JP2017181603A - 光源ユニット - Google Patents

光源ユニット Download PDF

Info

Publication number
JP2017181603A
JP2017181603A JP2016064684A JP2016064684A JP2017181603A JP 2017181603 A JP2017181603 A JP 2017181603A JP 2016064684 A JP2016064684 A JP 2016064684A JP 2016064684 A JP2016064684 A JP 2016064684A JP 2017181603 A JP2017181603 A JP 2017181603A
Authority
JP
Japan
Prior art keywords
light
light source
source unit
excitation light
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016064684A
Other languages
English (en)
Inventor
剛史 石田
Takashi Ishida
剛史 石田
三森 満
Mitsuru Mimori
満 三森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2016064684A priority Critical patent/JP2017181603A/ja
Publication of JP2017181603A publication Critical patent/JP2017181603A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】光学系のレイアウトの自由度を高めた光源ユニットを提供すること。
【解決手段】光源ユニット10は、ビーム形成部31と、偏光分離素子32と、位相差板33と、コンデンサーレンズ34と、被照射体41を有する光照射板(反射型波長変換部材)35とを備える。光照射板35は、励起光の照射を受けて波長変換した蛍光光FLを戻る方向に射出する第1及び第2要素部(第1部分)AR1,AR2と、励起光を波長変換することなく反射する第3要素部(第2部分)AR3とを有する。光照射板35は、第3要素部AR3において励起光を拡散させつつ反射して戻り光とする。
【選択図】図2

Description

本発明は、投影装置等に組み込まれる画像表示素子の照明に適する光源ユニットに関する。
照明用の光源として、例えば投影装置の分野では、従来から放電ランプが広く利用されている。しかし、放電ランプについては、寿命が短く信頼性が低いという問題点があり、さらには環境保護の観点で使用の抑制が望まれている。
近年では、半導体レーザーや発光ダイオードといった固体光源の開発が進み、かかる固体光源が投影装置の光源として用いられるようになってきている。ところで、この種の光源では、赤色、緑色、及び青色の三原色の高強度光が必要になるが、例えば半導体レーザーとして、赤色及び青色のレーザーは高輝度のものが実用化されているのに対し、十分に高輝度の緑色のレーザーはまだ実用化されていないという問題がある。そこで、青色レーザー光を波長変換して、緑色その他の高輝度光を生成しようとする試みがある。このような手法は、レーザーを単一色とできること、照明光とする3色を同一光路で処理することができ合成光学系が不要になることなどの観点で、コスト的に有利になる。
上記のように波長変換を利用する光源として、例えば青色の励起光を受けて緑色の蛍光を発生させて逆方向に戻す蛍光発光領域と、青色の励起光を拡散透過させる拡散透過領域とを有する蛍光ホイールを備えるものがある(特許文献1参照)。
また、青色の励起光を受けて緑色及び赤色の蛍光を発生させる光源であって、蛍光基板又は蛍光ホイールの蛍光領域に対向してプリズムアレイを配置して蛍光領域を通過した蛍光の指向性を高めるものがある(特許文献2参照)。
しかしながら、上記2つの光源は、蛍光ホイールで励起光又は蛍光を透過させるものであり、光学系の効率的なレイアウトが制限される。結果的に、製品設計の自由度を狭め、小型化などに支障をきたすことになる。
特開2011−53323号公報 特開2012−27052号公報
本発明は、上記背景技術に鑑みてなされたものであり、光学系のレイアウトの自由度を高めた光源ユニットを提供することを目的とする。
上記目的を達成するため、本発明に係る光源ユニットは、励起光の照射を受けて波長変換した光を戻る方向に射出する第1部分と、励起光を波長変換することなく反射する第2部分とを有する反射型波長変換部材とを備え、反射型波長変換部材は、第2部分において励起光を拡散させつつ反射して戻り光とする。ここで、拡散とは、反射、屈折、散乱等によって光束又は光線束の幅を発散するように広げることを意味する。
上記光源ユニットでは、反射型波長変換部材を用いているので、波長変換した光と波長変換していない光とを同一方向に折り返すように取り出すことができる。さらに、反射型波長変換部材が第2部分において励起光を拡散させつつ反射して戻り光とするので、波長変換した光と波長変換していない戻り光とを同様の拡散状態にすることができ、光路の共通化が容易になるとともに、光の無駄を低減することができる。結果的に、光学的レイアウトの自由度を高めて、光源ユニットや投影装置の小型化を達成することができる。
本発明の具体的な側面では、上記光源ユニットにおいて、第2部分は、第1部分と共通する支持体の表面上に刻設された微細な立体形状を有する。この場合、共通の支持体を利用するとともにこれに形成する立体形状の設定によって、励起光又は戻り光の拡散を所望の程度に調整することができる。
本発明の別の側面では、第2部分は、第1部分と共通する支持体の表面上に設置された微小な反射部品を有する。この場合、共通の支持体に設置された反射部品の形状等の設定によって、励起光又は戻り光の拡散を所望の程度に調整することができる。
本発明のさらに別の側面では、第2部分は、第1部分と共通する支持体上に設置され散乱体を含む光散乱部材を有する。この場合、共通の支持体に設置された光散乱部材の散乱特性の設定によって、励起光又は戻り光の拡散を所望の程度に調整することができる。
本発明のさらに別の側面では、第2部分は、励起光を反射する際に当該励起光の偏光状態を略維持する。この場合、励起光又は戻り光の偏光状態を維持しつつ励起光を無駄なく活用することができる。
本発明のさらに別の側面では、第1部分は、励起光を異なる波長に変換する複数の蛍光体を有する。この場合、一種類の励起光から複数色の蛍光を得ることができる。
本発明のさらに別の側面では、反射型波長変換部材に対向して第1及び第2部分を覆うように配置され、第1及び第2部分に入射する励起光と第1及び第2部分からの戻り光とを散乱する透過型の配光変更部が設置されている。この場合、透過型の配光変更部によって補助的に励起光と波長変換した光との拡散状態を調整することができる。
本発明のさらに別の側面では、励起光を射出する励起光源をさらに備える。この場合、反射型波長変換部材と励起光源とを一体化した光源ユニットを提供することができる。
実施形態の光源ユニットを含む投影装置を説明する図である。 (A)は、光源ユニットの要部を説明する拡大図であり、(B)は、(A)に示す部分に組み込まれた反射型波長変換部材を説明する図である。 (A)は、図2(B)に示す反射型波長変換部材のうち第1部分を説明する断面図であり、(B)は、反射型波長変換部材のうち第2部分を説明する断面図であり、(C)は、透過型の配光変更部を説明する断面図である。 (A)は、変形例の反射型波長変換部材における第1部分を説明する断面図であり、(B)は、変形例の第2部分を説明する断面図であり、(C)は、別の変形例の反射型波長変換部材における第1部分を説明する断面図であり、(D)は、別の変形例の第2部分を説明する断面図である。 (A)は、図3(B)の反射型波長変換部材等による光線の発散状態を説明する図であり、(B)は、別の反射型波長変換部材等による光線の発散状態を説明する図であり、(C)は、さらに別の反射型波長変換部材等による光線の発散状態を説明する図である。 (A)は、図3(A)に示す第1部分からの配光分布を説明する図であり、(B)は、光源からの直接の配光分布を説明する図であり、(C)は、図3(B)に示すタイプの第2部分からの配光分布を説明する図である。
以下、図面を参照しつつ、本発明に係る一実施形態の光源ユニットを組み込んだ投影装置について説明する。
図1に示すように、投影装置2は、多様な映像信号に対応する画像の投影を可能にするものであり、光源ユニット10、照明光学系21、偏光ビームスプリッター22、反射型液晶素子23、投影光学系26、及び回路部29を備える。
投影装置2のうち光源ユニット10は、励起光ELとして機能するレーザー光L1を略平行な状態で射出するビーム形成部31と、励起光ELの光路から蛍光光FL等を含む照明光L2の光路を分離する偏光分離素子32と、レーザー光L1の偏光状態を変化させる位相差板33と、レーザー光L1を励起光ELとして被照射体41上に集光するとともに被照射体41からの蛍光光FL等を略平行な光線として取り出すコンデンサーレンズ34と、レーザー光L1から蛍光光FLを生成するとともにレーザー光L1を反射する被照射体41を有する光照射板35とを備える。
なお、後に詳述するが、光照射板35は、反射型波長変換部材として機能し、レーザー光L1の照明下で波長変換した蛍光光FLと、波長変換しないで反射したレーザー光L1とを含む照明光L2を射出する。具体的には、光照射板(反射型波長変換部材)35は、その回転にともなって、照明光L2としての緑色光、赤色光、及び青色光を周期的に切り換えつつ射出する。
照明光学系21は、光源ユニット10から射出された照明光L2の強度を均一化する均一化光学系36と、照明光L2の反射型液晶素子23への入射角度を調整するフィールドレンズ38とを備える。
偏光ビームスプリッター(PBS)22は、偏光方向に応じて光路を分岐する光学素子である。偏光ビームスプリッター22は、一対の直角プリズムを貼り合わせたものであり、貼合わせ面において、一方の直角プリズムの斜面には、光源ユニット10から照明光学系21を経て入射した所定方向の直線偏光である照明光L2を選択的に反射する偏光分離膜からなる偏光分離面22aが形成されている。この偏光ビームスプリッター22により、光源ユニット10から射出された照明光L2を反射し、後述する反射型液晶素子23に入射させることができる。また、この偏光ビームスプリッター22により、反射型液晶素子23で反射された映像光L3を透過させ、投影光学系26に入射させることができる。ここで、偏光分離面22aは、これを基準とするS偏光を反射しP偏光を透過させるものとなっている。
反射型液晶素子23は、映像光L3を形成するための表示パネルすなわち画像表示素子であり、特に空間的に反射率を変化させることによって照明光L2から映像光L3を形成する点でライトバルブ又は空間光変調素子と言える。反射型液晶素子(画像表示素子)23は、板状の電子部品である画像表示パネルからなる。この反射型液晶素子23は、LCOS(liquid crystal on silicon)とも称されるマイクロディスプレイであり、シリコンチップの表面に直接回路が形成され対向基板との間に液晶層を挟み込んだものである。反射型液晶素子23は、液晶層に対し駆動信号に応じた電圧が画素毎に印加されると、液晶分子の配列を変化させることで照明光L2を変調し、反射によって偏光方向を変調した所望の画像を表示するものである。図示のように、偏光分離面22aを基準とするS偏光を照明光L2として反射型液晶素子23に入射させる構成をとる場合、偏光分離面22aを基準とするP偏光が映像光L3として反射される。
投影光学系26は、詳細な説明を省略するが、画像表示素子である反射型液晶素子23から得られる像を拡大してスクリーンその他の被投影体(不図示)に投影する。投影光学系26は、複数のレンズ群及び/又は反射面からなり、一部のレンズ群を光軸SX方向に移動させることにより、フォーカシングや変倍を行わせることができる。
回路部29のうち、映像駆動回路25は、コンピューター等の端末機器を含む種々のコンテンツ・ソース(不図示)から入力された映像信号に基づいて反射型液晶素子23に表示動作を行わせる。光源駆動回路27は、光源ユニット10のビーム形成部31に設けたレーザーアレイ51に点灯動作を行わせて、反射型波長変換部材である光照射板35に対してレーザー光L1を照射する。
制御回路28は、映像駆動回路25、光源駆動回路27等の動作を統括的に制御する。制御回路28は、光源駆動回路27を介して光源ユニット10を動作させてこれから照明光L2を射出させるとともに、映像駆動回路25を介して反射型液晶素子23に映像信号に対応する駆動信号を出力し画像の表示動作を行わせる。この際、映像駆動回路25は、駆動部39を介して光照射板35の回転位置を監視しており、光照射板35の回転に伴って光照射板35から順次射出される青色光、緑色光、及び赤色光に同期させて反射型液晶素子23に各色の表示動作を行わせる。
以下、光源ユニット10の構成要素、機能、動作等について詳細に説明する。
まず、ビーム形成部31は、レーザーアレイ51と、コリメーターアレイであるフライアイ光学系52と、ビーム縮小レンズ53とを含む。ここで、レーザーアレイ51は、光照射板35の被照射体41に組み込まれた蛍光体に対する励起光源であるとともに、被照射体41での反射によって取り出される青色用の照明光源ともなっている。レーザーアレイ(励起光源)51は、青色のレーザー光L1を射出する発光源としてのレーザーダイオード51a(以下、LDとも呼ぶ)を2次元的に配列することによって構成されたものであり、偏光方向の揃った光を射出する。なお、レーザー光L1は、偏光分離素子32を基準とするP偏光の青色光である。フライアイ光学系52は、レーザーアレイ51を構成する多数のLD(発光源)51aに対応して多数のレンズ素子を含む。フライアイ光学系52は、レーザーアレイ51を構成する各LD51aから射出されたレーザー光L1(青色光)を略平行光線とする。ビーム縮小レンズ53は、正及び負レンズを組み合わせたアフォーカル系であり、レーザー光L1を略平行光線のままにしてその光線径を減少させ、所望の断面積を有するレーザー光L1とする。
偏光分離素子32は、平板状の光学素子であり、レーザーアレイ(励起光源)51と光照射板(反射型波長変換部材)35との光路間であって、ビーム形成部31から位相差板33にかけての光路上或いは位相差板33から均一化光学系36にかけての光路上に配置されて、照明光L2を励起光ELの光路から分離する。より詳細には、偏光分離素子32は、青色光についてはP偏光を透過させるとともにS偏光を選択的に反射する通常の偏光分離ミラーとしての機能と、緑色光及び赤色光を選択的に反射するダイクロイックミラーとしての機能とを有する。偏光分離素子32は、平行平板の片面に誘電体多層膜からなる偏光分離面32aを形成したものであり、P偏光である青色の励起光ELを透過させ、光照射板35から青色光のままで戻る方向に逆進し偏光方向を変えられてS偏光となった青色光を反射して均一化光学系36に導く。また、偏光分離素子32は、励起光ELの照射によって光照射板35で発生し励起光ELに対して戻る方向に逆進する緑色及び赤色の蛍光光FLを偏光方向に関わらず反射して均一化光学系36に導く。なお、偏光分離素子32は、プリズムで構成されたものであってもよい。
位相差板33は、複屈折性の材料からなる1/4波長板である。位相差板33は、偏光分離素子32で反射されたP偏光の励起光ELを透過させてP偏光から円偏光とする。また、位相差板33は、波長変換されず光照射板35の被照射体41から戻ってきた青色光(すなわち励起光ELとして用いられなかったレーザー光L1)を透過させて円偏光からS偏光とする。これにより、位相差板33を経て光照射板35の被照射体41から戻ってきた青色光すなわち励起に利用されなかったレーザー光L1は、偏光分離素子32で殆ど反射され、均一化光学系36に効率的に導かれる。
コンデンサーレンズ34は、偏光分離素子32を透過したレーザー光L1を励起光ELとして光照射板35の被照射体41に設けられた蛍光体に集光する。また、コンデンサーレンズ34は、被照射体41の蛍光体で波長変換によって発生した緑色及び赤色の蛍光光FLを集めて偏光分離素子32に導く。
コンデンサーレンズ34は、光照射板35の被照射体41において蛍光体とは別に設けられた拡散性の反射面で反射されたレーザー光L1すなわち青色光を集めて偏光分離素子32に導く役割も有する。
図2(A)及び2(B)に示すように、光照射板35は、回転軸RXのまわりに回転する反射型蛍光体ホイール又は反射型波長変換部材であり、回転軸RXのまわりに配置される環帯状の被照射体41と、これを支持する共通の支持体42と、この支持体42に支持されて被照射体41を覆う透過型の拡散部材43とを有する。
被照射体41には、3つに分割した領域である3つの要素部AR1〜AR3が設けられている。被照射体41において、第1要素部AR1は、蛍光体を有し、励起光ELの照射によって緑色波長域の蛍光光FLを形成し、励起光ELに対して逆行するように射出する。第2要素部AR2は、第1要素部AR1とは別の蛍光体を有し、励起光ELの照射によって波長が異なる赤色波長域の蛍光光FLを形成し、励起光ELに対して逆行するように射出する。第3要素部AR3は、元の青色のレーザー光L1をその偏光状態を略維持しつつも所定以上に拡散させて反射する。
図2(A)に示す拡散部材43は、アレイ状の微細な凹凸を有する光透過性の板材であり、被照射体41の近接した上方に被照射体41に対向して配置されている。拡散部材43は、通過光の配光状態を変更する配光変更部である。この拡散部材(配光変更部)43は、必須の要素ではなく、省略することもできる。拡散部材43は、第1及び第2部分である第1〜第3要素部AR1〜AR3に入射するレーザー光L1又は励起光ELと、第1及び第2部分である第1〜第3要素部AR1〜AR3から波長変換されないで反射された戻り光であるレーザー光L1等を散乱する。これにより、光照射板35から照明光学系21に供給される照明光L2(特にレーザー光L1)の拡散状態をより良好な状態に調整することができる。
図1に戻って、ビーム形成部31から射出され偏光分離素子32を通過したレーザー光L1は、励起光ELとして光照射板35の被照射体41のうち第1要素部AR1や第2要素部AR2に入射した場合、緑色や赤色の蛍光光FLすなわち照明光L2を発生する。また、ビーム形成部31から射出され偏光分離素子32を通過したレーザー光L1は、光照射板35の被照射体41のうち第3要素部AR3に入射した場合、そのまま青色の照明光L2として反射される。つまり、照明光L2には、レーザー光L1から得た緑色及び赤色の蛍光光FLのほかに、レーザー光L1自体である青色光が含まれる。
以上において、第1及び第2要素部AR1,AR2は、励起光ELの照射を受けて波長変換した蛍光光FLを戻る方向に射出する第1部分として機能し、第3要素部AR3は、励起光ELを波長変換することなく反射する第2部分として機能している。
なお、詳細な説明を省略するが、図1に示す均一化光学系36は、偏光分離素子32を通過した照明光L2を集光する集光レンズ36aと、集光レンズ36aからの照明光L2を一端で受けて均一な強度分布の光線束として他端から射出させる導光ロッド36bとを有する。フィールドレンズ38は、図示の例では複数のレンズで構成され、導光ロッド36bの他端から射出される照明光L2が適度の収束角又は発散角で反射型液晶素子23に入射するように調整する。
図3(A)は、反射型波長変換部材である光照射板35のうち、第1部分である第1要素部AR1等を説明する断面図である。緑色用の第1要素部AR1は、層状の蛍光体として、支持体42の表面42aに対して接着等よって支持・固定された蛍光体層71を有する。第1要素部AR1に入射した励起光ELは、蛍光体層71中の蛍光物質によって蛍光光FLに変換され、略一様に拡散された状態で反対方向に射出される。ここで、蛍光体層(蛍光体)71は、これに入射した青色のレーザー光L1によって励起されて緑色の蛍光光FLを生成する。
なお、赤色用の第2要素部AR2は、第1要素部AR1と同一の構造を有し蛍光体層71を構成する蛍光物質が異なるだけであるので、説明を省略する。第2要素部AR2の蛍光体層(蛍光体)71は、これに入射した青色のレーザー光L1によって励起されて赤色の蛍光光FLを生成する。
図3(B)は、反射型波長変換部材である光照射板35のうち、第2部分である第3要素部AR3等を説明する断面図である。第3要素部AR3は、ここで反射されるレーザー光L1を適度に拡散させ偏光状態を略維持したままで照明光L2として偏光分離素子32に戻す働きを有する。この際、レーザー光L1を拡散させることにより、青色のレーザー光L1を均一に発散させることができるだけでなく、スペックルを低減する効果がある。このような機能を発揮するため、第3要素部AR3は、支持体42の表面42a上に刻設された微細な凹凸である微細な立体形状を有する。ここで、支持体42は、金属材料製又は樹脂の表面に金属等をコートしたものであり、第3要素部AR3に入射したレーザー光L1を波長変換することなく効率よく反射する。この際、反射されたレーザー光L1つまり照明光L2の偏光状態は略元の円偏光の状態のままに維持される。
図示の例では、支持体42の表面42aに、微細な立体形状として球面状で微細な多数の凹面73が形成され、支持体42の元の平面42bは殆ど残っていない。凹面73は、例えば金属光沢を有する。図示の場合、第3要素部AR3を構成する多数の凹面73は、同一の形状を有し2次元周期的に配列されているが、凹面73の形状は、凹の球面に限らず凹又は凸の楕円面、円錐面、角錐面等とすることができるだけでなく、配置ごとに不規則に変化させることができ、凹面73の配列周期も、不規則に変動させることができる。また、支持体42の元の平面42bは、必ずしも残す必要はなく、凹面73の面積的な占有率も例示の状態に限定されるものではなく、用途に応じて適宜設定することができる。
図3(C)は、光照射板35のうち透過型の拡散部材43を説明する断面図である。拡散部材43は、光透過性を有する材料で形成された薄板であり、平板状の基板81と、基板81の表面81a側に形成された凹凸構造82とを有する。凹凸構造82は、微細な凹凸である微細な立体形状を有する。
図示の例では、凹凸構造82は、球面状で微細な多数の凸面82aを有し、基板81の元の平面である表面81aは殆ど露出していない。この場合、凹凸構造82を構成する多数の凸面82aは、同一の形状を有し2次元周期的に配列されているが、凸面82aの形状は、凸の球面に限らず様々な形状とできるだけでなく、配置ごとに不規則に変化させることができ、凸面82aの配列周期も不規則に変動させることができる。また、基板81の元の平面である表面81aは、必ずしも露出させる必要はなく、凸面82aの面積的な占有率も、用途に応じて適宜設定することができる。
図4(A)及び4(B)は、図3(A)及び3(B)に示した光照射板35の変形例を説明する断面図である。
この場合、図4(A)に示した第1部分としての第1要素部AR1は、図3(A)に示した第1要素部AR1と同様の構造を有する。
一方、図4(B)に示した第2部分としての第3要素部AR3は、ここで反射されるレーザー光L1を適度に拡散させ照明光L2として偏光分離素子32に戻す働きを有するが、支持体42の表面42a上に凹凸を刻設したものではなく、共通の支持体42の表面42a上に多数の微小な反射部品75を設置したものとなっている。反射部品75は、ガラス、金属その他無機材料、プラスチックその他の有機材料等で形成され、表面42a上に接着されている。反射部品75の表面は、金属基材を露出させること、金属コート等により、金属光沢を有する。これにより、第3要素部AR3は、ここに入射したレーザー光L1を反射するとともに反射されたレーザー光L1をその偏光状態を維持しつつ適度に拡散させることができる。このようにレーザー光L1を拡散させることにより、スペックルを低減する効果がある。
なお、反射部品75は透過性を有するものであってもよい。この場合も、支持体42の表面42aが高い反射率のミラーとして機能すれば、入射したレーザー光L1を反射部品75で屈折させて適度に拡散させることができる。また、反射部品75の形状は、球又はレンズ状のものに限らず、様々なものとできる。
図4(C)及び4(D)は、図3(A)及び3(B)に示した光照射板35の別の変形例を説明する断面図である。
この場合、図4(C)に示した第1部分としての第1要素部AR1は、図3(A)に示した第1要素部AR1と同様の構造を有する。
一方、図4(D)に示した第2部分としての第3要素部AR3は、ここで反射されるレーザー光L1を適度に拡散させ照明光L2として偏光分離素子32に戻す働きを有するが、支持体42の表面42a上に凹凸を刻設したものではなく、共通の支持体42の表面42a上に光散乱部材として光散乱層77を設けたものとなっている。光散乱層(光散乱部材)77は、プラスチックその他の光透過性を有する材料中に屈折率が異なるガラスその他の微小散乱体を混合して均一に分散させたものであり、表面42a上に接着されている。光散乱層77中の微小散乱体は、入射したレーザー光L1を一部透過させつつも均一に散乱させる役割を有する。さらに、支持体42の表面42aがミラーとして機能する。これにより、第3要素部AR3は、ここに入射したレーザー光L1を反射するとともに反射されたレーザー光L1をその偏光状態を維持しつつ適度に拡散させることができる。
図5(A)〜5(C)は、具体的な光照射板35についてシミュレーションを行った結果を示しており、第2部分としての第3要素部AR3等による光線の拡散を説明する図である。図5(A)〜5(C)のいずれの場合も、光照射板35に対向して透過型の拡散部材43を配置しており、拡散部材43には、凹凸構造82として、一定のピッチで非球面の凸面82aが設けられている。図示を省略するが、凸面82aは、千鳥配置で紙面に垂直な方向にも配列されている。図5(A)〜5(C)において、拡散部材43には、コリメートされたレーザー光L1が入射し、光照射板35の対向箇所には、集光した状態でレーザー光L1が入射している。
図5(A)の場合、光照射板35側の第3要素部AR3は、図3(B)に示すタイプのものであり、支持体42の表面42aに微細な立体形状として多数の凹面73が形成されている。図示を省略するが、凹面73は、千鳥配置で紙面に垂直な方向にも配列されている。なお、凹面73の曲率半径は0.08mmであり、凹面73は拡散部材43の凸面82aと同一のピッチで配列されている。
図5(B)の場合、光照射板35側の第3要素部AR3は、図4(B)に示すタイプのものであり、支持体42の表面42aに微細な立体形状として多数の球面状の凸面173が2次元的に形成されている。ただし、図5(B)の場合、凸面173は拡散部材43の凸面82aの1/2倍のピッチで配列され、凸面173の曲率半径は0.035mmである。
図5(C)の場合、光照射板35側の第3要素部AR3は、図4(D)に示すタイプのものであり、支持体42の表面42a上に光散乱層77を設けたものとなっている。光散乱層77中には、直径15μmのガラスビーズが約74%の密度で分散する。
以上の図5(A)〜5(C)から分かるように、光照射板35で反射されたレーザー光L1は、元のコリメートされた状態から光照射板35等での拡散によって十分な広がりを持つ発散状態となって射出される。
図6(A)〜6(C)は、光照射板35による配光分布を概念的に説明する図であり、紙面上側の90°の方向が光軸SXに沿った正面方向を意味し、中心点Oから曲線までの間隔が照度を示している。
図6(A)は、光照射板35の第1要素部AR1から射出された照明光L2であって拡散部材43を省略した場合の照明光L2の配光特性を示している。この場合、周囲に均等に拡散して射出され指向性のないランバーシャン型の配光であることが分かる。図6(B)は、光源からの直接の配向特性である。図6(C)は、図6(A)の場合と同様に拡散部材43を省略するとともに光照射板35の第3要素部AR3に、微細な立体形状として図3(B)に示すタイプの多数の凹面73を形成した場合の配光特性を示している。この場合、周囲に比較的均等に拡散して射出され指向性の少ない配光であり、図6(A)に示す配光特性と近似していることが分かる。つまり、図6(C)に示すような光照射板35の第3要素部AR3から射出される青色の照明光L2の配光特性は、図6(A)に示すような光照射板35の第1要素部AR1から射出される緑色の照明光L2の配向特性と近似したものとなっている。結果的に、波長変換した緑色の照明光L2と、波長変換していない戻り光である青色の照明光L2とを同様の拡散状態にすることができ、光路の共通化が容易になる。
詳細な説明は省略するが、光照射板35の直前に拡散部材43を配置した場合、配光特性の分布形状は全体的に変化し、例えば正面方向に強い楕円球型の分布に変化する。しかしながら、立体形状のサイズや間隔を適宜調整した拡散部材43を配置することにより、波長変換した緑色の照明光L2と、波長変換していない戻り光である青色の照明光L2とを同様の拡散状態に保持することができるので、拡散部材43を追加しても光路の共通化が容易である点は維持される。
なお、例えば光照射板35により波長変換された照明光L2の配光の半値全角と、波長変換していない青色の照明光L2の配光の半値全角との差が±10度以内である場合、波長変換した緑色光と波長変換していない青色光とが同様の拡散状態となっているといえる。具体的には、波長変換された蛍光光の拡散角が±30°(つまり全角又は広がり角60°)で、波長変換していない元のレーザー光の拡散角が±25〜35°(つまり全角又は広がり50°〜70°)であれば、同様の拡散状態が確保されているということができ、コンデンサーレンズ34等を経ても同様の光束径とすることができる。以上の条件は、光照射板35の直前に拡散部材43を配置した場合も、拡散部材43を構成する立体形状の調整により同様に維持可能である。
以上の実施形態で説明した光源ユニット10では、光照射板(反射型波長変換部材)35を用いているので、波長変換によって得た蛍光光FLと、波長変換していないレーザー光L1とを同一方向に折り返すように取り出すことができる。さらに、光照射板(反射型波長変換部材)35が第2部分である第3要素部AR3においてレーザー光L1を拡散させつつ反射して戻り光すなわちレーザー光L1とするので、波長変換した蛍光光FLと波長変換していない戻り光のレーザー光L1とを同様の拡散状態にすることができ、光路の共通化が容易になるとともに、光の無駄を低減することができる。結果的に、光学的レイアウトの自由度を高めて、光源ユニット10や投影装置2の小型化を達成することができる。
以上では、具体的な実施形態の光源ユニットについて説明したが、本発明に係る光源ユニットは、上記のものには限られない。例えば、光源ユニット10、照明光学系21、投影光学系26等の具体的な構成は、図示のものに限らず用途等に応じて適宜変更することができる。また、本発明の光源ユニットは、上記投影装置2に限らず、様々な光学系に組み込むことができる。
また、投影装置2において、画像表示素子として、反射型液晶素子23に代えてデジタルマイクロミラーデバイス(DMD)を用いることができる。この場合、偏光ビームスプリッター22に代えてDMDに照明光を入射させ、DMDからの反射光を投影光学系26に導くプリズムを配置すればよい。さらに、画像表示素子として、反射型液晶素子23に代えて透過型の液晶素子又は液晶パネルを用いてもよい。
ビーム形成部31において、レーザーアレイ51に代えてLEDアレイを用いることもできるが、この際、LEDアレイからの光の偏光方向を偏光分離素子32への入射前に揃えることが望ましい。
上記実施形態では、光照射板35の被照射体41で緑色及び赤色の蛍光光FLを発生させているが、被照射体41で緑色の蛍光光FLのみを発生させることができる。この場合において、3原色の表示を可能にするには、図1の光学系において、例えばダイクロイックミラー等を適所に組み込んで赤色光を照明光L2の光路に導くことができ、或いは偏光分離素子32を挟んで均一化光学系36の反対側に赤色の光源を配置するとともに偏光分離素子32の光学特性を変更し、赤色光を偏光分離素子32で透過させて照明光L2の光路に導くことができる。
反射型液晶素子23は、偏光ビームスプリッター22の反射特性の切り換えや光源ユニット10に対する配置関係の変更によって、偏光ビームスプリッター22を挟んでフィールドレンズ38の反対側に配置することができる。この場合、偏光ビームスプリッター22により、光源ユニット10から射出された照明光L2を透過させ、反射型液晶素子23に入射させることができるとともに、反射型液晶素子23で反射された映像光L3を偏光ビームスプリッター22で反射させ、投影光学系26に入射させることができる。
AR1-AR3…要素部、 EL…励起光、 FL…蛍光光、 L1…レーザー光、 L2…照明光、 L3…映像光、 SX…光軸、 10…光源ユニット、 21…照明光学系、 22…偏光ビームスプリッター、 23…反射型液晶素子、 26…投影光学系、 29…回路部、 31…ビーム形成部、 32…偏光分離素子、 33…位相差板、 34…コンデンサーレンズ、 35…光照射板、 36…均一化光学系、 38…フィールドレンズ、 39…駆動部、 41…被照射体、 42…支持体、 42a…表面、 43…拡散部材、 51…レーザーアレイ、 52…フライアイ光学系、 53…ビーム縮小レンズ、 71…蛍光体層、 73…凹面、 75…反射部品、 77…光散乱層、 81…基板、 82…凹凸構造

Claims (8)

  1. 励起光の照射を受けて波長変換した光を戻る方向に射出する第1部分と、励起光を波長変換することなく反射する第2部分とを有する反射型波長変換部材と、を備え、
    前記反射型波長変換部材は、前記第2部分において励起光を拡散させつつ反射して戻り光とすることを特徴とする光源ユニット。
  2. 前記第2部分は、前記第1部分と共通する支持体の表面上に刻設された微細な立体形状を有することを特徴とする請求項1に記載の光源ユニット。
  3. 前記第2部分は、前記第1部分と共通する支持体の表面上に設置された微小な反射部品を有することを特徴とする請求項1に記載の光源ユニット。
  4. 前記第2部分は、前記第1部分と共通する支持体上に設置され散乱体を含む光散乱部材を有することを特徴とする請求項1に記載の光源ユニット。
  5. 前記第2部分は、前記励起光を反射する際に当該励起光の偏光状態を略維持することを特徴とする請求項1〜4のいずれか一項に記載の光源ユニット。
  6. 前記第1部分は、前記励起光を異なる波長に変換する複数の蛍光体を有することを特徴とする請求項1〜5のいずれか一項に記載の光源ユニット。
  7. 前記反射型波長変換部材に対向して前記第1及び第2部分を覆うように配置され、前記第1及び第2部分に入射する励起光と前記第1及び第2部分からの戻り光とを散乱する透過型の配光変更部が設置されていることを特徴とする請求項1〜6のいずれか一項に記載の光源ユニット。
  8. 前記励起光を射出する励起光源をさらに備えることを特徴とする請求項1〜7のいずれか一項に記載の光源ユニット。
JP2016064684A 2016-03-28 2016-03-28 光源ユニット Pending JP2017181603A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064684A JP2017181603A (ja) 2016-03-28 2016-03-28 光源ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064684A JP2017181603A (ja) 2016-03-28 2016-03-28 光源ユニット

Publications (1)

Publication Number Publication Date
JP2017181603A true JP2017181603A (ja) 2017-10-05

Family

ID=60004303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064684A Pending JP2017181603A (ja) 2016-03-28 2016-03-28 光源ユニット

Country Status (1)

Country Link
JP (1) JP2017181603A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200103736A1 (en) * 2018-10-02 2020-04-02 Casio Computer Co., Ltd. Optical wheel, light source unit, and projector
JP2022547626A (ja) * 2019-09-16 2022-11-14 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド レーザースペックル低減用反射型ディフューザー及びそれを備えた反射型発光ホイール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200103736A1 (en) * 2018-10-02 2020-04-02 Casio Computer Co., Ltd. Optical wheel, light source unit, and projector
CN110989277A (zh) * 2018-10-02 2020-04-10 卡西欧计算机株式会社 光学轮、光源装置和投影装置
US10852629B2 (en) 2018-10-02 2020-12-01 Casio Computer Co., Ltd. Optical wheel, light source unit, and projector
CN110989277B (zh) * 2018-10-02 2021-08-20 卡西欧计算机株式会社 光学轮、光源装置和投影装置
JP2022547626A (ja) * 2019-09-16 2022-11-14 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド レーザースペックル低減用反射型ディフューザー及びそれを備えた反射型発光ホイール

Similar Documents

Publication Publication Date Title
US8998421B2 (en) Projector having polarization conversion
CN110431482B (zh) 光源装置、投影仪和散斑减少方法
US10474022B2 (en) Illuminator and projector
US8690338B2 (en) Reflective liquid crystal projector
US20130286356A1 (en) Display unit and illumination device
TW201447363A (zh) 投射型顯示裝置
US20050111240A1 (en) Light source unit and projector
WO2015111145A1 (ja) 光源装置およびこれを用いた映像表示装置
JP6747066B2 (ja) 波長変換素子、照明装置及びプロジェクター
US10564534B2 (en) Light source apparatus and projector
US11150548B2 (en) Light source apparatus and projector
JP7247776B2 (ja) 光源装置およびプロジェクター
JP2014126604A (ja) 光源装置、照明光学系及び画像表示装置
WO2016189871A1 (ja) 光源ユニット及び投影装置
JP2020008722A (ja) 照明装置及びプロジェクター
JP2020024318A (ja) 光源装置およびプロジェクター
CN114563906B (zh) 光源光学系统,光源单元,光源装置以及图像显示装置
WO2016181858A1 (ja) 光源装置及び投影装置
US11523093B2 (en) Light source apparatus and projector
TWI726073B (zh) 光學系統
US11187970B2 (en) Light source apparatus having side by side light guide and wavelength converter
JP2017181603A (ja) 光源ユニット
JP7468267B2 (ja) 光源装置およびプロジェクター
JP2017181602A (ja) 光源ユニット
US20120002174A1 (en) Light source system of pico projector