WO2016121309A1 - 偏光変換素子及びこれを用いた光学機器 - Google Patents

偏光変換素子及びこれを用いた光学機器 Download PDF

Info

Publication number
WO2016121309A1
WO2016121309A1 PCT/JP2016/000145 JP2016000145W WO2016121309A1 WO 2016121309 A1 WO2016121309 A1 WO 2016121309A1 JP 2016000145 W JP2016000145 W JP 2016000145W WO 2016121309 A1 WO2016121309 A1 WO 2016121309A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
light
polarization direction
polarized light
conversion element
Prior art date
Application number
PCT/JP2016/000145
Other languages
English (en)
French (fr)
Inventor
純一 水間
勝寛 神道
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2016121309A1 publication Critical patent/WO2016121309A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a polarization conversion element and an optical apparatus using the same.
  • a projector, a head-up display (HUD), or the like is known as an optical device that irradiates a transmissive liquid crystal panel with illumination light and projects and displays the transmitted light on a screen or the like.
  • FIG. 7 shows an example of an illumination optical system that is currently commonly used in such an apparatus. According to this, the light emitted from a plurality of white light sources 101 such as white LEDs arranged in a line is converted into a parallel light beam or a light beam whose beam diameter is expanded by the corresponding lens 102, and this is changed to the diffusion plate 103.
  • the transmissive liquid crystal panel 104 is irradiated as light having high uniformity without being diffused.
  • the light incident on the transmissive liquid crystal panel 104 by irradiation of illumination light and transmitted therethrough is projected as an image on a screen or the like.
  • the transmissive liquid crystal panel 104 transmits only the light of the linearly polarized component in the direction along the transmission axis, and does not transmit the polarized component orthogonal thereto. For this reason, in the case of non-polarized light in which the polarization direction of the illumination light is uniformly distributed in all directions, only about half of the light is transmitted at the maximum. For this reason, the utilization efficiency of illumination light falls and the projected image becomes dark. Note that the double-headed arrow in the figure indicates the direction of polarization.
  • the light from the light source is separated into two linearly polarized light whose polarization directions are orthogonal to each other, and the polarization direction of one of the linearly polarized light is rotated by 90 ° by an optical rotation element (1/2 wavelength plate), and then the other straight line
  • an optical rotation element 1/2 wavelength plate
  • FIG. 8 is a diagram showing a schematic configuration of an example of an illumination optical system of a transmissive liquid crystal panel using a polarization conversion element based on the study by the present inventors.
  • FIG. 9 is a schematic cross-sectional view of the optical system of FIG. 8 viewed from the x direction.
  • the polarization conversion element 105 includes a polarization separation member 108 having a polarization separation film 106 and a reflection film 107 in a transparent substrate, and a half-wave plate 109 selectively disposed on the output surface of the polarization separation member 108. It consists of.
  • the illumination light L101 emitted from the light source 110 becomes a substantially parallel light beam by the lens 102 and enters the polarization separation member 108.
  • P-polarized light is transmitted through the polarization separation film 106, and S-polarized light is reflected by the polarization separation film 106.
  • the P-polarized illumination light L102 that has passed through the polarization separation film 106 is incident on a half-wave plate 109 that is bonded to the exit surface of the polarization separation member 108.
  • the S-polarized illumination light L103 reflected by the polarization separation film 106 is further reflected by the reflection film 107 in the polarization separation member 108, and the area where the half-wave plate 109 on the exit surface is not disposed. It is emitted from.
  • the P-polarized illumination light L102 incident on the half-wave plate 109 is rotated by 90 ° in the polarization direction so that the polarization direction is aligned with the S-polarized light emitted from the region not transmitting the half-wave plate 109.
  • the illumination light L102 and L103 whose polarization directions are aligned in one direction can be diffused by the diffusion plate 103 so that the light intensity becomes uniform, and can be applied to the transmissive liquid crystal panel 104.
  • the transmission type liquid crystal panel is adopted in various optical devices used outdoors such as an in-vehicle display device such as a HUD.
  • an in-vehicle display device such as a HUD.
  • the transmission axis of polarized sunglasses is set in the vertical direction in a normal wearing state, and if this transmission axis and the transmission axis of the liquid crystal display panel are orthogonal, the image of the liquid crystal display panel is blocked by the polarized sunglasses, and the image Disappears or disappears.
  • the transmission axis of the liquid crystal is often inclined at an angle such as 45 ° or 135 ° with respect to the vertical and horizontal directions of the outer shape of the rectangular panel.
  • the conventional polarization conversion element as described above does not consider that the transmission axis of the transmission type liquid crystal panel is inclined. For this reason, there is a concern that the polarization direction of the illumination light emitted from the polarization conversion element does not coincide with the direction of the transmission axis of the transmissive liquid crystal panel, and the light use efficiency decreases.
  • the configuration of the optical system according to the prior art disclosed in the cited document 1 also has the same problem because the transmission axis of the liquid crystal display panel coincides with the lateral direction of the rectangular outer shape of the liquid crystal display panel.
  • the entire light source, lens, and polarization conversion element are rotated by 45 ° or 135 ° about the traveling direction of the illumination light. If this is done, the entire apparatus will not fit, and if the entire transmissive liquid crystal panel is to be illuminated, the polarization conversion element will increase in size and a part of the illumination light will be irradiated outside the transmissive liquid crystal panel.
  • an object of the present invention is to provide a polarization conversion element with improved use efficiency of illumination light to a transmissive liquid crystal panel and an optical apparatus using the same.
  • Means for solving the above problems are as follows. That is, ⁇ 1> a polarization separation unit that separates incident light into first polarized light and second polarized light whose polarization directions are orthogonal to each other; A first polarization direction conversion unit that converts at least the polarization direction of the first polarization; and a second polarization direction conversion unit that converts at least the polarization direction of the second polarization, the first polarization and The polarization direction of the second polarized light is matched, and the polarization direction of the emitted light is set to a predetermined value with respect to any polarization direction of the first polarized light and the second polarized light separated by the polarization separation unit. And a polarization direction control unit that emits light at an angle rotated by an angle.
  • the polarization direction control member is configured to emit light at an angle obtained by rotating the polarization direction of the emitted light by 45 ° with respect to the polarization direction of either the first polarization or the second polarization.
  • ⁇ 3> Only the first polarized light is incident on the first polarization direction converter, and the first polarized light transmitted through the first polarization converter is transmitted to the second polarization direction converter. And the polarization conversion element according to ⁇ 1> or ⁇ 2>, which is configured to make the second polarized light incident.
  • the first polarization direction conversion unit and the second polarization direction conversion unit are configured by a half-wave plate, and the polarization direction control unit includes the first polarization direction conversion unit and the The polarization conversion element according to ⁇ 4>, wherein the polarization conversion element is a plate-like member combined with a second polarization direction conversion unit.
  • ⁇ 6> A transmissive liquid crystal panel and the polarization conversion element according to any one of ⁇ 1> to ⁇ 5>, which receives incident light from a light source and emits the incident light to the transmissive liquid crystal panel.
  • the polarization conversion element is an optical device that receives light from the light source and emits it as light polarized in the same direction as the transmission axis of the transmissive liquid crystal panel.
  • a polarization conversion element that can solve the above-mentioned problems and can achieve the above-described object, and has improved the use efficiency of illumination light to a transmissive liquid crystal panel, and an optical device using the same. can do.
  • FIG. 1 is a perspective view showing a schematic configuration of a polarization conversion element of the present invention according to a first embodiment and an illumination optical system of a transmissive liquid crystal panel using the same.
  • FIG. 2 is a schematic cross-sectional view of the optical system of FIG. 1 viewed from the y direction.
  • FIG. 3 is a schematic cross-sectional view of the optical system of FIG. 1 viewed from the x direction.
  • FIG. 4 is a perspective view showing a schematic configuration of the polarization conversion element of the present invention according to the second embodiment and the illumination optical system of a transmissive liquid crystal panel using the same.
  • FIG. 5 is a schematic cross-sectional view of the optical system of FIG. 4 viewed from the y direction.
  • FIG. 6 is a schematic cross-sectional view of the optical system of FIG. 4 viewed from the x direction.
  • FIG. 7 is a perspective view showing a schematic configuration of an illumination optical system of a transmissive liquid crystal panel in the prior art.
  • FIG. 8 is a diagram showing a schematic configuration of an illumination optical system of a transmissive liquid crystal panel using a polarization conversion element in the prior art.
  • FIG. 9 is a schematic cross-sectional view of the optical system of FIG. 8 viewed from the x direction.
  • the polarization conversion element of the present invention includes at least a polarization separation unit and a polarization direction control unit, and further includes other components as necessary.
  • the polarization separation unit separates incident light into a first polarization and a second polarization orthogonal to each other.
  • the polarization separation unit includes a prism having a polarization separation film formed therein, and further, if necessary.
  • a reflective film formed in the prism is included.
  • the polarization separation film is, for example, a dielectric multilayer film formed by vapor deposition or the like.
  • As the reflective film a film in which a metal such as aluminum is deposited can be used.
  • the polarization direction control unit includes at least a first polarization direction conversion unit and a second polarization direction conversion unit, and further includes other configurations as necessary.
  • Each of the first and second polarization direction conversion units includes, for example, a half-wave plate.
  • the direction of the optical axis of the half-wave plate is the polarization direction of the first polarization or the second polarization separated in the polarization direction so that the polarization direction of the light emitted from the polarization separation unit is aligned and tilted by a predetermined angle. Are inclined at a predetermined angle.
  • the first polarization direction conversion unit and the second polarization direction conversion unit may be configured as a single plate-like member, and further, the polarization conversion element is integrally formed by being combined with the polarization separation unit. A single member can be used.
  • the optical apparatus of the present invention includes at least a transmissive liquid crystal panel and the above-described polarization conversion element, and further includes other components as necessary.
  • the optical apparatus can include a light source that emits white light, a lens that uses illumination light from the light source as a parallel light flux, a diffuser plate that uniformizes the illumination light, and the like.
  • the optical device include an automobile HUD and a projector.
  • FIG. 1 is a perspective view showing a schematic configuration of a polarization conversion element of the present invention according to a first embodiment and an illumination optical system of a transmissive liquid crystal panel using the same.
  • the illumination optical system includes a light source unit 11, a polarization conversion element 12, and a diffusion plate 13.
  • each element such as the light source unit 11, the polarization conversion element 12, the diffusion plate 13, and the transmissive liquid crystal panel 14 is held by a holding mechanism (not shown), and the mutual positional relationship is fixed.
  • the arrows shown in FIG. 1 indicate the direction of polarization.
  • the polarization conversion element 12 tilts the non-polarized illumination light emitted from the light source unit 11 by 45 ° (predetermined angle) with respect to the vertical or horizontal direction of the rectangular outer shape of the transmissive liquid crystal panel 14. Irradiated as illumination light polarized in one direction.
  • the polarization conversion element 12 includes a polarization conversion member 15 and a half-wave plate 16 (second polarization direction conversion unit).
  • the transmissive liquid crystal panel 14 is used, for example, in a vehicle-mounted HUD, and the transmission axis is inclined 45 ° with respect to the lateral direction of the outer shape of the liquid crystal panel.
  • FIG. 2 is a schematic cross-sectional view of the optical system of FIG. 1 viewed from the y direction.
  • FIG. 3 is a schematic cross-sectional view of the optical system of FIG. 1 viewed from the x direction. 1 to 3, the direction along the illumination light emitted from the light source unit 11 and directed to the transmissive liquid crystal panel 14 is defined as the z direction, which is two directions orthogonal to the z direction and orthogonal to each other.
  • the direction along the horizontal direction of the outer shape of the liquid crystal panel 14 is defined as the x direction, and the direction along the vertical direction is defined as the y direction.
  • the light source unit 11 includes a plurality of light sources 17 such as white LEDs and lenses 18 provided corresponding to the respective light sources 17.
  • Each light source 17 is arranged side by side in one direction corresponding to the horizontally long panel of the transmissive liquid crystal panel 14.
  • the lens 18 converts the diffusing illumination light emitted from the corresponding light source 17 into a substantially parallel light beam.
  • the illumination light L1 emitted from the light source unit 11 by the white LED is in a non-polarized state that vibrates in various directions within the xy plane orthogonal to the traveling direction of the light.
  • the polarization conversion member 15 of the polarization conversion element 12 includes a polarization separation unit 19 and a half-wave plate 20 (first polarization conversion unit).
  • the half-wave plate 20 constitutes the polarization direction control unit 21 together with the half-wave plate 16.
  • the polarization separation unit 19 is formed of a transparent base material such as glass, and all of them extend long in the x direction.
  • the first prism 22, the second prism 23, the third prism 24, the fourth prism 25, and the first prism 5 prisms 26 are joined.
  • the first prism 22 is a triangular prism whose yz section has a substantially right-angled isosceles triangle shape.
  • the first prism 22 has an apex that forms a substantially right angle of the cross section facing the light source 17 direction, and two surfaces sandwiching the substantially right angle are arranged to form about 45 ° with respect to the z direction.
  • the first polarizing beam splitter film 27 and the second polarizing beam splitter film 28 which are polarization separation films are formed on the two surfaces sandwiching the right angle.
  • the polarization separation film is, for example, a dielectric multilayer film formed by vapor deposition or the like.
  • the first polarizing beam splitter film 27 and the second polarizing beam splitter film 28 transmit P-polarized light of incident light and reflect S-polarized light. P-polarized light and S-polarized light are orthogonal to each other.
  • the illumination light L1 the illumination light L2 that has passed through the polarizing beam splitter film 28 is referred to as first polarization, and the reflected illumination light L3 is referred to as second polarization.
  • the second prism 23 and the third prism 24 have a parallelogram shape in the yz section, and each surface has the first polarizing beam splitter film 27 and the second polarizing beam splitter of the first prism 22, respectively.
  • the surface having the film 28 is joined.
  • the fourth prism 25 and the fifth prism 26 are triangular prisms having a yz section having a substantially right-angled isosceles triangle shape, and a first metal in which a metal such as aluminum is vapor-deposited on the inclined surface facing the substantially right-angle.
  • the reflective film 29 and the second reflective film 30 are formed.
  • the fourth prism 25 and the fifth prism 26 have surfaces on which the first reflective film 29 and the second reflective film 30 are formed with respect to the second prism 23 and the third prism 24, respectively.
  • the first beam splitter film 27 and the second beam splitter film 28 are coupled to face each other.
  • the polarization separation unit 19 includes the first beam splitter film 27 and the first reflection film 29 facing each other at an angle of about 45 ° with respect to the z direction and the xy plane, and the second beam.
  • the splitter film 28 and the second reflective film 30 are formed as members.
  • the surface on the light source unit 11 side of the polarization separation unit 19 is appropriately referred to as an “incident surface”, and the surface on the transmissive liquid crystal panel 14 side is referred to as an “exit surface”.
  • the half-wave plate 20 is selectively provided on the exit surface of the polarization separation unit 19. More specifically, the half-wave plate 20 is disposed on the emission surface on the first prism 22 from which P-polarized light is emitted. That is, only P-polarized light out of P-polarized light and S-polarized light is incident on the half-wave plate. In this case, the half-wave plate 20 converts P-polarized light into S-polarized light, and matches the polarization direction with the S-polarized light.
  • the half-wave plate 16 is disposed so as to face the entire emission surface of the polarization separation unit 19 to which the half-wave plate 20 is selectively joined.
  • the half-wave plate 16 is disposed so that the polarization direction of linearly polarized light is inclined by a predetermined angle by inclining the optical axis in the xy plane.
  • S-polarized illumination light whose electric field vibrates in the x direction in FIG.
  • the optical axis of the half-wave plate 20 may be tilted by 22.5 ° with respect to the x direction.
  • the diffusion plate 13 is a plate-like member that diffuses illumination light and emits it as uniform light.
  • the diffusion plate 13 is formed by adding fine particles having light diffusibility to a transparent resin.
  • the transmissive liquid crystal panel 14 is a liquid crystal panel that performs display by receiving illumination from the back.
  • the transmissive liquid crystal panel 14 has a rectangular outer shape of the display unit.
  • the x direction is the horizontal direction of the display unit
  • the y direction is the vertical direction of the display unit.
  • the transmission axis of the transmissive liquid crystal panel 14 is inclined by about 45 ° with respect to the x direction.
  • unpolarized white light emitted from the plurality of light sources 17 becomes illumination light L ⁇ b> 1 (incident light) of a parallel light flux by the lens 18, and the polarization of the polarization conversion member 15.
  • the light enters the incident surface of the separation unit 19.
  • the illumination light L1 incident on the second prism 23 side is incident on the first polarization beam splitter film 27 and transmitted through the first polarization beam splitter film 27.
  • the illumination light L2 (first polarization) and the S-polarized illumination light L3 (second polarization) reflected by the first polarization beam splitter film 27 are separated.
  • the illumination light L2 passes through the first prism 22, passes through the half-wave plate 20, and is converted to S-polarized light.
  • the illumination light L 3 travels through the second prism 23, is reflected by the first reflective film 29 in the direction of the transmissive liquid crystal panel 14, and is emitted from the polarization separation unit 19. For this reason, the polarization directions of the illumination lights L2 and L3 emitted from the polarization conversion member 15 are aligned to S polarization (that is, linear polarization in which the vibration direction of the electric field is the x direction).
  • the illumination lights L2 and L3 emitted from the polarization conversion member 15 are rotated by 45 ° with respect to the x direction which is the same direction as the transmission axis of the transmissive liquid crystal panel 14 by the half-wave plate 16.
  • the emitted light is emitted. That is, only the illumination light L2 is incident on the half-wave plate 20, and both the illumination light L2 transmitted through the half-wave plate 20 and the illumination light L3 are incident on the half-wave plate 16.
  • the polarization direction is emitted at an angle rotated by 45 ° with respect to the S-polarized light.
  • the illumination lights L2 and L3 are diffused by the diffusion plate 13 to become uniform light, and illuminate the transmissive liquid crystal panel 14.
  • the illumination light incident on the second prism 23 side from the light source unit 11 has been described.
  • the illumination light incident on the third prism 24 side has the same direction as the transmission axis of the transmissive liquid crystal panel 14.
  • the transmissive liquid crystal panel 14 is illuminated with uniform light. Therefore, the transmissive liquid crystal panel 14 is irradiated with uniform light in the same direction as the transmission axis over the entire surface. Thereby, the light efficiently transmitted through the transmissive liquid crystal panel 14 is projected as an image to the user.
  • the polarization separation unit 19 separates the illumination light L1 into the P-polarized illumination light L2 and the S-polarized illumination light L3, and the half-wave plate 20 illuminates the illumination light.
  • the polarization direction of L2 is matched with the polarization direction of the illumination light L3, and the polarization directions of the illumination light L2 and the illumination light L3 are matched with the direction of the transmission axis of the transmissive liquid crystal panel 14 by the half-wave plate 16. Therefore, it is possible to obtain a brighter image with respect to the amount of light output from the same light source 17.
  • Table 1 measures the illuminance of light emitted from the transmissive liquid crystal panel 14 when illumination light from an optical system different from the present invention is used and when the polarization conversion element 12 according to the first embodiment is used. Is a comparison.
  • Comparative Example 1 has a configuration in which no polarization conversion element is disposed between the light source unit 11 and the transmissive liquid crystal panel 14. In Comparative Example 2, only the polarization conversion member 15 is disposed between the light source unit 11 and the transmissive liquid crystal panel 14.
  • the example has a configuration using the polarization conversion element 12 according to the present embodiment. “Efficiency” indicates the illuminance in% when the illuminance according to Comparative Example 1 is 100%. It has been confirmed that the use efficiency of illumination light is greatly improved by using the polarization conversion element 12 according to the present embodiment.
  • FIG. 4 is a perspective view showing a schematic configuration of the polarization conversion element of the present invention according to the second embodiment and the illumination optical system of a transmissive liquid crystal panel using the same.
  • the polarization conversion element 41 is configured as a member in which the polarization separation unit 19 and the polarization direction control unit 42 are integrated.
  • FIG. 5 is a schematic cross-sectional view of the optical system of FIG. 4 viewed from the y direction.
  • FIG. 6 is a schematic cross-sectional view of the optical system of FIG. 4 viewed from the x direction. 4 to 6, the x, y, and z directions are the same as those in the first embodiment. Also, the same or corresponding components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the polarization conversion element 41 of the present embodiment replaces the half-wave plate 16 and the half-wave plate 20 in the polarization conversion element 12 of the first embodiment.
  • the half-wave plate 43 and the half-wave plate 44 are coupled to each other in the in-plane direction (in the y direction), and the polarization direction control unit 42 is formed as a single plate-like member.
  • the polarization direction control unit 42 is coupled to the exit surface of the polarization separation unit 19 in the normal direction (z direction).
  • the half-wave plate 43 is arranged so that the polarization direction of the P-polarized light is tilted by a predetermined angle by tilting the optical axis.
  • P-polarized illumination light whose electric field oscillates in the y direction in FIG. 6 is incident on the half-wave plate 43, and this illumination light is aligned with the transmission axis of the transmissive liquid crystal panel 14.
  • the optical axis of the half-wave plate 43 is tilted in the xy plane so that the P-polarized light is rotated by 135 °.
  • the half-wave plate 44 is arranged so that the polarization direction of the S-polarized light is tilted by a predetermined angle by tilting the optical axis.
  • S-polarized illumination light whose electric field oscillates in the x direction in FIG. 6 is incident on the half-wave plate 44, and this illumination light is aligned with the transmission axis of the transmissive liquid crystal panel 14.
  • the optical axis of the half-wave plate 43 is inclined with respect to the x direction in the xy plane so that the S-polarized light is rotated by 45 °.
  • the white light emitted from the light source 17 becomes parallel beam illumination light by the lens 18 and enters the incident surface of the polarization separation unit 19 of the polarization conversion element 41.
  • the illumination light L1 enters the first polarization beam splitter film 27 as in the first embodiment, and this first polarization beam.
  • P-polarized illumination light L2 (first polarization) that is transmitted through the splitter film 27 and S-polarized illumination light L3 (second polarization) that is reflected by the first polarization beam splitter film 27 are separated.
  • the illumination light L2 passes through the first prism 22, passes through the half-wave plate 43, and is emitted as linearly polarized light rotated by 45 ° with respect to the x direction.
  • the illumination light L3 travels through the second prism 23, is reflected in the direction of the transmissive liquid crystal panel 14 by the first reflective film 29, passes through the half-wave plate 44, and is rotated by 45 ° with respect to the x direction. Is output as linearly polarized light.
  • the illumination lights L2 and L3 emitted from the polarization conversion element 41 are emitted as linearly polarized light whose direction of polarization is the same as the transmission axis of the transmissive liquid crystal panel 14 and rotated by 45 ° with respect to the x direction.
  • the illumination light L2 is incident on the half-wave plate 43, and only the illumination light L3 is incident on the half-wave plate 44, and the polarization direction is rotated by 45 ° with respect to the S-polarized light.
  • the light is emitted at an angle. Thereby, the light efficiently transmitted through the transmissive liquid crystal panel 14 is projected as an image to the user.
  • the first illumination light L 2 that is P-polarized light is incident on the half-wave plate 43 of the polarization direction control unit 42, and the half-wave plate 44. Since only the second illumination light L3, which is S-polarized light, is made incident, and the polarization directions of the emitted illumination light L2 and the illumination light L3 are formed at an angle of 45 ° with respect to the x direction. The same effect as the embodiment can be obtained.
  • the polarization direction control unit 42 is integrally formed, as compared with a configuration in which two half-wave plates are arranged to overlap in the traveling direction of the illumination light as in the first embodiment, 1 / There is no decrease in the amount of light due to passing through the two-wavelength plate twice, and the cost can be suppressed by reducing the number of members.
  • the present invention is not limited to the above embodiment, and many variations or modifications are possible.
  • the polarization direction conversion unit is not limited to a half-wave plate as long as the polarization direction is changed.
  • an optical rotator using an optical rotatory material such as a nematic liquid crystal, a wave plate using a polymer material, a wave plate using an optical crystal having birefringence such as quartz can be used.
  • the P polarized light is the first polarized light and the S polarized light is the second polarized light.
  • the S polarized light is the first polarized light and the P polarized light is the second polarized light. It can also be.
  • the arrangement of the half-wave plate and the rotation angle of the polarization direction can be variously set.
  • the half-wave plate 20 is disposed on the emission surface of the first prism 22, but the half-wave plate 20 includes the second prism 23 that emits S-polarized light and The half-wave plate 20 may be disposed on the exit surface of the third prism 24.
  • the half-wave plate 20 converts the S-polarized light into the P-polarized light so that the polarization direction coincides with the P-polarized light.
  • the optical axis of the half-wave plate 16 is set so that the polarization direction of P-polarized light coincides with the transmission axis of the transmissive liquid crystal panel 14.
  • each prism of the polarization conversion member and the directions of the polarization beam splitter film and the reflection film shown in the first embodiment and the second embodiment are examples.
  • the angle formed by the polarization beam splitter film and the reflection film with the incident surface of the polarization conversion member is not limited to 45 °.
  • an optical element such as a further lens for expanding the illumination light beam can be arranged.
  • the polarization conversion element and the optical apparatus of the present invention can be suitably used as a polarization conversion element and an optical apparatus that increase the light use efficiency in the transmission type liquid crystal panel of the optical apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Projection Apparatus (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 偏光変換素子は、入射光を偏光方向が互いに直交する第1の偏光と第2の偏光とに分離する偏光分離部と、少なくとも前記第1の偏光の偏光方向を変換する第1の偏光方向変換部と、少なくとも前記第2の偏光の偏光方向を変換する第2の偏光方向変換部とを備え、前記第1の偏光及び前記第2の偏光の偏光方向を一致させるとともに、前記偏光分離部で分離された前記第1の偏光及び前記第2の偏光の何れかの偏光方向に対して、出射光の偏光方向を所定の角度だけ回転させた角度で出射させる偏光方向制御部とを備えることを特徴とする。

Description

偏光変換素子及びこれを用いた光学機器 関連出願の相互参照
 本出願は、2015年1月28日に出願された日本国特許出願2015-014661号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、偏光変換素子及びこれを用いた光学機器に関する。
 透過型液晶パネルに照明光を照射して、透過した光をスクリーン等に投影表示する光学機器として、例えば、プロジェクタ、ヘッドアップディスプレイ(HUD)等が知られている。図7は、そのような装置に現在一般的に用いられる照明光学系の一例を示している。これによれば、一列に配列された白色LED等の複数の白色光源101から射出される光を、それぞれ、対応するレンズ102で平行光束又はビーム径が拡大する光束にして、これを拡散板103で拡散させてムラのない均一性の高い光として、透過型液晶パネル104に照射する。照明光の照射により透過型液晶パネル104に入射し、これを透過した光が、スクリーン等に映像として投影される。しかし、透過型液晶パネル104では、透過軸に沿う方向の直線偏光成分の光のみを透過し、これに直交する偏光成分は透過させない。このため、照明光の偏光方向が全ての方向に均一に分布した無偏光の場合は、最大でも約半分の光しか透過させない。このため、照明光の利用効率が下がり投影される画像が暗くなる。なお、図の両矢印は、偏光の方向を示している。
 そこで、光源からの光を偏光方向が互いに直交する2つの直線偏光に分離して、旋光素子(1/2波長板)により一方の直線偏光の偏光方向を90°回転させた後に、他方の直線偏光と一つの光束に合成して、液晶パネルに入射させる方法が提案されている(例えば、特許文献1参照)。ここで、合成された光束の偏光方向は液晶表示パネルの透過軸と平行にすることにより、光源からの光の利用効率を上げることができる。
特開平6-43453号公報
 上述のように入射光を直交する2つの偏光に分離して、1/2波長板により一方の偏光方向に揃えるために偏光変換素子を用いることができる。図8および図9を用いて、偏光変換素子を含む光学系の例を説明する。図8は、本発明者らの検討に基づく偏光変換素子を用いた透過型液晶パネルの照明光学系の一例の概略構成を示す図である。また、図9は、図8の光学系をx方向から見た断面の模式図である。偏光変換素子105は、透明な基材内に偏光分離膜106と反射膜107とを有する偏光分離部材108と、偏光分離部材108の出射面上に選択的に配置された1/2波長板109とにより構成される。光源110から射出される照明光L101は、レンズ102で略平行光束となり、偏光分離部材108に入射する。偏光分離部材108に入射した照明光は、P偏光が偏光分離膜106を透過し、S偏光が偏光分離膜106で反射される。偏光分離膜106を透過したP偏光の照明光L102は、偏光分離部材108の出射面に接合された1/2波長板109に入射する。これに対して、偏光分離膜106で反射されたS偏光の照明光L103は、偏光分離部材108内の反射膜107により更に反射され、出射面の1/2波長板109が配置されていない領域から出射される。1/2波長板109に入射したP偏光の照明光L102は、偏光方向を90°回転され、1/2波長板109を透過しない領域から出射されるS偏光と偏光方向が揃えられる。これによって、一方向に偏光方向が揃えられた照明光L102,L103を、拡散板103で光度が均一となるように拡散させて、透過型液晶パネル104に照射することができる。
 ところで、透過型液晶パネルは、HUDなどの車載表示装置等種々の屋外で使用される光学機器に採用されている。自動車用、航空機の機内用等の表示装置では、外光の強い環境下で使用された場合に使用者が偏光サングラスをかけていた場合にも、視認性を低下させないことが必要とされている。偏光サングラスの透過軸は、通常の装着状態において鉛直方向に設定されており、この透過軸と液晶表示パネルの透過軸とが直交すると、液晶表示パネルの画像が偏光サングラスに遮られてしまい、画像が暗くなるか見えなくなってしまう。このため、矩形のパネルの外形形状の縦及び横方向に対して、液晶の透過軸が45°又は135°等の角度で傾けられている場合が多い。
 しかし、上述のような従来技術による偏光変換素子では、透過型液晶パネルの透過軸が傾いていることを考慮されていない。このため、偏光変換素子から出射する照明光の偏光方向と、透過型液晶パネルの透過軸の方向とが一致せず、光利用効率が低下することが懸念される。引用文献1の従来技術による光学系の構成においても、液晶表示パネルの透過軸を液晶表示パネルの矩形の外形の横方向に一致するものとしているので、同様の課題を有する。
 そこで、仮に、透過型液晶パネルの透過軸と射出される照明光の偏光方向とを一致させるために、光源、レンズ及び偏光変換素子全体を照明光の進行方向を軸として45°又は135°回転させると、装置全体の収まりが悪くなるうえ、透過型液晶パネル全体を照明しようとすると、偏光変換素子が大型化するうえ一部の照明光が透過型液晶パネル外に照射され無駄となる。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、透過型液晶パネルへの照明光の利用効率を高めた偏光変換素子及びこれを用いた光学機器を提供することを目的とする。
 前記課題を解決するための手段としては以下の通りである。即ち、
<1> 入射光を偏光方向が互いに直交する第1の偏光と第2の偏光とに分離する偏光分離部と、
 少なくとも前記第1の偏光の偏光方向を変換する第1の偏光方向変換部と、少なくとも前記第2の偏光の偏光方向を変換する第2の偏光方向変換部とを備え、前記第1の偏光及び前記第2の偏光の偏光方向を一致させるとともに、前記偏光分離部で分離された前記第1の偏光及び前記第2の偏光の何れかの偏光方向に対して、出射光の偏光方向を所定の角度だけ回転させた角度で出射させる偏光方向制御部と
を備えることを特徴とする偏光変換素子である。
<2> 前記偏光方向制御部材は、前記第1の偏光及び前記第2の偏光の何れかの偏光方向に対して、前記出射光の偏光方向を45°回転させた角度で出射させるように構成される<1>に記載の偏光変換素子である。
<3> 前記第1の偏光方向変換部には、前記第1の偏光のみを入射させ、前記第2の偏光方向変換部には、前記第1の偏光変換部を透過した前記第1の偏光、及び、前記第2の偏光を入射させるように構成された<1>又は<2>に記載の偏光変換素子である。
<4> 前記第1の偏光方向変換部には、前記第1の偏光のみを入射させ、前記第2の偏光方向変換部には、前記第2の偏光のみを入射させるように構成された<1>又は<2>に記載の偏光変換素子である。
<5> 前記第1の偏光方向変換部及び前記第2の偏光方向変換部は、1/2波長板により構成されており、前記偏光方向制御部は、前記第1の偏光方向変換部及び前記第2の偏光方向変換部を結合した板状部材であることを特徴とする<4>に記載の偏光変換素子である。
<6> 透過型液晶パネルと
 光源からの入射光を受けて、前記透過型液晶パネルに出射させる<1>から<5>の何れかに記載の偏光変換素子と
を備え、
 前記偏光変換素子は、前記光源からの光を受けて前記透過型液晶パネルの透過軸と同方向に偏光した光として出射させる光学機器である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、透過型液晶パネルへの照明光の利用効率を高めた偏光変換素子及びこれを用いた光学機器を提供することができる。
図1は、第1実施の形態に係る本発明の偏光変換素子及びこれを用いた透過型液晶パネルの照明光学系の概略構成を示す斜視図である。 図2は、図1の光学系をy方向から見た断面の模式図である。 図3は、図1の光学系をx方向から見た断面の模式図である。 図4は、第2実施の形態に係る本発明の偏光変換素子及びこれを用いた透過型液晶パネルの照明光学系の概略構成を示す斜視図である。 図5は、図4の光学系をy方向から見た断面の模式図である。 図6は、図4の光学系をx方向から見た断面の模式図である。 図7は、従来技術における透過型液晶パネルの照明光学系の概略構成を示す斜視図である。 図8は、従来技術における偏光変換素子を用いた透過型液晶パネルの照明光学系の概略構成を示す図である。 図9は、図8の光学系をx方向から見た断面の模式図である。
(偏光変換素子)
 本発明の偏光変換素子は、上述の通り、少なくとも偏光分離部と、偏光方向制御部とを備え、さらに必要に応じて、その他の構成要素を備える。
<偏光分離部>
 前記偏光分離部は、入射光を互いに直交する第1の偏光と第2の偏光とに分離するものであり、例えば、偏光分離膜が内部に形成されたプリズムを備え、さらに、必要に応じてプリズム内に形成された反射膜を含む。偏光分離膜は、例えば、蒸着等により形成された誘電体多層膜である。反射膜としては、アルミなどの金属を蒸着した膜を用いることができる。
<偏光方向制御部>
 前記偏光方向制御部は、少なくとも第1の偏光方向変換部と第2の偏光方向変換部とを備え、さらに、必要に応じてその他の構成を含む。前記第1および第2の偏光方向変換部は、例えば、それぞれ1/2波長板を備える。1/2波長板の光学軸の向きは、偏光分離部から出射した光の偏光方向を揃え且つ所定の角度傾けるために、偏光方向で分離された第1の偏光又は第2の偏光の偏光方向に対して、それぞれ所定の角度傾けられている。第1の偏光方向変換部と第2の偏光方向変換部とは、一枚の板状部材として構成しても良く、さらに、偏光分離部と結合することにより、偏光変換素子を一体に形成した単一部材で構成することができる。
(光学機器)
 本発明の光学機器は、上述の通り、少なくとも透過型液晶パネルと、上述の偏光変換素子とを備え、更に必要に応じて、その他の構成要素を備える。例えば、光学機器は、白色光を出射する光源、光源からの照明光を平行光束とするレンズ、照明光を均一化する拡散板等を含むことができる。光学機器としては、例えば、自動車のHUDやプロジェクタが含まれる。
 以下、本発明の実施の形態について、図面を参照して説明する。
(第1実施の形態)
 図1は、第1実施の形態に係る本発明の偏光変換素子及びこれを用いた透過型液晶パネルの照明光学系の概略構成を示す斜視図である。この照明光学系は、光源部11と、偏光変換素子12と、拡散板13とを備える。図1および以下の図2~図6において、光源部11、偏光変換素子12、拡散板13、透過型液晶パネル14等の各素子は、図示しない保持機構により保持され、相互の位置関係は固定されている。図1中に示される矢印は、偏光の方向を示している。偏光変換素子12は、光源部11から射出された無偏光の照明光を、透過型液晶パネル14の矩形の外形形状の縦方向又は横方向に対して、45°(所定の角度)だけ傾けた一方向に偏光した照明光として照射するものである。偏光変換素子12は、偏光変換部材15と1/2波長板16(第2の偏光方向変換部)とを含んで構成されている。透過型液晶パネル14は、例えば、車載用のHUDに用いられるものであり、透過軸が液晶パネルの外形の横方向に対して45°傾けられている。
 以下に、図2及び図3を参照して、図1の照明光学系の詳細を説明する。図2は、図1の光学系をy方向から見た断面の模式図である。また、図3は、図1の光学系をx方向から見た断面の模式図である。なお、図1から図3において、光源部11から射出されて透過型液晶パネル14へ向かう照明光に沿う方向をz方向とし、z方向に直交し且つ互いに直交する2方向であって、透過型液晶パネル14の外形の横方向に沿う方向をx方向、縦方向に沿う方向をy方向とする。
 光源部11は、白色LEDなどの複数の光源17と、各光源17に対応して設けられたレンズ18とを含んで構成される。各光源17は、透過型液晶パネル14の横長のパネルに対応して、一方向に並んで配列される。レンズ18は、対応する光源17から射出された拡散する照明光を、略平行な光束に変換する。白色LEDによる光源部11から射出される照明光L1は、光の進行方向に直交するxy面内で様々な方向に振動する無偏光状態である。
 偏光変換素子12の偏光変換部材15は、偏光分離部19と1/2波長板20(第1の偏光変換部)とから構成される。ここで、1/2波長板20は1/2波長板16とともに、偏光方向制御部21を構成するものである。
 偏光分離部19は、ガラスなどの透明な基材により形成され、何れもx方向に長く延びる、第1のプリズム22、第2のプリズム23、第3のプリズム24、第4のプリズム25及び第5のプリズム26を接合して構成される。
 第1のプリズム22は、yz断面が略直角二等辺三角形の形状を有する三角プリズムである。第1のプリズム22は断面の略直角を形成する頂点を光源17方向に向け、この略直角を挟む2面は、z方向に対して約45°を成すように配置されている。更に、この直角を挟む2面は、表面に偏光分離膜である第1の偏光ビームスプリッタ膜27及び第2の偏光ビームスプリッタ膜28が形成されている。偏光分離膜は、例えば、蒸着等により形成された誘電体多層膜である。第1の偏光ビームスプリッタ膜27及び第2の偏光ビームスプリッタ膜28は、入射する光のP偏光を透過させ、S偏光を反射させる。P偏光とS偏光とは互いに直交する。照明光L1のうち偏光ビームスプリッタ膜28を透過した照明光L2を第1の偏光、反射された照明光L3を第2の偏光と呼ぶ。
 第2のプリズム23及び第3のプリズム24は、yz断面が平行四辺形の形状を有し、それぞれ、一面が第1のプリズム22の第1の偏光ビームスプリッタ膜27、第2の偏光ビームスプリッタ膜28を有する面と接合されている。
 第4のプリズム25及び第5のプリズム26は、yz断面が略直角二等辺三角形の形状を有する三角プリズムであり、その略直角と対向する斜面には、それぞれアルミなどの金属を蒸着した第1の反射膜29及び第2の反射膜30が形成されている。第4のプリズム25及び第5のプリズム26は、それぞれ、第2のプリズム23及び第3のプリズム24に対して、第1の反射膜29及び第2の反射膜30が形成された面を、第1のビームスプリッタ膜27及び第2のビームスプリッタ膜28に対向させるように結合されている。
 このようにして、偏光分離部19は、内部にそれぞれz方向及びxy平面に対して、約45°傾けて向かい合う第1のビームスプリッタ膜27及び第1の反射膜29、並びに、第2のビームスプリッタ膜28及び第2の反射膜30が形成された部材として形成される。以下において、適宜偏光分離部19の光源部11側の面を「入射面」、透過型液晶パネル14側の面を「出射面」と呼ぶ。
 1/2波長板20は、偏光分離部19の出射面上に選択的に設けられる。より具体的には、1/2波長板20は、P偏光が射出される第1のプリズム22上の出射面上に配置される。すなわち1/2波長板には、P偏光とS偏光とのうちP偏光のみが入射される。この場合、1/2波長板20は、P偏光をS偏光に変換して、S偏光に偏光方向を一致させる。
 1/2波長板16は、1/2波長板20が選択的に接合された偏光分離部19の出射面全体に対向して配置される。この1/2波長板16は、xy面内で光学軸を傾けることによって、直線偏光の偏光方向を所定の角度傾けるように配置される。具体的には、1/2波長板16に対して電場が図3のx方向に振動するS偏光の照明光が入射する。この照明光をS偏光の偏光方向であるx方向に対して45°回転させた角度に傾ける場合は、1/2波長板20の光学軸をx方向に対して22.5°傾ければ良い。
 拡散板13は、照明光を拡散させ均一な光として射出する板状の部材であり、例えば、光拡散性を有する微粒子を透明樹脂に添加して形成される。透過型液晶パネル14は、背面からの照明を受けて表示を行う液晶パネルである。透過型液晶パネル14は、表示部が矩形状の外形を有しており、例えば図1~図3において、x方向が表示部の横方向、y方向が表示部の縦方向となっている。透過型液晶パネル14の透過軸は、x方向に対して約45°傾いている。
 以上のような構成によって、図3に示すように、複数の光源17から出射した無偏光の白色光は、レンズ18によって、平行光束の照明光L1(入射光)となり、偏光変換部材15の偏光分離部19の入射面に入射する。第2のプリズム23側に入射した照明光L1を例にとると、照明光L1は、第1の偏光ビームスプリッタ膜27に入射し、この第1の偏光ビームスプリッタ膜27を透過するP偏光の照明光L2(第1の偏光)と、第1の偏光ビームスプリッタ膜27で反射されるS偏光の照明光L3(第2の偏光)に分離される。
 照明光L2は、第1のプリズム22を透過して1/2波長板20を通り、S偏光に変換される。また照明光L3は、第2のプリズム23内を進み、第1の反射膜29で透過型液晶パネル14の方向に反射され、偏光分離部19から出射する。このため、偏光変換部材15から出射した照明光L2,L3の偏光方向は、S偏光、(即ち、電場の振動方向がx方向の直線偏光)に揃えられている。更に、偏光変換部材15から出射した照明光L2,L3は、1/2波長板16により偏光方向を、透過型液晶パネル14の透過軸と同方向であるx方向に対して、45°回転された出射光として出射される。すなわち、1/2波長板20には、照明光L2光のみが入射し、1/2波長板16には1/2波長板20を透過した照明光L2、及び、照明光L3の双方が入射して、偏光方向をS偏光に対して45°だけ回転させた角度で出射させる。さらに、照明光L2,L3は、拡散板13で拡散され均一な光となって、透過型液晶パネル14を照明する。
 上記は、光源部11から第2のプリズム23側に入射した照明光について説明したが、第3のプリズム24側に入射した照明光についても同様に、透過型液晶パネル14の透過軸と同方向の均一な光となって、透過型液晶パネル14を照明する。よって、透過型液晶パネル14には、全面に渡り透過軸と同方向の均一な光が照射される。これによって、透過型液晶パネル14を効率良く透過した光が、利用者に対して映像として投影される。
 以上説明したように、本実施の形態によれば、偏光分離部19により照明光L1をP偏光の照明光L2とS偏光の照明光L3とに分離し、1/2波長板20により照明光L2の偏光方向を照明光L3の偏光方向に一致させ、更に、1/2波長板16により照明光L2及び照明光L3の偏光方向を、透過型液晶パネル14の透過軸の方向と一致するように45°だけ回転させて出射させるので、透過型液晶パネル14に導かれた光の利用効率が高く、同じ光源17から出力される光量に対してより明るい画像を得ることが可能になる。
(実施例)
 表1は、本発明と異なる光学系による照明光を用いた場合と、第1実施の形態に係る偏光変換素子12とを用いた場合の、透過型液晶パネル14からの出射光の照度を測定により比較したものである。比較例1は、光源部11と透過型液晶パネル14との間に偏光変換素子を配置しない構成である。比較例2は、光源部11と透過型液晶パネル14との間に、偏光変換部材15のみを配置した構成である。実施例は、本実施の形態による偏光変換素子12を用いた構成である。「効率」は、比較例1による照度を100%とした場合の照度を%により示している。本実施の形態による偏光変換素子12を用いることによって、照明光の利用効率が大幅に改善されることが確認された。
Figure JPOXMLDOC01-appb-T000001
(第2実施の形態)
 図4は、第2実施の形態に係る本発明の偏光変換素子及びこれを用いた透過型液晶パネルの照明光学系の概略構成を示す斜視図である。この照明光学系において、光源部11、拡散板13、透過型液晶パネル14は、第1実施の形態と同様の構成要素である。偏光変換素子41は、本実施の形態では偏光分離部19と偏光方向制御部42が一体化された部材として構成されている。
 以下に、図5及び図6を参照して、図4の照明光学系の詳細を説明する。図5は、図4の光学系をy方向から見た断面の模式図である。また、図6は、図4の光学系をx方向から見た断面の模式図である。なお、図4~6において、x,y,zの各方向は、第1実施の形態と同様の方向を示す。また、第1実施の形態と同一または対応する構成要素は、同一の符号を付して説明を省略する。
 本実施の形態の偏光変換素子41は、第1実施の形態の偏光変換素子12において、1/2波長板16及び1/2波長板20に代えて、1/2波長板43(第1の偏光方向変換部)及び2枚の1/2波長板44(第2の偏光方向変換部)から構成される偏光方向制御部42を有する。ここで、1/2波長板43と1/2波長板44とは、面内方向(y方向に)互いに結合され、偏光方向制御部42は、一枚の板状部材として形成される。更に、偏光方向制御部42は、偏光分離部19の出射面と法線方向(z方向)に結合されている。
 1/2波長板43は、光学軸を傾けることによって、P偏光の偏光方向を所定の角度傾けるように配置される。具体的には、1/2波長板43に対して電場が図6のy方向に振動するP偏光の照明光が入射し、この照明光を透過型液晶パネル14の透過軸に合わせるためには、P偏光を135°回転させるように、1/2波長板43の光学軸をxy面内で傾けて配置する。また、1/2波長板44は、光学軸を傾けることによって、S偏光の偏光方向を所定の角度傾けるように配置される。具体的には、1/2波長板44に対して電場が図6のx方向に振動するS偏光の照明光が入射し、この照明光を透過型液晶パネル14の透過軸に合わせるためには、S偏光を45°回転させるように、1/2波長板43の光学軸をx方向に対してxy面内で傾けて配置する。
 その他の構成は、第1実施の形態と同様である。
 以上のような構成によって、図6に示すように、光源17から出射した白色光は、レンズ18によって、平行光束の照明光となり、偏光変換素子41の偏光分離部19の入射面に入射する。第2のプリズム23側から入射した照明光L1を例にとると、照明光L1は、第1実施の形態と同様に、第1の偏光ビームスプリッタ膜27に入射し、この第1の偏光ビームスプリッタ膜27を透過するP偏光の照明光L2(第1の偏光)と、第1の偏光ビームスプリッタ膜27で反射されるS偏光の照明光L3(第2の偏光)に分離される。照明光L2は、第1のプリズム22を透過して1/2波長板43を通り、x方向に対して45°回転した直線偏光として出射される。また照明光L3は、第2のプリズム23内を進み、第1の反射膜29で透過型液晶パネル14の方向に反射され、1/2波長板44を通り、x方向に対して45°回転した直線偏光として出射される。これにより、偏光変換素子41から出射した照明光L2,L3は、偏光方向が透過型液晶パネル14の透過軸と同方向である、x方向に対して45°回転した方向の直線偏光として出射される。すなわち、1/2波長板43には、照明光L2光のみが入射し、1/2波長板44には照明光L3のみが入射して、偏光方向をS偏光に対して45°だけ回転させた角度で出射させる。これによって、透過型液晶パネル14を効率良く透過した光が、利用者に対して映像として投影される。
 以上説明したように、本実施の形態によれば、偏光方向制御部42の1/2波長板43には、P偏光である第1の照明光L2のみを入射させ、1/2波長板44にはS偏光である第2の照明光L3のみを入射させ、出射する照明光L2及び照明光L3の偏光方向をx方向に対して45°を成す角度で成すように構成したので、第1実施の形態と同様の効果が得られる。また、偏光方向制御部42を一体として形成したので、第1の実施の形態のように2つの1/2波長板を、照明光の進行方向に重ねて配置する構成と比較して、1/2波長板を2回通ることによる光量の減少が無く、部材の数が減ることでコストを抑えることができる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形又は変更が可能である。たとえば、偏光方向変換部としては、1/2波長板を用いたが、偏光方向変換部としては偏光方向を変更するものであれば1/2波長板に限られない。例えば、ネマチック液晶等の旋光性有する材料を用いた旋光子、高分子材料を用いた波長板、水晶などの複屈折を有する光学結晶を用いた波長板などを用いることも可能である。
 また、偏光分離部で分離された互いに直交する偏光のうち、P偏光を第1の偏光、S偏光を第2の偏光としたが、S偏光を第1の偏光としP偏光を第2の偏光とすることもできる。更に、1/2波長板の配置及び偏光方向の回転角は、種々の設定が可能である。例えば、第1実施の形態では、1/2波長板20を第1のプリズム22の出射面上に配置したが、1/2波長板20は、S偏光が射出される第2のプリズム23及び第3のプリズム24上の出射面に配置しても良く、その場合、1/2波長板20はS偏光をP偏光に変換することによって、P偏光に対して偏光方向を一致させるようにすることができる。また、1/2波長板16の光学軸は、P偏光の偏光方向を透過型液晶パネル14の透過軸に一致させるように設定される。
 さらに、第1実施の形態および第2実施の形態で示した、偏光変換部材の各プリズムの形状、配置やそれによる偏光ビームスプリッタ膜および反射膜の向きは例示である。例えば、偏光ビームスプリッタ膜および反射膜が、偏光変換部材の入射面と成す角度は、45°に限られない。さらに、照明光学系中には、照明光束を拡大させるための更なるレンズ等の光学素子を配置することもできる。
 本発明の偏光変換素子及び光学機器は、光学機器の透過型液晶パネルにおける光の利用効率を高める偏光変換素子及び光学機器として、好適に利用可能である。
 11  光源部
 12  偏光変換素子
 13  拡散板
 14  透過型液晶パネル
 15  偏光変換部材
 16  1/2波長板(第2の偏光方向変換部)
 17  光源
 18  レンズ
 19  偏光分離部
 20  1/2波長板(第1の偏光方向変換部)
 21  偏光方向制御部
 22  第1のプリズム
 23  第2のプリズム
 24  第3のプリズム
 25  第4のプリズム
 26  第5のプリズム
 27  第1の偏光ビームスプリッタ膜
 28  第2の偏光ビームスプリッタ膜
 29  第1の反射膜
 30  第2の反射膜
 41  偏光変換素子
 42  偏光方向制御部
 43  1/2波長板(第1の偏光方向変換部)
 44  1/2波長板(第2の偏光方向変換部)
 L1  照明光
 L2  照明光(第1の偏光)
 L3  照明光(第2の偏光)

Claims (6)

  1.  入射光を偏光方向が互いに直交する第1の偏光と第2の偏光とに分離する偏光分離部と、
     少なくとも前記第1の偏光の偏光方向を変換する第1の偏光方向変換部と、少なくとも前記第2の偏光の偏光方向を変換する第2の偏光方向変換部とを備え、前記第1の偏光及び前記第2の偏光の偏光方向を一致させるとともに、前記偏光分離部で分離された前記第1の偏光及び前記第2の偏光の何れかの偏光方向に対して、出射光の偏光方向を所定の角度だけ回転させた角度で出射させる偏光方向制御部と
    を備える偏光変換素子。
  2.  前記偏光方向制御部材は、前記第1の偏光及び前記第2の偏光の何れかの偏光方向に対して、前記出射光の偏光方向を45°回転させた角度で出射させるように構成される請求項1に記載の偏光変換素子。
  3.  前記第1の偏光方向変換部には、前記第1の偏光のみを入射させ、前記第2の偏光方向変換部には、前記第1の偏光変換部を透過した前記第1の偏光、及び、前記第2の偏光を入射させるように構成された請求項1又は2に記載の偏光変換素子。
  4.  前記第1の偏光方向変換部には、前記第1の偏光のみを入射させ、前記第2の偏光方向変換部には、前記第2の偏光のみを入射させるように構成された請求項1又は2に記載の偏光変換素子。
  5.  前記第1の偏光方向変換部及び前記第2の偏光方向変換部は、1/2波長板により構成されており、前記偏光方向制御部は、前記第1の偏光方向変換部及び前記第2の偏光方向変換部を結合した板状部材であることを特徴とする請求項4に記載の偏光変換素子。
  6.  透過型液晶パネルと
     光源からの入射光を受けて、前記透過型液晶パネルに出射させる請求項1に記載の偏光変換素子と
    を備え、
     前記偏光変換素子は、前記光源からの光を受けて前記透過型液晶パネルの透過軸と同方向に偏光した光として出射させる光学機器。
PCT/JP2016/000145 2015-01-28 2016-01-13 偏光変換素子及びこれを用いた光学機器 WO2016121309A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015014661A JP2016139050A (ja) 2015-01-28 2015-01-28 偏光変換素子及びこれを用いた光学機器
JP2015-014661 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016121309A1 true WO2016121309A1 (ja) 2016-08-04

Family

ID=56542934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000145 WO2016121309A1 (ja) 2015-01-28 2016-01-13 偏光変換素子及びこれを用いた光学機器

Country Status (2)

Country Link
JP (1) JP2016139050A (ja)
WO (1) WO2016121309A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626471B (zh) * 2017-05-31 2018-06-11 Head-up display illumination system using a polarized light converter
US10983342B2 (en) 2016-10-04 2021-04-20 Maxell, Ltd. Light source apparatus and head up display apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003081A (ja) * 2017-06-16 2019-01-10 マクセル株式会社 光源装置およびヘッドアップディスプレイ装置
JP2018084596A (ja) * 2016-11-21 2018-05-31 マクセル株式会社 情報表示装置
WO2018186709A1 (ko) 2017-04-06 2018-10-11 엘지전자 주식회사 차량용 헤드 업 디스플레이 장치
CN110720071B (zh) * 2017-06-16 2022-04-22 麦克赛尔株式会社 光源装置和平视显示器装置
JP6878225B2 (ja) * 2017-09-15 2021-05-26 デクセリアルズ株式会社 透明パネルの製造方法、光学装置の製造方法
CN108594433A (zh) * 2018-04-02 2018-09-28 东莞广辰光电科技有限公司 一种使用偏极光转换器的高效率抬头显示器照明系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362902A (ja) * 1991-04-05 1992-12-15 Canon Inc 偏光素子及び該偏光素子を用いた投写型表示装置
JPH0643453A (ja) * 1993-06-16 1994-02-18 Casio Comput Co Ltd 液晶表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362902A (ja) * 1991-04-05 1992-12-15 Canon Inc 偏光素子及び該偏光素子を用いた投写型表示装置
JPH0643453A (ja) * 1993-06-16 1994-02-18 Casio Comput Co Ltd 液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10983342B2 (en) 2016-10-04 2021-04-20 Maxell, Ltd. Light source apparatus and head up display apparatus
TWI626471B (zh) * 2017-05-31 2018-06-11 Head-up display illumination system using a polarized light converter

Also Published As

Publication number Publication date
JP2016139050A (ja) 2016-08-04

Similar Documents

Publication Publication Date Title
WO2016121309A1 (ja) 偏光変換素子及びこれを用いた光学機器
WO2016189871A1 (ja) 光源ユニット及び投影装置
US8134109B2 (en) Optical projection engine device having a polarizing beam splitter and a control providing modulation instructions to modulation imagers
US20160231565A1 (en) Image display device
CN108885345B (zh) 平视显示器装置
KR200473436Y1 (ko) 와이어 그리드 편광자, 편광 빔 스플리터 및 투영 장치
TWI610121B (zh) 投影系統與照明系統
JP2008068766A (ja) 車両用表示装置
JP2016518010A (ja) 偏光光を提供する照明デバイス
JPWO2015111145A1 (ja) 光源装置およびこれを用いた映像表示装置
US20110317395A1 (en) Optical system for liquid crystal on silicon projector
US9039185B2 (en) LCOS projection system having beam recycling module with total internal reflecting prism
JP2015049290A (ja) 光学システム
JP2016162575A (ja) 光源装置、照明装置、およびプロジェクター
TW201222132A (en) Illumination module and projection apparatus
US20090021829A1 (en) Optical module
US20120002174A1 (en) Light source system of pico projector
JP5432401B2 (ja) ワイヤグリッド偏光子、偏光ビームスプリッタ及び投影装置
US10768417B2 (en) Display device and vehicle head-up display apparatus
JP5908272B2 (ja) 偏光変換素子及びこれを用いた投影装置
US8471966B2 (en) Projection system
US8780283B2 (en) Projection device
JP5583558B2 (ja) 偏光変換照明装置およびこれを用いた表示装置
TWI494654B (zh) 背光投影勻光系統
WO2017018372A1 (ja) 光源装置及び投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742914

Country of ref document: EP

Kind code of ref document: A1