WO2016189871A1 - 光源ユニット及び投影装置 - Google Patents

光源ユニット及び投影装置 Download PDF

Info

Publication number
WO2016189871A1
WO2016189871A1 PCT/JP2016/002549 JP2016002549W WO2016189871A1 WO 2016189871 A1 WO2016189871 A1 WO 2016189871A1 JP 2016002549 W JP2016002549 W JP 2016002549W WO 2016189871 A1 WO2016189871 A1 WO 2016189871A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarization
light source
incident
polarization direction
Prior art date
Application number
PCT/JP2016/002549
Other languages
English (en)
French (fr)
Inventor
勇輔 松橋
純一 水間
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2016189871A1 publication Critical patent/WO2016189871A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a light source unit and a projection apparatus.
  • a projector, a head-up display (HUD), and the like are known as projection devices that project illumination light onto a transmissive liquid crystal panel and project and display the transmitted light on a screen or the like.
  • a light source unit of these projectors a light source in which LEDs (Light Emitting Diode) are arranged two-dimensionally, a lens that converts light from the light source into substantially parallel light, and a diffusion plate that diffuses the collected light are provided.
  • LEDs Light Emitting Diode
  • Patent Document 1 discloses an illumination device disposed on the back surface of a liquid crystal panel used for a head-up display.
  • this illumination device in order to obtain high-intensity and uniform illumination light, light from an LED light source arranged in a two-dimensional shape is converted into substantially parallel light by a Fresnel lens and irradiated to a liquid crystal panel through a light diffusion means.
  • Patent Document 2 discloses a head-up display device that irradiates a liquid crystal panel with an optical system having an LED light source, a lens array, a field lens, and a light diffusing member for the purpose of improving the light irradiation efficiency to the eye box. The proposal of the arrangement of the optical system.
  • Patent Document 3 light from a light source is bent in the optical axis direction by a lens array in which lenses having an incident convex lens surface and an outgoing convex lens surface are arranged, and is transmitted through a liquid crystal panel.
  • the liquid crystal panel is efficiently irradiated with light from the light source.
  • These conventional techniques are common in that the light emitted from the LED light source is converted into substantially parallel light, then diffused into uniform light by the diffusion plate, and irradiated onto the liquid crystal panel.
  • the liquid crystal panel has a built-in polarizing plate and transmits only the linearly polarized light component in the transmission axis direction of the polarizing plate. For this reason, about half of the light emitted from the LED cannot pass through the liquid crystal panel, and a part of the light is converted into heat.
  • the brightness of the light projected on the projection surface is reduced to about half or less, and a part of the light that cannot be transmitted through the liquid crystal panel is converted into heat, which causes deterioration of the liquid crystal panel due to temperature rise.
  • the direction of transmitting light of the liquid crystal panel is appropriately referred to as the transmission axis direction of the liquid crystal panel.
  • an object of the present invention is to provide a light source unit that reduces the loss of the amount of light emitted from a light source and transmitted through a liquid crystal panel, and a projection apparatus using the light source unit.
  • Means for solving the problems are as follows. That is, ⁇ 1> A light source unit for irradiating a liquid crystal panel with light, A light source; A collimating optical system for collimating diffused light from the light source; A polarization conversion element that aligns the polarization direction in a predetermined direction without blocking the polarization in any direction of light incident from the incident surface; The predetermined direction is a light source unit in which the liquid crystal panel transmits light.
  • the light emitted from the light source is collimated by the collimating optical system and incident on the polarization conversion element, and the polarization conversion element does not block the polarized light in any direction.
  • the polarization direction of the incident light is aligned with the direction in which the light is transmitted, and the light is emitted from the emission surface.
  • the polarization conversion element according to ⁇ 1> wherein an effective area of an emission surface that emits light is wider than an effective area of an incident surface on which light emitted from the emission surface is incident. It is a light source unit of description.
  • the polarization conversion element emits light incident from an effective area of the incident surface from an effective area of a good wide emission surface.
  • the collimating optical system includes an aspherical convex lens and a Fresnel lens, converts light from the light source into a parallel light beam, and makes the light incident only on an effective area of the incident surface of the polarization conversion element. 2>.
  • the diffused light emitted from the light source is refracted in the direction approaching the optical axis by the aspherical convex lens, and the diffusion angle becomes small. Furthermore, it is converted into a substantially parallel light beam by the Fresnel lens.
  • the Fresnel lens includes a cylindrical Fresnel surface in which a cylindrical axis direction intersects with an incident surface and an output surface.
  • the incident light beam and the incident light exit surface through the cylindrical Fresnel surfaces are refracted in two cylindrical axis directions intersecting each other to become substantially parallel light beams.
  • the light source unit according to ⁇ 1> further including a diffusion plate disposed on an incident side of the polarization conversion element.
  • the diffusion plate diffuses light before entering the polarization conversion element.
  • the polarization conversion element includes: a polarization separation unit that separates incident light into a first polarization and a second polarization whose polarization directions are orthogonal to each other; and a first that converts a polarization direction of at least the first polarization.
  • the polarization directions of the first polarization and the second polarization are matched by the two polarization direction conversion units, and the polarization direction of any of the first polarization and the second polarization separated by the polarization separation unit
  • the outgoing light is emitted at an angle obtained by rotating the polarization direction of the outgoing light by a predetermined angle.
  • the polarization separation unit includes: a beam splitter film that separates incident light into the first polarization and the second polarization; and at least one of the first polarization and the second polarization as the polarization. It is a light source unit as described in ⁇ 6> provided with the reflective surface which reflects toward a direction control part.
  • the beam splitter film separates the incident light into the first polarized light and the second polarized light
  • the reflective surface has at least one of the first polarized light and the second polarized light.
  • the polarization direction control unit emits the polarization direction of the emitted light at an angle obtained by rotating the polarization direction of the emitted light by 45 ° with respect to the polarization direction of either the first polarization or the second polarization incident from the polarization separation unit. It is a light source unit as described in said ⁇ 6> comprised by. In the light source unit according to ⁇ 8>, the light incident on the polarization direction control unit is polarized as linearly polarized light having an angle rotated by 45 ° with respect to any of the first polarized light and the second polarized light. The light is emitted from the control unit.
  • the first polarization direction conversion unit and the second polarization direction conversion unit are configured by half-wave plates, and the polarization direction control unit includes the first polarization direction conversion unit and the second polarization direction conversion unit.
  • the light source unit according to ⁇ 6> wherein the light source unit is a plate-like member combined with a polarization direction converter.
  • the first polarization conversion unit and the second polarization conversion unit transmit the half-wave plates, respectively, thereby polarizing directions of the first polarization and the second polarization. To change.
  • a light source unit that emits light to a liquid crystal panel, A light source; At least one lens for collimating diffused light from the light source; A beam splitter for separating the light transmitted through the at least one lens into a first polarized light and a second polarized light orthogonal to each other; A reflecting surface that reflects at least one of the first polarized light and the second polarized light separated by the beam splitter and aligns the traveling directions of the first polarized light and the second polarized light; Provided for each of the first polarized light and the second polarized light, or one of them; Comprising at least one half-wave plate for converting the polarization direction; The direction of the optical axis of the half-wave plate converts the polarization direction of the first polarized light or the second polarized light incident on the half-wave plate into a direction in which the liquid crystal panel transmits light.
  • the diffused light from the light source is collimated by at least one lens, and the light transmitted through the at least one lens is converted into a first polarized light and a second polarized light whose beam splitters are orthogonal to each other.
  • the reflecting surface reflects at least one of the first polarized light and the second polarized light separated by the beam splitter, aligns the traveling directions of the first polarized light and the second polarized light, and changes the polarization direction.
  • At least one half-wave plate to be converted is provided for each or one of the first polarized light and the second polarized light, and is incident on the half-wave plate.
  • the polarization direction of the second polarized light is converted into a direction in which the liquid crystal panel transmits light.
  • a light source A collimating optical system for collimating diffused light from the light source; A polarization conversion element that aligns the polarization direction in a predetermined direction and blocks the light from the exit surface without blocking the polarization in any direction of the light incident from the entrance surface; And a liquid crystal panel that transmits the polarized light in the predetermined direction to obtain display light.
  • the light emitted from the light source is collimated by the collimating optical system and incident on the polarization conversion element, and the polarization conversion element enters the incident light without blocking the polarization in any direction.
  • the liquid crystal panel transmits the polarized light in the same direction as the polarization direction of the outgoing light of the polarization conversion element to obtain display light for displaying an image.
  • FIG. 1 It is a perspective view which shows the state which expand
  • FIG. 1 is a perspective view showing a state in which the projection apparatus according to the first embodiment of the present invention is developed in the optical axis direction.
  • the projection device 10 includes a light source 12, an aspheric plano-convex lens 13, a Fresnel lens 14, a diffuser plate 15, a polarization conversion element 16, and a liquid crystal panel 17 disposed on a substrate 11 (see FIGS. 2 and 3).
  • the light source 12, the aspherical plano-convex lens 13, the Fresnel lens 14, the diffuser plate 15, and the polarization conversion element 16 constitute a light source unit 10a.
  • the aspheric planoconvex lens 13 and the Fresnel lens 14 constitute a collimating optical system.
  • the polarization direction of the illumination light after passing through each of the aspherical plano-convex lens 13, the polarization conversion element 16, and the liquid crystal panel 17 is indicated by double arrows.
  • the direction in which the liquid crystal panel 17 transmits illumination light is a direction of 45 ° with respect to the x axis.
  • the traveling direction (optical axis direction) of the light emitted from the light source 12 and directed to the liquid crystal panel 17 is defined as the z direction, two directions orthogonal to the z direction and orthogonal to each other.
  • the direction along the horizontal direction of the outer shape of the liquid crystal panel 17 is defined as the x direction
  • the direction along the vertical direction is defined as the y direction.
  • 2 and 3 are cross-sectional views of the projection device viewed from the x direction and the y direction, respectively.
  • the light sources 12 are LED light sources arranged in a line in the x direction, and are preferably white LED light sources.
  • the light emitted from the light source 12 is diffused light. 2 and 3, the optical path of the light passing through the outermost side of the light beam emitted from the light source 12 is indicated by a broken line.
  • the light immediately after being emitted from the light source 12 has a large diffusion angle.
  • Each of the aspherical plano-convex lenses 13 is arranged in the same number as the light sources 12 in the x direction, with the optical axis directed in the z direction and the plane side facing the light emitting surface of the light source 12.
  • the aspheric plano-convex lens 13 refracts the diffusing illumination light emitted from the light source 12 in a direction approaching the optical axis direction. Since the diffusion direction of light from the LED is wide, it is usually not possible to make it parallel light with only one convex lens. For this reason, a Fresnel lens 14 is provided at the subsequent stage of the aspheric plano-convex lens 13.
  • the diameter of the aspheric plano-convex lens 13 in the xy plane is substantially equal to the width of the Fresnel lens 14 in the y direction, as shown in FIG.
  • the Fresnel lens 14 has a rectangular shape having a long side extending in the x direction when viewed from the z direction, and a sawtooth groove having characteristics of a cylindrical lens on both surfaces of a flat transparent member made of resin or the like. Are provided.
  • the directions in which grooves are formed on the same surface of the Fresnel lens 14 are parallel to each other, and the direction is the cylindrical axis direction of the cylindrical lens.
  • 4A and 4B are diagrams showing the structure of the Fresnel lens 14, wherein FIG. 4A is a diagram viewed from the y direction, FIG. 4B is a diagram viewed from the exit surface side along the z direction, and FIG.
  • the figure seen from the incident side along, (d) is the figure seen from the x direction.
  • the exit side surface of the Fresnel lens 14 is provided with a cylindrical Fresnel surface 14a in which grooves are formed in the y direction, and the incident side surface is provided with a cylindrical Fresnel surface 14b in which grooves are formed in the x direction.
  • the luminous flux of the illumination light emitted from the light source 12 and refracted by the aspherical plano-convex lens 13 is refracted in the y direction on the incident side surface of the Fresnel lens 14, and in the x direction on the exit side surface of the Fresnel lens 14. Is refracted.
  • the light transmitted through the Fresnel lens 14 becomes a light beam collimated substantially in parallel.
  • the diffusion plate 15 is a plate-like member that diffuses illumination light and emits it as uniform light.
  • the diffusion plate 15 is formed by adding fine particles having light diffusibility to a transparent resin.
  • the diffusion plate 15 is provided in order to reduce unevenness of illumination light that irradiates the liquid crystal panel 17 at the subsequent stage.
  • the diffuser plate 15 is disposed in the vicinity of an effective area of an incident surface S i described later of the polarization conversion element 16.
  • the substantially parallel light beam emitted from the Fresnel lens 14 is incident on the diffusion plate 15 substantially vertically and is diffused.
  • FIG. 5 is a diagram showing the configuration of the polarization conversion element 16 and the optical path of the illumination light.
  • the polarization conversion element 16 When viewed from the z direction, the polarization conversion element 16 has a rectangular shape with a long side extending in the x direction and a short side extending in the y direction.
  • the size in the xy direction is substantially equal to the outer shape of the liquid crystal panel 17 in the xy direction or slightly larger than the liquid crystal panel.
  • the polarization conversion element 16 is configured to align the polarization direction of the two separated polarized light and rotate it by a predetermined angle with respect to the x direction or the y direction by separating the incident light into two polarized lights whose polarization directions are orthogonal to each other.
  • a polarization direction control unit 21 that emits light at an angle, and is configured as an integrated member.
  • the polarization separation unit 20 is formed of a transparent base material such as glass or resin, and all of them extend long in the x direction.
  • the fifth prism 26 is joined.
  • the first prism 22 is a triangular prism whose yz section has a substantially right-angled isosceles triangle shape.
  • the first prism 22 has its apex forming a substantially right angle of the yz cross section oriented in the direction of the light source 12, and two surfaces sandwiching the substantially right angle are arranged to form about 45 ° with respect to the z direction.
  • a first polarization beam splitter film 27 and a second polarization beam splitter film 28 which are polarization separation films are formed on the two surfaces sandwiching the right angle, respectively.
  • the polarization separation film is, for example, a dielectric multilayer film formed by vapor deposition or the like.
  • the first polarizing beam splitter film 27 and the second polarizing beam splitter film 28 transmit P-polarized light of incident light and reflect S-polarized light.
  • the polarization directions of P-polarized light and S-polarized light are orthogonal to each other.
  • the illumination light L1 the illumination light L2 that has passed through the polarizing beam splitter film 28 is referred to as first polarization, and the reflected illumination light L3 is referred to as second polarization.
  • the second prism 23 and the third prism 24 have a substantially parallelogram shape in the yz section, and each surface has the first polarization beam splitter film 27 and the second polarization beam of the first prism 22.
  • the surface having the splitter film 28 is joined.
  • the fourth prism 25 and the fifth prism 26 are triangular prisms having a substantially right-angled isosceles triangle shape in the yz section, and each of the inclined surfaces facing the substantially right-angle has, for example, a dielectric multilayer film or aluminum.
  • a first reflective film 29 and a second reflective film 30 are formed by depositing the above metal.
  • the first reflective film 29 and the second reflective film 30 form a reflective surface.
  • the fourth prism 25 and the fifth prism 26 have surfaces on which the first reflective film 29 and the second reflective film 30 are formed with respect to the second prism 23 and the third prism 24, respectively.
  • the first beam splitter film 27 and the second beam splitter film 28 are coupled to face each other.
  • the polarization separation unit 20 includes the first beam splitter film 27 and the first reflection film 29 facing each other at an angle of about 45 ° with respect to the z direction and the xy plane, and the second beam. It is configured as a rectangular member on which the splitter film 28 and the second reflective film 30 are formed.
  • the plane of the incident side of the illumination light of the second prism 23 and third prism 24 are effective areas of the incident surface S i, the illumination light incident on the region is emitted from the emission surface S o
  • the Fresnel lens 14 and the diffusion plate 15 described above are arranged to face the effective area of the incidence surface S i.
  • the polarization direction control unit 21 includes a half-wave plate 31 (first polarization direction conversion unit) and two half-wave plates 32 (second polarization direction conversion unit).
  • the half-wave plate 31 and the two half-wave plates 32 are in the in-plane direction (in the y direction), and the two half-wave plates 32 sandwich the half-wave plate 31.
  • the polarization direction control unit 21 is formed as a single plate-like member.
  • the polarization direction control unit 21 is coupled to the exit side surface of the polarization separation unit 20 in the normal direction (z direction). Surface of the exit side of the half wave plate 31 and the 1/2 wave plate 32 is an effective area of the exit surface S o of the illumination light is emitted.
  • the half-wave plate 31 is arranged so that the polarization direction of the P-polarized light is tilted by a predetermined angle by tilting the optical axis.
  • P-polarized illumination light whose electric field vibrates in the y direction in FIG.
  • the optical axis of the half-wave plate 31 is inclined in the xy plane so that the P-polarized light is rotated by 135 °.
  • the half-wave plate 32 is arranged so that the polarization direction of the S-polarized light is inclined by a predetermined angle by inclining the optical axis.
  • S-polarized illumination light whose electric field oscillates in the x direction in FIG. 5 is incident on the half-wave plate 32, and in order to align this illumination light with the transmission axis of the liquid crystal panel 17, S
  • the optical axis of the half-wave plate 32 is inclined with respect to the x direction in the xy plane so that the polarization is rotated by 45 °.
  • the liquid crystal panel 17 is a transmissive liquid crystal panel, for example, an in-vehicle head-up display liquid crystal panel.
  • a transmissive liquid crystal panel for example, an in-vehicle head-up display liquid crystal panel.
  • the transmission axis of the polarized sunglasses is set in the vertical direction in a normal wearing state, and when the transmission axis and the direction of transmitting light through the liquid crystal display panel (transmission axis) are orthogonal, the image of the liquid crystal display panel is polarized sunglasses. The image becomes dark or invisible.
  • the transmission axis of the liquid crystal is often inclined at an angle such as 45 ° or 135 ° with respect to the vertical and horizontal directions of the outer shape of the rectangular panel. Also in the liquid crystal panel 17 of the present embodiment, the transmission axis is inclined 45 ° with respect to the lateral direction (x direction) of the outer shape of the liquid crystal panel.
  • the white light emitted from the light source 12 becomes illumination light of a substantially parallel luminous flux by the aspherical plano-convex lens 13 and the Fresnel lens 14, and is diffused by the diffusion plate 15. and it enters the effective area of the entrance surface S i of the polarization conversion element 16. As shown in FIG.
  • the illumination light L1 when taking illumination light L1 incident on the second prism 23 side of the entrance face S i as an example, the illumination light L1 is incident on the first polarizing beam splitter film 27, the first Are separated into P-polarized illumination light L2 (first polarization) that passes through the first polarization beam splitter film 27 and S-polarization illumination light L3 (second polarization) that is reflected by the first polarization beam splitter film 27.
  • the polarization direction of S-polarized light is the x direction
  • the polarization direction of P-polarized light is the y direction.
  • S polarization and P polarization are used. These directions coincide with either the x direction or the y direction.
  • the illumination light L2 passes through the first prism 22, passes through the half-wave plate 31, and is emitted from the emission surface So as linearly polarized light rotated by 45 ° with respect to the x direction.
  • the illumination light L3 travels through the second prism 23, is reflected in the direction of the liquid crystal panel 17 by the first reflective film 29, passes through the half-wave plate 32, and is a straight line rotated by 45 ° with respect to the x direction. It is emitted from the exit surface So as polarized light.
  • the illumination light L2, L3 emitted from the emitting surface S o of the polarization conversion element 16 the polarization direction is the transmission axis and the direction of the liquid crystal panel 17, 45 ° relative to the x direction (the direction of the S polarized light) It is emitted as linearly polarized light in the rotated direction. That is, only the illumination light L2 is incident on the half-wave plate 31, and only the illumination light L3 is incident on the half-wave plate 32 to make the polarization directions coincide with each other and only 45 ° with respect to the S-polarized light. The light is emitted at the rotated angle.
  • the emitted illumination lights L2 and L3 become uniform linearly polarized light whose polarization direction coincides with the transmission axis direction of the liquid crystal panel 17, efficiently transmits the liquid crystal panel 17, and is displayed on the liquid crystal panel upon transmission.
  • the display light is spatially modulated by the image. By projecting this display light onto a display unit such as a head-up display, images, characters, and the like can be displayed.
  • the polarization direction without interrupting the polarization in a specific direction of the illumination light incident from the incident surface S i aligned in a direction rotated by 45 ° with respect to S-polarized light (a predetermined direction) is emitted from the emission surface S o, thereby the illumination light irradiated to the liquid crystal panel 17 in the direction of the liquid crystal panel 17 transmits light Therefore, it is possible to reduce the loss of the amount of light emitted from the light source 12 and transmitted through the liquid crystal panel 17 and the decrease in luminance caused thereby.
  • the loss of light in the liquid crystal panel 17 is small, a part of the light that cannot be transmitted through the liquid crystal panel 17 is converted into heat, thereby preventing the temperature of the liquid crystal panel 17 from rising and the resulting deterioration of the liquid crystal panel 17. be able to.
  • the light transmitted through the liquid crystal panel 17 requires less light from the light source in order to obtain the same brightness as that of the conventional illumination unit, so that the light source can be driven with low power consumption and the thermal load can be reduced. This makes it possible to extend the life of the component parts. As a result, the projector 10 having high brightness, high efficiency, low power consumption, and long life can be realized.
  • the polarization conversion element 16 the effective area of the exit surface S o for emitting light, than the effective area of the entrance surface S i of the light emitted from the emitting surface S o is incident wide.
  • the width W 2 of the y direction of the effective area of the exit surface shown in FIG. 5, wider than the width W 1 of the y direction of the effective area of the incidence surface is about twice. That is, the polarization conversion element 16 also has a function of expanding the width of the light beam from the light source 12. Thereby, the light source 12, the aspherical plano-convex lens 13, and the Fresnel lens 14 can be made smaller with respect to the size of the liquid crystal panel 17.
  • the aspherical plano-convex lens 13 and the Fresnel lens 14 are combined as a collimating optical system for collimating the light from the light source 12.
  • the diffusion angle of the emitted light is large, so it is difficult to collimate it with only a plano-convex lens.
  • the Fresnel lens 14 by combining the Fresnel lens 14, the light from the light source 12 can be converted into a parallel light beam and efficiently incident on an effective area of the incident surface So of the polarization conversion element 16. Further, by using the Fresnel lens 14, the collimating optical system can be made compact.
  • the Fresnel lens 14 includes cylindrical Fresnel surfaces 14a and 14b whose cylindrical axis directions intersect with each other in the x direction and the y direction on the entrance surface and the exit surface.
  • the structure of the Fresnel lens 14 is simpler and easier to design than forming an annular groove.
  • the diffusion plate 15 is disposed immediately before the liquid crystal panel in the conventional technique. However, when the liquid crystal panel is irradiated with light having the same polarization direction as in the present invention, it is necessary that the diffusion plate also does not change the polarization direction. On the other hand, in the present embodiment, since the diffusion plate 15 is disposed on the incident side of the polarization conversion element 16, the diffusion plate 15 does not need to be able to maintain the polarization direction, and the width of the diffusion plate is substantially halved. It becomes possible.
  • the polarization direction control unit 21 of the polarization conversion element 16 of the present embodiment rotates the polarization direction of the outgoing light by 45 ° with respect to any polarization direction of the illumination light L2 and L3 incident from the polarization separation unit 20. By emitting the light at the angle, the light transmitted through the polarization conversion element 16 can be efficiently transmitted through the liquid crystal panel 17 whose transmission axis is inclined by 45 °.
  • first polarization direction conversion unit and the second polarization direction conversion unit of the polarization direction control unit 21 are configured by the half-wave plates 31 and 32 and are combined with each other, A single small member can be formed by combining with the polarization separation unit 20.
  • FIG. 6 is a diagram illustrating the configuration of the polarization conversion element 33 and the optical path of the illumination light included in the projection apparatus according to the second embodiment of the present invention.
  • the projection apparatus according to the present embodiment is obtained by replacing the polarization conversion element 16 with a polarization conversion element 33 in the projection apparatus 10 according to the first embodiment.
  • the polarization conversion element 33 is common to the polarization conversion element 16 in the polarization separation unit 20, and does not have the half-wave plate 32 of the polarization conversion element 16 of the first embodiment, and is 1 on the first prism 22. Instead of the half-wave plate 31, a half-wave plate 34 that converts P-polarized light into S-polarized light is disposed.
  • the transmission axis direction of the liquid crystal panel 17 is the x direction. Since other configurations are the same as those of the first embodiment, the same components are denoted by the same reference numerals, and description thereof is omitted.
  • the illumination light L1 incident on the incident surface S i is a first polarizing beam splitter film 27, the illumination light L2 and the S-polarized light of P-polarized light
  • the illumination light L3 is separated.
  • the illumination light L2 passes through the first prism 22, passes through the half-wave plate 34, and is converted to S-polarized light.
  • the illumination light L3 travels through the second prism 23, is reflected by the first reflecting film 29 in the direction of the liquid crystal panel 17, and is emitted from the emission surface So on the second prism 23 as S-polarized light. For this reason, the polarization directions of the illumination lights L2 and L3 emitted from the polarization conversion element 33 are aligned with the S polarization.
  • the illumination lights L2 and L3 emitted from the polarization conversion element 16 are both S-polarized light, but the liquid crystal panel 17 transmits light in the polarization direction of these illumination lights. Since it coincides with the direction, there is little light loss in the liquid crystal panel, and effects such as high brightness, high efficiency, low power consumption, and long life can be obtained as in the first embodiment.
  • the transmission axis direction of the liquid crystal panel is limited to the x direction, but the polarization direction control unit 21 can be formed only by the half-wave plate 34.
  • the present invention is not limited to the above embodiment, and many variations or modifications are possible.
  • a half-wave plate is used for the polarization direction conversion unit
  • the polarization direction conversion unit is not limited to a half-wave plate as long as the polarization direction is changed.
  • an optical rotator using an optical rotatory material such as a nematic liquid crystal, a wave plate using a polymer material, a wave plate using an optical crystal having birefringence such as quartz can be used.
  • the P polarized light is the first polarized light and the S polarized light is the second polarized light.
  • the S polarized light is the first polarized light and the P polarized light is the second polarized light. It can also be.
  • the arrangement of the half-wave plate and the rotation angle of the polarization direction can be variously set.
  • illumination light is emitted by arranging half-wave plates on the second and third prisms 23 and 24. It is also possible to have a configuration in which is aligned with P-polarized light.
  • each prism of the polarization conversion member and the directions of the polarization beam splitter film and the reflection film shown in the first embodiment and the second embodiment are examples.
  • the angle formed by the polarization beam splitter film and the reflection film with the incident surface of the polarization conversion member is not limited to 45 °.
  • the illumination unit and the projection device of the present invention can be suitably used as an illumination unit and a projection device that increase the light use efficiency in the transmissive liquid crystal panel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Transportation (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Combustion & Propulsion (AREA)
  • Instrument Panels (AREA)

Abstract

液晶パネル(17)に光を照射する本発明の光源ユニットは、光源(12)と、光源(12)からの光をコリメートする非球面平凸レンズ(13)及びフレネルレンズ(14)と、入射面Siから入射した光の何れの方向の偏光を遮断することなく偏光方向を特定の方向に揃えて出射面Soから出射させる偏光変換素子(16)とを備える。所定の方向は、液晶パネル(17)が光を透過させる方向である。これにより、光源(12)から出射して液晶パネルを透過する光の光量の損失を低減する。

Description

光源ユニット及び投影装置 関連出願の相互参照
 本出願は、日本国特許出願2015-108985号(2015年5月28日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、光源ユニット及び投影装置に関する。
 透過型液晶パネルに照明光を照射して、透過した光をスクリーン等に投影表示する投影装置として、例えば、プロジェクタ、ヘッドアップディスプレイ(Head-Up Display、HUD)等が知られている。これらの投影装置の光源ユニットとしては、LED(Light Emitting Diode)を二次元配列した光源と、光源からの光を略平行光に変換するレンズと、集光された光を拡散する拡散板とを有するものが提案されている(例えば、特許文献1~3参照)。
 例えば、特許文献1は、ヘッドアップディスプレイに用いられる液晶パネルの背面に配置される照明装置について開示する。この照明装置では、高輝度且つ均一の照明光を得るため、二次元状に配置されたLED光源からの光をフレネルレンズで略平行光に変換して、光拡散手段を介して液晶パネルに照射する。また、特許文献2は、アイボックスへの光照射効率を向上する等の目的のため、LED光源とレンズアレイとフィールドレンズと光拡散部材とを有する光学系により液晶パネルを照射するヘッドアップディスプレイ装置について、光学系の配置について提案している。特許文献3では、光源からの光を、入射凸レンズ面及び出射凸レンズ面を有するレンズが配列されたレンズアレイにより光軸方向に屈曲させて液晶パネルを透過させている。
 上記の各従来技術に開示される投影装置の光源ユニットでは、それぞれ、光源の光を効率良く液晶パネルに照射するようにしている。これらの従来技術では、LED光源から出射された光が、略平行光に変換された後、拡散板により均一な光に拡散され、液晶パネルに照射される点において共通している。
特開2007-87792号公報 特開2012-203176号公報 特開2013-164512号公報
 上記のような従来技術の光源ユニットの構成では、LED光源から射出される光がランダム偏光(無偏光)のため、液晶表示パネルに照射される光も、ランダムな偏光状態となっている。これに対して、液晶パネルは偏光板を内蔵しており、偏光板の透過軸方向の直線偏光成分のみを透過させる。このため、LEDより出射された光の約半分は液晶パネルを透過することができず、更にその一部は熱に変換される。その結果、投影面に投影される光の輝度は略半分以下に低下し、また、液晶パネルを透過できない光の一部は熱に変換され、温度上昇による液晶パネルの劣化を引き起こす。なお、以下において、液晶パネルの光を透過させる方向を、適宜液晶パネルの透過軸方向と呼ぶ。
 また、従来技術では、輝度を向上させるためにLEDから出射される光の光量を上げると、構成部品への熱負荷の増加により構成部品の劣化が早まり、且つ、消費電力の上昇によりエネルギー効率の低下を引き起こすこととなる。さらに、液晶パネルを照明光で照射するためには、液晶パネルの表示面と同程度以上の大きさを有するレンズや拡散板を必要とする。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、光源から出射して液晶パネルを透過する光の光量の損失を低減した光源ユニット及びこれを用いた投影装置を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 液晶パネルに光を照射する光源ユニットであって、
 光源と、
 前記光源からの拡散光をコリメートするコリメート光学系と、
 入射面から入射した光の何れの方向の偏光を遮断することなく偏光方向を所定の方向に揃えて出射面から出射させる偏光変換素子と
を備え、
 前記所定の方向は、前記液晶パネルが光を透過させる方向であることを特徴とする光源ユニットである。
 該<1>に記載の光源ユニットにおいて、光源が射出した光をコリメート光学系がコリメートして偏光変換素子に入射させ、該偏光変換素子が何れの方向の偏光を遮断することなく、液晶パネルの光を透過させる方向に、入射した光の偏光方向を揃えて出射面から出射させる。
<2> 偏光変換素子は、光を出射する出射面の有効な領域が、前記出射面から出射される光が入射する入射面の有効な領域よりも広いことを特徴とする前記<1>に記載の光源ユニットである。
 該<2>に記載の光源ユニットにおいて、偏光変換素子は入射面の有効な領域より入射した光を、よい広い出射面の有効領域から出射させる。
<3> コリメート光学系は、非球面凸レンズとフレネルレンズとを備え、光源からの光を平行光束に変換して偏光変換素子の入射面の有効な領域のみに入射させることを特徴とする前記<2>に記載の光源ユニットである。
 該<3>に記載の光源ユニットにおいて、光源から射出される拡散光は、非球面凸レンズで光軸に近づく方向に屈折され、拡散角が小さくなる。さらに、フレネルレンズによって、略平行光束に変換される。
<4> フレネルレンズは、入射面及び出射面に互いの円柱軸方向が交差するシリンドリカルフレネル面を備える前記<3>に記載の光源ユニットである。
 該<4>に記載の光源ユニットにおいて、入射面及び出射面のシリンドリカルフレネル面により、非球面凸レンズを通り入射した光束が、それぞれ交差する2つの円柱軸方向に屈折され、略平行光束となる。
<5> 偏光変換素子の入射側に配置された拡散板を備える前記<1>に記載の光源ユニットである。
 該<5>に記載の光源ユニットにおいて、拡散板が偏光変換素子に入射する前の光を拡散させる。
<6> 偏光変換素子は、入射光を偏光方向が互いに直交する第1の偏光と第2の偏光とに分離する偏光分離部と、少なくとも前記第1の偏光の偏光方向を変換する第1の偏光方向変換部、及び、少なくとも前記第2の偏光の偏光方向を変換する第2の偏光方向変換部を有し、前記第1の偏光及び前記第2の偏光の偏光方向を一致させるとともに、前記偏光分離部で分離された前記第1の偏光及び前記第2の偏光の何れかの偏光方向に対して、出射光の偏光方向を所定の角度だけ回転させた角度で出射させる偏光方向制御部とを備えることを特徴とする前記<1>に記載の光源ユニットである。
 該<6>に記載の光源ユニットにおいて、入射した光を偏光変換部が互いに直交する第1の偏光と第2の偏光とに分離し、偏光方向制御部が第1の偏光方向変換部及び第2の偏光方向変換部により第1の偏光と第2の偏光との偏光方向を一致させ、且つ、偏光分離部で分離された第1の偏光及び第2の偏光の何れかの偏光方向に対して、出射光の偏光方向を所定の角度だけ回転させた角度で出射させる。
<7> 前記偏光分離部は、入射光を前記第1の偏光と前記第2の偏光とに分離するビームスプリッタ膜と、前記第1の偏光と前記第2の偏光との少なくとも一方を前記偏光方向制御部に向けて反射する反射面とを備える<6>に記載の光源ユニットである。
該<7>に記載の光源ユニットにおいて、ビームスプリッタ膜が入射光を第1の偏光と第2の偏光とに分離し、反射面が、第1の偏光と第2の偏光との少なくとも一方を偏光方向制御部に向けて反射することにより、第1の偏光と第2の偏光との進行方向を揃え偏光方向制御部に入射させる。
<8> 偏光方向制御部は、偏光分離部から入射した第1の偏光及び第2の偏光の何れかの偏光方向に対して、出射光の偏光方向を45°回転させた角度で出射させるように構成される前記<6>に記載の光源ユニットである。
 該<8>に記載の光源ユニットにおいて、偏光方向制御部に入射した光は、第1の偏光及び第2の偏光の何れかの偏光に対して45°回転された角度の直線偏光として偏光方向制御部から出射される。
<9> 第1の偏光方向変換部及び第2の偏光方向変換部は、1/2波長板により構成されており、偏光方向制御部は、前記第1の偏光方向変換部及び前記第2の偏光方向変換部を結合した板状部材であることを特徴とする前記<6>に記載の光源ユニットである。
 該<9>に記載の光源ユニットにおいて、第1の偏光変換部および第2の偏光変換部は、それぞれ1/2波長板を透過させることにより、第1の偏光及び第2の偏光の偏光方向を変化させる。
<10> 液晶パネルに光を照射する光源ユニットであって、
 光源と、
 前記光源からの拡散光をコリメートする少なくとも一つのレンズと、
 前記少なくとも一つのレンズを透過した光を、互いに直交する第1の偏光と第2の偏光とに分離するビームスプリッタと、
 前記ビームスプリッタで分離された前記第1の偏光と前記第2の偏光との少なくとも一方を反射して、前記第1の偏光と前記第2の偏光との進行方向を揃える反射面と、
 前記第1の偏光及び前記第2の偏光のそれぞれ、または、何れか一方に対して設けられ、
偏光方向を変換する少なくとも一つの1/2波長板と
を備え、
 前記1/2波長板の光学軸の方向は、該1/2波長板に入射する前記第1の偏光または前記第2の偏光の偏光方向を、前記液晶パネルが光を透過させる方向に変換するように設定されることを特徴とする光源ユニットである。
 該<10>に記載の光源ユニットにおいて、光源からの拡散光を少なくとも一つのレンズがコリメートし、少なくとも一つのレンズを透過した光をビームスプリッタが互いに直交する第1の偏光と第2の偏光とに分離し、ビームスプリッタで分離された第1の偏光と第2の偏光との少なくとも一方を反射面が反射して、第1の偏光と第2の偏光との進行方向を揃え、偏光方向を変換する少なくとも一つの1/2波長板が、前記第1の偏光及び前記第2の偏光のそれぞれ、または、何れか一方に対して設けられ、1/2波長板に入射する前記第1の偏光または前記第2の偏光の偏光方向を、液晶パネルが光を透過させる方向に変換する。
<11> 光源と、
 前記光源からの拡散光をコリメートするコリメート光学系と、
 入射面から入射した光の何れの方向の偏光を遮断することなく偏光方向を所定の方向に揃えて出射面から出射させる偏光変換素子と、
 前記所定の方向の偏光を透過させて表示光とする液晶パネルと
を備える投影装置である。
 該<11>に記載の投影装置において、光源が射出した光をコリメート光学系がコリメートして偏光変換素子に入射させ、該偏光変換素子が何れの方向の偏光を遮断することなく、入射した光の偏光方向を揃えて出射面から出射させ、液晶パネルが偏光変換素子の出射光の偏光方向と同じ方向の偏光を透過させて、画像を表示する表示光とする。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、光源から出射して液
晶パネルを透過する光の光量の損失を低減した光源ユニット及びこれを用いた投影装置を提供することができる。
第1実施の形態に係る投影装置を光軸方向に展開した状態を示す斜視図である。 図1の投影装置をx方向から見た断面図である。 図1の投影装置をy方向から見た断面図である。 フレネルレンズの構造を示す図であり、(a)は、y方向から見た図(b)はz方向に沿って出射面側から見た図、(c)はz方向に沿って入射側から見た図、(d)はx方向から見た図である。 偏光変換素子の構成及び照明光の光路を示す図である。 第2実施の形態に係る投影装置に含まれる偏光変換素子の構成及び照明光の光路を示す図である。
 以下、本発明の実施の形態について、図面を参照して説明する。
(第1実施の形態)
 図1は、本発明の第1実施の形態に係る投影装置を光軸方向に展開した状態を示す斜視図である。投影装置10は、基板11(図2,3参照)に配置された光源12、非球面平凸レンズ13、フレネルレンズ14、拡散板15、偏光変換素子16、液晶パネル17を含んで構成される。これらのうち、光源12、非球面平凸レンズ13、フレネルレンズ14、拡散板15及び偏光変換素子16は、光源ユニット10aを構成している。また、非球面平凸レンズ13とフレネルレンズ14とは、コリメート光学系を構成する。図1には、非球面平凸レンズ13、偏光変換素子16及び液晶パネル17のそれぞれを透過後の照明光の偏光方向を、両矢印で示している。本実施の形態では、液晶パネル17が照明光を透過させる方向(液晶パネルの透過軸方向)は、x軸に対し45°の方向である。
 図1及び以下の図2~図5において、光源12を出射し液晶パネル17に向かう光の進行方向(光軸方向)をz方向とし、z方向に直交し且つ互いに直交する2方向であって、液晶パネル17の外形の横方向に沿う方向をx方向、縦方向に沿う方向をy方向とする。図2及び図3は、それぞれ投影装置をx方向及びy方向から見た断面図である。以下に図1~図5を参照して、本実施の形態の投影装置10のより詳細な構成について説明する。
 光源12は、x方向に複数並んで配列されたLED光源であって、好ましくは白色LED光源である。光源12から射出される光は、拡散光である。図2及び図3において、光源12から射出された光束の最も外側を通る光の光路を破線で示す。光源12から射出された直後の光は、大きな拡散角を持っている。
 非球面平凸レンズ13は、それぞれ、光軸をz方向に向けた状態で、平面側を光源12の発光面に対向して、x方向に光源12と同数配列されている。非球面平凸レンズ13は、光源12から射出された拡散する照明光を光軸方向に近づく方向に屈折させる。LEDからの光の拡散方向は広いので、通常、1つの凸レンズのみではこれを平行光にすることはできない。このため、非球面平凸レンズ13の後段には、フレネルレンズ14が設けられる。非球面平凸レンズ13のxy面内での直径は、図2に示すように、フレネルレンズ14のy方向の幅に略等しい。
 フレネルレンズ14は、z方向から見たとき長辺がx方向に延びる矩形状の形状を有し、樹脂などからなる平板状の透明部材の両面に、シリンドリカルレンズの特性を有する鋸波型の溝を多数設けたものである。フレネルレンズ14の同一の面で溝の形成される方向は互いに平行であり、その方向はシリンドリカルレンズの円柱軸方向となる。図4は、フレネルレンズ14の構造を示す図であり、(a)は、y方向から見た図(b)はz方向に沿って出射面側から見た図、(c)はz方向に沿って入射側から見た図、(d)はx方向から見た図である。フレネルレンズ14の出射側の面には、溝がy方向に形成されたシリンドリカルフレネル面14aが設けられ、入射側の面には、溝がx方向に形成されたシリンドリカルフレネル面14bが設けられている。これによって、光源12から射出され、非球面平凸レンズ13で屈折された照明光の光束は、フレネルレンズ14の入射側の面でy方向に屈折され、フレネルレンズ14の出射側の面でx方向に屈折される。その結果、フレネルレンズ14を透過した光は、略平行にコリメートされた光束となる。
 拡散板15は、照明光を拡散させ均一な光として射出する板状の部材であり、例えば、光拡散性を有する微粒子を透明樹脂に添加して形成される。拡散板15は、後段の液晶パネル17を照射する照明光のムラを緩和するために設けられる。拡散板15は、偏光変換素子16の後述する入射面Sの有効な領域に近接して配置される。フレネルレンズ14を出射した略平行な光束は、拡散板15に略垂直に入射して拡散される。
 拡散板15で拡散された光は、偏光変換素子16に入射する。図5は、偏光変換素子16の構成及び照明光の光路を示す図である。偏光変換素子16は、z方向から見たとき、長辺がx方向に延び、短辺がy方向に延びる矩形の形状をしている。そのxy方向の大きさは、液晶パネル17のxy方向の外形と略等しいか又は液晶パネルよりも若干大きい。偏光変換素子16は、入射光を偏光方向が互いに直交する2つの偏光に分離する偏光分離部20と、分離した2つの偏光の偏光方向を揃えてx方向又はy方向に対して所定角度だけ回転させた角度で出射させる偏光方向制御部21とを備え、これらを一体化した部材として構成される。
 偏光分離部20は、ガラス、樹脂等の透明な基材により形成され、何れもx方向に長く延びる、第1のプリズム22、第2のプリズム23、第3のプリズム24、第4のプリズム25及び第5のプリズム26を接合して構成される。
 第1のプリズム22は、yz断面が略直角二等辺三角形の形状を有する三角プリズムである。第1のプリズム22はyz断面の略直角を形成する頂点を光源12方向に向け、この略直角を挟む2面は、z方向に対して約45°を成すように配置されている。更に、この直角を挟む2面は、それぞれ表面に偏光分離膜である第1の偏光ビームスプリッタ膜27及び第2の偏光ビームスプリッタ膜28が形成されている。偏光分離膜は、例えば、蒸着等により形成された誘電体多層膜である。第1の偏光ビームスプリッタ膜27及び第2の偏光ビームスプリッタ膜28は、入射する光のP偏光を透過させ、S偏光を反射させる。P偏光とS偏光とは偏光方向が互いに直交する。照明光L1のうち偏光ビームスプリッタ膜28を透過した照明光L2を第1の偏光、反射された照明光L3を第2の偏光と呼ぶ。
 第2のプリズム23及び第3のプリズム24は、yz断面が略平行四辺形の形状を有し、それぞれ、一面が第1のプリズム22の第1の偏光ビームスプリッタ膜27、第2の偏光ビームスプリッタ膜28を有する面と接合されている。
 第4のプリズム25及び第5のプリズム26は、yz断面が略直角二等辺三角形の形状を有する三角プリズムであり、その略直角と対向する斜面には、それぞれ、例えば誘電体多層膜又はアルミなどの金属を蒸着した、第1の反射膜29及び第2の反射膜30が形成されている。第1の反射膜29及び第2の反射膜30は反射面を形成する。第4のプリズム25及び第5のプリズム26は、それぞれ、第2のプリズム23及び第3のプリズム24に対して、第1の反射膜29及び第2の反射膜30が形成された面を、第1のビームスプリッタ膜27及び第2のビームスプリッタ膜28に対向させるように結合されている。
 このようにして、偏光分離部20は、内部にそれぞれz方向及びxy平面に対して、約45°傾けて向かい合う第1のビームスプリッタ膜27及び第1の反射膜29、並びに、第2のビームスプリッタ膜28及び第2の反射膜30が形成された矩形の部材として構成される。ここで、第2のプリズム23及び第3のプリズム24の照明光の入射側の面は、入射面Sの有効な領域であり、この領域に入射した照明光が出射面Sから出射される。上述のフレネルレンズ14及び拡散板15は、この入射面Sの有効な領域に対向するように配置される。
 一方、偏光方向制御部21は、1/2波長板31(第1の偏光方向変換部)及び2枚の1/2波長板32(第2の偏光方向変換部)から構成される。ここで、1/2波長板31と2枚の1/2波長板32とは、面内方向に(y方向に)、2枚の1/2波長板32が1/2波長板31を挟むように互いに結合され、偏光方向制御部21は、一枚の板状部材として形成される。更に、偏光方向制御部21は、偏光分離部20の出射側の面と法線方向(z方向)に結合されている。1/2波長板31と1/2波長板32の出射側の面は、照明光が出射される出射面Sの有効な領域である。
 1/2波長板31は、光学軸を傾けることによって、P偏光の偏光方向を所定の角度だけ傾けるように配置される。具体的には、1/2波長板31に対して電場が図5のy方向に振動するP偏光の照明光が入射する。この照明光を液晶パネル17の光を透過させる方向(透過軸)に合わせるためには、P偏光を135°回転させるように、1/2波長板31の光学軸をxy面内で傾けて配置する。また、1/2波長板32は、光学軸を傾けることによって、S偏光の偏光方向を所定の角度傾けるように配置される。具体的には、1/2波長板32に対して電場が図5のx方向に振動するS偏光の照明光が入射し、この照明光を液晶パネル17の透過軸に合わせるためには、S偏光を45°回転させるように、1/2波長板32の光学軸をx方向に対してxy面内で傾けて配置する。
 液晶パネル17は、透過型の液晶パネルであり、例えば、車載用のヘッドアップディスプレイの液晶パネルである。自動車用、航空機の機内用等の表示装置では、外光の強い環境下で使用された場合に使用者が偏光サングラスをかけていた場合にも、視認性を低下させないことが必要とされている。偏光サングラスの透過軸は、通常の装着状態において鉛直方向に設定されており、この透過軸と液晶表示パネルを光が透過する方向(透過軸)とが直交すると、液晶表示パネルの画像が偏光サングラスに遮られてしまい、画像が暗くなるか見えなくなってしまう。このため、矩形のパネルの外形形状の縦及び横方向に対して、液晶の透過軸が45°又は135°等の角度で傾けられている場合が多い。本実施の形態の液晶パネル17も、透過軸が液晶パネルの外形の横方向(x方向)に対して45°傾けられている。
 以上のような構成によって、図1~3に示すように、光源12から出射した白色光は、非球面平凸レンズ13及びフレネルレンズ14によって、略平行光束の照明光となり、拡散板15により拡散され、偏光変換素子16の入射面Sの有効な領域に入射する。図5に示すように、入射面Sの第2のプリズム23側に入射した照明光L1を例にとると、照明光L1は、第1の偏光ビームスプリッタ膜27に入射し、この第1の偏光ビームスプリッタ膜27を透過するP偏光の照明光L2(第1の偏光)と、第1の偏光ビームスプリッタ膜27で反射されるS偏光の照明光L3(第2の偏光)に分離される。ここで、S偏光の偏光方向はx方向であり、P偏光の偏光方向はy方向である。投影装置10を小型に構成するには、偏光変換素子16と液晶パネル17との矩形の外形の長辺方向(x方向)及び短辺方向(y方向)を一致させるため、S偏光及びP偏光の方向は、それぞれx方向及びy方向の何れかと一致する。
 照明光L2は、第1のプリズム22を透過して1/2波長板31を通り、x方向に対して45°回転した直線偏光として出射面Sから出射される。また照明光L3は、第2のプリズム23内を進み、第1の反射膜29で液晶パネル17の方向に反射され、1/2波長板32を通り、x方向に対して45°回転した直線偏光として出射面Sから出射される。これにより、偏光変換素子16の出射面Sから出射した照明光L2,L3は、偏光方向が液晶パネル17の透過軸と同方向である、x方向(S偏光の方向)に対して45°回転した方向の直線偏光として出射される。即ち、1/2波長板31には、照明光L2のみが入射し、1/2波長板32には照明光L3のみが入射して、偏光方向を一致させるとともにS偏光に対して45°だけ回転させた角度に揃えて出射させる。これによって、出射した照明光L2,L3は、液晶パネル17の透過軸方向と偏光方向が一致する均一な直線偏光となり、液晶パネル17を効率良く透過し、透過の際に液晶パネルに表示される画像により空間的に変調を受けて表示光となる。この表示光をヘッドアップディスプレイ等の表示部に投影することによって、画像や文字等を表示することができる。
 以上説明したように、本実施の形態の投影装置10によれば、偏光変換素子16を用いたことにより、入射面Sから入射した照明光の特定方向の偏光を遮断することなく偏光方向をS偏光に対して45°だけ回転させた方向(所定の方向)に揃えて出射面Sから出射させ、これにより液晶パネル17に照射される照明光を液晶パネル17が光を透過させる方向にしたので、光源12から出射して液晶パネル17を透過する光の光量の損失とそれによる輝度の低下を低減することができる。また、液晶パネル17での光の損失が少ないので、液晶パネル17を透過できない光の一部が熱に変換され、液晶パネル17の温度上昇とそれによる液晶パネル17の劣化が生じることを防止することができる。また、液晶パネル17を透過する光について、従来の照明ユニットと同じ輝度を得るために、より少ない光源の光量で済むため、光源を低消費電力で駆動することができ、且つ、熱負荷の低減により構成部品の長寿命化を図ることが可能になる。その結果、高輝度で高効率、低消費電力、長寿命な投影装置10を実現することができる。
 また、本実施の形態では、偏光変換素子16が、光を出射する出射面Sの有効な領域が、出射面Sから出射される光が入射する入射面Sの有効な領域よりも広い。具体的には、図5に示す出射面の有効な領域のy方向の幅Wが、入射面の有効な領域のy方向の幅Wよりも広く、約2倍となっている。即ち、偏光変換素子16は、光源12からの光束の幅を拡大する機能も有する。これによって、液晶パネル17の大きさに対して、光源12、非球面平凸レンズ13、及び、フレネルレンズ14をより小型に構成することができる。
 更に、本実施の形態では、光源12からの光をコリメートするコリメート光学系として、非球面平凸レンズ13とフレネルレンズ14とを組み合わせている。光源12としてLEDを使用する場合、射出される光の拡散角が大きいため、平凸レンズのみでこれをコリメートすることは難しい。本実施の形態では、フレネルレンズ14を組み合わせることで、光源12からの光を平行光束とし、偏光変換素子16の入射面Sの有効な領域に効率よく入射させることができる。また、フレネルレンズ14を用いたことで、コリメート光学系を小型に構成できる。
 また、フレネルレンズ14は、入射面及び出射面に互いの円柱軸方向がx方向とy方向とで交差するシリンドリカルフレネル面14a,14bを備える。直線の溝を有する2つのシリンドリカルフレネル面14a,14bを用いることにより、円環状の溝を形成するよりも、フレネルレンズ14の構造が単純且つ設計が容易となる。
 拡散板15は、従来技術では液晶パネルの直前に配置される。しかし、本発明のように液晶パネルに偏光方向の揃った光を照射する場合は、拡散板も偏光方向を変化させないものである必要が生じる。これに対し本実施の形態では、拡散板15を偏光変換素子16の入射側に配置したので、拡散板15は偏光方向を保持できるものである必要が無く、拡散板の幅も略半分にすることが可能になる。
 また、本実施の形態の偏光変換素子16の偏光方向制御部21は、偏光分離部20から入射した照明光L2及びL3の何れかの偏光方向に対して、出射光の偏光方向を45°回転させた角度で出射させることにより、偏光変換素子16を透過する光が、透過軸の方向が45°傾いた液晶パネル17を効率よく透過することができる。
 更に、偏光方向制御部21の第1の偏光方向変換部及び前記第2の偏光方向変換部を、1/2波長板31,32により構成されこれらを結合した板状部材としたので、これらを偏光分離部20と結合して、単一の小型の部材とすることができる。
(第2実施の形態)
 図6は、本発明の第2実施の形態に係る投影装置に含まれる偏光変換素子33の構成及び照明光の光路を示す図である。本実施の形態に係る投影装置は、第1実施の形態に係る投影装置10において、偏光変換素子16を偏光変換素子33で置き代えたものである。偏光変換素子33は、偏光分離部20の部分は偏光変換素子16と共通し、第1実施の形態の偏光変換素子16の、1/2波長板32が無く、第1のプリズム22上に1/2波長板31に代えて、P偏光をS偏光に変換する1/2波長板34が配置されている。また、本実施の形態では、液晶パネル17の透過軸方向は、x方向とする。その他の構成は、第1実施の形態と同様であるので、同一構成要素には同一参照符号を付して説明を省略する。
 上記のように構成されているので、第1実施の形態と同様に、入射面Sに入射した照明光L1は、第1の偏光ビームスプリッタ膜27で、P偏光の照明光L2とS偏光の照明光L3とに分離される。照明光L2は、第1のプリズム22を透過して1/2波長板34を通りS偏光に変換される。また、照明光L3は、第2のプリズム23内を進み、第1の反射膜29で液晶パネル17方向に反射され、第2のプリズム23上の出射面SからS偏光として出射される。このため、偏光変換素子33から出射した照明光L2,L3の偏光方向は、S偏光に揃えられる。
 以上のように、本実施の形態では、偏光変換素子16から出射した照明光L2,L3は、何れもS偏光となるが、これらの照明光の偏光方向は、液晶パネル17が光を透過させる方向と一致しているので、液晶パネルでの光の損失が少なく、第1実施の形態と同様に、高輝度で高効率、低消費電力、長寿命等の効果が得られる。本実施の形態の投影装置は、液晶パネルの透過軸方向がx方向に限定されるが、偏光方向制御部21を1/2波長板34のみで形成できる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形又は変更が可能である。たとえば、偏光方向変換部には1/2波長板を用いたが、偏光方向変換部としては偏光方向を変更するものであれば1/2波長板に限られない。例えば、ネマチック液晶等の旋光性有する材料を用いた旋光子、高分子材料を用いた波長板、水晶などの複屈折を有する光学結晶を用いた波長板などを用いることも可能である。
 また、偏光分離部で分離された互いに直交する偏光のうち、P偏光を第1の偏光、S偏光を第2の偏光としたが、S偏光を第1の偏光としP偏光を第2の偏光とすることもできる。更に、1/2波長板の配置及び偏光方向の回転角は、種々の設定が可能である。例えば、第2実施の形態の第1のプリズム22上の1/2波長板に代えて、第2及び第3のプリズム23,24上に1/2波長板を配置して、出射する照明光をP偏光に揃える構成も可能である。
 更に、第1実施の形態及び第2実施の形態で示した、偏光変換部材の各プリズムの形状、配置、及び、それによる偏光ビームスプリッタ膜及び反射膜の向きは例示である。例えば、偏光ビームスプリッタ膜及び反射膜が、偏光変換部材の入射面と成す角度は、45°に限られない。
 本発明の照明ユニット及び投影装置は、透過型液晶パネルにおける光の利用効率を高める照明ユニット及び投影装置として、好適に利用可能である。
 10  投影装置
 10a  光源ユニット
 11  基板
 12  光源(LED)
 13  非球面平凸レンズ
 14  フレネルレンズ
 14a,14b  シリンドリカルフレネル面
 15  拡散板
 16  偏光変換素子
 17  液晶パネル
 20  偏光分離部
 21  偏光方向制御部
 22  第1のプリズム
 23  第2のプリズム
 24  第3のプリズム
 25  第4のプリズム
 26  第5のプリズム
 27  第1の偏光ビームスプリッタ膜
 28  第2の偏光ビームスプリッタ膜
 29  第1の反射膜
 30  第2の反射膜
 31  1/2波長板(第1の偏光方向変換部)
 32  1/2波長板(第2の偏光方向変換部)
 33  偏光変換素子
 34  1/2波長板
 L1  照明光
 L2  照明光(第1の偏光)
 L3  照明光(第2の偏光)
 S  入射面
 S  出射面
 W  入射面の有効領域の幅
 W  出射面の有効領域の幅

Claims (11)

  1.  液晶パネルに光を照射する光源ユニットであって、
     光源と、
     前記光源からの拡散光をコリメートするコリメート光学系と、
     入射面から入射した光の何れの方向の偏光を遮断することなく偏光方向を所定の方向に揃えて出射面から出射させる偏光変換素子と
    を備え、
     前記所定の方向は、前記液晶パネルが光を透過させる方向であることを特徴とする光源ユニット。
  2.  前記偏光変換素子は、光を出射する出射面の有効な領域が、前記出射面から出射される光が入射する入射面の有効な領域よりも広いことを特徴とする請求項1に記載の光源ユニット。
  3.  前記コリメート光学系は、非球面凸レンズとフレネルレンズとを備え、前記光源からの光を平行光束に変換して前記偏光変換素子の前記入射面の前記有効な領域のみに入射させることを特徴とする請求項2に記載の光源ユニット。
  4.  前記フレネルレンズは、入射面及び出射面に互いの円柱軸方向が交差するシリンドリカルフレネル面を備える請求項3に記載の光源ユニット。
  5.  前記偏光変換素子の入射側に配置された拡散板を備える請求項1に記載の光源ユニット。
  6.  前記偏光変換素子は、
     入射光を偏光方向が互いに直交する第1の偏光と第2の偏光とに分離する偏光分離部と、
     少なくとも前記第1の偏光の偏光方向を変換する第1の偏光方向変換部、及び、少なくとも前記第2の偏光の偏光方向を変換する第2の偏光方向変換部を有し、前記第1の偏光及び前記第2の偏光の偏光方向を一致させるとともに、前記偏光分離部で分離された前記第1の偏光及び前記第2の偏光の何れかの偏光方向に対して、出射光の偏光方向を所定の角度だけ回転させた角度で出射させる偏光方向制御部と
    を備えることを特徴とする請求項1に記載の光源ユニット。
  7.  前記偏光分離部は、入射光を前記第1の偏光と前記第2の偏光とに分離するビームスプリッタ膜と、前記第1の偏光と前記第2の偏光との少なくとも一方を前記偏光方向制御部に向けて反射する反射面とを備える請求項6に記載の光源ユニット。
  8.  前記偏光方向制御部は、前記偏光分離部から入射した前記第1の偏光及び前記第2の偏光の何れかの偏光方向に対して、出射光の偏光方向を45°回転させた角度で出射させるように構成される請求項6に記載の光源ユニット。
  9.  前記第1の偏光方向変換部及び前記第2の偏光方向変換部は、1/2波長板により構成されており、前記偏光方向制御部は、前記第1の偏光方向変換部及び前記第2の偏光方向変換部を結合した板状部材であることを特徴とする請求項6に記載の光源ユニット。
  10.  液晶パネルに光を照射する光源ユニットであって、
     光源と、
     前記光源からの拡散光をコリメートする少なくとも一つのレンズと、
     前記少なくとも一つのレンズを透過した光を、互いに直交する第1の偏光と第2の偏光とに分離するビームスプリッタと、
     前記ビームスプリッタで分離された前記第1の偏光と前記第2の偏光との少なくとも一方を反射して、前記第1の偏光と前記第2の偏光との進行方向を揃える反射面と、
     前記第1の偏光及び前記第2の偏光のそれぞれ、または、何れか一方に対して設けられ、
    偏光方向を変換する少なくとも一つの1/2波長板と
    を備え、
     前記1/2波長板の光学軸の方向は、該1/2波長板に入射する前記第1の偏光または前記第2の偏光の偏光方向を、前記液晶パネルが光を透過させる方向に変換するように設定されることを特徴とする光源ユニット。
  11.  光源と、
     前記光源からの拡散光をコリメートするコリメート光学系と、
     入射面から入射した光の何れの方向の偏光を遮断することなく偏光方向を所定の方向に揃えて出射面から出射させる偏光変換素子と、
     前記所定の方向の偏光を透過させて表示光とする液晶パネルと
    を備える投影装置。
PCT/JP2016/002549 2015-05-28 2016-05-26 光源ユニット及び投影装置 WO2016189871A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-108985 2015-05-28
JP2015108985A JP2016224186A (ja) 2015-05-28 2015-05-28 光源ユニット及び投影装置

Publications (1)

Publication Number Publication Date
WO2016189871A1 true WO2016189871A1 (ja) 2016-12-01

Family

ID=57392686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002549 WO2016189871A1 (ja) 2015-05-28 2016-05-26 光源ユニット及び投影装置

Country Status (2)

Country Link
JP (1) JP2016224186A (ja)
WO (1) WO2016189871A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626471B (zh) * 2017-05-31 2018-06-11 Head-up display illumination system using a polarized light converter
CN110720071A (zh) * 2017-06-16 2020-01-21 麦克赛尔株式会社 光源装置和平视显示器装置
JP2021144196A (ja) * 2020-03-13 2021-09-24 株式会社デンソー 虚像表示装置
JP2023021102A (ja) * 2021-07-28 2023-02-09 マクセル株式会社 空間浮遊映像情報表示システムおよびそれに用いられる光源装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139157A1 (ja) * 2017-01-27 2018-08-02 林テレンプ株式会社 照明装置およびヘッドアップディスプレイ装置
JP7113172B2 (ja) * 2017-09-01 2022-08-05 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
CN113759564A (zh) * 2020-06-04 2021-12-07 浙江棱镜全息科技有限公司 汽车用空气成像装置及人机交互车载辅助系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362902A (ja) * 1991-04-05 1992-12-15 Canon Inc 偏光素子及び該偏光素子を用いた投写型表示装置
JP2005208571A (ja) * 2003-12-22 2005-08-04 Seiko Epson Corp 照明装置及びプロジェクタ
JP2006227361A (ja) * 2005-02-18 2006-08-31 Seiko Epson Corp 偏光変換光学素子、照明装置及びプロジェクタ
JP2006330282A (ja) * 2005-05-25 2006-12-07 Sony Corp 画像投影装置及び画像投影方法
JP2013024971A (ja) * 2011-07-19 2013-02-04 Seiko Epson Corp 偏光変換素子、照明装置及びプロジェクター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362902A (ja) * 1991-04-05 1992-12-15 Canon Inc 偏光素子及び該偏光素子を用いた投写型表示装置
JP2005208571A (ja) * 2003-12-22 2005-08-04 Seiko Epson Corp 照明装置及びプロジェクタ
JP2006227361A (ja) * 2005-02-18 2006-08-31 Seiko Epson Corp 偏光変換光学素子、照明装置及びプロジェクタ
JP2006330282A (ja) * 2005-05-25 2006-12-07 Sony Corp 画像投影装置及び画像投影方法
JP2013024971A (ja) * 2011-07-19 2013-02-04 Seiko Epson Corp 偏光変換素子、照明装置及びプロジェクター

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626471B (zh) * 2017-05-31 2018-06-11 Head-up display illumination system using a polarized light converter
CN110720071A (zh) * 2017-06-16 2020-01-21 麦克赛尔株式会社 光源装置和平视显示器装置
JP2021144196A (ja) * 2020-03-13 2021-09-24 株式会社デンソー 虚像表示装置
JP7375629B2 (ja) 2020-03-13 2023-11-08 株式会社デンソー 虚像表示装置
JP2023021102A (ja) * 2021-07-28 2023-02-09 マクセル株式会社 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
JP7367148B2 (ja) 2021-07-28 2023-10-23 マクセル株式会社 空間浮遊映像表示装置

Also Published As

Publication number Publication date
JP2016224186A (ja) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2016189871A1 (ja) 光源ユニット及び投影装置
US20170343891A1 (en) Light source apparatus and projector
TWI595306B (zh) 色彩結合器及影像投影器
US20180088453A1 (en) Illuminator and projector
US10474022B2 (en) Illuminator and projector
WO2016121309A1 (ja) 偏光変換素子及びこれを用いた光学機器
US10627710B2 (en) Light source apparatus and projector
US10564531B2 (en) Light source device and projector
US20190041739A1 (en) Light source device and projector
US11327392B2 (en) Light source device and projector in which wave plates are downsized
JP2020008722A (ja) 照明装置及びプロジェクター
US10542241B2 (en) Projector
US10634983B2 (en) Light source apparatus and projector
US20110317395A1 (en) Optical system for liquid crystal on silicon projector
JP4353287B2 (ja) プロジェクタ
JP2019039950A (ja) 波長変換素子、光源装置及びプロジェクター
JP2016162575A (ja) 光源装置、照明装置、およびプロジェクター
US6987618B2 (en) Polarization converting device, illumination optical system and projector
CN114077140B (zh) 光学元件、光源装置、图像显示装置以及投影仪
CN114114810B (zh) 光源装置、图像显示装置以及投影仪
JP7468267B2 (ja) 光源装置およびプロジェクター
JP2017181603A (ja) 光源ユニット
WO2017188277A1 (ja) 表示装置及び車両用ヘッドアップディスプレイ装置
JP2015049442A (ja) 偏光分離素子、照明装置、及びプロジェクター
KR101210170B1 (ko) 프로젝션 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799584

Country of ref document: EP

Kind code of ref document: A1