WO2022121344A1 - 显示器件及头戴式显示器 - Google Patents

显示器件及头戴式显示器 Download PDF

Info

Publication number
WO2022121344A1
WO2022121344A1 PCT/CN2021/111746 CN2021111746W WO2022121344A1 WO 2022121344 A1 WO2022121344 A1 WO 2022121344A1 CN 2021111746 W CN2021111746 W CN 2021111746W WO 2022121344 A1 WO2022121344 A1 WO 2022121344A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation film
quarter
wave plate
phase retardation
display device
Prior art date
Application number
PCT/CN2021/111746
Other languages
English (en)
French (fr)
Inventor
陈益千
王旭
于佳
Original Assignee
深圳惠牛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳惠牛科技有限公司 filed Critical 深圳惠牛科技有限公司
Publication of WO2022121344A1 publication Critical patent/WO2022121344A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view

Definitions

  • the present application relates to the field of display, and in particular, to a display device and a head-mounted display.
  • the virtual information received by the human eye is realized by the optical display device.
  • the imaging quality of the display device is particularly critical.
  • the existing display device is prone to light leakage during display, resulting in a ghost phenomenon, which affects the display effect.
  • the main purpose of this application is to propose a display device, which aims to improve the light leakage of the display device, increase the viewing angle of the display device, and improve the display effect of the display device.
  • the display device proposed in the present application includes a display panel and a polarization converter, and the polarization converter includes an absorbing polarizer, a first quarter-wave plate, a half-wave Transflective mirror, second quarter wave plate and reflective polarizer;
  • the display device further includes a first phase retardation film, a second phase retardation film and a third phase retardation film, wherein the first phase retardation film is arranged between the absorption polarizer and the half mirror.
  • the second phase retardation film is arranged between the half mirror and the reflective polarizer, and the third phase retardation film is arranged between the absorptive polarizer and the reflective polarizer between;
  • the light emitted by the display panel is converted into linearly polarized light after passing through the absorption polarizer, and the linearly polarized light passes through the first quarter-wave plate to form circularly polarized light, and the circularly polarized light is passed through the After the semi-transparent mirror and the second quarter-wave plate, it is converted into the linearly polarized light and then completely reflected by the reflective polarizer without entering the human eye.
  • the third phase retardation film is disposed between the absorption polarizer and the first quarter-wave plate; or, the third phase retardation film is disposed in the reflective polarizer. between the polarizer and the second quarter wave plate.
  • the first retardation film when the third retardation film is provided between the absorption polarizer and the first quarter-wave plate, the first retardation film is provided in the third between the phase retardation film and the first quarter wave plate and the second phase retardation film is arranged between the reflective polarizer and the second quarter wave plate, or, the The first phase retardation film is arranged between the first quarter wave plate and the half mirror and the second phase retardation film is arranged between the second quarter wave plate and the half mirror between the anti-half mirrors.
  • the first retardation film is provided on the absorption type between the polarizer and the first quarter wave plate and the second phase retardation film is arranged between the third phase retardation film and the second quarter wave plate, or, the The first phase retardation film is arranged between the first quarter wave plate and the half mirror and the second phase retardation film is arranged between the second quarter wave plate and the half mirror between the anti-half mirrors.
  • the semi-transparent mirror includes a lens and a semi-transparent beam-splitting film disposed on a surface of the lens close to the first quarter-wave plate, wherein the lens is a plano-convex lens Or a biconvex lens or a meniscus lens.
  • the first retardation film and the second retardation film are positive C-plate films.
  • the in-plane retardation of the first retardation film is 0 nm to 10 nm, and the out-of-plane retardation is -250 nm to -50 nm; the second retardation film has the same characteristics as the first retardation film. The same in-plane retardation and out-of-plane retardation.
  • the third phase retardation film includes at least one B-Plate type retardation film, and the slow axis of the third phase retardation film is parallel to the transmission axis of the reflective polarizer.
  • the in-plane retardation of the B-Plate retardation film is 100 nm to 300 nm, and the out-of-plane retardation is -50 nm to -5 nm.
  • the third phase retardation film includes a composite film formed by a positive A-Plate retardation film and a positive C-Plate retardation film, and the in-plane retardation of the positive A-Plate retardation film is 100 nm to 180 nm, and the slow axis of the third phase retardation film is perpendicular to the transmission axis of the reflective polarizer, and the out-of-plane retardation of the positive C-Plate retardation film is -300 nm to -30 nm.
  • the present application also proposes a head-mounted display including the aforementioned display device.
  • the technical solution of the present application is to use a polarization converter to reflect and absorb polarized light; use a first phase retardation film and a second phase retardation film to compensate the off-axis retardation of the polarization conversion device and improve the light leakage of the polarization conversion device under a large viewing angle
  • the third phase retardation film is used as a viewing angle compensation film to improve the light leakage caused by the non-orthogonal state of geometry between the absorbing polarizer and the reflective polarizer at a large viewing angle, so as to improve the light leakage of the display device in many aspects. , increase the viewing angle of the display device, and improve the display effect of the display device.
  • FIG. 1 is a schematic structural diagram of an embodiment of a display device of the present application.
  • the present application proposes a display device.
  • the display device includes a display panel 100 and a polarization converter 200
  • the polarization converter 200 includes an absorbing polarizer 210 sequentially disposed on the same side of the display panel 100 .
  • a first quarter wave plate 220 a half mirror 230
  • a second quarter wave plate 240 and a reflective polarizer 250 .
  • the optical axes of the first quarter-wave plate 220 and the second quarter-wave plate 240 are orthogonal to each other, and the transmission axis of the absorbing polarizer 210 and the transmission axis of the reflective polarizer 250 are orthogonal to each other. .
  • the display panel 100 is used to display the image information required by the user.
  • the light emitted by the display panel 100 is converted into linearly polarized light after passing through the absorbing polarizer 210 , and the linearly polarized light is passed through the first quarter wave plate 220 .
  • circularly polarized light is formed.
  • the circularly polarized light passes through the half mirror 230 , the circularly polarized light can partially pass through, and the phase of the transmitted part does not change.
  • the transmitted part of the circularly polarized light continues to pass through the second quarter-wave plate 240 , and its phase changes, and is converted into linearly polarized light before passing through the first quarter-wave plate 220 .
  • the linearly polarized light is reflected by the reflective polarizer 250 so as not to enter the human eye, and the problem of light leakage will not occur.
  • the light emitted by the display panel is described as being converted into S-polarized light after passing through the absorbing polarizer 210 ; of course, the light emitted by the display panel can also be converted into P-polarized light after passing through the absorbing polarizer 210 .
  • the S-polarized light continues to pass through the first quarter-wave plate 220, its phase is delayed, and the S-polarized light is converted into left-handed circularly polarized light; when passing through the half mirror 230, the left-handed circularly polarized light can partially transmit However, the phase of the transmitted part does not change; this part of the left-handed polarized light continues to pass through the second quarter-wave plate 240, and the second quarter-wave plate 240 can convert it into S-polarized light; the S-polarized light continues to pass through the second quarter-wave plate 240. Light is completely reflected when it reaches the reflective polarizer.
  • the efficiency of the polarization converter 200 is not ideal due to the change of the incident angle of the light, resulting in light leakage and ghost phenomenon.
  • the geometrical relative relationship between the two polarizers is non-orthogonal when the viewing angle is tilted, resulting in light leakage.
  • the display device of the present application produces light leakage. Also includes:
  • the first phase retardation film 300 , the second phase retardation film 400 and the third phase retardation film 500 are arranged between the absorbing polarizer 210 and the half mirror 230 , the second phase retardation film 400 is arranged between the half mirror 230 and the reflective polarizer 250 , the third The retardation film 500 is disposed between the absorbing polarizer 210 and the reflective polarizer 250 .
  • the purpose of setting the first phase retardation film 300 is to compensate the off-axis retardation of the first quarter-wave plate 220 ; the purpose of setting the second phase retardation film 400 is to compensate the off-axis of the second quarter-wave plate 240 Therefore, the light leakage of the polarization converter 200 under a large viewing angle is improved, and the display effect of the display device is further improved.
  • the first phase retardation film 300 may be disposed between the absorbing polarizer 210 and the first quarter-wave plate 220 , or between the first quarter-wave plate 220 and the half mirror 230 It can be used to compensate the off-axis retardation generated by the off-axis light after passing through the first quarter-wave plate.
  • the second phase retardation film 400 is provided on the half mirror 230 and the second quarter-wave plate. Either between the plates 240 or between the second quarter-wave plate 240 and the reflective polarizer 250 can be used to compensate the off-axis retardation generated by the off-axis light passing through the second quarter-wave plate.
  • the second phase retardation film 400 is disposed between the second quarter-wave plate 240 and the reflector
  • the first phase retardation film 300 is arranged between the first quarter wave plate 220 and the half mirror 230
  • the second phase retardation film 400 is arranged between the half mirror 230 and the first half mirror 230. between two quarter wave plates 240 .
  • the purpose of disposing the third phase retardation film 500 between the absorptive polarizer 210 and the reflective polarizer 250 is to serve as a viewing angle compensation film to increase the viewing angle of the display device, so as to improve the relationship between the absorptive polarizer 210 and the reflective polarizer.
  • Light leakage caused by the polarizer 250 being in a geometrically non-orthogonal state under a large viewing angle further improves the display effect of the display device.
  • the third phase retardation film 500 can be disposed between the absorption polarizer 210 and the first quarter-wave plate 220, for example, the third retardation film 500 is attached to the absorption polarizer 210; or, the first The three-phase retardation film 500 is disposed between the reflective polarizer 250 and the second quarter-wave plate 240 .
  • the third phase retardation film 500 is attached to the reflective polarizer 250 .
  • the third phase retardation film 500 is disposed on the absorbing polarizer 210 and the first and fourth
  • the first retardation film 300 is provided between the third retardation film 500 and the first quarter-wave plate 220 and the second retardation film 400 is provided in the reflective polarizer 250 and the second quarter wave plate 240 .
  • the third phase retardation film 500 when the third phase retardation film 500 is arranged between the absorbing polarizer 210 and the first quarter-wave plate 220, the first phase retardation film 300 is arranged between the first quarter-wave plate 220 and the semi-inverter Between the half mirrors 230 and the second retardation film 400 is disposed between the second quarter wave plate 240 and the half mirror half mirror 230 .
  • the third phase retardation film 500 is disposed between the reflective polarizer 250 and the second quarter-wave plate 240
  • the first phase retardation film 300 is disposed between the absorptive polarizer 210 and the first quarter-wave plate 220 and the second retardation film 400 is disposed between the third retardation film 500 and the second quarter wave plate 240 .
  • the first phase retardation film 300 is disposed between the first quarter-wave plate 220 and the semi-inverter Between the half mirrors 230 and the second retardation film 400 is disposed between the second quarter wave plate 240 and the half mirror half mirror 230 .
  • the first phase retardation film 300 and the second phase retardation film 400 can be symmetrically distributed on both sides of the half mirror 230, and the addition of the third phase retardation film 500 will not affect the first phase retardation film 300 and the Compensation effect of the second phase retardation film 400 .
  • the absorptive polarizer 210 and the transmission axis of the reflective polarizer 250 are placed orthogonally, the slow axis of the first quarter-wave plate 220 and the absorption axis of the absorptive polarizer 210 form an included angle of 45° or 135°.
  • the slow axis of the second quarter wave plate 240 is perpendicular to the slow axis of the first quarter wave plate 220 .
  • the light emitted by the display panel 100 is first converted into S-polarized light
  • the first quarter-wave plate 220 converts the S-polarized light into left-handed circularly polarized light
  • the second quarter-wave plate 240 transmits the part of the half mirror 230
  • Left-handed circularly polarized light is converted to S-polarized light, so that the reflective polarizer can fully reflect the S-polarized light.
  • the off-axis phase retardation generated when the light is incident at a large viewing angle and the geometrically non-orthogonal state of the crossed polarizer are analyzed. Phase compensation and viewing angle compensation can prevent the occurrence of light leakage at large viewing angles, improve the light leakage of display devices, and improve the display effect of display devices.
  • the absorbing polarizer 210 is a polarized light obtained by adsorbing a dichroic iodine complex or dye on a PVA (polyvinyl alcohol vinylalcohol polymer, polyvinyl alcohol) film and extending in a certain direction sheet, and glued on both sides with TAC (Triacetyl Cellulose, cellulose triacetate) transparent film, and OCA (Optically Clear Adhesive, Optical Adhesive) bonding.
  • PVA polyvinyl alcohol vinylalcohol polymer, polyvinyl alcohol
  • TAC Triacetyl Cellulose, cellulose triacetate
  • OCA Optically Clear Adhesive, Optical Adhesive
  • the display panel 100 is an LCD (Liquid Crystal Display, liquid crystal display) display panel or an OLED (Organic Light-Emitting Diode, organic light-emitting diode) display panel or a Micro-LED (Micro-Light-Emitting Diode) display panel. Diode, miniature light-emitting diode) display panel.
  • LCD Liquid Crystal Display, liquid crystal display
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • Micro-LED Micro-Light-Emitting Diode
  • the LCD display panel also known as the liquid crystal display panel, uses a liquid crystal solution in two polarized materials, and when the current passes through the liquid, the liquid crystal will be rearranged to achieve the purpose of imaging, which has low cost, low power consumption and small size. , low radiation, high screen brightness, suitable for use as a display panel 100 of a head-mounted display;
  • the OLED display panel is a display panel that uses a multilayer organic thin film structure to generate electroluminescence. It is easy to manufacture and requires low driving voltage. More importantly, the OLED display panel is lighter and thinner than the LCD display panel, with high brightness and low power consumption. , fast response, high definition, good flexibility, high luminous efficiency, can meet the high requirements of consumers for head-mounted display technology;
  • the Micro-LED display panel adopts LED miniaturization and matrix technology, and integrates a high-density integrated LED array inside.
  • the distance between the LED pixels in the array is on the order of 10 microns, and each LED pixel can emit light by itself. Therefore, Compared with OLED display panels, Micro-LED display panels have higher brightness, better luminous efficiency, but lower power consumption, meeting consumers' requirements for higher-performance display panels.
  • a suitable display panel can be selected according to different needs of consumers.
  • the semi-transparent mirror 230 includes a lens and a semi-transparent and semi-reflection beam splitting film disposed on the surface of the lens close to the first quarter-wave plate 220 , wherein the The lenses are plano-convex or biconvex or meniscus lenses.
  • the lens in the half mirror 230 is preferably a plano-convex lens, a bi-convex lens or a meniscus lens.
  • the bi-convex lens can be installed without identifying the direction, which can improve the foolproof performance of the display device during manufacture.
  • the transmittance of the transflective mirror 230 is set to 30%-70%, that is, the transmittance of the transflective beam splitting film is set to 30%-70%, so that the The transflective mirror 230 reflects part of the circularly polarized light while transmitting part of the circularly polarized light.
  • the first phase retardation film 300 and the second phase retardation film 400 are positive C-plate films.
  • nx refers to the refractive index in the direction of the maximum refractive index in the plane (that is, the refractive index in the slow axis direction)
  • ny is the direction orthogonal to nx
  • the refractive index of , nz is the refractive index along the thickness direction
  • the positive C-plate film is used as the first phase retardation film and the second phase retardation film, which can enhance the effect of the first phase retardation film 300 and the second phase retardation film 400 on the polarization converter 200 off-axis delay compensation effect.
  • the in-plane retardation of the first phase retardation film 300 is 0 nm to 10 nm, and the out-of-plane retardation is -250 nm to -50 nm; the second retardation film 400 has the same
  • the first retardation film 300 has the same in-plane retardation and out-of-plane retardation, so as to further enhance the compensation effect of the first retardation film 300 and the second retardation film 400 on the off-axis retardation of the polarization converter 200, thereby improving the Light leakage of the polarization converter 200 at a large viewing angle.
  • the third phase retardation film 500 includes at least one B-Plate type retardation film, and the slow axis of the third phase retardation film is parallel to the transmission axis of the reflective polarizer, In order to improve the viewing angle compensation effect of the third phase retardation film 500 .
  • the triaxial principal refractive index of the B-Plate retardation film should satisfy: nx>nz>ny.
  • the number of B-Plate retardation films is one or two , the viewing angle compensation effect will be better.
  • the in-plane retardation of the B-Plate retardation film is 100 nm to 300 nm, and the out-of-plane retardation is -50 nm to -5 nm, so as to further improve the viewing angle compensation of the third phase retardation film 500 Therefore, when the viewing angle of the two polarizers is tilted, the geometrical relative relationship is not orthogonal, resulting in light leakage.
  • the third phase retardation film includes a composite film formed by compounding a positive A-Plate retardation film and a positive C-Plate retardation film, and the in-plane of the positive A-Plate retardation film The retardation is 100nm to 180nm, and the slow axis of the third phase retardation film is perpendicular to the transmission axis of the reflective polarizer, and the out-of-plane retardation of the positive C-Plate retardation film is -300nm to - 30nm.
  • the third phase retardation film in this embodiment can further improve its viewing angle compensation effect, so as to avoid the two polarizers under the tilted viewing angle There will be a situation where the geometrical relative relationship is not orthogonal, resulting in light leakage.
  • the present application also proposes a head-mounted display, the head-mounted display includes a display device, and the specific structure of the display device refers to the above-mentioned embodiments. Since the head-mounted display adopts all the technical solutions of all the above-mentioned embodiments, at least All the beneficial effects brought by the technical solutions of the above embodiments are not repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请公开一种显示器件和头戴式显示器,其中,显示器件包含显示面板和偏振转换器,所述偏振转换器包括依次设置于所述显示面板同一侧的吸收式偏光片、第一四分之一波片、半透半反镜、第二四分之一波片和反射式偏光片;所述显示器件还包括第一相位延迟膜、第二相位延迟膜和第三相位延迟膜,其中,所述第一相位延迟膜设于所述吸收式偏光片与所述半透半反镜之间,所述第二相位延迟膜设于所述半透半反镜与所述反射式偏光片之间,所述第三相位延迟膜设于所述吸收式偏光片与所述反射式偏光片之间。

Description

显示器件及头戴式显示器
本申请要求于2020年12月10日提交中国专利局、申请号为202011436403.2、申请名称为“显示器件及头戴式显示器”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及显示领域,特别涉及一种显示器件及头戴式显示器。
背景技术
在头戴式光学显示技术中,人眼接受虚拟信息均由光学显示器件来实现,对于提升用户沉浸感和使用舒适度而言,显示器件成像的质量尤为关键。然而,现有的显示器件在显示时容易出现漏光的情况,产生鬼影现象,影响显示效果。
技术问题
本申请的主要目的是提出一种显示器件,旨在改善显示器件的漏光,增加显示器件的视角,以提升显示器件的显示效果。
技术解决方案
为实现上述目的,本申请提出的显示器件包括显示面板和偏振转换器,所述偏振转换器包括依次设置于所述显示面板同一侧的吸收式偏光片、第一四分之一波片、半透半反镜、第二四分之一波片和反射式偏光片;
所述显示器件还包括第一相位延迟膜、第二相位延迟膜和第三相位延迟膜,其中,所述第一相位延迟膜设于所述吸收式偏光片与所述半透半反镜之间,所述第二相位延迟膜设于所述半透半反镜与所述反射式偏光片之间,所述第三相位延迟膜设于所述吸收式偏光片与所述反射式偏光片之间;
所述显示面板发出的光线经所述吸收式偏光片之后转换为线偏振光,所述线偏振光经所述第一四分之一波片之后形成圆偏振光,所述圆偏振光经所述半透半反镜、第二四分之一波片之后,又转换为所述线偏振光然后被所述反射式偏光片完全反射而不进入人眼。
在一实施例中,所述第三相位延迟膜设于所述吸收式偏光片与所述第一四分之一波片之间;或,所述第三相位延迟膜设于所述反射式偏光片与所述第二四分之一波片之间。
在一实施例中,当所述第三相位延迟膜设于所述吸收式偏光片与所述第一四分之一波片之间时,所述第一相位延迟膜设于所述第三相位延迟膜与所述第一四分之一波片之间且所述第二相位延迟膜设于所述反射式偏光片与所述第二四分之一波片之间,或,所述第一相位延迟膜设于所述第一四分之一波片与所述半反半透镜之间且所述第二相位延迟膜设于所述第二四分之一波片与所述半反半透镜之间。
在一实施例中,当所述第三相位延迟膜设于所述反射式偏光片与所述第二四分之一波片之间时,所述第一相位延迟膜设于所述吸收式偏光片与所述第一四分之一波片之间且所述第二相位延迟膜设于所述第三相位延迟膜与所述第二四分之一波片之间,或,所述第一相位延迟膜设于所述第一四分之一波片与所述半反半透镜之间且所述第二相位延迟膜设于所述第二四分之一波片与所述半反半透镜之间。
在一实施例中,所述半透半反镜包括透镜以及设于所述透镜靠近所述第一四分之一波片一侧表面的半透半反分光膜,其中所述透镜为平凸透镜或双凸透镜或弯月透镜。
在一实施例中,所述第一相位延迟膜和所述第二相位延迟膜为正C-plate膜。
在一实施例中,所述第一相位延迟膜的面内延迟量为0nm至10nm,面外延迟量为-250nm至-50nm;所述第二相位延迟膜具有与所述第一相位延迟膜相同的面内延迟量和面外延迟量。
在一实施例中,所述第三相位延迟膜包括至少一B-Plate类延迟膜,所述第三相位延迟膜的慢轴与所述反射式偏光片的透过轴平行。
在一实施例中,所述B-Plate类延迟膜的面内延迟量为100nm至300nm,面外延迟量为-50nm至-5nm。
在一实施例中,所述第三相位延迟膜包括正A-Plate类延迟膜和正C-Plate类延迟膜复合形成的复合膜,所述正A-Plate类延迟膜的面内延迟量为100nm至180nm,且所述第三相位延迟膜的慢轴与所述反射式偏光片的透过轴垂直,所述正C-Plate类延迟膜的面外延迟量为-300nm至-30nm。
本申请还提出一种头戴式显示器,包括前述的显示器件。
有益效果
本申请技术方案通过采用偏振转换器将偏振光进行反射、吸收;采用第一相位延迟膜和第二相位延迟膜,补偿偏振转换器件的离轴延迟量,改善偏振转换器件在大视角下的漏光情况;采用第三相位延迟膜作为视角补偿膜,改善吸收式偏光片与反射式偏光片在大视角下处于几何学的非正交状态而导致的漏光,以从多方面改善显示器件的漏光情况,增加显示器件的视角,提升显示器件的显示效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请显示器件一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 显示面板 200 偏振转换器
210 吸收式偏光片 220 第一四分之一波片
230 半透半反镜 240 第二四分之一波片
250 反射式偏光片 300 第一相位延迟膜
400 第二相位延迟膜 500 第三相位延迟膜
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,若全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种显示器件。
在本申请一实施例中,如图1所示,该显示器件包括显示面板100和偏振转换器200,所述偏振转换器200包括依次设置于所述显示面板100同一侧的吸收式偏光片210、第一四分之一波片220、半透半反镜230、第二四分之一波片240和反射式偏光片250。其中,第一四分之一波片220与第二四分之一波片240的光轴相互正交,吸收式偏振片210的透过轴与反射式偏光片250的透过轴相互正交。
显示面板100用于显示用户所需的图像信息,理论上来说,显示面板100发出的光线经过吸收式偏振片210后转换为线偏振光,该线偏振光经第一四分之一波片220之后形成圆偏振光。该圆偏振光在经过半透半反镜230时,该圆偏振光能部分透过,其透过部分的相位不发生变化。透过部分的圆偏振光继续通过第二四分之一波片240,其相位发生变化,又转换为经过第一四分之一波片220之前的线偏振光。最后,该线偏振光被反射式偏光片250反射而不进入人眼,不会产生漏光问题。
举例来说,以显示面板发出的光线经过吸收式偏振片210后转换为S偏振光为例进行说明;当然,显示面板发出的光线经过吸收式偏振片210后也可转换为P偏振光。该S偏振光继续经过第一四分之一波片220之后,其相位产生延迟,S偏振光转变为左旋圆偏振光;在经过半透半反镜230时,该左旋圆偏振光能部分透过,其透过部分的相位不发生变化;这部分左旋偏振光继续通过第二四分之一波片240,第二四分之一波片240能使其转变为S偏振光;该S偏振光在到达反射式偏振片时会被完全反射。
然而,偏振转换器200在对大视角的光信号进行偏振和选择时,会因光的入射角度变化而使偏振转换器件200的功效处于非理想状态,产生漏光,出现鬼影现象,另外,对于两正交的偏振片来说,当入射光以大角度入射时,两偏振片在视角倾斜下将出现几何学上的相对关系非正交而产生漏光。为解决吸收式偏振片210与反射式偏光片250在视角倾斜下出现几何学上的相对关系非正交,从而导致光线的光路不完全按照前文理论进行而产生漏光的问题,本申请的显示器件还包括:
第一相位延迟膜300、第二相位延迟膜400和第三相位延迟膜500。其中,第一相位延迟膜300设于吸收式偏光片210与半透半反镜230之间,第二相位延迟膜400设于半透半反镜230与反射式偏光片250之间,第三相位延迟膜500设于吸收式偏光片210与反射式偏光片250之间。
设置第一相位延迟膜300目的是:补偿第一四分之一波片220的离轴延迟量;设置第二相位延迟膜400的目的是:补偿第二四分之一波片240的离轴延迟量,从而改善偏振转换器200在大视角下的漏光情况,进一步提升该显示器件的显示效果。在一实施例中,第一相位延迟膜300可设于吸收式偏光片210与第一四分之一波片220之间、或第一四分之一波片220与半透半反镜230之间均可,用以补偿离轴光线经过第一四分之一波片后产生的离轴延迟量,第二相位延迟膜400设于半透半反镜230与第二四分之一波片240之间、或第二四分之一波片240与反射式偏光片250之间均可,用以补偿离轴光线通过第二四分之一波片后产生的离轴延迟量。
进一步地,当第一相位延迟膜300设于吸收式偏光片210与第一四分之一波片220之间时,第二相位延迟膜400设于第二四分之一波片240与反射式偏光片250;当第一相位延迟膜300设于第一四分之一波片220与半透半反镜230之间时,第二相位延迟膜400设于半透半反镜230与第二四分之一波片240之间。
在吸收式偏光片210与反射式偏光片250之间设置第三相位延迟膜500的目的是,用于作为视角补偿膜,可增加该显示器件的视角,以改善吸收式偏光片210与反射式偏光片250在大视角下处于几何学的非正交状态而导致的漏光,从而进一步提升该显示器件的显示效果。
进一步地,第三相位延迟膜500可设于吸收式偏光片210与第一四分之一波片220之间,如第三相位延迟膜500贴合于吸收式偏光片210上;或,第三相位延迟膜500设于反射式偏光片250与第二四分之一波片240之间,如第三相位延迟膜500贴合于反射式偏光片250上。
为保证补偿第一四分之一波片220与第二四分之一波片240的离轴延迟量达到最佳效果,当第三相位延迟膜500设于吸收式偏光片210与第一四分之一波片220之间时,第一相位延迟膜300设于第三相位延迟膜500与第一四分之一波片220之间且第二相位延迟膜400设于反射式偏光片250与第二四分之一波片240之间。或,当第三相位延迟膜500设于吸收式偏光片210与第一四分之一波片220之间时,第一相位延迟膜300设于第一四分之一波片220与半反半透镜230之间且第二相位延迟膜400设于第二四分之一波片240与半反半透镜230之间。当第三相位延迟膜500设于反射式偏光片250与第二四分之一波片240之间时,第一相位延迟膜300设于吸收式偏光片210与第一四分之一波片220之间且第二相位延迟膜400设于第三相位延迟膜500与第二四分之一波片240之间。或,当第三相位延迟膜500设于反射式偏光片250与第二四分之一波片240之间时,第一相位延迟膜300设于第一四分之一波片220与半反半透镜230之间且第二相位延迟膜400设于第二四分之一波片240与半反半透镜230之间。这样可使第一相位延迟膜300与第二相位延迟膜400对称地分布于半透半反镜230的两侧,在保证加入第三相位延迟膜500,不会影响第一相位延迟膜300与第二相位延迟膜400的补偿效果。
下面列举一个具体的实施例进行说明。
吸收式偏光片210与反射式偏光片250的透过轴正交放置,第一四分之一波片220的慢轴与吸收式偏光片210的吸收轴成45°或135°夹角,第二四分之一波片240的慢轴与第一四分之一波片220的慢轴垂直。显示面板100发出的先转变为S偏振光,第一四分之一波片220将S偏振光转化左旋圆偏振光,第二四分之一波片240将透过半透半反镜230的部分左旋圆偏振光转变为S偏振光,以使反射式偏振片能将S偏振光全部反射。通过加入第一相位延迟膜300、第二相位延迟膜400、第三相位延迟膜500,对光在大视角入射时产生的离轴相位延迟及正交偏光片处于几何学的非正交状态进行相位补偿与视角补偿,防止大视角下漏光现象的产生,改善显示器件的漏光情况,以提升显示器件的显示效果。
不失一般性,本实施例中,吸收式偏光片210为在PVA(polyvinyl alcohol vinylalcohol polymer,聚乙烯醇)膜上吸附具有二色性的碘络合物或者染料并在一定方向延伸得到的偏光片,并在两侧胶合有作为保护用的TAC(Triacetyl Cellulose,三醋酸纤维素)透明膜,且该显示器件的每一层结构之间采用OCA(Optically Clear Adhesive,光学粘合剂)贴合。
在一实施例中,所述显示面板100为LCD(Liquid Crystal Display,液晶显示)显示面板或OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板或Micro-LED(Micro-Light-Emitting Diode,微型发光二极管)显示面板。
LCD显示面板,也即液晶显示面板,利用两片极化材料中的液体水晶溶液,使电流通过该液体时会使液体水晶重新排列达到成像的目的,其成本低、耗电量低、体积小、辐射低、屏幕亮度高,适于用作头戴式显示器的显示面板100;
OLED显示面板,是利用多层有机薄膜结构产生电致发光的显示面板,易于制作,且需要的驱动电压低,更重要的是,OLED显示面板比LCD显示面板更轻薄、亮度高、功耗低、响应快、清晰度高、柔性好、发光效率高,能满足消费者对头戴式显示技术的高要求;
而Micro-LED显示面板采用LED微缩化和矩阵化技术,在其内部集成有高密度集成的LED阵列,阵列中的LED像素点距离在10微米量级,每一个LED像素都能自发光,因此Micro-LED显示面板比OLED显示面板的亮度更高、发光效率更好、但功耗更低,符合消费者对更高性能的显示面板的要求。
在实际应用中,可根据不同需求的消费者,选择合适的显示面板。
进一步地,在本实施例中,所述半透半反镜230包括透镜以及设于所述透镜靠近所述第一四分之一波片220的表面的半透半反分光膜,其中所述透镜为平凸透镜或双凸透镜或弯月透镜。半透半反镜230中的透镜宜采用平凸透镜或双凸透镜或弯月透镜,特别地,双凸透镜无需辨别方向即可安装,能提升本显示器件的在制造中的防呆性能。
在一实施例中,将所述半透半反镜230的透过率设置为30%~70%,也即将半透半反分光膜的透过率设置为30%~70%,以使半透半反镜230在透过部分圆偏振光的同时,反射部分圆偏振光。
进一步地,在本实施例中,所述第一相位延迟膜300和所述第二相位延迟膜400为正C-plate膜。正C-plate膜的三轴主折射率满足nz>nx=ny,其中,nx指面内的折射率最大方向的折射率(即慢轴方向的折射率),ny则为与nx正交方向的折射率,nz是沿厚度方向的折射率,正C-plate膜作为第一相位延迟膜和第二相位延迟膜,可提升第一相位延迟膜300和第二相位延迟膜400对偏振转换器200的离轴延迟量的补偿效果。
进一步地,在本实施例中,所述第一相位延迟膜300的面内延迟量为0nm至10nm,面外延迟量为-250nm至-50nm;所述第二相位延迟膜400具有与所述第一相位延迟膜300相同的面内延迟量和面外延迟量,以进一步提升第一相位延迟膜300和第二相位延迟膜400对偏振转换器200的离轴延迟量的补偿效果,从而改善偏振转换器200在大视角下的漏光情况。
进一步地,在本实施例中,所述第三相位延迟膜500包括至少一B-Plate类延迟膜,所述第三相位延迟膜的慢轴与所述反射式偏光片的透过轴平行,以提升第三相位延迟膜500的视角补偿效果。B-Plate类延迟膜的三轴主折射率应满足:nx>nz>ny,在一实施例中,在第三相位延迟膜500中,B-Plate类延迟膜的数量为一张或两张,其视角补偿效果会更好。
进一步地,在本实施例中,所述B-Plate类延迟膜的面内延迟量为100nm至300nm,面外延迟量为-50nm至-5nm,以进一步提升第三相位延迟膜500的视角补偿效果,从而避免两偏振片在视角倾斜下将出现几何学上的相对关系非正交而产生漏光的情况。
在本申请的另一实施例中,所述第三相位延迟膜包括正A-Plate类延迟膜和正C-Plate类延迟膜复合形成的复合膜,所述正A-Plate类延迟膜的面内延迟量为100nm至180nm,且所述第三相位延迟膜的慢轴与所述反射式偏光片的透过轴垂直,所述正C-Plate类延迟膜的面外延迟量为-300nm至-30nm。其中,正A-Plate类延迟膜的三轴主折射率满足:nx>ny=nz,本实施例中的第三相位延迟膜能够进一步提升其视角补偿效果,从而避免两偏振片在视角倾斜下将出现几何学上的相对关系非正交而产生漏光的情况。
本申请还提出一种头戴式显示器,该头戴式显示器包括显示器件,该显示器件的具体结构参照上述实施例,由于本头戴式显示器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种显示器件,其中,包括显示面板和偏振转换器,所述偏振转换器包括依次设置于所述显示面板同一侧的吸收式偏光片、第一四分之一波片、半透半反镜、第二四分之一波片和反射式偏光片;
    所述显示器件还包括第一相位延迟膜、第二相位延迟膜和第三相位延迟膜,其中,所述第一相位延迟膜设于所述吸收式偏光片与所述半透半反镜之间,所述第二相位延迟膜设于所述半透半反镜与所述反射式偏光片之间,所述第三相位延迟膜设于所述吸收式偏光片与所述反射式偏光片之间;
    所述显示面板发出的光线经所述吸收式偏光片之后转换为线偏振光,所述线偏振光经所述第一四分之一波片之后形成圆偏振光,所述圆偏振光经所述半透半反镜、第二四分之一波片之后,又转换为所述线偏振光然后被所述反射式偏光片完全反射而不进入人眼。
  2. 如权利要求1所述的显示器件,其中,所述第三相位延迟膜设于所述吸收式偏光片与所述第一四分之一波片之间;或,所述第三相位延迟膜设于所述反射式偏光片与所述第二四分之一波片之间。
  3. 如权利要求2所述的显示器件,其中,当所述第三相位延迟膜设于所述吸收式偏光片与所述第一四分之一波片之间时,所述第一相位延迟膜设于所述第三相位延迟膜与所述第一四分之一波片之间且所述第二相位延迟膜设于所述反射式偏光片与所述第二四分之一波片之间,或,所述第一相位延迟膜设于所述第一四分之一波片与所述半反半透镜之间且所述第二相位延迟膜设于所述第二四分之一波片与所述半反半透镜之间;或,
    当所述第三相位延迟膜设于所述反射式偏光片与所述第二四分之一波片之间时,所述第一相位延迟膜设于所述吸收式偏光片与所述第一四分之一波片之间且所述第二相位延迟膜设于所述第三相位延迟膜与所述第二四分之一波片之间,或,所述第一相位延迟膜设于所述第一四分之一波片与所述半反半透镜之间且所述第二相位延迟膜设于所述第二四分之一波片与所述半反半透镜之间。
  4. 如权利要求1所述的显示器件,其中,所述半透半反镜包括透镜以及设于所述透镜靠近所述第一四分之一波片一侧的表面的半透半反分光膜,其中所述透镜为平凸透镜或双凸透镜或弯月透镜。
  5. 如权利要求1所述的显示器件,其中,所述第一相位延迟膜和所述第二相位延迟膜为正C-plate膜。
  6. 如权利要求1所述的显示器件,其中,所述第一相位延迟膜的面内延迟量为0nm至10nm,面外延迟量为-250nm至-50nm;所述第二相位延迟膜具有与所述第一相位延迟膜相同的面内延迟量和面外延迟量。
  7. 如权利要求1至6任一项所述的显示器件,其中,所述第三相位延迟膜包括至少一B-Plate类延迟膜,所述第三相位延迟膜的慢轴与所述反射式偏光片的透过轴平行。
  8. 如权利要求7所述的显示器件,其中,所述B-Plate类延迟膜的面内延迟量为100nm至300nm,面外延迟量为-50nm至-5nm。
  9. 如权利要求1至6任一项所述的显示器件,其中,所述第三相位延迟膜包括正A-Plate类延迟膜和正C-Plate类延迟膜复合形成的复合膜,所述正A-Plate类延迟膜的面内延迟量为100nm至180nm,且所述第三相位延迟膜的慢轴与所述反射式偏光片的透过轴垂直,所述正C-Plate类延迟膜的面外延迟量为-300nm至-30nm。
  10. 一种头戴式显示器,其中,包括权利要求1至9任一项所述的显示器件。
PCT/CN2021/111746 2020-12-10 2021-08-10 显示器件及头戴式显示器 WO2022121344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011436403.2A CN112526754A (zh) 2020-12-10 2020-12-10 显示器件及头戴式显示器
CN202011436403.2 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022121344A1 true WO2022121344A1 (zh) 2022-06-16

Family

ID=74999129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111746 WO2022121344A1 (zh) 2020-12-10 2021-08-10 显示器件及头戴式显示器

Country Status (2)

Country Link
CN (1) CN112526754A (zh)
WO (1) WO2022121344A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11747640B2 (en) 2020-09-30 2023-09-05 Shanghai UROptics Co. Ltd. Optical module, near-eye display device and light projection method
CN112526754A (zh) * 2020-12-10 2021-03-19 深圳惠牛科技有限公司 显示器件及头戴式显示器
CN113467092A (zh) * 2021-06-29 2021-10-01 歌尔股份有限公司 成像模组和头戴显示设备
CN113485012A (zh) * 2021-06-29 2021-10-08 京东方科技集团股份有限公司 折叠光路结构、光学成像系统及虚拟现实设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048497A1 (en) * 2000-05-31 2001-12-06 Koichi Miyachi Liquid crystal display apparatus
CN202256966U (zh) * 2011-07-15 2012-05-30 京东方科技集团股份有限公司 一种偏光调光装置
CN105319766A (zh) * 2015-12-01 2016-02-10 深圳市华星光电技术有限公司 偏光装置及显示器
CN109521563A (zh) * 2017-09-20 2019-03-26 乐金显示有限公司 具有目镜的显示装置
CN110308559A (zh) * 2019-06-28 2019-10-08 上海视涯信息科技有限公司 一种虚拟现实光学模组及虚拟现实设备
CN110716314A (zh) * 2019-11-26 2020-01-21 深圳惠牛科技有限公司 一种轻薄型光学模组及vr设备
CN112526754A (zh) * 2020-12-10 2021-03-19 深圳惠牛科技有限公司 显示器件及头戴式显示器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048497A1 (en) * 2000-05-31 2001-12-06 Koichi Miyachi Liquid crystal display apparatus
CN202256966U (zh) * 2011-07-15 2012-05-30 京东方科技集团股份有限公司 一种偏光调光装置
CN105319766A (zh) * 2015-12-01 2016-02-10 深圳市华星光电技术有限公司 偏光装置及显示器
CN109521563A (zh) * 2017-09-20 2019-03-26 乐金显示有限公司 具有目镜的显示装置
CN110308559A (zh) * 2019-06-28 2019-10-08 上海视涯信息科技有限公司 一种虚拟现实光学模组及虚拟现实设备
CN110716314A (zh) * 2019-11-26 2020-01-21 深圳惠牛科技有限公司 一种轻薄型光学模组及vr设备
CN112526754A (zh) * 2020-12-10 2021-03-19 深圳惠牛科技有限公司 显示器件及头戴式显示器

Also Published As

Publication number Publication date
CN112526754A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2022121344A1 (zh) 显示器件及头戴式显示器
KR101772348B1 (ko) 액정 표시 장치
JP3526830B2 (ja) 広視野角偏光板および液晶表示装置
JP3411953B2 (ja) 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
JP6538298B2 (ja) 偏光板及びこれを備える液晶表示装置
JP3894537B2 (ja) 反り応力の測定方法およびそれを用いた偏光板の製造方法
TWI489182B (zh) 顯示裝置
US20080310020A1 (en) Polarizing plate
CN218003854U (zh) 光学模组以及头戴显示设备
JP5151296B2 (ja) 粘着剤層を備える液晶表示装置及びそれに用いる複合偏光板のセット
JP2002148592A (ja) 液晶表示装置
CN112305763A (zh) 降低鬼影的显示光学系统及头戴显示装置
TW200523582A (en) Optical film and highly distinct image display
JP3331150B2 (ja) 表示素子の照明方法及び液晶表示装置
JP7546038B2 (ja) 拡大された仮想画像を表示する光学システム
TWI823428B (zh) 光學系統
CN213987036U (zh) 显示器件及头戴式显示器
WO2014027459A1 (ja) 光学素子、光学装置及び映像表示装置
US20030086170A1 (en) Polarizing plate and a liquid crystal display using the same
US12066636B2 (en) Polarization optimized heads-up display
KR20220012751A (ko) 편광판 및 이를 포함하는 광학표시장치
JP2003167120A (ja) 複合偏光板及びそれを配置した表示装置
US11927850B2 (en) Liquid crystal display device
CN220569023U (zh) 一种vr显示装置
JP2001290024A (ja) 偏光板及びこれを備えた液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21902054

Country of ref document: EP

Kind code of ref document: A1