固体燃料バーナの燃焼ノズルの幅広方向を全て水平方向に配置し、
最下段の固体燃料バーナ段以外の固体燃料バーナ段において、固体燃料バーナを配置していない火炉の壁面に隣接する固体燃料バーナの扁平形状の燃焼ノズルの幅広方向を鉛直方向に配置する他は、全ての固体燃料バーナの燃焼ノズルの幅広方向を水平方向に配置したことを特徴とする固体燃料バーナを備えた燃焼装置。 - 前記請求項1、2又は3に記載の固体燃料バーナを備えた燃焼装置の少なくとも一つの水平方向に複数の固体燃料バーナを配置したバーナ段において、固体燃料バーナを配置していない火炉の壁面に隣接する固体燃料バーナの空気比を、その他の固体燃料バーナの空気比よりも高くすることを特徴とする固体燃料バーナを備えた燃焼装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012179672 | 2012-08-14 | ||
JP2012-179672 | 2012-08-14 | ||
JP2013164156A JP5867742B2 (ja) | 2012-08-14 | 2013-08-07 | 固体燃料バーナを備えた燃焼装置 |
JP2013-164156 | 2013-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014027610A1 true WO2014027610A1 (ja) | 2014-02-20 |
Family
ID=50613223
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/071593 WO2014027609A1 (ja) | 2012-08-14 | 2013-08-09 | 固体燃料バーナ |
PCT/JP2013/071594 WO2014027610A1 (ja) | 2012-08-14 | 2013-08-09 | 固体燃料バーナを備えた燃焼装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/071593 WO2014027609A1 (ja) | 2012-08-14 | 2013-08-09 | 固体燃料バーナ |
Country Status (10)
Country | Link |
---|---|
US (1) | US9599335B2 (ja) |
EP (1) | EP2886956B1 (ja) |
JP (2) | JP5867742B2 (ja) |
KR (1) | KR101615064B1 (ja) |
CN (1) | CN104508372B (ja) |
AU (1) | AU2013303566B2 (ja) |
MY (1) | MY156191A (ja) |
PL (1) | PL2886956T3 (ja) |
UA (1) | UA113544C2 (ja) |
WO (2) | WO2014027609A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021161875A1 (ja) * | 2020-02-10 | 2021-08-19 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9689568B2 (en) * | 2012-01-13 | 2017-06-27 | Babcock Power Services, Inc. | Adjustable division plate for classifier coal flow control |
EP3026338B1 (en) | 2014-11-28 | 2020-02-26 | General Electric Technology GmbH | A combustion system for a boiler |
CN105670660B (zh) * | 2016-03-21 | 2018-11-06 | 陈新忠 | 一种运用非对称式燃烧器的生物质炭化炉 |
WO2017212108A1 (en) * | 2016-06-08 | 2017-12-14 | Fortum Oyj | Method of burning fuel and a boiler |
CN106090902B (zh) * | 2016-08-11 | 2018-04-06 | 东方电气集团东方锅炉股份有限公司 | 环形回流型褐煤旋流燃烧器及燃烧方法 |
JP2018028418A (ja) * | 2016-08-19 | 2018-02-22 | 三菱日立パワーシステムズ株式会社 | 固体燃料バーナ |
CN107083258B (zh) * | 2017-06-23 | 2024-03-26 | 航天长征化学工程股份有限公司 | 一种气化烧嘴装置 |
KR101794692B1 (ko) | 2017-09-18 | 2017-11-08 | (주)조선내화이엔지 | 도시 폐자원 복합연료 열 병합 발전용 소각로의 생활계 srf 정량 공급 장치 |
JP2020030037A (ja) * | 2018-08-20 | 2020-02-27 | 三菱日立パワーシステムズ株式会社 | 固体燃料バーナ |
JP7081407B2 (ja) * | 2018-09-11 | 2022-06-07 | 株式会社Ihi | ボイラ |
US11692705B2 (en) * | 2019-05-13 | 2023-07-04 | Mitsubishi Heavy Industries, Ltd. | Solid fuel burner, boiler equipment, nozzle unit for solid fuel burner, and guide vane unit |
WO2020234965A1 (ja) * | 2019-05-20 | 2020-11-26 | 三菱日立パワーシステムズ株式会社 | 固体燃料バーナ |
CN115472069A (zh) * | 2022-09-08 | 2022-12-13 | 华能山东发电有限公司 | 一种用于燃煤锅炉的智能喷粉模拟系统 |
CN118345209B (zh) * | 2024-06-18 | 2024-08-27 | 山西晋南钢铁集团有限公司 | 一种高炉喷煤用煤粉分配器装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05157213A (ja) * | 1991-12-06 | 1993-06-22 | Babcock Hitachi Kk | 燃焼装置 |
JPH1122915A (ja) * | 1997-06-27 | 1999-01-26 | Babcock Hitachi Kk | 硫黄含有燃料の燃焼方法およびそのための燃焼装置 |
JP2000234704A (ja) * | 1999-02-16 | 2000-08-29 | Babcock Hitachi Kk | 微粉炭燃焼装置 |
WO2009125566A1 (ja) * | 2008-04-10 | 2009-10-15 | バブコック日立株式会社 | 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法 |
JP2011202841A (ja) * | 2010-03-25 | 2011-10-13 | Babcock Hitachi Kk | バーナ及び該バーナを備えたボイラ |
JP4896143B2 (ja) * | 2006-09-27 | 2012-03-14 | バブコック日立株式会社 | バーナ、バーナを備えた燃焼装置及びボイラ |
WO2012098848A1 (ja) * | 2011-01-21 | 2012-07-26 | バブコック日立株式会社 | 固体燃料バーナおよび前記バーナを用いる燃焼装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59163709A (ja) * | 1983-03-07 | 1984-09-14 | 住友電気工業株式会社 | マグネツトワイヤ− |
JPS59163709U (ja) * | 1983-04-15 | 1984-11-02 | バブコツク日立株式会社 | 微粉炭バ−ナ |
JP3255651B2 (ja) | 1991-02-21 | 2002-02-12 | バブコック日立株式会社 | 微粉炭燃焼装置 |
JP3099109B2 (ja) * | 1996-05-24 | 2000-10-16 | 株式会社日立製作所 | 微粉炭バーナ |
RO118900B1 (ro) * | 1996-07-19 | 2003-12-30 | Babcock Hitachi Kabushiki Kaisha | Arzător de combustie |
JP2009079794A (ja) | 2007-09-25 | 2009-04-16 | Babcock Hitachi Kk | 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法 |
US8210111B2 (en) * | 2008-02-27 | 2012-07-03 | C.L. Smith Industrial Company | Method and system for lining a coal burner nozzle |
JP2011052871A (ja) * | 2009-08-31 | 2011-03-17 | Babcock Hitachi Kk | 燃焼装置 |
US8955776B2 (en) * | 2010-02-26 | 2015-02-17 | Alstom Technology Ltd | Method of constructing a stationary coal nozzle |
US20120103237A1 (en) * | 2010-11-03 | 2012-05-03 | Ronny Jones | Tiltable multiple-staged coal burner in a horizontal arrangement |
-
2013
- 2013-08-07 JP JP2013164156A patent/JP5867742B2/ja active Active
- 2013-08-09 US US14/421,003 patent/US9599335B2/en active Active
- 2013-08-09 EP EP13879264.3A patent/EP2886956B1/en active Active
- 2013-08-09 WO PCT/JP2013/071593 patent/WO2014027609A1/ja active Application Filing
- 2013-08-09 JP JP2014530535A patent/JP5832653B2/ja active Active
- 2013-08-09 WO PCT/JP2013/071594 patent/WO2014027610A1/ja active Application Filing
- 2013-08-09 KR KR1020147036491A patent/KR101615064B1/ko active IP Right Grant
- 2013-08-09 PL PL13879264T patent/PL2886956T3/pl unknown
- 2013-08-09 MY MYPI2014703772A patent/MY156191A/en unknown
- 2013-08-09 AU AU2013303566A patent/AU2013303566B2/en active Active
- 2013-08-09 CN CN201380035524.8A patent/CN104508372B/zh active Active
- 2013-09-08 UA UAA201412621A patent/UA113544C2/uk unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05157213A (ja) * | 1991-12-06 | 1993-06-22 | Babcock Hitachi Kk | 燃焼装置 |
JPH1122915A (ja) * | 1997-06-27 | 1999-01-26 | Babcock Hitachi Kk | 硫黄含有燃料の燃焼方法およびそのための燃焼装置 |
JP2000234704A (ja) * | 1999-02-16 | 2000-08-29 | Babcock Hitachi Kk | 微粉炭燃焼装置 |
JP4896143B2 (ja) * | 2006-09-27 | 2012-03-14 | バブコック日立株式会社 | バーナ、バーナを備えた燃焼装置及びボイラ |
WO2009125566A1 (ja) * | 2008-04-10 | 2009-10-15 | バブコック日立株式会社 | 固体燃料バーナ、固体燃料バーナを用いた燃焼装置とその運転方法 |
JP2011202841A (ja) * | 2010-03-25 | 2011-10-13 | Babcock Hitachi Kk | バーナ及び該バーナを備えたボイラ |
WO2012098848A1 (ja) * | 2011-01-21 | 2012-07-26 | バブコック日立株式会社 | 固体燃料バーナおよび前記バーナを用いる燃焼装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021161875A1 (ja) * | 2020-02-10 | 2021-08-19 | ||
WO2021161875A1 (ja) * | 2020-02-10 | 2021-08-19 | Jfeスチール株式会社 | ラジアントチューブバーナ、ラジアントチューブ、及びラジアントチューブバーナの設計方法 |
JP7131701B2 (ja) | 2020-02-10 | 2022-09-06 | Jfeスチール株式会社 | ラジアントチューブバーナ、ラジアントチューブ、及びラジアントチューブバーナの設計方法 |
Also Published As
Publication number | Publication date |
---|---|
PL2886956T3 (pl) | 2018-01-31 |
JP5867742B2 (ja) | 2016-02-24 |
CN104508372A (zh) | 2015-04-08 |
MY156191A (en) | 2016-01-20 |
CN104508372B (zh) | 2016-06-08 |
JP2014055759A (ja) | 2014-03-27 |
JP5832653B2 (ja) | 2015-12-16 |
KR101615064B1 (ko) | 2016-04-22 |
US9599335B2 (en) | 2017-03-21 |
EP2886956A1 (en) | 2015-06-24 |
KR20150027130A (ko) | 2015-03-11 |
UA113544C2 (xx) | 2017-02-10 |
EP2886956A4 (en) | 2016-03-30 |
JPWO2014027609A1 (ja) | 2016-07-25 |
AU2013303566B2 (en) | 2015-10-01 |
EP2886956B1 (en) | 2017-06-28 |
US20150241058A1 (en) | 2015-08-27 |
WO2014027609A1 (ja) | 2014-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5867742B2 (ja) | 固体燃料バーナを備えた燃焼装置 | |
JP4896143B2 (ja) | バーナ、バーナを備えた燃焼装置及びボイラ | |
EP2518404B1 (en) | Combustion burner and boiler provided with such burner | |
US9671108B2 (en) | Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler | |
JP5386230B2 (ja) | 燃料バーナ及び旋回燃焼ボイラ | |
JP5901737B2 (ja) | 燃焼バーナ | |
JP5908091B2 (ja) | 固体燃料バーナと該固体燃料バーナを備えた燃焼装置の運転方法 | |
JP5797238B2 (ja) | 燃料バーナ及び旋回燃焼ボイラ | |
JP2010270990A (ja) | 燃料バーナ及び旋回燃焼ボイラ | |
JPH04214102A (ja) | 微粉炭ボイラ及び微粉炭バーナ | |
JP2010091244A (ja) | 微粉炭バーナ及び該微粉炭バーナを備えた微粉炭焚きボイラ | |
JP2016109349A (ja) | 固体燃料バーナ及び固体燃料バーナを備えたボイラ | |
JP2016156530A (ja) | 燃焼バーナ、ボイラ、及び燃料ガスの燃焼方法 | |
JPH11148610A (ja) | 固体燃料燃焼用バーナと固体燃料用燃焼装置 | |
JP2019517658A (ja) | 燃料を燃焼させる方法及びボイラー | |
JP2954628B2 (ja) | 微粉炭バーナ | |
JP2006162185A (ja) | 石炭焚きボイラと燃焼方法 | |
WO2022024552A1 (ja) | サイクロンバーナ、サイクロンバーナユニット、ノズルユニット、およびサイクロンバーナの改造方法 | |
JP5530373B2 (ja) | ボイラ装置 | |
JP2007057138A (ja) | 微粉炭焚きボイラ | |
JP3361283B2 (ja) | 予混合ガス噴出ノズルの構造 | |
UA113544U (uk) | Установка для лазерної обробки отворів | |
CN102454987A (zh) | 一种煤粉燃烧器和具有该煤粉燃烧器的锅炉 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13879587 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A, DATED 08-07-2015) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13879587 Country of ref document: EP Kind code of ref document: A1 |