WO2014027459A1 - 光学素子、光学装置及び映像表示装置 - Google Patents

光学素子、光学装置及び映像表示装置 Download PDF

Info

Publication number
WO2014027459A1
WO2014027459A1 PCT/JP2013/004828 JP2013004828W WO2014027459A1 WO 2014027459 A1 WO2014027459 A1 WO 2014027459A1 JP 2013004828 W JP2013004828 W JP 2013004828W WO 2014027459 A1 WO2014027459 A1 WO 2014027459A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
crystal substrate
optical element
light
polarizing element
Prior art date
Application number
PCT/JP2013/004828
Other languages
English (en)
French (fr)
Inventor
友嗣 大野
雅雄 今井
鈴木 尚文
瑞穂 冨山
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014530470A priority Critical patent/JPWO2014027459A1/ja
Publication of WO2014027459A1 publication Critical patent/WO2014027459A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus

Definitions

  • the present invention relates to an optical element, an optical device, and an image display device that convert the polarization state of light.
  • the projector includes a light source, an illumination optical system that receives light emitted from the light source, a modulation element that modulates and emits light from the illumination optical system according to a video signal, and projects light from the modulation element onto a screen. And a projection optical system.
  • an element having polarization dependency such as a liquid crystal panel may be used as a modulation element.
  • the liquid crystal panel includes a liquid crystal cell and polarizers arranged before and after the liquid crystal cell.
  • the polarizer disposed in front of the liquid crystal cell changes the light emitted from the light source into a specific polarization state, and the liquid crystal cell converts the polarization state of the incident light into another polarization state.
  • the polarizer examples include an absorptive polarizer that absorbs polarized light in a direction other than the transmission axis direction and a reflective polarizer that reflects polarized light in a direction other than the transmission axis direction. In any polarizer, linearly polarized light that vibrates in the direction of the transmission axis is emitted.
  • the absorption polarizer polarized light in directions other than the transmission axis direction is absorbed inside the polarizer and generates heat. Even a reflective polarizer generates heat when light absorption occurs even slightly.
  • the characteristics of the polarizer deteriorate, such as a decrease in transmittance in the transmission direction, an increase in transmittance in the absorption (or reflection) direction, and an increase in haze.
  • the characteristic deterioration of the polarizer is a factor that causes a decrease in contrast, luminance, and color shift of the projector.
  • a quartz substrate or a sapphire substrate is a uniaxial crystal substrate having one optical axis. Therefore, in Patent Document 1 and Patent Document 2, the polarization direction of linearly polarized light and the optical axis of the substrate are aligned in parallel or perpendicularly so that the polarization state does not change before and after light enters the crystal substrate. I am making a proposal. That is, the alignment is accurately performed so that the transmission axis orientation of the polarizer and the optical axis orientation of the crystal substrate are parallel or orthogonal.
  • Patent Document 3 proposes a method in which the optical axes of two crystal substrates having the same phase difference are orthogonal to each other in order to avoid the necessity of alignment.
  • Patent Document 1 when the transmission axis direction of the polarizer and the optical axis direction of the crystal substrate are deviated from a parallel or orthogonal position, a change in the polarization state occurs in the crystal substrate. End up. Due to the change in the polarization state, the characteristics of the liquid crystal panel are deteriorated, and there is a problem in that the contrast projected on the image projected from the projector, the brightness is decreased, and the color shift occurs.
  • an object of the present invention is to provide an optical element, an optical device, and an image display device in which the heat dissipation effect of the polarizer is enhanced by using a crystal substrate that does not require alignment and whose polarization state does not change.
  • an invention relating to an optical element includes a polarizing element, a crystal substrate that is disposed in close contact with the polarizing element, and is an uniaxial crystal substrate whose optical axis is within 30 ° from the thickness direction.
  • the crystal substrate is set to a thickness in which the polarization state of light incident on the crystal substrate and the polarization state when exiting the crystal substrate coincide with each other within a predetermined range. .
  • the optical device includes at least one of the optical element, a cooling fan that blows air to the optical element, a heat sink provided in close contact with the crystal substrate, and a light source that emits light toward the optical element. It is characterized by.
  • the video display device includes the optical element and a modulation element that modulates and emits light according to a video signal.
  • the heat dissipation effect of the polarizer is enhanced by using a crystal substrate that does not require alignment and the polarization state does not change, for example, contrast reduction, luminance reduction, and color shift of an image projected from a projector are suppressed. Will be able to.
  • FIG. 1 is a perspective view showing a configuration of an optical element 2A of the present embodiment.
  • the optical element 2 ⁇ / b> A includes a polarizing element 10 and a crystal substrate 11 disposed in close contact with the polarizing element 10.
  • the polarizing element 10 is, for example, a polarizer or a retardation plate.
  • the optical axis 50 of the polarizing element 10 is a transmission axis when the polarizing element 10 is formed of a polarizer, and is an optical axis when it is formed of a retardation plate.
  • the polarizer for example, an absorption polarizer produced by adsorbing and orienting iodine compound molecules mainly composed of polyvinyl alcohol, a multilayer film reflective polarizer in which an isotropic film and an anisotropic film are multilayered, Examples thereof include a wire grid polarizer in which metals are arranged in a grid, a photonic crystal polarizer having a photonic structure formed of an inorganic structural multilayer film, and the like.
  • the retardation plate include a polymer wave plate, a crystal wave plate, a photonic crystal wave plate, and the like.
  • the crystal substrate 11 is a uniaxial crystal substrate having an optical axis 51 within 30 °, more preferably within 5 ° from the thickness direction.
  • the crystal substrate 11 preferably has a thermal conductivity of 5 W / (m ⁇ K) or more and is transparent in the visible light wavelength region. Examples of such a crystal substrate include quartz and sapphire.
  • the incident direction of the light incident on the optical element 2A is preferably set as appropriate according to the application. More preferably, the polarizer is set in a direction in which a polarization state with a high degree of polarization is required.
  • the polarizer when used as a polarizing element before and after the incidence of the liquid crystal cell, it is preferable that light is incident from the crystal substrate 11 side on the incident side and from the polarizing element 10 side on the emission side.
  • a reflective polarizer as the polarizing element 10 and extracting specific polarized light by reusing the polarized light, it is preferable to provide the polarizing element 10 on the light source side.
  • FIG. 2 is a diagram in which the xyz axis, the light traveling direction D, and the incident angle (azimuth angle ⁇ and polar angle ⁇ ) are defined.
  • the surfaces of the crystal substrate 11 and the polarizing element 10 are in the xy plane, and the thickness direction is the z-axis direction.
  • the azimuth angle ⁇ is an angle formed by the projection line and the x axis when the traveling direction D is projected on the xy plane
  • the polar angle ⁇ is an angle formed by the traveling direction D and the z axis.
  • the polarization state does not change.
  • the polarization orientation of the incident linearly polarized light and the orientation of the optical axis 51 of the crystal substrate 11 are parallel or orthogonal, the polarization state does not change.
  • the polarization orientation of the incident linearly polarized light and the orientation of the optical axis 51 of the crystal substrate 11 are non-parallel or non-orthogonal, the polarization state changes due to the influence of the phase difference ⁇ s .
  • the change in the polarization state becomes maximum.
  • the polarization state is substantially the same before and after the incidence. Further, the phase difference ⁇ s increases as the incident angle ⁇ i increases, but the amount of change in the phase difference ⁇ s can be suppressed by reducing the thickness d s .
  • the optical element of the first implementation model is a PVA (Poly Vinyl Alcohol) absorption polarizer having a transmission axis direction of 90 ° as the polarizing element 10, and the sapphire substrate having the optical axis 51 as the thickness direction as the crystal substrate 11.
  • PVA Poly Vinyl Alcohol
  • the optical element of the second implementation model was configured by rotating the orientation of the crystal substrate 11 by 20 ° in the optical element of the first implementation model.
  • the optical element of the second comparative model was obtained by rotating the orientation of the crystal substrate 11 by 20 ° in the optical element of the first comparative model.
  • the optical element of the third comparative model is a PVA absorbing polarizer having a transmission axis orientation of 90 ° as the polarizing element 10, and the optical axis in the xy plane as the crystal substrate 11 with the orientations of 0 ° and 90 °.
  • the angle dependence of the transmittance in the transmission polarization direction of the optical element 2A of each model was simulated using an extended Jones matrix calculation method.
  • the light source was arranged on the polarizing element 10 side.
  • FIG. 3 is a diagram showing the transmittance in the transmitted polarization direction immediately after the polarizing element 10.
  • FIG. 4A shows the transmittance in the transmission polarization direction of the first implementation model
  • FIG. 4B shows the transmittance in the transmission polarization direction of the second implementation model.
  • FIG. 5A shows the transmittance in the transmission polarization direction of the first comparative model
  • FIG. 4B shows the transmittance in the transmission polarization direction of the second comparison model
  • FIG. 6A shows the transmittance in the transmission polarization direction of the third comparative model
  • FIG. 6B shows the transmittance in the transmission polarization direction of the fourth comparison model.
  • the intensity of the transmitted light in the polarization direction immediately after the sapphire substrate has an angle dependency, but a high transmitted light intensity was obtained within a certain incident angle range (approximately 50 °). Further, since the characteristics did not change even when the azimuth was rotated, it was found that alignment was not necessary.
  • the optical element according to the present embodiment does not require alignment between the axial direction of the polarizing element and the optical axis direction of the crystal substrate, and uses the crystal substrate that does not substantially change the polarization state, thereby radiating heat from the polarizing element.
  • the effect can be enhanced.
  • the configuration is shown in which the crystal substrate is disposed in close contact with only one surface of the polarizing element, but the crystal substrate may be disposed in close contact with both surfaces of the polarizing element. That is, a crystal substrate and another crystal substrate (second crystal substrate) may be provided, and the polarizing element may be sandwiched between them. Thereby, the heat dissipation effect can be further enhanced.
  • FIG. 7 is a perspective view showing the configuration of the optical element 2B of the present embodiment.
  • the optical element 2B includes a polarizing element 10, a crystal substrate 11 disposed in close contact with the polarizing element 10, and an optical compensation medium 12 disposed on the opposite side of the crystal substrate 11 from the polarizing element 10.
  • the polarizing element 10 and the crystal substrate 11 constitute the optical element 2A according to the first embodiment.
  • the crystal substrate 11 is a uniaxial crystal substrate whose optical axis is within 30 ° from the thickness direction.
  • the optical compensation medium 12 is an anisotropic medium whose optical axis 52 is within 30 °, preferably within 5 ° from the thickness direction.
  • a microstructure polarizing element such as a crystal such as quartz or sapphire, an anisotropic film such as polycarbonate, or a photonic crystal can be used.
  • Refractive index anisotropy of the crystal substrate 11 with respect to the refractive index of the crystal substrate 11 and the refractive index of the optical compensation medium 12 (long-axis direction refractive index nc // , short-axis direction refractive index nc ⁇ ). Is positive (positive, n s // > n s ⁇ ), and the refractive index anisotropy of the optical compensation medium 12 is negative (negative, nc // ⁇ nc ⁇ ).
  • the refractive index anisotropy of the crystal substrate 11 is negative ( ns // ⁇ ns ⁇ ) and the refractive index anisotropy of the optical compensation medium 12 is positive (nc // > nc ).
  • the refractive index anisotropy of sapphire is negative and the refractive index anisotropy of quartz is positive.
  • the thickness d c of the optical compensation medium 12 when the sum of the retardation of the retardation and the optical compensation medium 12 of the crystal substrate 11 is 0, the thickness d c of the optical compensation medium 12, Therefore, it is preferable to set the thickness of the optical compensation medium 12 to a value within 30% of the value of Equation 2. More preferably, the value is within 5%.
  • the direction in which the light of the optical element 2B is incident can be appropriately set according to the application.
  • FIG. 8A is a diagram showing a change in the polarization state due to the optical compensation medium 12, and FIG. 8A is a diagram showing a change in the polarization state due to the crystal substrate 11.
  • the refractive index anisotropy of the crystal substrate 11 is positive and the refractive index anisotropy of the optical compensation medium 12 is negative, or When the refractive index anisotropy is negative and the refractive index anisotropy of the optical compensation medium 12 is positive, the overall phase difference ⁇ can be reduced.
  • the thickness d c of the optical compensation medium 12 that the phase difference of the entire incident angle 90 ° [delta] is the value of the formula 2 calculated from the condition that a 0, a phase difference [delta] at all angles of incidence Can be made extremely small.
  • the phase difference changes.
  • the polarization state changes depending on the polarization orientation of the incident linearly polarized light and the optical axis orientation of the crystal substrate 11.
  • the deviation of the optical axis 52 from the thickness direction is within 30 °, the phase difference ⁇ is small, and changes in the polarization state can be reduced regardless of the optical axis orientation and the polarization direction of the incident light.
  • the optical element of the fourth implementation model is a PVA absorbing polarizer having a transmission axis orientation of 90 ° as the polarizing element 10, and the optical axis of the crystal substrate 11 having a polar angle of 30 ° and an orientation angle of 15 °.
  • the angle dependence of the transmittance in the transmission polarization direction of the polarizing element 10 of each model was simulated using an extended Jones matrix calculation method.
  • the light source was arranged on the polarizing element 10 side.
  • FIG. 9A is a diagram showing a simulation result of the third implementation model
  • FIG. 9B is a diagram showing a simulation result of the fourth implementation model.
  • FIG. 9A shows that the polarization state immediately after the polarizing element 10 and the polarization state immediately after the optical compensation medium 12 are substantially equal. Further, from FIG. 9B, when the optical axis is tilted, high transmittance was obtained although the angle dependency was different. In the optical element of the present embodiment, it is necessary to add an optical compensation medium to the optical element of the first embodiment, but it has been shown that the angle dependency can be suppressed.
  • the alignment of the axial direction of the polarizing element and the optical axis direction of the crystal substrate is unnecessary, and the heat dissipation of the polarizing element is achieved by using the crystal substrate in which the polarization state hardly changes.
  • the effect could be enhanced.
  • an optical compensation medium is necessary as compared with the first embodiment, the angle dependency can be suppressed.
  • the crystal substrate 11 may be disposed in close contact with both surfaces of the polarizing element 10, and the optical compensation medium 12 may be disposed on one side or on both sides of the crystal substrate 11 opposite to the polarizing element 10. Thereby, the heat dissipation effect can be further enhanced.
  • FIG. 10 is a perspective view showing the configuration of the optical device 3A of the present embodiment.
  • the optical device 3A has a configuration in which a cooling fan 13 is added to the optical element 2A according to the first embodiment.
  • the heat of the crystal substrate 11 and the polarizing element 10 can be dissipated very efficiently. That is, it is possible to enhance the heat dissipation effect of the polarizing element by using a crystal substrate that does not require alignment between the axial direction of the polarizing element and the optical axis direction of the crystal substrate and whose polarization state does not substantially change.
  • an optical compensation medium may be disposed on the opposite side of the crystal substrate 11 from the polarizing element 10.
  • FIG. 11 is a perspective view showing the configuration of the optical device 3B of the present embodiment.
  • a heat sink 14 is additionally provided in the optical element 2A according to the first embodiment so that the optical element 2A can efficiently dissipate heat.
  • the optical device 3B includes a heat sink 14 in close contact with the surface of the crystal substrate 11 in the optical element 2A (the surface opposite to the polarizing element 10).
  • the heat sink 14 include metal materials having high thermal conductivity such as aluminum and copper.
  • the heat sink 14 dissipates heat of the crystal substrate 11 efficiently, the temperature of the crystal substrate 11 and the polarizing element 10 can be lowered efficiently.
  • the heat sink 14 is in close contact with the surface of the crystal substrate 11 on the side opposite to the polarizing element 10, but the present invention is not limited to this configuration.
  • it may be in close contact with the surface of the crystal substrate 11 on the polarizing element 10 side as in the optical device 3C shown in FIG. 12, and further in close contact with the side surface of the crystal substrate 11 as in the optical device 3D shown in FIG. Also good.
  • a heat conductive sheet or a heat conductive gel may be sandwiched between the metal and the crystal substrate.
  • the optical compensation medium 12 may be arranged on the opposite side of the crystal substrate 11 from the polarizing element 10. That is, the optical compensation medium 12 may be disposed so that the crystal substrate 11 is sandwiched between the polarizing element 10 and the optical compensation medium 12. Further, a cooling fan 13 may be installed. When the cooling fan 13 is installed, the heat of the optical element can be dissipated very efficiently by blowing air.
  • the optical device according to the present embodiment relates to a configuration in which a light source unit is additionally provided in any one of the optical elements 2A to 2B and the optical devices 3A to 3D described above.
  • a light source unit is additionally provided in any one of the optical elements 2A to 2B and the optical devices 3A to 3D described above.
  • the polarizing element 10 in the optical element 2A particularly uses a polarizer.
  • FIG. 14 is a perspective view showing the configuration of the optical device 3E according to the present embodiment.
  • the optical device 3E includes a light source 20 and an optical element 2A.
  • Examples of the light source 20 include an LED (Light Emitting Diode), a cold cathode tube, an organic EL, an inorganic EL, a high-pressure mercury lamp, a metal halide lamp, and a combination of these light sources and a light guide plate. At this time, it is assumed that the light emitted from the light source 20 is randomly polarized light and visible light.
  • LED Light Emitting Diode
  • a cold cathode tube an organic EL
  • an inorganic EL an inorganic EL
  • a high-pressure mercury lamp a metal halide lamp
  • the optical element 2A is set so that only specific polarized light can be transmitted.
  • the polarizing element 10 is a reflective polarizer
  • the polarized light reflected by the optical element 2A is reflected by the light source 20, so that only specific polarized light can be extracted while reusing the polarized light.
  • the optical element 2A is configured to have a high heat dissipation effect as described above, it is possible to use the light source 20 that emits strong light.
  • the incident direction when light is incident on the optical element 2A is not particularly limited, but it is preferable that the polarizing element 10 is located on the incident side in order to improve the polarization reuse effect and the heat dissipation effect.
  • a surface light source such as an organic EL
  • the polarizing element 10 of a reflective polarizer and the crystal substrate 11 are all in close contact.
  • the number of times of surface reflection is reduced, and specific polarized light can be efficiently extracted.
  • optical devices 3F and 3G as shown in FIGS. 15 and 16 may be used.
  • An optical device 3F shown in FIG. 15 includes a light source 20, an optical element 2A, and another optical element (second optical element) 21 that is different from the optical element 2A.
  • the second optical element 21 is sandwiched between the light source 20 and the optical element 2A.
  • a retardation plate As the second optical element 21, a retardation plate, a depolarizing element, a diffusing element, or a combination of these can be used.
  • the polarization state and the light angle of the polarized light reflected by the optical element 2 ⁇ / b> A are converted by the second optical element 21, and the light is reflected by the light source 20. Accordingly, since the polarized light reflected by the light source 20 passes through the second optical element 21 and enters the optical element 2A, it is possible to extract specific polarized light while improving the reuse efficiency of the polarized light. Become.
  • a planar light source such as an organic EL, a retardation plate, a polarizing element, and a crystal substrate can be used in close contact with each other. At this time, since the number of surface reflections can be reduced, specific polarized light can be efficiently extracted.
  • the optical device 3G shown in FIG. 16 includes a light source 20, a taper rod 22, and an optical element 2A.
  • the taper rod 22 is a light guide formed in a tapered shape, and can obtain illumination light having a larger area and higher directivity from light having a smaller area and lower directivity.
  • the crystal substrate 11 is on the exit side in order to increase the heat dissipation effect and the polarization conversion efficiency.
  • the taper rod 22, the polarizing element 10 of a reflective polarizer, and the crystal substrate 11 can be used in close contact with each other. And by making light incident from the taper rod 22 side, specific polarized light with high directivity can be efficiently incident on the optical element 2A.
  • the taper rod 22 does not need to have a taper shape.
  • the second optical element 21 may be disposed between the light source 20 and the taper rod 22 or between the taper rod 22 and the optical element 2A.
  • the optical compensation medium 12 may be disposed on the opposite side of the crystal substrate 11 from the polarizing element 10. That is, the crystal substrate 11 may be disposed so as to be sandwiched between the polarizing element 10 and the optical compensation medium 12.
  • FIG. 17 is a perspective view showing the configuration of the video display device 4A of the present embodiment.
  • This video display device 4A is configured using the optical elements and optical devices described above.
  • FIG. 17 shows a case where a liquid crystal display device is used as the video display device 4A.
  • the video display device 4A includes the light source 20 and the liquid crystal panel 32A.
  • the liquid crystal panel 32A includes an optical element 2A disposed on the incident side, an optical element 2A disposed on the emission side, and a liquid crystal cell 33 disposed between these optical elements 2A.
  • the polarizing element 10 in the optical element 2A is a polarizer.
  • Another optical element such as a diffusing element or a lens may be disposed between the light source 20 and the liquid crystal panel 32A.
  • the optical element 2A on the incident side emits the incident light as linearly polarized light having only a component in the polarizer transmission axis direction.
  • the polarization state of the polarized light emitted from the incident-side optical element 2A is changed by the phase being modulated in the liquid crystal cell 33 in accordance with the video signal.
  • the polarized light from the liquid crystal cell 33 enters the optical element 2A on the exit side. Of the incident polarized light, only the polarizer transmission axis direction component is emitted from the optical element 2A on the emission side. Thereby, the video according to the video signal can be displayed.
  • the present embodiment is not limited to the configuration described above.
  • the video display device 4B shown in FIG. 18 includes a light source 20 and a liquid crystal panel 32B.
  • the liquid crystal panel 32 ⁇ / b> B includes the polarizing element 10 disposed on the incident side, the optical element 2 ⁇ / b> A disposed on the emission side, and the liquid crystal cell 33.
  • the polarizing element 10 in the optical element 2A is a polarizer.
  • the video display device 4C shown in FIG. 19 includes a light source 20 and a liquid crystal panel 32C.
  • the liquid crystal panel 32 ⁇ / b> C includes the optical element 2 ⁇ / b> A arranged on the incident side, the polarizing element 10 arranged on the emission side, and the liquid crystal cell 33.
  • the polarizing element 10 in the optical element 2A is a polarizer.
  • the image display devices 4B and 4C having such a configuration use an optical element having a high heat dissipation effect, it is possible to suppress a decrease in contrast, a decrease in luminance, and a color shift.
  • FIG. 20 is a perspective view showing the configuration of the video display device 5A of the present embodiment.
  • the video display device 5A shown in FIG. 20 is a projector that projects light onto a screen to form an image on the screen.
  • the video display device 5A includes light sources 20R, 20G, and 20B, illumination optical systems 41R, 41G, and 41B, an optical element 2A, liquid crystal cells 33R, 33G, and 33B, a cross dichroic prism 43, and a projection optical system 44. Is provided. Two optical elements 2A are provided on the light source 20R, 20G and 20B side so as to sandwich the liquid crystal cells 33R, 33G and 33B. This optical element 2A may be the optical element 2B described above. Any of the optical devices 3A to 3D may be used. Hereinafter, the optical element 2A is used, and the polarizing element 10 is a polarizer.
  • the light sources 20R, 20G, and 20B generate light having different wavelengths. For example, it is assumed that red (R) light is emitted from the light source 20R, green (G) light is emitted from the light source 20G, and blue (B) light is emitted from the light source 20B.
  • the illumination optical systems 41R, 41G, and 41B guide the light of each color emitted from the light sources 20R, 20G, and 20B to the incident-side optical element 2A for incidence.
  • the linearly polarized light of each color transmitted through the incident side optical element 2A is incident on each of the liquid crystal cells 33R, 33G, and 33B. Then, the liquid crystal cells 33R, 33G, and 33B modulate and emit the incident color lights according to the video signal.
  • the polarized light transmitted through the liquid crystal cells 33R, 33G, and 33B transmits only light in a specific polarization direction among the light modulated by the optical element 2A on the emission side.
  • Each modulated light emitted from the optical element 2A is combined by the cross dichroic prism 43 and enters the projection optical system 44.
  • the projection optical system 44 projects the combined light emitted from the cross dichroic prism 43 onto the screen S, and displays an image corresponding to the video signal on the screen S.
  • An image display device 5B shown in FIG. 21 includes light sources 20R, 20G, and 20B, an illumination optical system 42, a liquid crystal panel 35, an optical element 2A, and a projection optical system 44.
  • two optical elements 2A are provided on the incident side and the emission side with the liquid crystal panel 35 interposed therebetween.
  • the illumination optical system 42 combines the respective color lights generated from the light sources 20R, 20G, and 20B and emits them to the incident-side optical element 2A.
  • the linearly polarized light transmitted through the incident side optical element 2 ⁇ / b> A enters the liquid crystal cell 33.
  • the liquid crystal cell 33 modulates the incident combined light according to the video signal and emits it.
  • the light transmitted through the liquid crystal cell transmits only light in a specific polarization direction among the light modulated by the optical element 2A.
  • the projection optical system 44 projects the modulated light emitted from the optical element 2A onto the screen S, and displays an image corresponding to the video signal on the screen S.
  • the heat dissipation effect of the optical element can be improved, and the contrast reduction, luminance reduction, and color shift of the video display device can be suppressed.
  • the optical element may be appropriately disposed at a position other than before and after incidence of the liquid crystal cell.
  • it may be between the light source and the illumination optical system, in the illumination optical system, between the light source and the illumination optical system, or in the projection optical system.
  • the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
  • the numerical values, materials, and the like in the above-described embodiment are illustrative, and can be changed as appropriate.
  • ⁇ Appendix 1> A polarizing element; A crystal substrate that is disposed in close contact with the polarizing element and is an uniaxial crystal substrate having an optical axis within 30 ° from the thickness direction, and the crystal substrate is within a specific incident angle range.
  • ⁇ Appendix 9> The optical element according to appendix 8, wherein the optical axis of the optical compensation medium is an anisotropic medium within 5 ° from a thickness direction of the optical compensation medium.
  • ⁇ Appendix 10> The optical element according to appendix 8 or 9, wherein the sign of the refractive index anisotropy of the crystal substrate is opposite to the sign of the refractive anisotropy of the optical compensation medium ⁇ Appendix 11> 11.
  • the optical element according to any one of appendices 8 to 10 wherein the crystal substrate has a positive refractive index anisotropy and the optical compensation medium has a negative refractive index anisotropy.
  • ⁇ Appendix 13> The refractive index in the major axis direction of the crystal substrate is ns // , the refractive index in the minor axis direction is n s , the thickness is d s , and the refractive index in the major axis direction of the optical compensation medium is nc //.
  • ⁇ Appendix 16> The optical element according to any one of appendices 1 to 15, An optical device comprising at least one of a cooling fan that blows air to the optical element, a heat sink provided in close contact with the crystal substrate, and a light source that emits light toward the optical element.
  • An optical device comprising at least one of a cooling fan that blows air to the optical element, a heat sink provided in close contact with the crystal substrate, and a light source that emits light toward the optical element.
  • ⁇ Appendix 17> The optical apparatus according to appendix 16, wherein an optical element different from the optical element is provided as a second optical element between the light source and the optical element.
  • ⁇ Appendix 18> The second optical element transmits only light incident in a specific incident angle range and reflects other light, a diffusion element that diffuses light while maintaining the polarization state, or these The optical apparatus according to appendix 17, wherein the optical apparatus has a combined configuration.
  • a video display device comprising: a modulation element that modulates light according to a video signal and emits the light.
  • ⁇ Appendix 21> The optical element according to any one of appendices 1 to 15, An illumination optical system in which light emitted from the light source enters and enters the modulation element; A modulation element that modulates light according to a video signal; A projection optical system that projects light from the modulation element onto a screen; A video display device comprising: ⁇ Appendix 22> The optical device according to any one of appendices 16 to 18, An illumination optical system in which light emitted from the light source enters and enters the modulation element; A modulation element that modulates light according to a video signal; A projection optical system that projects light from the modulation element onto a screen; A video display device comprising: ⁇ Appendix 23> The video display device according to any one of appendices 19 to 22, wherein the modulation element is a liquid crystal cell.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Projection Apparatus (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 偏光素子と、偏光素子に密着して配置され、かつ、光学軸が厚み方向から30°以内の一軸性結晶基板である結晶基板と、を備え、結晶基板は、当該結晶基板に入射した光の偏光状態と、当該結晶基板を出射する際の偏光状態とが、所定範囲内で一致する厚みに設定されていることを特徴とする。

Description

光学素子、光学装置及び映像表示装置
 本発明は、光の偏光状態を変換する光学素子、光学装置及び映像表示装置に関する。
 プロジェクタは、光源と、光源からの出射光が入射される照明光学系と、照明光学系からの光を映像信号に応じて変調して出射する変調素子と、変調素子からの光をスクリーンに投射する投射光学系とを備えている。プロジェクタでは、変調素子として液晶パネル等の偏光依存性を有する素子が使用される場合がある。
 液晶パネルは、液晶セルとその前後に配置された偏光子とを備えている。液晶セルの前に配置された偏光子は、光源から出射した光を特定の偏光状態にし、液晶セルは入射した光の偏光状態を別の偏光状態に変換する。そして、液晶セルの後に配置した偏光子は、液晶セルを透過した光のうち、特定の偏光のみを透過させる。
 偏光子としては、透過軸方向以外の方向の偏光を吸収する吸収型偏光子や、透過軸方向以外の方向の偏光を反射する反射型偏光子が挙げられる。いずれの偏光子においても、透過軸方向に振動する直線偏光が出射される。
 しかしながら、吸収型偏光子では、透過軸方向以外の方向の偏光は、偏光子の内部で吸収され、発熱する。また、反射型偏光子でも、僅かでも光の吸収が生じると発熱する。発熱により偏光子の温度が上昇すると、透過方向透過率の低下、吸収(または反射)方向透過率の上昇、ヘイズの上昇といった偏光子の特性劣化が生じる。偏光子の特性劣化は、プロジェクタのコントラスト低下や輝度低下、色ずれを引き起こす要因となる。
 そこで、偏光子の放熱効果を高めるために、熱伝導率の高い水晶基板やサファイア基板といった結晶基板を冷却板として用いた光学素子が提案されている(特許文献1~3参照)。
 水晶基板やサファイア基板は、1つの光学軸を有する一軸性結晶基板である。そこで、特許文献1及び特許文献2では、光が結晶基板に入射する前後で偏光状態を変化させないようにするために、直線偏光の偏光方向と基板の光学軸とを平行又は垂直に位置合わせする提案を行っている。即ち、偏光子の透過軸方位と結晶基板の光学軸方位とが平行又は直交となるように正確に位置合わせする。
 一方、特許文献3は、位置合わせの必要性を回避するために、位相差が同じ2つの結晶基板の光学軸を直交させて使用する方法が提案されている。
特許第3443549号公報 特許第3979106号公報 特許第4082135号公報
 しかしながら、特許文献1及び特許文献2の提案では、偏光子の透過軸方位と結晶基板の光学軸方位とが平行又は直交した位置からずれた場合、結晶基板内で、偏光状態の変化が発生してしまう。偏光状態の変化により、液晶パネルの特性低下が生じて、プロジェクタから投影される映像のコントラスト低下や輝度低下、色ずれ等が発生するという課題があった。
 一方、特許文献3の提案では、2つの結晶基板の光学軸を直交させた偏光子では、その偏光特性に大きな角度依存性が生じ、斜入射時には偏光状態が変化するという課題があった。
 そこで、結晶基板を偏光子に密着させて放熱効果を高めた光学素子において、正確な位置合わせが必要であるという課題と結晶基板で偏光状態が変化するという課題とを同時に解決する方法が求められていた。
 このような課題は、ポリマー波長板といった位相差板の放熱効果を高めるために、位相差板と結晶基板とを、光学軸同士が平行又は直交するように密着させる場合も同様である。
 そこで、本発明は、位置合わせが不要で偏光状態が変化しない結晶基板を用いて、偏光子の放熱効果を高めた光学素子、光学装置及び映像表示装置を提供することを目的とする。
 上記の課題を解決するために、光学素子にかかる発明は、偏光素子と、偏光素子に密着して配置され、かつ、光学軸が厚み方向から30°以内の一軸性結晶基板である結晶基板と、を備え、結晶基板は、当該結晶基板に入射した光の偏光状態と、当該結晶基板を出射する際の偏光状態とが、所定範囲内で一致する厚みに設定されていることを特徴とする。
 また、光学装置は、上記光学素子と、光学素子に風を送風する冷却ファン、結晶基板に密着して設けられたヒートシンク、光学素子に向けて光を発光する光源、の少なくとも1つを備えることを特徴とする。
 さらに、映像表示装置は、上記光学素子と、光を映像信号に応じて変調して出射する変調素子と、を備えることを特徴とする。
 本発明によれば、位置合わせが不要で偏光状態が変化しない結晶基板を用いて、偏光子の放熱効果を高めたので、例えばプロジェクタから投影される映像のコントラスト低下や輝度低下、色ずれを抑制することができるようになる。
本発明の第1の実施形態の光学素子の構成を模式的に示す斜視図である。 光学素子に対する光の角度を定義する斜視図である。 偏光素子単独の透過偏光方向透過率の角度依存性のシミュレーション結果を示す図である。 本発明の第1の実施形態にかかる実施例の結果で、(a)は第1実施モデルのシミュレーション結果、(b)は第2実施モデルとのシミュレーション結果を示す図である。 本発明の第1の実施形態にかかる実施例の結果で、(a)は第1比較モデルのシミュレーション結果、(b)は第2比較モデルとのシミュレーション結果を示す図である。 本発明の第1の実施形態にかかる実施例の結果で、(a)は第3比較モデルのシミュレーション結果、(b)は第4比較モデルとのシミュレーション結果を示す図である。 本発明の第2の実施形態の光学素子の構成を模式的に示す斜視図である。 発明の第2の実施形態の原理を示す断面図である。 発明の第2の実施形態の実施例の結果で、(a)は第3実施モデルのシミュレーション結果、(b)は第4実施モデルとのシミュレーション結果を示す図である。 本発明の第3の実施形態の光学装置の構成を示す斜視図である。 本発明の第4の実施形態の光学装置の構成を示す斜視図である。 本発明の第4の実施形態の別な光学装置の構成を示す斜視図である。 本発明の第4の実施形態の別な光学装置の構成を示す斜視図である。 本発明の第5の実施形態の光学装置の構成を示す斜視図である。 本発明の第5の実施形態の別な光学装置の構成を示す斜視図である。 本発明の第5の実施形態の別な光学装置の構成を示す斜視図である。 本発明の第6の実施形態の映像表示装置の構成を示す斜視図である。 本発明の第6の実施形態の別な映像表示装置の構成を示す斜視図である。 本発明の第6の実施形態の別な映像表示装置の構成を示す斜視図である。 本発明の第7の実施形態の映像表示装置の構成を示す斜視図である。 本発明の第7の実施形態の別な映像表示装置の構成を示す斜視図である。
 (第1の実施形態)
 本発明の第1の実施形態を説明する。図1は、本実施形態の光学素子2Aの構成を示す斜視図である。光学素子2Aは、偏光素子10と、この偏光素子10に密着して配置された結晶基板11とを含んでいる。
 偏光素子10は、例えば、偏光子や位相差板である。偏光素子10の光学軸50は、この偏光素子10が偏光子により形成されている場合は透過軸、位相差板により形成されている場合は光学軸である。
 偏光子として、例えば、ポリビニルアルコールを主体に、ヨウ素化合物分子を吸着配向させて作製された吸収型偏光子、等方性フィルムと異方性フィルムとを多層積層させた多層フィルム反射型偏光子、金属をグリッド状に配置したワイヤグリッド偏光子、無機の構造多層膜で形成されたフォトニック構造のフォトニック結晶偏光子等が挙げられる。位相差板として、ポリマー製波長板、水晶製波長板、フォトニック結晶波長板等が挙げられる。
 結晶基板11は、光学軸51が厚み方向から30°以内、より好ましくは5°以内の一軸性結晶基板である。
この結晶基板11として、5W/(m・K)以上の熱伝導率を有し、可視光波長領域で透明なものが好ましい。このような結晶基板として、例えば水晶やサファイアが挙げられる。
 光学素子2Aに入射させる光の入射方向は、用途に合わせて適宜設定することが好ましい。より好ましくは、偏光度の高い偏光状態が求められる方向に、偏光子を配置した設定とする。例えば、液晶セルの入射前後で偏光素子として使用する場合、入射側では結晶基板11側から、出射側では偏光素子10側から光を入射させることが好ましい。偏光素子10として反射型偏光子を用いて、偏光を再利用することにより特定の偏光を取り出す場合、光源側に偏光素子10を設けることが好ましい。
 次に、このような構成の光学素子2Aの動作について説明する。図2は、xyz軸と、光の進行方向Dと、入射角度(方位角φと極角θ)を定義した図である。結晶基板11や偏光素子10の面はxy面内であり、厚み方向はz軸方向である。方位角φは進行方向Dをxy面内に投影した際の、投影線とx軸とのなす角であり、極角θは進行方向Dとz軸とのなす角である。
 結晶基板11の光学軸51が厚み方向であることから、垂直入射(θ=0)のとき、結晶基板11内で位相差は生じない。従って、結晶基板11への入射前後で偏光状態は変化しない。
 一方、斜入射(θ=θ)の場合、結晶基板11の屈折率楕円体の長軸方向屈折率をns//、短軸方向屈折率をns⊥、厚みをdとしたとき、
Figure JPOXMLDOC01-appb-I000001
に示す位相差δが生じる。
 入射直線偏光の偏光方位と結晶基板11の光学軸51の方位とが平行又は直交のとき、偏光状態は変化しない。しかし、入射直線偏光の偏光方位と結晶基板11の光学軸51の方位とが非平行又は非直交のときは、位相差δの影響を受けて偏光状態が変化する。特に、入射直線偏光の偏光方位と結晶基板11の光学軸51の方位とが45°傾いたとき、偏光状態の変化は最大となる。
 しかしながら、光の入射角θは、位相差δの小さい範囲内であれば、入射前後で偏光状態は、ほぼ同じになる。また、入射角θが大きくなるにつれて位相差δは大きくなるが、厚みdを小さくすることで、位相差δの変化量は抑えられる。
 光学軸51が厚み方向からずれた場合、式1と異なる位相差が生じる。この結果、入射直線偏光の偏光方位と結晶基板11の光学軸51の方位に依存して、偏光状態が変化する。しかし、光学軸の厚み方向からのずれが30°以内であれば、位相差δは小さく、光学軸方位と入射光の偏光方向によらず、偏光状態の変化を低減することができる。光学軸51は、厚み方向に近い程、偏光状態の変化を抑制することができ、好ましくは厚み方向から5°以内である。
 (実施例)
 次に、実施例を説明する。本実施例では、後述する第1実施モデル~第2実施モデル、第1比較モデル~第4比較モデルの光学素子を用いて、その偏光状態に関するシミュレーションを行った。
 (第1実施モデル): 第1実施モデルの光学素子は、偏光素子10として透過軸方位が90°のPVA(PolyVinyl Alcohol)吸収型偏光子、結晶基板11として光学軸51が厚み方向のサファイア基板(屈折率:ns//=1.7637,ns⊥=1.7718、厚み:d=35μm)を用いた。
 (第2実施モデル): 第2実施モデルの光学素子は、第1実施モデルの光学素子において、結晶基板11の方位を20°だけ回転させて構成した。
 (第1比較モデル): 第1比較モデルの光学素子は、偏光素子10として透過軸方位が90°のPVA吸収型偏光子、結晶基板11として光学軸がxy面内で方位0°のサファイア基板(厚み:d=300μm)を用いて構成した。
 (第2比較モデル): 第2比較モデルの光学素子は、第1比較モデルの光学素子において、結晶基板11の方位を20°だけ回転させた。
 (第3比較モデル): 第3比較モデルの光学素子は、偏光素子10として透過軸方位が90°のPVA吸収型偏光子、結晶基板11として光学軸がxy面内で、方位0°及び90°の直交させた2枚のサファイア基板(厚み:d=300μm)を用いた。即ち、結晶基板11は2枚用いた。
 (第4比較モデル): 第4比較モデルの光学素子は、第3比較モデルの光学素子において、2枚の結晶基板11の方位を20°だけ回転させた。
 そして、各モデルの光学素子2Aの透過偏光方向における透過率の角度依存性を、拡張ジョーンズ行列計算法を用いてシミュレーションした。なお、光源は偏光素子10側に配置した。
 図3は、偏光素子10の直後における透過偏光方向の透過率を示した図である。また、図4(a)は第1実施モデルの透過偏光方向の透過率、図4(b)は第2実施モデルの透過偏光方向の透過率を示した図である。
 図5(a)は第1比較モデルの透過偏光方向の透過率、図4(b)は第2比較モデルの透過偏光方向の透過率を示した図である。また、図6(a)は第3比較モデルの透過偏光方向の透過率、図6(b)は第4比較モデルの透過偏光方向の透過率を示した図である。
 図4の結果から、サファイア基板の直後における偏光方向透過光の強度は、角度依存性を持つものの、ある入射角範囲(およそ50°)内では、高い透過光強度が得られた。また、方位を回転させても特性が変化しないことから、位置合わせが必要ないことが判明した。
 図5の結果から、方位を変えると透過率が大きく低下することが判明した。
 図6の結果から、限られた入射極角(およそ20°)範囲内では方位角を変えても高い透過率が得られるが、それ以外の入射極角では方位を変えたときの角度依存性が大きいことが判明した。
 以上から、本実施形態にかかる光学素子は、偏光素子の軸方位と結晶基板の光学軸方位との位置合わせが不要で、偏光状態の変化がほぼ生じない結晶基板を用いて、偏光素子の放熱効果を高めることができる。
 なお、上記説明では、偏光素子の片方の面のみに結晶基板を密着配置する構成を示したが、偏光素子の両面に結晶基板を密着して配置しても良い。即ち、結晶基板と、この結晶基板と別の結晶基板(第2の結晶基板)を設けて、これらにより偏光素子を挟むようにしてもよい。これによりさらに放熱効果を高めることができる。
 (第2の実施形態)
 次に、本発明の第2の実施形態を説明する。なお、第1の実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。図7は、本実施形態の光学素子2Bの構成を示す斜視図である。
 光学素子2Bは、偏光素子10と、この偏光素子10に密着して配置された結晶基板11と、結晶基板11の偏光素子10と反対側に配置された光学補償媒体12とを含んでいる。なお、偏光素子10と結晶基板11とにより第1の実施形態にかかる光学素子2Aが構成されている。この結晶基板11は、光学軸が厚み方向から30°以内の一軸性結晶基板である。
 光学補償媒体12は、光学軸52が厚み方向から30°以内、好ましくは5°以内の異方性媒体である。この光学補償媒体12として、例えば水晶やサファイア等の結晶、ポリカーボネートのような異方性フィルム、フォトニック結晶といった微細構造偏光素子が利用できる。
 結晶基板11の屈折率と光学補償媒体12の屈折率(屈折率楕円体の長軸方向屈折率nc//、短軸方向屈折率nc⊥)について、結晶基板11の屈折率異方性が正(ポジティブ、ns//>ns⊥)、かつ、光学補償媒体12の屈折率異方性が負(ネガティブ、nc//<nc⊥)であることが好ましい。または、結晶基板11の屈折率異方性が負(ns//<ns⊥)かつ光学補償媒体12の屈折率異方性が正(nc//>nc⊥)であることが好ましい。例えば、サファイアの屈折率異方性は負、水晶の屈折率異方性は正である。
 さらに、結晶基板11の位相差と光学補償媒体12の位相差との和が0となるときの、当該光学補償媒体12の厚みdは、
で表されるので、式2の値の30%以内の値に光学補償媒体12の厚みを設定することが好ましい。さらに好ましくは、5%以内の値である。無論、光学素子2Bの光を入射させる方向は、用途に合わせて適宜設定することが可能である。
 次に、上記構成の光学素子2Bの動作について説明する。図8(a)は、光学補償媒体12による偏光状態の変化を示した図であり、図8(a)は、結晶基板11による偏光状態の変化を示した図である。
 結晶基板11の光学軸51と光学補償媒体12の光学軸52とが、共にほぼ厚み方向であることから、垂直入射(θ=0)のとき、位相差は生じない。従って、結晶基板11及び光学補償媒体12への入射前後で偏光状態は変化しない。
 一方、斜入射(θ=θ)のとき、結晶基板11では位相差δが生じる。また、光学補償媒体12では位相差δが生じる。従って、位相差δと位相差δとを相殺させることで、全体の位相差δを小さくすることができる。
 結晶基板11の屈折率と光学補償媒体12の屈折率とについて、結晶基板11の屈折率異方性が正、かつ、光学補償媒体12の屈折率異方性が負、又は、結晶基板11の屈折率異方性が負、かつ、光学補償媒体12の屈折率異方性が正とすることで、全体の位相差δを小さくすることができる。
 また、光学補償媒体12の厚みdを、入射角90°の全体の位相差δが0となる条件から算出した式2で表される値とすることで、全ての入射角で位相差δを極めて小さくすることができる。
 光学軸52は、厚み方向に近い程、偏光状態の変化を抑制することができ、好ましくは厚み方向から5°以内である。これに対し、光学軸52が厚み方向からずれると、位相差は変化する。この結果、入射直線偏光の偏光方位と結晶基板11の光学軸方位に依存して、偏光状態が変化する。しかし、光学軸52の厚み方向からのずれが30°以内であれば、位相差δは小さく、光学軸方位と入射光の偏光方向によらず、偏光状態の変化を低減することができる。
 次に、実施例を説明する。本実施例では、後述する第3実施モデル~第4実施モデルを用いて、その偏光状態に関するシミュレーションを行った。
 (第3実施モデル): 第3実施モデルの光学素子は、偏光素子10として透過軸方位が90°のPVA吸収型偏光子、結晶基板11として光学軸が厚み方向のサファイア基板(屈折率:ns//=1.7637,ns⊥=1.7718、厚み:d=300μm)、光学補償媒体12として、光学軸52が厚み方向の水晶(屈折率:nc//=1.5562,nc⊥=1.5470、厚み:dc=190.7μm)を用いた。
 (第4実施モデル): 第4実施モデルの光学素子は、偏光素子10として透過軸方位が90°のPVA吸収型偏光子、結晶基板11として光学軸が極角30°、方位角15°のサファイア基板(厚み:d=300μm)、光学補償媒体12として光学軸52が極角30°、方位角15°の水晶(厚み:d=230.7μm)を用いた。
 そして、各モデルの偏光素子10の透過偏光方向における透過率の角度依存性を、拡張ジョーンズ行列計算法を用いてシミュレーションした。なお、光源は偏光素子10側に配置した。
 図9(a)は第3実施モデルのシミュレーション結果を示した図、図9(b)は第4実施モデルのシミュレーション結果を示した図である。
 図9(a)から、偏光素子10の直後における偏光状態と光学補償媒体12の直後における偏光状態とがほぼ等しい結果が得られた。また、図9(b)から、光学軸が傾いたとき、角度依存性は異なるものの、高い透過率が得られた。本実施形態の光学素子は、第1の実施形態の光学素子に対して光学補償媒体が追設される必要があるが、角度依存性を抑制できることが示された。
 以上から、本構成の光学素子によれば、偏光素子の軸方位と結晶基板の光学軸方位との位置合わせが不要で、偏光状態の変化がほぼ生じない結晶基板を用いて、偏光素子の放熱効果を高めることができた。また、第1の実施形態に比べて光学補償媒体が必要であるが、角度依存性を抑制することができた。
 なお、偏光素子10の両面に結晶基板11を密着して配置し、光学補償媒体12を結晶基板11の偏光素子10と反対側に、片側だけもしくは両側の位置に配置した構成としても良い。これによりさらに放熱効果を高めることができる。
 (第3の実施形態)
 次に、本発明の第3の実施形態を説明する。なお、上述した各実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。
 図10は、本実施形態の光学装置3Aの構成を示す斜視図である。光学装置3Aは、第1の実施形態にかかる光学素子2Aに冷却ファン13が追設された構成となっている。
 このように冷却ファン13を設けて、結晶基板11及び偏光素子10に風を送風することにより、極めて効率良く、結晶基板11及び偏光素子10の熱を放散することができる。即ち、偏光素子の軸方位と結晶基板の光学軸方位との位置合わせが不要で、偏光状態がほぼ変化しない結晶基板を用いて、偏光素子の放熱効果を高めることができることが可能になる。
 なお、結晶基板11の偏光素子10と反対側に光学補償媒体を配置しても良い。
 (第4の実施形態)
 次に、本発明の第4の実施形態を説明する。なお、上述した実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。
 図11は、本実施形態の光学装置3Bの構成を示す斜視図である。この光学装置3Bは、第1の実施形態にかかる光学素子2Aにヒートシンク14を追設して、光学素子2Aの放熱を効率的に行えるようにした。
 即ち、光学装置3Bは、光学素子2Aにおける結晶基板11の面(偏光素子10と反対側の面)に密着させたヒートシンク14を備える。このヒートシンク14として、アルミニウムや銅等の熱伝導率が高い金属材料が挙げられる。
 これにより、ヒートシンク14が結晶基板11の熱を効率良く放散するので、結晶基板11及び偏光素子10の温度を効率的に下げることができる。
 なお、上記説明では、ヒートシンク14は偏光素子10と反対側の結晶基板11の面に密着させたが、この構成に限定するものではない。例えば、図12に示す光学装置3Cのように結晶基板11の偏光素子10側の面に密着させても良く、さらには図13に示す光学装置3Dのように結晶基板11の側面に密着させても良い。また、金属と結晶基板との間に熱伝導シートもしくは熱伝導ジェルを挟んでも良い。
 また、光学装置3A~3Dにおいては、結晶基板11の偏光素子10と反対側に光学補償媒体12を配置しても良い。即ち、結晶基板11が偏光素子10と光学補償媒体12とで挟まれるように、この光学補償媒体12を配置しても良い。さらに冷却ファン13を設置しても良い。冷却ファン13を設置した場合、送風により、極めて効率良く、光学素子の熱を放散することができる。
 (第5の実施形態)
 次に、本発明の第5の実施形態を説明する。なお、上述した各実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。本実施形態にかかる光学装置は、上述した光学素子2A~2B、光学装置3A~3Dのいずれか1つに光源ユニットを追設した構成に関する。以下の説明では、光学素子2Aを用いた場合について説明するが、これに限定するものではない。このとき、光学素子2Aにおける偏光素子10は、特に偏光子を用いる。
 図14は、本実施形態にかかる光学装置3Eの構成を示す斜視図である。この光学装置3Eは、光源20と光学素子2Aで構成される。
 この光源20として、例えば、LED(Light Emitting Diode)や冷陰極管、有機EL、無機EL、高圧水銀ランプ、メタルハライドランプ、これらの光源と導光板とを組み合わせたものが挙げられる。このとき、光源20から出射された光は、ランダム偏光であり、可視光であるとする。
 光学素子2Aは、特定の偏光のみ透過させることができるように設定されているとする。例えば、偏光素子10が反射型偏光子の場合、光学素子2Aで反射された偏光が光源20で反射されることで、偏光を再利用しながら特定の偏光のみを取り出すことができる。
 光学素子2Aは、先に説明したように高い放熱効果を持つように構成されているので、強い光を出射する光源20を用いることが可能である。
 また、光学素子2Aに光を入射させる際の入射方向は特に限定されないが、偏光再利用の効果及び、放熱効果を向上させるために、入射側に偏光素子10が位置していることが好ましい。
 このような光学装置3Eの具体例として、有機EL等の面型光源と、反射型偏光子の偏光素子10と、結晶基板11とを、全て密着させる。各要素間を全て密着することで、表面反射を起す回数が少なくなり、効率的に特定の偏光を取り出すことができる。
 なお、本実施形態は、上述した構成に限定されない。例えば、図15、図16に示すような光学装置3F、3Gでもよい。
 図15に示す光学装置3Fは、光源20と、光学素子2Aと、この光学素子2Aと別の光学素子(第2の光学素子)21と、を含んでいる。そして、第2の光学素子21は、光源20と光学素子2Aとで挟まれた構成となっている。
 このような第2の光学素子21として、位相差板や、偏光解消素子、拡散素子、これらの組み合わせを用いることができる。
 偏光素子10として反射型偏光子を用いた場合、光学素子2Aで反射された偏光は、第2の光学素子21で偏光状態や光の角度が変換され、光源20で光を反射される。従って、この光源20で光を反射された偏光は、第2の光学素子21を透過して光学素子2Aに入射するので、偏光の再利用効率を高めながら、特定の偏光を取り出すことが可能になる。
 構成例として、有機EL等の面型光源と、位相差板と、偏光素子と、結晶基板とを、密着配置させて使用することができる。このとき、表面反射の回数を減らすことができることから、特定の偏光を効率的に取り出すことができる。
 また、図16に示す光学装置3Gは、光源20と、テーパロッド22と、光学素子2Aと、を含んでいる。
 テーパロッド22は、テーパ状に形成された導光体であり、面積の小さく指向性の低い光から、より面積の大きく指向性の高い照明光を得ることができる。
 光学素子2Aは、テーパロッド22と密着させて使用する場合、放熱効果と偏光変換効率を高めるために、出射側に結晶基板11があることが好ましい。例えば、テーパロッド22と、反射型偏光子の偏光素子10と、結晶基板11とを、密着配置させて使用することができる。そして、テーパロッド22側から光を入射させることで、指向性の高い特定の偏光を効率的に光学素子2Aに入射させることができる。
 なお、テーパロッド22は、テーパ形状を有していなくても良い。また、光源20とテーパロッド22の間、もしくはテーパロッド22と光学素子2Aの間に、第2の光学素子21を配置しても良い。さらに、結晶基板11の偏光素子10と反対側に光学補償媒体12を配置しても良い。即ち、結晶基板11は偏光素子10と光学補償媒体12とで挟まれるように配置しても良い。
 (第6の実施形態)
 次に、本発明の第6の実施形態を説明する。なお、上述した実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。図17は、本実施形態の映像表示装置4Aの構成を示す斜視図である。この映像表示装置4Aは、上述した光学素子や光学装置を用いて構成されている。なお、図17では、映像表示装置4Aとして液晶表示装置を用いた場合を示している。
 即ち、映像表示装置4Aは、光源20と、液晶パネル32Aと、で構成される。液晶パネル32Aは、入射側に配置された光学素子2Aと、出射側に配置した光学素子2Aと、これらの光学素子2Aの間に配置された液晶セル33とで構成される。なお、光学素子2Aにおける偏光素子10は、偏光子とする。光源20と液晶パネル32Aとの間に、拡散素子やレンズといった別の光学素子を配置してもよい。
 このような構成で、入射側の光学素子2Aは、入射した光を偏光子透過軸方向の成分のみの直線偏光として出射する。入射側の光学素子2Aから出射された偏光は、液晶セル33において映像信号に応じて位相が変調されることにより、偏光状態が変化する。
 そして、液晶セル33からの偏光は出射側の光学素子2Aに入射する。入射した偏光のうち、偏光子透過軸方向成分のみが出射側の光学素子2Aから出射される。これにより、映像信号に応じた映像が表示できる。
 なお、本実施形態は、上述した構成に限定されない。例えば、図18や図19に示す構成が可能である。図18に示す映像表示装置4Bは、光源20と、液晶パネル32Bと、で構成される。液晶パネル32Bは、入射側に配置した偏光素子10と、出射側に配置した光学素子2Aと、液晶セル33と、で構成される。光学素子2Aにおける偏光素子10は、偏光子とする。
 また、図19に示す映像表示装置4Cは、光源20と、液晶パネル32Cと、で構成される。液晶パネル32Cは、入射側に配置した光学素子2Aと、出射側に配置した偏光素子10と、液晶セル33と、で構成される。光学素子2Aにおける偏光素子10は、偏光子とする。
 このような構成の映像表示装置4B,4Cでは、放熱効果の高い光学素子を用いているので、コントラスト低下や輝度低下、色ずれを抑制することができる。
 (第7の実施形態)
 次に、本発明の第7の実施形態を説明する。なお、上述した実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。図20は、本実施形態の映像表示装置5Aの構成を示す斜視図である。なお、図20に示す映像表示装置5Aは、光をスクリーンに投射してスクリーン上に映像を形成するプロジェクタを示している。
 この映像表示装置5Aは、光源20R、20G及び20Bと、照明光学系41R、41G及び41Bと、光学素子2Aと、液晶セル33R、33G及び33Bと、クロスダイクロイックプリズム43と、投射光学系44とを備える。なお、光学素子2Aは、光源20R、20G及び20B側に、液晶セル33R、33G及び33Bを挟むように2つ設けられている。この光学素子2Aは、先に説明した光学素子2Bでもよい。また、光学装置3A~3Dのいずれでも良い。以下、光学素子2Aとし、その偏光素子10は、偏光子とする。
 光源20R、20G及び20Bは、それぞれ波長が異なる光を発生する。例えば、光源20Rから赤色(R)光が出射され、光源20Gから緑色(G)光が出射され、光源20Bから青色(B)光が出射されるものとする。
 照明光学系41R、41G及び41Bは、それぞれ光源20R、20G及び20Bから出射された各色の光を、入射側の光学素子2Aに導いて入射させる。
 入射側の光学素子2Aを透過した各色の直線偏光は、液晶セル33R、33G及び33Bのそれぞれに入射する。そして、液晶セル33R、33G、33Bは、入射した各色光を映像信号に応じて変調して出射する。
 液晶セル33R、33G、33Bを透過した偏光は、出射側の光学素子2Aで変調された光のうち特定の偏光方向の光のみ透過する。
 光学素子2Aから出射された各変調光は、クロスダイクロイックプリズム43で合成されて、投射光学系44に入射する。
 投射光学系44は、クロスダイクロイックプリズム43から出射された合成光をスクリーンSに投射して、スクリーンS上に映像信号に応じた映像を表示する。
 なお、本実施形態は、上述した構成に限定されない。例えば、図21に示す構成でも良い。図21に示す映像表示装置5Bは、光源20R、20G及び20Bと、照明光学系42と、液晶パネル35と、光学素子2Aと、投射光学系44とを有する。この場合の光学素子2Aは、液晶パネル35を挟んで入射側と出射側とで2つ設けられている。
 このような構成で、照明光学系42は、光源20R、20G及び20Bから発生した各色光を合成して、入射側の光学素子2Aに出射する。入射側の光学素子2Aを透過した直線偏光は、液晶セル33に入射する。
 そして、液晶セル33は、入射された合成光を映像信号に応じて変調して出射する。液晶セルを透過した光は、光学素子2Aで変調された光のうち特定の偏光方向の光のみ透過する。
 投射光学系44は、光学素子2Aから出射された変調光をスクリーンSに投射して、スクリーンS上に映像信号に応じた映像を表示する。
  以上説明した構成により、光学素子の放熱効果を向上させた上で、映像表示装置のコントラスト低下や、輝度低下、色ずれを抑えることができる。
 なお、光学素子は、液晶セルの入射前後以外の位置に適宜配置して良い。例えば、光源と照明光学系の間、あるいは照明光学系内、光源と照明光学系の間、あるいは投射光学系内でも良い。
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。例えば、上記実施の形態における数値、材質等は例示的なものであり、適宜変更して実施することが可能である。
 上記実施の形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
<付記1>
 偏光素子と、
 前記偏光素子に密着して配置され、かつ、光学軸が厚み方向から30°以内の一軸性結晶基板である結晶基板と、を備え、前記結晶基板は、特定の入射角度範囲内で、当該結晶基板に入射した光の偏光状態と、当該結晶基板を出射する際の偏光状態とが所定範囲内で一致する厚みに設定されていることを特徴とする光学素子。
<付記2>
 前記結晶基板は、光学軸が当該結晶基板の厚み方向から5°以内の一軸性結晶基板であることを特徴とする付記1に記載の光学素子。
<付記3>
 前記結晶基板が、5W/(m・K)より大きな値の熱伝導率を有することを特徴とする付記1又は2に記載の光学素子。
<付記4>
 前記結晶基板が、サファイアであることを特徴とする付記1乃至3に記載の光学素子。
<付記5>
 前記結晶基板が、水晶であることを特徴とする付記1乃至3のいずれか1項に記載の光学素子。
<付記6>
 前記偏光素子の、前記結晶基板の反対側の面に密着して、当該偏光素子を前記結晶基板とで挟むように設けられた第2の結晶基板を備えることを特徴とする付記1乃至5のいずれか1項に記載の光学素子。
<付記7>
 前記第2の結晶基板の光学軸が、前記偏光素子の軸とほぼ平行又はほぼ直交、又は厚み方向にほぼ等しいことを特徴とする付記6に記載の光学素子。
<付記8>
 前記結晶基板の、前記偏光素子の反対側に配置されて、当該結晶基板を前記偏光素子とで挟む位置に設けられた光学補償媒体を備え、
 前記光学補償媒体の光学軸が、当該光学補償媒体の厚み方向から30°以内の異方性媒体であることを特徴とする付記1乃至7のいずれか1項に記載の光学素子。
<付記9>
 前記光学補償媒体の光学軸が、当該光学補償媒体の厚み方向から5°以内の異方性媒体であることを特徴とする付記8に記載の光学素子。
<付記10>
 前記結晶基板の屈折率異方性の正負符号と、光学補償媒体の屈折率異方性の正負符号とが、逆であることを特徴とする付記8又は9に記載の光学素子
<付記11>
 前記結晶基板の屈折率異方性が正で、前記光学補償媒体の屈折率異方性が負であることを特徴とする付記8乃至10のいずれか1項に記載の光学素子。
<付記12>
 前記結晶基板の屈折率異方性が負で、前記光学補償媒体の屈折率異方性が正であることを特徴とする付記8乃至10のいずれか1項に記載の光学素子。
<付記13>
 前記結晶基板の長軸方向の屈折率がns//、短軸方向の屈折率がns⊥、厚みがdであり、前記光学補償媒体の長軸方向の屈折率がnc//、短軸方向の屈折率がnc⊥のとき、前記光学補償媒体の厚みdは、入射時の、前記結晶基板の位相差と前記光学補償媒体の位相差の和が0になる
Figure JPOXMLDOC01-appb-I000003
で得られる値の±30%の範囲に設定したことを特徴とする付記8乃至12のいずれか1項に記載の光学素子。
<付記14>
 前記偏光素子が、偏光子であることを特徴とする付記1乃至13のいずれか1項に記載の光学素子。
<付記15>
 前記偏光素子が、波長板であることを特徴とする付記1乃至13のいずれか1項に記載の光学素子。
<付記16>
 付記1乃至15のいずれか1項に記載の光学素子と、
 前記光学素子に風を送風する冷却ファン、前記結晶基板に密着して設けられたヒートシンク、前記光学素子に向けて光を発光する光源、の少なくとも1つを備えることを特徴とする光学装置。
<付記17>
 前記光源と前記光学素子との間に、該光学素子と別の光学素子を第2の光学素子として設けたことを特徴とする付記16に記載の光学装置。
<付記18>
 前記第2の光学素子が、特定の入射角範囲に入射した光のみを透過させ、それ以外の光を反射させる角度制御フィルタ、偏光状態を維持したまま光を拡散させる拡散素子、あるいは、これらを組み合わせた構成、であることを特徴とする付記17に記載の光学装置。
<付記19>
 付記1乃至15のいずれか1項に記載の光学素子と、
 光を映像信号に応じて変調して出射する変調素子と、を備えることを特徴とする映像表示装置。
<付記20>
 付記16乃至18のいずれか1項に記載の光学装置と、
 光を映像信号に応じて変調して出射する変調素子と、を備えることを特徴とする映像表示装置。
<付記21>
 付記1乃至15のいずれか1項に記載の光学素子と、
 光源からの出射光が入射し、変調素子に入射させる照明光学系と、
 光を映像信号に応じて変調させる変調素子と、
 前記変調素子からの光をスクリーンに投射する投射光学系と、
を備えることを特徴とする映像表示装置。
<付記22>
 付記16乃至18のいずれか1項に記載の光学装置と、
 光源からの出射光が入射し、変調素子に入射させる照明光学系と、
 光を映像信号に応じて変調させる変調素子と、
 前記変調素子からの光をスクリーンに投射する投射光学系と、
を備えることを特徴とする映像表示装置。
<付記23>
 前記変調素子は、液晶セルであることを特徴とする付記19乃至22のいずれか1項に記載の映像表示装置。
この出願は、2012年8月14日に出願された日本出願特願2012-179829を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 2A~2B  光学素子
 3A~3G  光学装置
 4A~4C  映像表示装置
 5A、5B  映像表示装置
 10  偏光素子
 11  結晶基板
 12  光学補償媒体
 13  冷却ファン
 14  ヒートシンク
 20、20R、20G、20B  光源
 21  光学素子
 22  テーパロッド
 32A~32C  液晶パネル
 35  液晶パネル
 33、33R、33G、33B  液晶セル
 41R、41G、41B、42  照明光学系
 43  クロスダイクロイックプリズム
 44  投射光学系

Claims (10)

  1.  偏光素子と、
     前記偏光素子に密着して配置され、かつ、光学軸が厚み方向から30°以内の一軸性結晶基板である結晶基板と、を備え、前記結晶基板は、特定の入射角度範囲内で、当該結晶基板に入射した光の偏光状態と、当該結晶基板を出射する際の偏光状態とが所定範囲内で一致する厚みに設定されていることを特徴とする光学素子。
  2.  前記結晶基板の、前記偏光素子の反対側に配置されて、当該結晶基板を前記偏光素子とで挟む位置に設けられた光学補償媒体を備え、
     前記光学補償媒体の光学軸が、当該光学補償媒体の厚み方向から30°以内の異方性媒体であることを特徴とする請求項1に記載の光学素子。
  3.  前記結晶基板の屈折率異方性の正負符号と、光学補償媒体の屈折率異方性の正負符号とが、逆であることを特徴とする請求項1又は2に記載の光学素子。 
  4.  前記偏光素子の、前記結晶基板の反対側の面に密着して、当該偏光素子を前記結晶基板とで挟むように設けられた第2の結晶基板を備えることを特徴とする請求項1乃至3のいずれか1項に記載の光学素子。
  5.  前記結晶基板が、5W/(m・K)より大きな値の熱伝導率を有することを特徴とする請求項1乃至は4のいずれか1項に記載の光学素子。 
  6.  前記結晶基板は、光学軸が当該結晶基板の厚み方向から5°以内の一軸性結晶基板であることを特徴とする請求項1乃至5のいずれか1項に記載の光学素子。 
  7.  前記光学補償媒体の光学軸が、当該光学補償媒体の厚み方向から5°以内の異方性媒体であることを特徴とする請求項2乃至5のいずれか1項に記載の光学素子。 
  8.  請求項1乃至7のいずれか1項に記載の光学素子と、
     前記光学素子に風を送風する冷却ファン、前記結晶基板に密着して設けられたヒートシンク、前記光学素子に向けて光を発光する光源、の少なくとも1つを備えることを特徴とする光学装置。
  9.  請求項1乃至7のいずれか1項に記載の光学素子と、
     光を映像信号に応じて変調して出射する変調素子と、を備えることを特徴とする映像表示装置。
  10.  請求項1乃至7のいずれか1項に記載の光学素子と、
     光源からの出射光が入射し、変調素子に入射させる照明光学系と、
     光を映像信号に応じて変調させる変調素子と、
     前記変調素子からの光をスクリーンに投射する投射光学系と、
    を備えることを特徴とする映像表示装置。
PCT/JP2013/004828 2012-08-14 2013-08-12 光学素子、光学装置及び映像表示装置 WO2014027459A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014530470A JPWO2014027459A1 (ja) 2012-08-14 2013-08-12 光学素子、光学装置及び映像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012179829 2012-08-14
JP2012-179829 2012-08-14

Publications (1)

Publication Number Publication Date
WO2014027459A1 true WO2014027459A1 (ja) 2014-02-20

Family

ID=50685505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004828 WO2014027459A1 (ja) 2012-08-14 2013-08-12 光学素子、光学装置及び映像表示装置

Country Status (2)

Country Link
JP (1) JPWO2014027459A1 (ja)
WO (1) WO2014027459A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111913247A (zh) * 2019-05-09 2020-11-10 株式会社日本制钢所 波片、波片制造方法以及光学装置
WO2020262616A1 (ja) * 2019-06-28 2020-12-30 デクセリアルズ株式会社 偏光素子、偏光素子の製造方法及びヘッドアップディスプレイ装置
JP2021113968A (ja) * 2019-06-28 2021-08-05 デクセリアルズ株式会社 偏光素子、偏光素子の製造方法及びヘッドアップディスプレイ装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327805B2 (ja) * 1985-07-15 1991-04-17 Foster Wheeler Energy Corp
JP2004029743A (ja) * 2002-04-23 2004-01-29 Nitto Denko Corp 偏光素子、偏光光源およびそれらを用いた画像表示装置
JP2006308617A (ja) * 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd 位相差板の製造方法
JP2009092730A (ja) * 2007-10-04 2009-04-30 Epson Toyocom Corp 偏光変換素子
JP2009229971A (ja) * 2008-03-25 2009-10-08 Sony Corp 画像表示装置および光学補償装置
JP2010140039A (ja) * 2006-04-10 2010-06-24 Epson Toyocom Corp 積層波長板、偏光変換子、偏光照明装置、及び光ピックアップ装置
WO2010095308A1 (ja) * 2009-02-17 2010-08-26 シャープ株式会社 液晶表示装置
JP2012032418A (ja) * 2008-11-19 2012-02-16 Sharp Corp 円偏光板及び表示装置
WO2012090769A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 光学素子、及び、液晶表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027805B2 (ja) * 1996-09-30 2000-04-04 富士通株式会社 液晶表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327805B2 (ja) * 1985-07-15 1991-04-17 Foster Wheeler Energy Corp
JP2004029743A (ja) * 2002-04-23 2004-01-29 Nitto Denko Corp 偏光素子、偏光光源およびそれらを用いた画像表示装置
JP2006308617A (ja) * 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd 位相差板の製造方法
JP2010140039A (ja) * 2006-04-10 2010-06-24 Epson Toyocom Corp 積層波長板、偏光変換子、偏光照明装置、及び光ピックアップ装置
JP2009092730A (ja) * 2007-10-04 2009-04-30 Epson Toyocom Corp 偏光変換素子
JP2009229971A (ja) * 2008-03-25 2009-10-08 Sony Corp 画像表示装置および光学補償装置
JP2012032418A (ja) * 2008-11-19 2012-02-16 Sharp Corp 円偏光板及び表示装置
WO2010095308A1 (ja) * 2009-02-17 2010-08-26 シャープ株式会社 液晶表示装置
WO2012090769A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 光学素子、及び、液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111913247A (zh) * 2019-05-09 2020-11-10 株式会社日本制钢所 波片、波片制造方法以及光学装置
JP2020184037A (ja) * 2019-05-09 2020-11-12 株式会社日本製鋼所 波長板、波長板の製造方法及び光学装置
WO2020262616A1 (ja) * 2019-06-28 2020-12-30 デクセリアルズ株式会社 偏光素子、偏光素子の製造方法及びヘッドアップディスプレイ装置
JP2021113968A (ja) * 2019-06-28 2021-08-05 デクセリアルズ株式会社 偏光素子、偏光素子の製造方法及びヘッドアップディスプレイ装置
JP7240357B2 (ja) 2019-06-28 2023-03-15 デクセリアルズ株式会社 偏光素子、偏光素子の製造方法及びヘッドアップディスプレイ装置

Also Published As

Publication number Publication date
JPWO2014027459A1 (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
US11003066B2 (en) Projection display unit and direct-view display unit
WO2008029555A1 (fr) Système de commande de polarisation et dispositif d'affichage
JP2010123464A (ja) 照明装置、光学シート及び液晶表示装置
JPWO2009101797A1 (ja) 照明装置および液晶表示装置
JP2013235141A (ja) カラー液晶表示装置
JP2010262145A (ja) 映像鑑賞設備
WO2016189871A1 (ja) 光源ユニット及び投影装置
WO2013122214A1 (ja) 光学フィルム
WO2022121344A1 (zh) 显示器件及头戴式显示器
JPWO2019004435A1 (ja) 偏光板、およびそれを用いた画像表示装置ならびに移動体
JP2007101922A (ja) 画像表示装置
WO2014027459A1 (ja) 光学素子、光学装置及び映像表示装置
JP2009031781A (ja) 光学部材の設置構造
JP2007163726A (ja) プロジェクタ及び光学部品
JP2007304586A (ja) 液晶表示装置とその発光効率を向上させる方法
WO2014027458A1 (ja) 偏光素子、光学装置及び映像表示装置
JP2004245914A (ja) 液晶プロジェクタ装置とそれに用いる透明板及び液晶表示パネル
JP2008185768A (ja) 波長板及び光学装置
US7969516B2 (en) Projector
JPWO2019026854A1 (ja) 光学材料、光学部品、及び機器
JP2008304673A (ja) 液晶表示装置
KR20030003687A (ko) 액정 프로젝터
CN101308278A (zh) 液晶显示装置及增加其发光效率的方法
JP2015049442A (ja) 偏光分離素子、照明装置、及びプロジェクター
JP4462239B2 (ja) プロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014530470

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879436

Country of ref document: EP

Kind code of ref document: A1