WO2010095308A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2010095308A1
WO2010095308A1 PCT/JP2009/067568 JP2009067568W WO2010095308A1 WO 2010095308 A1 WO2010095308 A1 WO 2010095308A1 JP 2009067568 W JP2009067568 W JP 2009067568W WO 2010095308 A1 WO2010095308 A1 WO 2010095308A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarizing plate
transmittance
display device
crystal display
Prior art date
Application number
PCT/JP2009/067568
Other languages
English (en)
French (fr)
Inventor
長谷川雅浩
坂井彰
二宮郁雄
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/002,607 priority Critical patent/US8013954B2/en
Priority to EP09840411.4A priority patent/EP2400341B1/en
Priority to JP2010545325A priority patent/JP4691615B2/ja
Priority to BRPI0924038A priority patent/BRPI0924038A2/pt
Priority to CN2009801155191A priority patent/CN102016700B/zh
Publication of WO2010095308A1 publication Critical patent/WO2010095308A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device suitable for a liquid crystal display device having a front polarizing plate, a liquid crystal cell, a back polarizing plate, and an optical element having a polarization degree in this order.
  • a liquid crystal display device (hereinafter also referred to as an LCD) is an element that displays characters and images using the electro-optical characteristics of liquid crystal molecules, and is widely used in mobile phones, notebook computers, liquid crystal televisions, and the like.
  • the LCD usually uses a liquid crystal panel in which polarizing plates (front and rear polarizing plates) are arranged on both sides of the liquid crystal cell. For example, in the normally black method, a black image is displayed when no voltage is applied. be able to.
  • polarizing plates front and rear polarizing plates
  • a method for improving the front contrast ratio of a liquid crystal panel there are a method for reducing the scattering component inside the liquid crystal cell and a method for improving the degree of polarization by reducing the transmittance of the polarizing plate.
  • the method for reducing the scattering component inside the liquid crystal cell is not easy to take countermeasures, such as a design change of the cell structure.
  • the method of reducing the transmittance of the polarizing plate and improving the degree of polarization can be taken by changing the production conditions of the polarizing plate, so that the front contrast ratio can be improved relatively easily.
  • a liquid crystal cell for example, as a technique for improving the front contrast ratio, a liquid crystal cell, a first polarizing plate disposed on one side of the liquid crystal cell, and a second polarizing plate disposed on the other side of the liquid crystal cell
  • a liquid crystal panel in which the transmittance of the second polarizing plate is larger than the transmittance of the first polarizing plate (see, for example, Patent Documents 1 to 5).
  • the liquid crystal cell As for the technology for adjusting the transmittance of the pair of polarizing plates, the liquid crystal cell, the first polarizing plate disposed on one side of the liquid crystal cell, and the first disposed on the other side of the liquid crystal cell.
  • Two polarizing plates the first polarizing plate including a first polarizer and a first retardation layer disposed on the liquid crystal cell side of the first polarizer
  • the second polarizing plate includes a second polarizer and a second retardation layer disposed on the liquid crystal cell side of the second polarizer, and the refractive index ellipse of the first retardation layer.
  • the body shows a relationship of nx> ny ⁇ nz
  • the transmittance (T1) of the first polarizing plate is A liquid crystal panel larger than the transmittance (T2) of the second polarizing plate is disclosed (for example, see Patent Document 6).
  • liquid crystal display devices including a brightness enhancement film and a wire grid polarizer have been developed as optical elements having a degree of polarization. More specifically, with respect to a liquid crystal display device including a wire grid polarizer or the like, by forming a metal film on a transparent and flexible substrate and stretching the substrate and the metal film below the melting point of the metal film, A structure composed of a metal part having a typical shape and a dielectric part is formed, and the length in the short direction of the structure is shorter than the wavelength of light, and the length in the long direction is longer than the wavelength of light.
  • a liquid crystal display device using a wire-type polarizing optical element is disclosed (for example, see Patent Document 7).
  • Patent Document 1 a liquid crystal cell in which liquid crystal molecules are aligned in a homogeneous alignment is used in the absence of an electric field.
  • thermal fluctuation of the liquid crystal molecules is used. This disturbs the orientation and lowers the front contrast, so there is room for improvement in that the effect obtained is not sufficient.
  • Patent Document 6 is a technique for realizing a liquid crystal display device in which light leakage is small in an oblique direction, and is not a technique for improving the front contrast ratio.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device capable of achieving both a front contrast ratio and a front white luminance.
  • the present inventors have made various studies on a liquid crystal display device capable of achieving both a front contrast ratio and a front white luminance, and have focused on optical elements having a degree of polarization, such as a brightness enhancement film and a wire grid polarizer. Then, the transmittance of the back polarizing plate is made larger than the transmittance of the front polarizing plate, the contrast of the back polarizing plate is made smaller than the contrast of the front polarizing plate, and the main transmittance k1 of the optical element having the degree of polarization is set to 80.
  • the present invention is a liquid crystal display device having a front polarizing plate, a liquid crystal cell, a back polarizing plate and an optical element having a polarization degree in this order, and the transmittance of the back polarizing plate is the transmittance of the front polarizing plate.
  • the optical element having the polarization degree Larger than the contrast of the back polarizing plate, and the optical element having the polarization degree has a main transmittance k1 of 80 to 86% and a main transmittance k2 of 2 to 2.
  • the liquid crystal display device is 8%.
  • the front white luminance can be improved while maintaining the front contrast ratio of the liquid crystal display device. That is, both the front contrast ratio and the front white luminance can be achieved.
  • the configuration of the liquid crystal display device of the present invention is not particularly limited as long as such components are formed as essential components, and may or may not include other components. Absent. A preferred embodiment of the liquid crystal display device of the present invention will be described in detail below. In addition, each form shown below may be combined suitably.
  • At least one of the front polarizing plate and the rear polarizing plate preferably includes a retardation layer on the liquid crystal cell side.
  • the liquid crystal cell preferably includes a liquid crystal layer including liquid crystal molecules aligned in a homeotropic alignment in the absence of an electric field.
  • the retardation layer is preferably a retardation film whose refractive index ellipsoid satisfies the condition of nx ⁇ ny> nz.
  • the back polarizing plate includes a retardation layer on the liquid crystal cell side, and the liquid crystal cell is aligned in a homeotropic alignment in the absence of an electric field.
  • the form (henceforth the 1st form) provided with the liquid crystal layer containing is preferable.
  • the back polarizing plate preferably includes a negative C plate on the optical element side having the polarization degree.
  • the main transmittance k1 of the optical element having the polarization degree is preferably 82 to 84%.
  • the main transmittance k2 of the optical element having the polarization degree is preferably 2 to 6%.
  • the transmittance of the front polarizing plate is preferably 40 to 45%.
  • the transmittance of the front polarizing plate is more preferably 42 to 44%.
  • the transmittance of the back polarizing plate is preferably 42 to 48%.
  • the transmittance of the back polarizing plate is more preferably 43 to 46%.
  • the optical element having the polarization degree is preferably a brightness enhancement film or a wire grid polarizer.
  • both the front contrast ratio and the front white luminance can be achieved.
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal display device of Embodiment 1.
  • FIG. 4A and 4B are schematic diagrams for explaining how to obtain white luminance and black luminance in the liquid crystal display device according to the first embodiment.
  • FIG. 5A shows a case of white luminance
  • FIG. 5B shows a case of black luminance. It is the graph which plotted the white brightness
  • FIG. 18 is a schematic cross-sectional view of the liquid crystal display device of Example 17; 14 is a schematic cross-sectional view of a liquid crystal display device of Comparative Example 11.
  • FIG. 16 is a schematic cross-sectional view of a liquid crystal display device of Comparative Example 12.
  • FIG. It is the graph which plotted the contrast in an oblique viewing angle about the liquid crystal display device of Example 17, the comparative example 11, and the comparative example 12.
  • the transmittance is obtained by measuring the Y value after correcting the visibility with a two-degree field of view (C light source) defined in JIS Z8701-1982.
  • C light source a two-degree field of view
  • Examples of the measuring instrument include an ultraviolet-visible spectrophotometer (trade name “V-7100” manufactured by JASCO Corporation).
  • the parallel transmittance (Tp) is obtained by superposing two polarizing elements of the same type (the front polarizing plate, the back polarizing plate or the optical element having the polarization degree) so that their absorption axes are parallel to each other. It is the value of the transmittance of the produced parallel laminated polarizer.
  • the parallel transmittance (Tp) is obtained from the formula: (k1 2 + k2 2 ) / 2.
  • the main transmittance k1 and k2 are referred to as main transmittances.
  • the main transmittance k1 refers to the transmittance when a linearly polarized light is incident on the polarizing element and the vibration direction of the linearly polarized light is parallel to the transmission axis of the polarizing element.
  • the main transmittance k2 refers to the transmittance when a linearly polarized light is incident on the polarizing element and the vibration direction of the linearly polarized light is parallel to the absorption axis of the polarizing element.
  • the orthogonal transmittance (Tc) was prepared by superposing two polarizing elements of the same type (the front polarizing plate, the back polarizing plate or the optical element having the polarization degree) so that the absorption axes are orthogonal to each other. It is the value of the transmittance of the orthogonal laminated polarizer.
  • Tc orthogonal transmittance
  • the main transmittance k1 and the main transmittance k2 are obtained by measuring the Y value after the visibility correction, using the two-degree field of view (C light source) defined in JIS Z8701-1982.
  • the measuring instrument include an ultraviolet-visible spectrophotometer (trade name “V-7100” manufactured by JASCO Corporation).
  • Main refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), “ny” is the direction perpendicular to the slow axis in the plane, and “nz” is the thickness direction.
  • Refractive index is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), “ny” is the direction perpendicular to the slow axis in the plane, and “nz” is the thickness direction.
  • Refractive index is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), “ny” is the direction perpendicular to the slow axis in the plane, and “nz” is the thickness direction.
  • Refractive index is the refractive index in the direction in which the in-plane refractive index is maximum (
  • FIG. 1 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
  • the liquid crystal display device according to the present embodiment includes a liquid crystal panel 10 and a backlight light source 20 disposed behind the liquid crystal panel 10.
  • the backlight light source 20 includes a cold cathode tube 21, a housing 22 that holds the cold cathode tube 21, a diffusion plate 23 and a plurality of optical sheets 24 provided above the cold cathode tube 21 on the liquid crystal panel 10 side.
  • the diffusion plate 23 and the plurality of optical sheets 24 are arranged in this order from the cold cathode tube 21 side to the liquid crystal panel 10 side.
  • the liquid crystal panel 10 includes a VA mode liquid crystal cell 11, a front polarizing plate (observation surface side polarizing plate) 12 disposed on the front main surface side (observation surface side) of the liquid crystal cell 11, and a back main surface of the liquid crystal cell 11. And a back polarizing plate (backlight side polarizing plate) 13 disposed on the side (backlight light source 20 side).
  • the liquid crystal display device of the present embodiment further includes an optical element (optical member) 30 having a degree of polarization provided on the back light source 20 side of the back polarizing plate 13. .
  • an arbitrary adhesive layer (not shown) is disposed between the liquid crystal cell 11 and the front polarizing plate 12 and between the liquid crystal cell 11 and the back polarizing plate 13. Further, an adhesive layer (not shown) for adhering both may be disposed between the back polarizing plate 13 and the optical element 30 having a polarization degree.
  • the backlight source 20 further includes a light guide plate and a light reflector.
  • the contrast of the back polarizing plate 13 is lower than the contrast of the front polarizing plate 12, and the transmittance of the back polarizing plate 13 is higher than the transmittance of the front polarizing plate 12.
  • the main transmittance k1 of the optical element 30 having the degree of polarization is 80 to 86%, and the main transmittance k2 is 2 to 8%. Thereby, it is possible to improve the front white luminance while maintaining the front contrast ratio (contrast ratio in the front direction) of the liquid crystal display device.
  • the main transmittance k2 of the optical element 30 having the polarization degree exceeds 8%, the contrast of the back polarizing plate 13 is made smaller than the contrast of the front polarizing plate 12, and the transmittance of the back polarizing plate 13 is changed to that of the front polarizing plate 12. Even if it is larger than the transmittance, the front white luminance is hardly improved.
  • the main transmittance k2 of the optical element 30 having the polarization degree is 8% or less, the contrast of the back polarizing plate 13 is made smaller than the contrast of the front polarizing plate 12, and the transmittance of the back polarizing plate 13 is changed to the front polarizing plate.
  • the transmittance is higher than the transmittance of the plate 12, the front white luminance can be improved while maintaining the front contrast ratio.
  • the orthogonal transmittance of the optical element 30 having the polarization degree is high. Therefore, when the optical element 30 having the polarization degree is combined with the back polarizing plate 13, the liquid crystal In order to maintain the contrast of the display device, a polarizing plate with high contrast is required as the back polarizing plate 13. Therefore, it is necessary to use a polarizing plate having a low transmittance as much as the back polarizing plate 13, and it is considered that the front white luminance is not improved.
  • the liquid crystal panel 10 is preferably of a normally black type.
  • the “normally black method” refers to a liquid crystal panel that is designed so that the transmittance is minimized when the voltage is not applied (the screen becomes black) and the transmittance is increased when the voltage is applied.
  • the effect of the present invention is particularly remarkable in a normally black liquid crystal panel that performs black display when no voltage is applied. It is considered that the effect obtained by using two polarizing plates 12 and 13 having different transmittances is not hindered by driving of liquid crystal molecules.
  • the transmission axis of the front polarizing plate 12 and the transmission axis of the back polarizing plate 13 are arranged so as to be substantially orthogonal when the display surface of the liquid crystal display device is viewed in plan. That is, the front polarizing plate 12 and the back polarizing plate 13 are preferably arranged in crossed Nicols. Further, the transmission axis of the back polarizing plate 13 and the transmission axis of the optical element 30 having the polarization degree are arranged so as to be substantially parallel when the display surface of the liquid crystal display device is viewed in plan.
  • the angle formed by the transmission axis of the front polarizing plate 12 and the transmission axis of the back polarizing plate 13 is within a range of 90 ° ⁇ 1 ° (more preferably 90 ° ⁇ 0.3 °).
  • the angle formed by the transmission axis of the back polarizing plate 13 and the transmission axis of the optical element 30 having a polarization degree is in the range of 0 ° ⁇ 1 ° (more preferably, 0 ° ⁇ 0.3 °). It is preferable to be within. Note that when the angle exceeds 90 ° or 0 ° to 1 °, that is, outside these numerical ranges, a decrease in contrast may be confirmed at the viewing angle from the front.
  • Arbitrary layers may be disposed between the constituent members of the liquid crystal panel 10.
  • an arbitrary retardation film can be disposed between the front polarizing plate 12 and / or the back polarizing plate 13 and the liquid crystal cell 11.
  • any appropriate positional relationship can be selected as the relationship between the slow axis of the retardation film and the absorption axis of the adjacent polarizing plate depending on the driving mode of the liquid crystal cell.
  • liquid crystal cell 11 Any appropriate liquid crystal cell 11 can be adopted. Examples of the liquid crystal cell 11 include an active matrix type using a thin film transistor and a simple matrix type represented by a super twist nematic liquid crystal display device.
  • the liquid crystal cell 11 preferably includes a pair of substrates and a liquid crystal layer as a display medium sandwiched between the pair of substrates.
  • One substrate active matrix substrate
  • a switching element typically a TFT
  • the other substrate color filter substrate
  • the color filter may be provided on the active matrix substrate.
  • the color filter can be omitted.
  • the distance between the two substrates is controlled by a spacer. For example, an alignment film made of polyimide is provided on the side of each substrate in contact with the liquid crystal layer.
  • the liquid crystal cell 11 preferably includes a liquid crystal layer including liquid crystal molecules (vertically aligned liquid crystal) aligned in a homeotropic alignment in the absence of an electric field.
  • liquid crystal molecules vertical aligned liquid crystal
  • homeotropic alignment means that the alignment vector of liquid crystal molecules is perpendicular and uniform with respect to the substrate plane as a result of the interaction between the aligned and unaligned substrate and the liquid crystal molecules. It is in a state of being oriented.
  • the homeotropic alignment includes the case where the liquid crystal molecules are slightly inclined with respect to the substrate plane, that is, the case where the liquid crystal molecules have a pretilt angle.
  • Typical examples of the liquid crystal cell 11 include a vertical alignment (VA) mode, a vertical alignment twisted nematic (VATN) mode, and the like according to the classification according to the drive mode.
  • Polarizing plate refers to a material that converts natural light or polarized light into linearly polarized light.
  • the polarizing plate has a function of separating incident light into two orthogonally polarized components, transmitting one polarized component, and absorbing, reflecting and / or scattering the other polarized component.
  • the thicknesses of the front polarizing plate 12 and the back polarizing plate 13 are not particularly limited, and include the general concepts of thin films, films, and sheets.
  • the thickness of the front polarizing plate 12 and the back polarizing plate 13 is preferably 1 to 250 ⁇ m, more preferably 20 to 250 ⁇ m.
  • the front polarizing plate 12 and the back polarizing plate 13 may be a layer having a single-layer polarization function (also referred to as a polarizer), or may be a laminate including a plurality of layers.
  • a polarizer also referred to as a polarizer
  • examples of the configuration include (a) a laminate including a polarizer and a protective layer; (b) a polarizer, a protective layer, and a surface treatment layer. (C) a laminate including two or more polarizers, and the like.
  • the front polarizing plate 12 and the back polarizing plate 13 may have two or more surface treatment layers.
  • the protective layer may also have a function of expanding the viewing angle of the liquid crystal cell 11 (a layer having such a function is also referred to as an optical compensation layer).
  • the transmittance (T1) of the front polarizing plate 12 is preferably 40 to 45%, more preferably 42 to 44%.
  • T1 is less than 40%, the front white luminance improvement effect may not be sufficiently obtained.
  • T1 exceeds 45%, the front contrast ratio may decrease.
  • the transmittance (T2) of the back polarizing plate 13 is preferably 42 to 48%, more preferably 43 to 46%. If the T1 is less than 42%, the front contrast ratio may be lowered. On the other hand, if T1 exceeds 48%, the effect of improving the front white luminance may not be sufficiently obtained.
  • the contrast (CR1) of the front polarizing plate 12 can be appropriately set within the range of 2000 to 60000. If CR1 is less than 2000, the effect of the present invention can be obtained, but the front contrast ratio of the liquid crystal display device may be too low. On the other hand, when CR1 exceeds 60,000, the front white luminance may decrease.
  • the contrast (CR2) of the back polarizing plate 13 can usually be appropriately set within 500 to 35000.
  • CR2 is less than 500, the front contrast ratio may be lowered.
  • CR2 exceeds 35000, the effect of the present invention is obtained, but the front white luminance may be lowered.
  • the liquid crystal panel 10 can be produced by, for example, selecting commercially available polarizing plates having different transmittances and combining them appropriately.
  • the liquid crystal panel 10 appropriately adjusts the transmittance and contrast of the front polarizing plate 12 and the back polarizing plate 13 so as to increase the front contrast ratio in accordance with the driving mode and application of the liquid crystal cell 11. Produced.
  • polarized light whose main component is a polyvinyl alcohol resin containing iodine in the front polarizing plate 12 and the back polarizing plate 13.
  • a method of adjusting the content of iodine in the polarizer can be mentioned. Specifically, when the content of iodine in the polarizer is increased, the transmittance of the front polarizing plate 12 and the back polarizing plate 13 is low, the contrast can be increased, and the content of iodine in the polarizer is reduced.
  • the transmittance of the front polarizing plate 12 and the back polarizing plate 13 is high, and the contrast can be lowered.
  • This method can be applied to the production of the roll-shaped front polarizing plate 12 and the back polarizing plate 13 as well as the production of the sheet-like front polarizing plate 12 and the back polarizing plate 13.
  • the polarizer will be described later.
  • the front polarizing plate 12 includes a first polarizer
  • the back polarizing plate 13 includes a second polarizer
  • each of the first polarizer and the second polarizer includes polyvinyl which contains iodine.
  • the main component is an alcohol resin.
  • the polarizer can be usually obtained by stretching a polymer film containing as a main component a polyvinyl alcohol-based resin containing iodine. A polarizing plate including such a polarizer is excellent in optical characteristics.
  • a commercially available film can be used as it is as the polymer film containing the polyvinyl alcohol resin as a main component.
  • the polymer film containing a commercially available polyvinyl alcohol resin as a main component include, for example, the product name “Kuraray Vinylon Film” manufactured by Kuraray Co., Ltd., the product name “Tosero Vinylon Film” manufactured by Tosero Co., Ltd., and Nippon Synthetic Chemical Industry Trade name of “Nippon Vinylon Film”.
  • the front polarizing plate 12 and the back polarizing plate 13 preferably include a polarizer and protective layers disposed on both sides of the polarizer.
  • the protective layer can prevent the polarizer from contracting or expanding, or can prevent deterioration due to ultraviolet rays, and a highly durable polarizing plate can be obtained.
  • the front polarizing plate 12 preferably includes a first polarizer, a first protective layer disposed on the liquid crystal cell 11 side of the first polarizer, and the liquid crystal cell 11 side of the first polarizer. Comprises a second protective layer disposed on the opposite side.
  • the back polarizing plate 13 is preferably a second polarizer, a third protective layer disposed on the liquid crystal cell 11 side of the second polarizer, and the liquid crystal cell 11 of the second polarizer. And a fourth protective layer disposed on the side opposite to the side.
  • the protective layer and the polarizer can be laminated via any appropriate adhesive layer.
  • the “adhesive layer” refers to a layer that joins surfaces of adjacent optical members and integrates them with practically sufficient adhesive force and adhesion time.
  • the material for forming the adhesive layer include an adhesive and an anchor coat agent.
  • the adhesive layer may have a multilayer structure in which an anchor coat layer is formed on the surface of an adherend and an adhesive layer is formed thereon. Further, it may be a thin layer (also referred to as a hairline) that cannot be visually recognized.
  • the material for forming the adhesive layer is preferably a water-soluble adhesive.
  • the water-soluble adhesive is preferably a water-soluble adhesive mainly composed of a polyvinyl alcohol resin.
  • a commercially available adhesive can be used as it is for the adhesive layer. Or a solvent and an additive can also be mixed and used for a commercially available adhesive agent.
  • As an adhesive mainly composed of a commercially available polyvinyl alcohol-based resin for example, “GOHSEIMER Z200” manufactured by Nippon Synthetic Chemical Industry Co., Ltd. may be mentioned.
  • the water-soluble adhesive may further contain a crosslinking agent as an additive.
  • the crosslinking agent include amine compounds, aldehyde compounds, methylol compounds, epoxy compounds, isocyanate compounds, and polyvalent metal salts.
  • a commercially available crosslinking agent can be used as it is.
  • commercially available crosslinking agents include aldehyde compounds manufactured by Nippon Synthetic Chemical Industry Co., Ltd., and trade name “glyoxazal”.
  • the amount of the crosslinking agent added can be appropriately adjusted according to the purpose, but is usually more than 0 and 10 parts by weight or less with respect to 100 parts by weight of the solid content of the water-soluble adhesive.
  • the first protective layer is disposed on the liquid crystal cell 11 side of the first polarizer. Any appropriate value can be selected as the thickness of the first protective layer depending on the purpose.
  • the thickness of the protective layer is preferably 20 to 100 ⁇ m. By setting the thickness of the first protective layer in the above range, a polarizing plate excellent in mechanical strength and durability can be obtained.
  • the first protective layer is disposed between the polarizers on both sides of the front and back, the optical characteristics may affect the display characteristics of the liquid crystal display device. Therefore, the first protective layer preferably has high optical transparency, and from the viewpoint of improving the durability of the first polarizer, those having excellent heat resistance, moisture permeability and mechanical strength are preferable. From the viewpoint of improving the adhesion with the first polarizer, those excellent in surface smoothness and adhesion with the adhesive are preferred, and from the viewpoint of improving the adhesion with the liquid crystal cell 11, the adhesive and Those having excellent adhesion are preferred.
  • any appropriate material can be adopted as the material for forming the first protective layer.
  • a polymer film made of a norbornene resin, a polymer film made of a cellulose resin, and the like can be given.
  • a polymer film made of a norbornene resin from the viewpoint of suppressing the occurrence of unevenness in light leakage during black display due to temperature unevenness and the like, it is most preferable to use a polymer film made of a norbornene resin.
  • a commercially available film can be used as it is for the first protective layer.
  • a commercially available film subjected to secondary processing such as stretching treatment and / or shrinking treatment can be used in order to provide a retardation film function for optical compensation.
  • Examples of the polymer film made of a commercially available cellulose resin include “Fujitac” (trade name) manufactured by Fuji Photo Film, “KC8UX2M” (trade name) manufactured by Konica Minolta Opto, and the like.
  • Examples of the polymer film made of a norbornene-based resin include a trade name “ZEONOR FILM” manufactured by Nippon Zeon Co., Ltd. and a product name “ARTON” manufactured by JSR Corporation.
  • the second protective layer is disposed on the opposite side of the first polarizer from the liquid crystal cell 11 side. Any appropriate layer can be adopted as the second protective layer. From the viewpoint of improving the durability of the first polarizer, the second protective layer is preferably excellent in heat resistance, moisture permeability and mechanical strength, and improved in adhesion to the first polarizer. From this viewpoint, those excellent in surface smoothness and adhesiveness with an adhesive are preferable.
  • the second protective layer is a polymer film made of a cellulose resin from the viewpoint of adhesiveness with the first polarizer.
  • the polymer film made of the cellulose-based resin a film similar to that described in the first protective layer is preferably used.
  • a commercially available polymer film subjected to surface treatment can be used as it is.
  • a commercially available polymer film can be used after any surface treatment.
  • the surface treatment include diffusion treatment (antiglare treatment), antireflection treatment (antireflection treatment), hard coat treatment, and antistatic treatment.
  • Examples of commercially available diffusion-treated (anti-glare-treated) products include AG150, AGS1, AGS2, and AGT1 manufactured by Nitto Denko Corporation.
  • antireflection treatment examples include ARS and ARC manufactured by Nitto Denko Corporation.
  • examples of commercially available films that have been subjected to hard coat treatment and antistatic treatment include trade name “KC8UX-HA” manufactured by Konica Minolta Opto.
  • a surface treatment layer may be provided on the side of the second protective layer opposite to the side provided with the first polarizer. Any appropriate layer can be adopted as the surface treatment layer depending on the purpose. For example, a diffusion treatment (antiglare treatment) layer, an antireflection treatment (antireflection treatment) layer, a hard coat treatment layer, an antistatic treatment layer and the like can be mentioned. These surface treatment layers are used for the purpose of preventing the screen from being soiled or damaged, or preventing the display image from becoming difficult to see due to the reflection of indoor fluorescent light or sunlight on the screen. In general, the surface treatment layer is obtained by fixing the treatment agent for forming the treatment layer on the surface of the base film. The base film may also serve as the second protective layer.
  • the surface treatment layer may have a multilayer structure in which, for example, a hard coat treatment layer is laminated on the antistatic treatment layer.
  • a hard coat treatment layer is laminated on the antistatic treatment layer.
  • Examples of the commercially available surface-treated layer that has been subjected to antireflection treatment include ReaLook series manufactured by NOF Corporation.
  • the surface treatment layer preferably has a so-called moth-eye structure in which a fine concavo-convex pattern in which the concavo-convex period is controlled to be equal to or less than the wavelength of visible light is formed on the surface of the base film.
  • a fine concavo-convex pattern in which the concavo-convex period is controlled to be equal to or less than the wavelength of visible light is formed on the surface of the base film.
  • the third protective layer is disposed on the liquid crystal cell 11 side of the second polarizer.
  • 3rd protective layer arbitrary appropriate things can be employ
  • the first protective layer and the third protective layer may be the same or different.
  • the fourth protective layer is disposed on the side opposite to the liquid crystal cell 11 side of the second polarizer.
  • As said 4th protective layer arbitrary appropriate things can be employ
  • the second protective layer and the fourth protective layer may be the same or different.
  • At least one of the first protective layer and the third protective layer also serves as a retardation film (optical compensation layer) for optical compensation (viewing angle compensation).
  • optical compensation layer optical compensation layer
  • light leakage in an oblique direction at the time of black display can be reduced, so that the light emitted in the front direction can be reduced by being emitted obliquely and scattered by the surface treatment layer or the like. Can do. Therefore, the effect of the present invention can be achieved more effectively.
  • the third protective layer when only one of the first protective layer and the third protective layer has the role of a retardation film, the third protective layer preferably has the function. That is, the back polarizing plate preferably has a retardation film on the liquid crystal cell side. In the liquid crystal cell, there are many scattering components that cause depolarization, such as switching elements, wiring, and color filters. Therefore, in the case where optical compensation is performed before depolarization occurs (third protection) than in the case where optical compensation is performed after depolarization occurs (when the first protective layer has a role of retardation film). The optical compensation can be performed more effectively when the layer has the role of a retardation film.
  • the third protective layer has the role of a retardation film
  • light leakage in the oblique direction during black display can be further reduced.
  • Light scattered in the front direction can be further reduced by scattering at the treatment layer or the like. Therefore, the effect of the present invention can be achieved more effectively.
  • the main refractive indexes nx, ny, and nz preferably satisfy the relationship of nx ⁇ ny> nz.
  • one retardation film satisfying the relationship of nx> ny> nz is disposed as the first protective layer or the third protective layer.
  • a mode in which the film is arranged as the other of the first protective layer and the third protective layer, and one retardation film satisfying the relationship of nx> ny> nz is arranged as the first protective layer, and nx> ny> It can be realized by a form in which one retardation film satisfying the relationship of nz is disposed as the third protective layer.
  • a specific retardation value if it is the design by which the light leakage of a diagonal direction is reduced, it will not specifically limit, It can set arbitr
  • a polymer film made of a cellulose resin is usually used as the fourth protective layer.
  • the angle formed by the slow axis of the retardation film and the absorption axis of the second polarizer is an ideal design value (for example, When the angle is deviated from (90 °), the contrast of the liquid crystal display device at an oblique viewing angle is deteriorated.
  • the angle between the slow axis of the retardation film and the absorption axis of the polarizer is ideal due to processing during bonding and variations in the slow axis during retardation film production. It is difficult to achieve the same design value. That is, in a conventional homeotropic alignment (vertical alignment) liquid crystal display device having a retardation film as the third protective layer, the contrast of the liquid crystal display device at an oblique viewing angle tends to deteriorate.
  • the liquid crystal display device of the present embodiment even if the liquid crystal layer includes vertically aligned liquid crystal and the retardation film is disposed as the third protective layer, the same polarization is applied to the front polarizing plate and the back polarizing plate.
  • the deterioration of contrast at an oblique viewing angle due to the shift of the axes of the retardation film and the polarizer in the back polarizing plate 13 is suppressed, and further the oblique viewing angle.
  • the contrast in can be improved. That is, the liquid crystal display device of the present embodiment can realize a design that is resistant to axial misalignment between the retardation film and the polarizer in the back polarizing plate 13 (design with a large misalignment margin).
  • the angle formed by the slow axis of the retardation film as the third protective layer and the absorption axis of the second polarizer is preferably 90 ° ⁇ 1 ° (more Preferably, it can be set within a range of 90 ° ⁇ 0.5 °.
  • the margin of axial deviation between the retardation film as the first protective layer and the first polarizer is larger than the margin on the back polarizing plate 13 side. small. More specifically, the angle formed by the slow axis of the retardation film as the first protective layer and the absorption axis of the first polarizer is 90 ° ⁇ 0.5 ° (more preferably, 90 ° It is preferable to set within the range of ° ⁇ 0.3 °.
  • the liquid crystal display device of this embodiment is suitable for a configuration in which the back polarizing plate 13 includes the retardation layer on the liquid crystal cell 11 side and the liquid crystal layer includes the vertically aligned liquid crystal.
  • the liquid crystal layer includes a vertically aligned liquid crystal
  • the back polarizing plate 13 includes a negative C plate on the optical element 30 side having a polarization degree. Particularly preferred.
  • the thickness direction retardation value Rth [550] of the negative C plate functioning as a protective layer is preferably 100 nm (more preferably 70 nm) or less. If it exceeds 100 nm, the contrast of the oblique viewing angle may be lowered.
  • the in-plane retardation value Re [550] of the negative C plate is not necessarily 0 nm as long as the effect of the present invention can be obtained, and is 10 nm (more preferably 5 nm) or less. It is preferable. If it exceeds 10 nm, the front contrast may be lowered.
  • the polarizing plates (the front polarizing plate 12 and the back polarizing plate 13) are attached to a liquid crystal panel via an adhesive layer.
  • an appropriate adhesive and / or anchor coat agent can be selected according to the type and application of the adherend.
  • Specific examples of adhesives include solvent-based adhesives, emulsion-type adhesives, pressure-sensitive adhesives, rehumidifying adhesives, polycondensation-type adhesives, solventless adhesives, and film-like adhesives according to the classification by shape. Agents, hot melt adhesives and the like. According to the classification by chemical structure, synthetic resin adhesives, rubber adhesives, natural product adhesives and the like can be mentioned.
  • the adhesive includes a viscoelastic substance (also referred to as an adhesive) that exhibits an adhesive force that can be sensed by pressure contact at room temperature.
  • the material forming the adhesive layer is a pressure-sensitive adhesive (also referred to as an acrylic pressure-sensitive adhesive) having an acrylic polymer as a base polymer. This is because it is excellent in transparency, adhesiveness, weather resistance and heat resistance.
  • the thickness of the acrylic pressure-sensitive adhesive layer can be appropriately adjusted according to the material and application of the adherend, but is usually 5 to 50 ⁇ m.
  • the optical element 30 having a degree of polarization may be any element as long as it has a function of separating incident light into two orthogonal polarization components, transmitting one polarization component, and absorbing or reflecting the other polarization component.
  • Examples include wire grid polarizers, iodine-based polarizers, dye-based polarizers, etc., but from the viewpoint of further improving the luminance (white luminance) when displaying a white image on a liquid crystal display device, it is not transmitted. It is preferable to use a brightness enhancement film or a wire grid polarizer having a function of reflecting the polarization component. Thereby, since the light which does not permeate
  • the main transmittance k1 of the optical element 30 having the degree of polarization is 80 to 86%, preferably 82 to 84%. If the main transmittance k1 is less than 80%, the front white luminance may decrease. On the other hand, when the main transmittance k1 exceeds 86%, it becomes difficult to achieve the main transmittance k2.
  • the main transmittance k2 of the optical element 30 having the degree of polarization is 2 to 8%, preferably 2 to 6%. If the main transmittance k2 exceeds 8%, the front contrast ratio may decrease. On the other hand, if the main transmittance k2 is less than 2%, the front white luminance may be reduced.
  • the brightness enhancement film is used for improving the white brightness of the liquid crystal display device.
  • the brightness enhancement film is a laminate including a thermoplastic resin layer (A) and a thermoplastic resin layer (B).
  • the brightness enhancement film is a film in which a thermoplastic resin layer (A) and a thermoplastic resin layer (B) are alternately arranged (ABABAB).
  • the number of layers constituting the brightness enhancement film is preferably 2 to 20 layers, and more preferably 2 to 15 layers.
  • the brightness enhancement film having such a structure is produced, for example, by co-extruding two kinds of resins and stretching the extruded film.
  • the total thickness of the brightness enhancement film is preferably 20 to 800 ⁇ m.
  • the thermoplastic resin layer (A) exhibits optical anisotropy.
  • the in-plane birefringence index ( ⁇ nA) of the thermoplastic resin (A) is preferably 0.05 or more, more preferably 0.1 or more, and further preferably 0.15 or more. From the viewpoint of optical uniformity, the upper limit value of ⁇ nA is preferably 0.2.
  • ⁇ nA represents a difference (nxA ⁇ nyA) between nxA (refractive index in the slow axis direction) and nyA (refractive index in the fast axis direction).
  • the thermoplastic resin layer (B) is preferably substantially optically isotropic.
  • the in-plane birefringence ( ⁇ nB) of the thermoplastic resin (B) is preferably 5 ⁇ 10 ⁇ 4 or less, more preferably 1 ⁇ 10 ⁇ 4 or less, and further preferably 0.5 ⁇ 10 10. -4 or less.
  • the lower limit value of ⁇ nB is preferably 0.01 ⁇ 10 ⁇ 4 .
  • ⁇ nB represents a difference (nxB ⁇ nyB) between nxB (refractive index in the slow axis direction) and nyB (refractive index in the fast axis direction).
  • nyA of the thermoplastic resin layer (A) and nyB of the thermoplastic resin layer (B) are substantially the same.
  • the absolute value of the difference between nyA and nyB is preferably 5 ⁇ 10 ⁇ 4 or less, more preferably 1 ⁇ 10 ⁇ 4 or less, and further preferably 0.5 ⁇ 10 ⁇ 4 or less.
  • the brightness enhancement film having such optical characteristics is excellent in the function of reflecting the polarization component.
  • thermoplastic resin layer (A) preferably contains a polyethylene terephthalate resin, a polytrimethylene terephthalate resin, a polybutylene terephthalate resin, a polyethylene naphthalate resin, a polybutylene naphthalate resin, or a mixture thereof. . These resins are excellent in the expression of birefringence due to stretching and excellent in the stability of birefringence after stretching.
  • thermoplastic resin layer (B) preferably contains a polystyrene resin, a polymethyl methacrylate resin, a polystyrene glycidyl methacrylate resin, or a mixture thereof.
  • a halogen group such as chlorine, bromine or iodine may be introduced in order to increase the refractive index.
  • said resin may contain arbitrary additives, in order to adjust a refractive index.
  • the wire grid polarizer is used to improve the white luminance of the liquid crystal display device.
  • conductor wires such as metal are preferably arranged in a slit shape at a specific pitch on the substrate. If the pitch is considerably smaller than the incident light (for example, the wavelength of visible light of 400 to 800 nm) (for example, half or less), the electric field vector component that oscillates in parallel to the conductor line. Is reflected and almost perpendicular to the electric field vector component, so that a single polarized light can be created.
  • the wire grid polarizer can be arbitrarily produced by, for example, the method described in JP-A-2005-70456.
  • the performance (transmittance and contrast) of the wire grid polarizer can be changed by adjusting the width, period (pitch) and height (thickness) of the conductor wire (metal wire). More specifically, in this embodiment, the ratio W / P of the conductor wire width W and period (pitch) P is preferably 25 to 50%, and more preferably 30 to 42%.
  • the period (pitch) of the conductor wire is preferably 500 nm or less, and more preferably 200 nm or less. Further, the thickness of the conductor wire is preferably 10 to 300 nm, more preferably 80 to 150 nm.
  • the conductor wire material gold, silver, copper, aluminum, iron, nickel, titanium, tungsten, or an alloy thereof can be used.
  • the reflectance is high, and the wavelength dependency on visible light. From the viewpoint of flatness and easy maintenance of high reflectivity against changes over time (cloudiness), it is most preferable to use aluminum.
  • optical sheet 24 The number and type of the optical sheet 24 are not particularly limited and can be arbitrarily selected. As described above, as long as the optical member exemplified in FIG. 1 exhibits the effects of the present invention, a part of the optical member such as an illumination method of the liquid crystal display device and a driving mode of the liquid crystal cell may be omitted depending on the use. Other optical members can be substituted. Examples of the optical sheet 24 include a prism sheet (for example, trade name “BEF” manufactured by Sumitomo 3M), a diffusion sheet (for example, trade name “Opulse” manufactured by Eiwa Co., Ltd.), and the like.
  • a prism sheet for example, trade name “BEF” manufactured by Sumitomo 3M
  • diffusion sheet for example, trade name “Opulse” manufactured by Eiwa Co., Ltd.
  • a prism sheet changes the light emission angle regularly and improves the brightness
  • the diffusion sheet is for changing the light emission angle irregularly to improve the luminance in the normal direction and to make the luminance unevenness of the cold cathode tube 21 less noticeable.
  • the diffusion plate 23 causes surface emission by diffusing the light emitted from the cold cathode tube 21.
  • the diffusion plate 23 diffuses the light emitted from the cold cathode tube 21 in the surface direction, thereby making the luminance unevenness of the cold cathode tube 21 inconspicuous.
  • the diffusion plate 23 is made of, for example, a polycarbonate resin, an acrylic resin, or the like.
  • the material, thickness, haze value, etc. constituting the diffusion plate 23 are not particularly limited.
  • the liquid crystal display device of this embodiment is used for any appropriate application.
  • Applications include, for example, OA devices such as personal computer monitors, laptop computers, and copy machines, mobile phones, watches, digital cameras, personal digital assistants (PDAs), portable devices such as portable game machines, video cameras, televisions, microwave ovens, etc.
  • the use of the liquid crystal display device of this embodiment is a television.
  • the screen size of the television is preferably a wide 17 type (373 mm ⁇ 224 mm) or more, more preferably a wide 23 type (499 mm ⁇ 300 mm) or more, and further preferably a wide 32 type (687 mm ⁇ 412 mm) or more. .
  • the white luminance and black luminance of the liquid crystal panel 10 are mainly determined by the parallel transmittance and the orthogonal transmittance of the front polarizing plate 12 and the back polarizing plate 13. Therefore, if each is calculated, the white luminance and the black luminance of the liquid crystal panel 10 can be estimated.
  • 2A and 2B are schematic diagrams for explaining how to obtain white luminance and black luminance in the liquid crystal display device of Embodiment 1, in which FIG. 2A shows the case of white luminance, and FIG. 2B shows the case of black luminance. Indicates.
  • the front white luminance in the liquid crystal display device of the present embodiment is obtained by changing the front polarizing plate 12, the back polarizing plate 13, and the optical element 30 having the polarization degree to the transmission axis 12t of the front polarizing plate 12.
  • This corresponds to the parallel transmittance (white transmittance) when the transmission axis 13t of the back polarizing plate 13 and the transmission axis 30t of the optical element 30 having the polarization degree are arranged in parallel.
  • the front black luminance in the liquid crystal display device of this embodiment is such that the back polarizing plate 13 and the optical element 30 having the polarization degree are transmitted through the transmission axis 13t of the back polarizing plate 13 and the polarization.
  • the optical polarizer 30 is arranged so that the transmission axis 30t of the optical element 30 is parallel to each other, and the front polarizing plate 12 has the transmission axis 12t of the front polarizing plate 12 and the transmission axis 13t of the back polarizing plate 13 and the degree of polarization. This corresponds to the orthogonal transmittance (black transmittance) when the optical element 30 is arranged so as to be orthogonal to the transmission axis 30t.
  • the parallel transmittance of the optical element 30 having the degree of polarization (corresponding to the main transmittance k1 of the optical element 30 having the degree of polarization) is k1a
  • the orthogonal transmittance of the optical element 30 having the degree of polarization (optical having the degree of polarization).
  • k1b for the parallel transmittance of the back polarizing plate 13 corresponding to the main transmittance k1 of the back polarizing plate 13
  • the orthogonal transmittance of the back polarizing plate 13 back polarizing plate 13
  • K2c is the light amount of natural light (the total light amount incident on the optical element 30 having the degree of polarization).
  • Table 1 shows parameters of the front polarizing plate 12 and the back polarizing plate 13 used in the simulation
  • Table 2 shows parameters of the optical element 30 having the degree of polarization used in the simulation.
  • Table 2 shows parameters of the optical element 30 having the degree of polarization used in the simulation.
  • 3 to 27 show graphs plotting the white luminance and contrast of the liquid crystal display device obtained by this simulation.
  • the horizontal axis represents the parallel transmittance (when the natural light (backlight) is 100% and the transmission axes of the optical element 30 having the degree of polarization, the back polarizing plate 13 and the front polarizing plate 12 are parallel).
  • White transmittance which corresponds to the white luminance of the liquid crystal display device.
  • the vertical axis represents the parallel transmittance plotted on the horizontal axis (white transmittance), the transmission axes of the optical element 30 having the degree of polarization and the back polarizing plate 13 are parallel, and the transmission of the back polarizing plate 13 is shown.
  • the single transmittance of the plate 13 is represented by P (41), P (41.5), P (42), P (42.5), P (43), P (43.5), P (44) in Table 1. ), P (44.5), P (45), P (45.5), P (46), P (46.5), P (47), P (47.5) or P (48) The case of changing is shown.
  • the white luminance changes in the direction in which the white luminance increases (from left to right in the figure) as the transmittance increases. Accordingly, in a series other than the series described as “same” in FIGS. 3 to 27, an area in which white luminance is larger than a point overlapping a plot of a series described as “same” (in each figure, “same” In the plot located in the right region of the plot of the series described in the above, the contrast of the back polarizing plate 13 is lower than the contrast of the front polarizing plate 12, and the transmittance of the back polarizing plate 13 is It is a calculation result in the case where the transmittance is higher than the above, that is, corresponds to the embodiment according to the present invention.
  • the main transmittance k1 of the optical element 30 having the polarization degree is set to 80 to 86%, and the main transmission is achieved. It has been found that by setting the rate k2 to 2 to 8%, the front white luminance can be improved while maintaining the same contrast (front contrast ratio) of the liquid crystal display device. Further, the transmittance of the back polarizing plate 13 in the series other than the series described as “same” in FIGS. 8 to 11, FIGS. 13 to 16, FIGS. 18 to 21, and FIGS. The higher plot (corresponding to the embodiment according to the present invention) is the series described as “identical” in FIGS. 8 to 11, FIGS. 13 to 16, FIGS. 18 to 21 and FIGS. The contrast and the front white brightness were superior to those of the equivalent).
  • Example 17 In the liquid crystal display device of Example 17, as shown in FIG. 28, the optical element 30 having the degree of polarization, the back polarizing plate 13, the liquid crystal cell 11, and the front polarizing plate 12 are arranged in this order from the backlight source side. It has a laminated structure.
  • the front polarizing plate 12 has a structure in which a retardation film 15A and a polarizer 14A having a low transmittance are stacked in this order from the liquid crystal cell 11 side.
  • the back polarizing plate 13 has a structure in which a negative C plate 16 made of TAC or the like, a polarizer 14B having a high transmittance, and a retardation film 15B are laminated in this order from the optical element 30 side having a polarization degree.
  • Rth [550] of the liquid crystal cell 11 was set to 325 nm.
  • each parameter of the polarizer 14A and the polarizer 14B is as shown in Table 3 below. Further, the polarizer 14A and the polarizer 14B were arranged in crossed Nicols so that the absorption axis directions thereof were orthogonal to each other. Furthermore, the polarizer 14 ⁇ / b> B and the optical element 30 having the polarization degree are arranged in parallel Nicols so that the absorption axis directions thereof are parallel to each other.
  • each parameter of the optical element 30 having the polarization degree is as shown in Table 4 below.
  • the retardation films 15A and 15B are biaxial retardation films satisfying the relationship of nx> ny> nz, and Re [550] is set to 50 nm and Rth [550] is set to 135 nm.
  • the angle formed by the slow axis of the retardation film 15A and the absorption axis of the polarizer 14A was set to 90 °.
  • the angle formed by the slow axis of the retardation film 15B and the absorption axis of the polarizer 14B was changed by 90 ° from 90 ° to 0.1 °.
  • Comparative Example 11 As shown in FIG. 29, the liquid crystal display device of Comparative Example 11 is the same as the liquid crystal display device of Example 17 except that both the front polarizing plate 12 and the back polarizing plate 13 have a polarizer 14A having a low transmittance. It has a configuration.
  • Comparative Example 12 As shown in FIG. 30, the liquid crystal display device of Comparative Example 12 is the same as the liquid crystal display device of Example 17 except that both the front polarizing plate 12 and the back polarizing plate 13 have a polarizer 14B having a high transmittance. It has a configuration.
  • Example 17 (Diagonal contrast) For Example 17 and Comparative Examples 11 and 12, the contrast of the liquid crystal display device when observed from an oblique viewing angle was simulated.
  • the observation from an oblique viewing angle is an observation from a direction that divides the absorption axes of the polarizers 14A and 14B into two equal parts and a direction that is inclined by 60 ° from the normal direction of the display surface.
  • the contrast was increased when the angle formed by the slow axis of the retardation film 15B and the absorption axis of the polarizer 14B was slightly shifted from 90 °.
  • Example 17 even when the deviation from 90 ° between the slow axis of the retardation film 15B and the absorption axis of the polarizer 14B is larger, the contrast is larger than those of Comparative Examples 11 and 12. could be maintained.
  • Example 17 was more than Comparative Examples 11 and 12. It was also confirmed that excellent contrast was exhibited.
  • Liquid crystal panel 11 Liquid crystal cell 12: Front polarizing plate 13: Back polarizing plate 14A, 14B: Polarizers 15A, 15B: Retardation film 16: Negative C plate 20: Backlight light source 21: Cold cathode tube 22: Housing 23: Diffuser 24: Optical sheet 30: Optical element having polarization degree

Abstract

本発明は、正面コントラスト比、及び、正面白輝度の両立が可能である液晶表示装置を提供する。本発明は、表偏光板、液晶セル、裏偏光板及び偏光度を持つ光学素子をこの順に有する液晶表示装置であって、前記裏偏光板の透過率は、前記表偏光板の透過率よりも大きく、前記裏偏光板のコントラストは、前記表偏光板のコントラストよりも小さく、前記偏光度を持つ光学素子は、主透過率k1が80~86%であり、主透過率k2が2~8%である液晶表示装置である。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、表偏光板、液晶セル、裏偏光板及び偏光度を持つ光学素子をこの順に有する液晶表示装置に好適な液晶表示装置に関するものである。
液晶表示装置(以下、LCDともいう。)は、液晶分子の電気光学特性を利用して、文字や画像を表示する素子であり、携帯電話やノートパソコン、液晶テレビ等に広く普及している。LCDは、通常、液晶セルの両側に偏光板(表偏光板及び裏偏光板)が配置された液晶パネルが用いられており、例えば、ノーマリーブラック方式では、電圧無印加時に黒画像を表示することができる。近年、LCDは、高精細化が進み、用途が多岐にわたるにつれて、文字や画像をより鮮明に描くことのできる、高いコントラスト比を示す液晶パネルが求められている。
従来、液晶パネルの正面コントラスト比を向上させる方法としては、液晶セル内部の散乱成分を少なくする方法と、偏光板の透過率を低下させ偏光度を向上させる方法とが挙げられる。液晶セル内部の散乱成分を少なくする方法は、セル構造の設計変更が必要になる等、その対策は容易ではない。一方、偏光板の透過率を低下させ偏光度を向上させる方法は、偏光板の作製条件を変更するだけで対策が可能であるため、比較的容易に正面コントラスト比を向上させることができる方法として知られている。
例えば、正面コントラスト比を向上させる技術として、液晶セルと、該液晶セルの一方の側に配置された第1の偏光板と、該液晶セルの他方の側に配置された第2の偏光板とを備え、該第2の偏光板の透過率が、該第1の偏光板の透過率よりも大きい液晶パネルが開示されている(例えば、特許文献1~5参照。)。
なお、一対の偏光板の透過率を調節する技術に関しては、液晶セルと、該液晶セルの一方の側に配置された第1の偏光板と、該液晶セルの他方の側に配置された第2の偏光板とを少なくとも備え、該第1の偏光板は、第1の偏光子と、該第1の偏光子の該液晶セル側に配置された第1の位相差層とを含み、該第2の偏光板は、第2の偏光子と、該第2の偏光子の該液晶セル側に配置された第2の位相差層とを含み、該第1の位相差層の屈折率楕円体は、nx>ny≧nzの関係を示し、該第2の位相差層の屈折率楕円体は、nx=ny>nzの関係を示し、該第1の偏光板の透過率(T1)は、該第2の偏光板の透過率(T2)よりも大きい液晶パネルが開示されている(例えば、特許文献6参照。)。
また、偏光板以外にも偏光度を持つ光学素子として、輝度向上フィルムやワイヤーグリッド偏光子等を備える液晶表示装置が開発されている。より具体的には、ワイヤーグリッド偏光子等を備える液晶表示装置に関して、透明で柔軟な基板上に金属膜を形成し、金属膜の融点以下で基板と金属膜とを延伸することにより、異方的な形状を有する金属部分と誘電体部分とからなる構造が形成されてなり、該構造の短い方向の長さが光の波長より短く、長い方向の長さが光の波長より長い構造であるワイヤーリッド型偏光光学素子を用いた液晶表示装置が開示されている(例えば、特許文献7参照。)。
特開2007-298958号公報 特開2008-9388号公報 特開2008-15307号公報 特開2008-33250号公報 特開2008-58980号公報 特開2007-328217号公報 特開2001-74935号公報
しかしながら、上述の特許文献1においては、電界が存在しない状態で、液晶分子をホモジニアス配列に配向させた液晶セルを用いており、このようなホモジニアス配列させた液晶セルにおいては、液晶分子の熱揺らぎによって配向が乱れ、正面コントラストを低下させてしまうため、得られる効果が充分でないという点で改善の余地があった。
また、上述の特許文献2~5に記載の偏光板の透過率を調整する方法は、正面コントラスト比を向上させることは可能であるが、偏光板の透過率を低下させる必要が生じ、同時に正面白輝度を低下させてしまうという点で改善の余地があった。
更に、特許文献6に記載の技術は、斜め方向において光漏れが小さい液晶表示装置を実現するための技術であり、正面コントラスト比を向上させるための技術ではなかった。
本発明は、上記現状に鑑みてなされたものであり、正面コントラスト比及び正面白輝度の両立が可能である液晶表示装置を提供することを目的とするものである。
本発明者らは、正面コントラスト比及び正面白輝度の両立が可能である液晶表示装置について種々検討したところ、輝度向上フィルムやワイヤーグリッド偏光子等の偏光度を持つ光学素子に着目した。そして、裏偏光板の透過率を表偏光板の透過率よりも大きくし、裏偏光板のコントラストを表偏光板のコントラストよりも小さくするとともに、偏光度を持つ光学素子の主透過率k1を80~86%にし、更に偏光度を持つ光学素子の主透過率k2を2~8%にすることにより、液晶表示装置の正面コントラスト比を維持しつつ正面白輝度を向上できることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、表偏光板、液晶セル、裏偏光板及び偏光度を持つ光学素子をこの順に有する液晶表示装置であって、前記裏偏光板の透過率は、前記表偏光板の透過率よりも大きく、前記裏偏光板のコントラストは、前記表偏光板のコントラストよりも小さく、前記偏光度を持つ光学素子は、主透過率k1が80~86%であり、主透過率k2が2~8%である液晶表示装置である。
これにより、液晶表示装置の正面コントラスト比を維持しつつ正面白輝度を向上できる。すなわち、正面コントラスト比及び正面白輝度の両立が可能になる。
本発明の液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。
本発明の液晶表示装置における好ましい形態について以下に詳しく説明する。なお、以下に示す各形態は、適宜組み合わされてもよい。
前記表偏光板及び裏偏光板の少なくとも一方は、前記液晶セル側に位相差層を備えることが好ましい。
前記液晶セルは、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層を備えることが好ましい。
前記位相差層は、屈折率楕円体がnx≧ny>nzの条件を満たす位相差フィルムであることが好ましい。
斜め視野角におけるコントラストを向上する観点からは、前記裏偏光板は、前記液晶セル側に位相差層を備え、前記液晶セルは、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層を備える形態(以下、第一形態とも言う。)が好ましい。
また、斜め視野角におけるコントラストをより効果的に向上する観点からは、第一形態において、前記裏偏光板は、前記偏光度を持つ光学素子側にネガティブCプレートを備えることが好ましい。
前記偏光度を持つ光学素子の主透過率k1は、82~84%であることが好ましい。
前記偏光度を持つ光学素子の主透過率k2は、2~6%であることが好ましい。
前記表偏光板の透過率は、40~45%であることが好ましい。
前記表偏光板の透過率は、42~44%であることがより好ましい。
前記裏偏光板の透過率は、42~48%であることが好ましい。
前記裏偏光板の透過率は、43~46%であることがより好ましい。
前記偏光度を持つ光学素子は、輝度向上フィルム又はワイヤーグリッド偏光子であることが好ましい。
本発明の液晶表示装置によれば、正面コントラスト比及び正面白輝度の両立が可能である。
実施形態1の液晶表示装置の断面模式図である。 実施形態1の液晶表示装置における白輝度及び黒輝度の求め方を説明するための模式図であり、(a)は、白輝度の場合を、(b)は、黒輝度の場合を示す。 偏光度を持つ光学素子の主透過率k2を2%、主透過率k1を78%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである(比較形態)。 偏光度を持つ光学素子の主透過率k2を4%、主透過率k1を78%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである(比較形態)。 偏光度を持つ光学素子の主透過率k2を6%、主透過率k1を78%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである(比較形態)。 偏光度を持つ光学素子の主透過率k2を8%、主透過率k1を78%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである(比較形態)。 偏光度を持つ光学素子の主透過率k2を10%、主透過率k1を78%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである(比較形態)。 偏光度を持つ光学素子の主透過率k2を2%、主透過率k1を80%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を4%、主透過率k1を80%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を6%、主透過率k1を80%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を8%、主透過率k1を80%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を10%、主透過率k1を80%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである(比較形態)。 偏光度を持つ光学素子の主透過率k2を2%、主透過率k1を82%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を4%、主透過率k1を82%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を6%、主透過率k1を82%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を8%、主透過率k1を82%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を10%、主透過率k1を82%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである(比較形態)。 偏光度を持つ光学素子の主透過率k2を2%、主透過率k1を84%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を4%、主透過率k1を84%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を6%、主透過率k1を84%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を8%、主透過率k1を84%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を10%、主透過率k1を84%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである(比較形態)。 偏光度を持つ光学素子の主透過率k2を2%、主透過率k1を86%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を4%、主透過率k1を86%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を6%、主透過率k1を86%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を8%、主透過率k1を86%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである。 偏光度を持つ光学素子の主透過率k2を10%、主透過率k1を86%に設定した場合の液晶表示装置の白輝度及びコントラストをプロットしたグラフである(比較形態)。 実施例17の液晶表示装置の断面模式図である。 比較例11の液晶表示装置の断面模式図である。 比較例12の液晶表示装置の断面模式図である。 実施例17、比較例11及び比較例12の液晶表示装置について、斜め視野角におけるコントラストをプロットしたグラフである。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
なお、本明細書で透過率は、JIS Z8701-1982に規定の2度視野(C光源)により、視感度補正を行ったY値を測定することにより求める。測定機器としては、例えば、紫外可視分光光度計(日本分光社製、商品名「V-7100」)が挙げられる。
本明細書で偏光度は、例えば前記紫外可視分光光度計を用いて、偏光板の平行透過率(Tp)及び直交透過率(Tc)を測定し、式:偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100より求める。
平行透過率(Tp)は、同じ種類の2枚の偏光素子(前記表偏光板、前記裏偏光板又は前記偏光度を持つ光学素子)を、互いの吸収軸が平行となるように重ね合わせて作製した平行型積層偏光子の透過率の値である。
また、平行透過率(Tp)は、式:(k1+k2)/2より求める。
k1及びk2は主透過率といい、主透過率k1は、ある直線偏光を偏光素子に入射させたとき、その直線偏光の振動方向が偏光素子の透過軸と平行なときの透過率をいう。主透過率k2は、ある直線偏光を偏光素子に入射させたとき、その直線偏光の振動方向が偏光素子の吸収軸と平行なときの透過率をいう。
直交透過率(Tc)は、同じ種類の2枚の偏光素子(前記表偏光板、前記裏偏光板又は前記偏光度を持つ光学素子)を、互いに吸収軸が直交するように重ね合わせて作製した直交型積層偏光子の透過率の値である。
また、直交透過率(Tc)は、式:k1×k2より求める。
主透過率k1及び主透過率k2は、JIS Z8701-1982に規定の2度視野(C光源)により、視感度補正を行ったY値を測定することにより求める。測定機器としては、例えば、紫外可視分光光度計(日本分光社製、商品名「V-7100」)が挙げられる。
本明細書で偏光素子(前記表偏光板、前記裏偏光板及び前記偏光度を持つ光学素子)のコントラスト(CR)は、偏光素子の平行透過率(Tp)及び直交透過率(Tc)を測定し、式:CR=Tp/Tcより求める。
その他、本明細書における用語及び記号の定義は下記の通りである。
(1)主屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大となる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向、「nz」は厚み方向の屈折率である。
(2)面内の位相差値
面内の位相差値(Re[λ])は、23℃で波長λ(nm)におけるフィルムの面内の位相差値をいう。Re[λ]は、フィルムの厚みをd(nm)としたとき、Re[λ]=(nx-ny)×dによって求められる。
(3)厚み方向の位相差値
厚み方向の位相差値(Rth[λ])は、23℃で波長λ(nm)におけるフィルムの厚み方向の位相差値をいう。Re[λ]は、フィルムの厚みをd(nm)としたとき、Rth[λ]=(nx-nz)×dによって求められる。
(実施形態1)
図1は、実施形態1の液晶表示装置の断面模式図である。
本実施形態の液晶表示装置は、液晶パネル10と、液晶パネル10の後方に配置されたバックライト光源20とを備える。バックライト光源20は、冷陰極管21と、冷陰極管21を保持する筐体22と、冷陰極管21の液晶パネル10側の上方に設けられた拡散板23及び複数の光学シート24とを備える。拡散板23及び複数の光学シート24は、冷陰極管21側から液晶パネル10側にこの順に配置されている。液晶パネル10は、VAモードの液晶セル11と、液晶セル11の表主面側(観察面側)に配置された表偏光板(観察面側偏光板)12と、液晶セル11の裏主面側(バックライト光源20側)に配置された裏偏光板(バックライト側偏光板)13とを備える。本実施形態の液晶表示装置は、表偏光板12及び裏偏光板13に加えて、裏偏光板13のバックライト光源20側に設けられた偏光度を持つ光学素子(光学部材)30を更に備える。
なお、実用的には、液晶セル11及び表偏光板12の間と、液晶セル11及び裏偏光板13の間とには、任意の接着層(図示せず)が配置される。また、裏偏光板13と偏光度を持つ光学素子30との間には、両者を貼着するための接着層(図示せず)が配置され得る。
また、図示例では、バックライト光源20として、直下方式が採用された場合を示しているが、これは例えば、サイドライト方式のものであってもよい。サイドライト方式が採用される場合、好ましくは、バックライト光源20は、導光板と、ライトリフレクターとを更に備える。
本実施形態の液晶表示装置において、裏偏光板13のコントラストは、表偏光板12のコントラストよりも低く、かつ、裏偏光板13の透過率は、表偏光板12の透過率よりも高い。また、偏光度を持つ光学素子30の主透過率k1は80~86%であり、主透過率k2は2~8%である。これにより、液晶表示装置の正面コントラスト比(正面方向のコントラスト比)を維持しつつ正面白輝度を向上することができる。
偏光度を持つ光学素子30の主透過率k2が8%を超えると、裏偏光板13のコントラストを表偏光板12のコントラストよりも小さくし、裏偏光板13の透過率を表偏光板12の透過率よりも大きくしたとしても、正面白輝度の向上はほとんど見られない。しかしながら、偏光度を持つ光学素子30の主透過率k2が8%以下であると、裏偏光板13のコントラストを表偏光板12のコントラストよりも小さくし、裏偏光板13の透過率を表偏光板12の透過率よりも大きくした場合、正面コントラスト比を維持しつつ正面白輝度を向上することができる。
偏光度を持つ光学素子30の主透過率k2が高い場合は、偏光度を持つ光学素子30の直交透過率が高いため、偏光度を持つ光学素子30を裏偏光板13と組み合わせたとき、液晶表示装置のコントラストを維持するためには、裏偏光板13としてコントラストの高い偏光板が必要となる。そのため、その分だけ透過率が低い偏光板を裏偏光板13として用いる必要が出てくるために、正面白輝度が向上しないと考えられる。
一方、偏光度を持つ光学素子30の主透過率k2が低い場合は、偏光度を持つ光学素子30の直交透過率が低いため、液晶表示装置のコントラストを維持するために、裏偏光板13としてコントラストの高い偏光板を用いる必要が無くなる。そのため、その分透過率の高い偏光板を裏偏光板13として用いることができるために、正面白輝度が向上すると考えられる。
以下、本実施形態の液晶表示装置の各構成についてより詳細に説明する。
<A.液晶パネルの概要>
液晶パネル10は、好ましくは、ノーマリーブラック方式である。なお、本明細書において「ノーマリーブラック方式」とは、電圧無印加時に透過率が最小(画面が黒くなる状態)になり、電圧印加時に透過率が高くなるように設計されている液晶パネルをいう。本発明の効果は、電圧無印加時に黒表示を行う、ノーマリーブラック方式の液晶パネルにおいて、特に顕著である。透過率の異なる2枚の偏光板12、13を用いて得られる効果が、液晶分子の駆動によって阻害されないためであると考えられる。
このような観点から、表偏光板12の透過軸と裏偏光板13の透過軸とは、液晶表示装置の表示面を平面視したときに略直交するように配置されることが好ましい。すなわち、表偏光板12及び裏偏光板13は、クロスニコルに配置されることが好ましい。また、裏偏光板13の透過軸と偏光度を持つ光学素子30の透過軸とは、液晶表示装置の表示面を平面視したときに略平行になるように配置されている。より具体的には、表偏光板12の透過軸と裏偏光板13の透過軸とのなす角は、90°±1°(より好適には、90°±0.3°)の範囲内であることが好ましく、裏偏光板13の透過軸と偏光度を持つ光学素子30の透過軸とのなす角は、0°±1°(より好適には、0°±0.3°)の範囲内であることが好ましい。なお、90°又は0°から1°を超えると、すなわちこれらの数値範囲を外れると、正面からの視角において、コントラストの低下が確認されることがある。
液晶パネル10の各構成部材の間には、任意の層が配置され得る。例えば、表偏光板12及び/又は裏偏光板13と、液晶セル11との間には、任意の位相差フィルムが配置され得る。位相差フィルムが用いられる場合、位相差フィルムの遅相軸と隣接する偏光板の吸収軸との関係は、液晶セルの駆動モードに応じて、任意の適切な位置関係が選択され得る。
裏偏光板13の透過率(T2)と、表偏光板12の透過率(T1)との差(ΔT=T2-T1)は、好ましくは0.5~6.0%であり、より好ましくは2.0~4.0%である。ΔTが0.5%未満であると、正面白輝度の向上効果が十分に得られないことがある。一方、ΔTが6.0%を超えると、正面コントラスト比が低下することがある。
裏偏光板13のコントラスト(CR2)と、表偏光板12のコントラスト(CR1)との差(ΔCR=CR1-CR2)は、通常、2000~20000内で適宜設定することができる。ΔTが2000未満であると、正面白輝度の向上効果が充分に得られないことがある。一方、ΔTが20000を超えると、正面コントラスト比が低下することがある。
<B.液晶セル>
液晶セル11としては、任意の適切なものが採用され得る。液晶セル11としては、例えば、薄膜トランジスタを用いたアクティブマトリクス型のもの、スーパーツイストネマチック液晶表示装置に代表される単純マトリクス型のもの等が挙げられる。
液晶セル11は、好ましくは、一対の基板と、該一対の基板に挟持された表示媒体としての液晶層とを有する。一方の基板(アクティブマトリクス基板)には、液晶の電気光学特性を制御するスイッチング素子(代表的には、TFT)と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線とが設けられる。他方の基板(カラーフィルター基板)には、カラーフィルターが設けられる。上記カラーフィルターは、上記アクティブマトリクス基板に設けてもよい。あるいは、フィールドシーケンシャル方式のように液晶表示装置の照明手段にRGB3色光源が用いられる場合は、上記カラーフィルターは省略され得る。2つの基板の間隔は、スペーサーによって制御される。各基板の液晶層と接する側には、例えば、ポリイミドからなる配向膜が設けられる。
液晶セル11は、好ましくは、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子(垂直配向液晶)を含む液晶層を備える。これにより、正面方向において、電界が存在しない状態(黒表示)での偏光(透過光)への液晶分子の影響をほとんどなくすことができ、表偏光板及び裏偏光板の間における偏光解消を起こす要因を低減することができる。そのため、本発明の効果をより効果的に発揮することができる。ここで、「ホメオトロピック配列」とは、配向処理された、又は配向処理されていない基板と液晶分子との相互作用の結果として、液晶分子の配向ベクトルが、基板平面に対し、垂直且つ一様に配向した状態のものをいう。なお、本明細書において、上記ホメオトロピック配列は、液晶分子が基板平面に対し、わずかに傾いている場合、すなわち、液晶分子がプレチルト角を持つ場合も包含する。
電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層を備える液晶セルは、代表的には、屈折率楕円体がnz>nx=nyの関係を有する。ここで、nx=nyは、nxとnyとが完全に同一である場合だけでなく、nxとnyとが実質的に同一である場合も包含する。液晶セル11の代表例としては、駆動モードによる分類によれば、垂直配向(VA)モード、垂直配向ねじれネマチック(VATN)モード等が挙げられる。
<C.偏光板>
本実施形態における偏光板(表偏光板12及び裏偏光板13)は、透過率及びコントラストが上記の関係を満足するものであれば、任意の適切なものが採用され得る。本明細書において、「偏光板」は、自然光又は偏光を直線偏光に変換するものをいう。好ましくは、上記偏光板は、入射する光を直交する2つの偏光成分に分離し、一方の偏光成分を透過させ、他方の偏光成分を、吸収、反射及び/又は散乱させる機能を有する。
表偏光板12及び裏偏光板13の厚みは、特に限定されず、薄膜、フィルム、シートの一般的な概念を包含する。表偏光板12及び裏偏光板13の厚みは、好ましくは1~250μmであり、より好ましくは20~250μmである。表偏光板12及び裏偏光板13の厚みを上記の範囲とすることによって、機械的強度に優れるものが得られ得る。
表偏光板12及び裏偏光板13は、単層の偏光機能を有する層(偏光子ともいう)であってもよいし、複数の層からなる積層体であってもよい。表偏光板12及び裏偏光板13が積層体である場合、その構成としては、例えば、(a)偏光子と保護層とを含む積層体;(b)偏光子と保護層と表面処理層とを含む積層体;(c)2層以上の偏光子を含む積層体、等が挙げられる。表偏光板12及び裏偏光板13は、表面処理層を2層以上有していてもよい。あるいは、表偏光板12及び裏偏光板13は、保護層が、液晶セル11の視野角を拡大する機能を兼ねていてもよい(このような機能を有する層を、光学補償層ともいう)。
表偏光板12の透過率(T1)は、好ましくは40~45%であり、より好ましくは42~44%である。T1が40%未満であると、正面白輝度の向上効果が充分に得られないことがある。一方、T1が45%を超えると、正面コントラスト比が低下することがある。
裏偏光板13の透過率(T2)は、好ましくは42~48%であり、より好ましくは43~46%である。T1が42%未満であると、正面コントラスト比が低下することがある。一方、T1が48%を超えると、正面白輝度の向上効果が充分に得られないことがある。
表偏光板12のコントラスト(CR1)は、通常、2000~60000内で適宜設定することができる。CR1が2000未満であると、本発明の効果は得られるが、液晶表示装置の正面コントラスト比が低くなりすぎることがある。一方、CR1が60000を超えると、正面白輝度が低下することがある。
裏偏光板13のコントラスト(CR2)は、通常、500~35000内で適宜設定することができる。CR2が500未満であると、正面コントラスト比が低下することがある。一方、CR2が35000を超えると、本発明の効果は得られるが、正面白輝度が低下することがある。
液晶パネル10は、例えば、市販の偏光板のなかから、透過率の異なるものを選択し、適宜、組み合せて作製することができる。好ましくは、液晶パネル10は、液晶セル11の駆動モードや用途等に合せて、正面コントラスト比が高くなるように、表偏光板12及び裏偏光板13の透過率及びコントラストを、適切に調整して作製される。
表偏光板12及び裏偏光板13の透過率及びコントラストを増加ないし減少させる方法としては、例えば、表偏光板12及び裏偏光板13に、ヨウ素を含有するポリビニルアルコール系樹脂を主成分とする偏光子が用いられる場合、偏光子中のヨウ素の含有量を調整する方法が挙げられる。具体的には、偏光子中のヨウ素の含有量を増加させると、表偏光板12及び裏偏光板13の透過率は低く、コントラストは高くすることができ、偏光子中のヨウ素の含有量を減少させると、表偏光板12及び裏偏光板13の透過率は高く、コントラストは低くすることができる。なお、この方法は、ロール状の表偏光板12及び裏偏光板13の作製にも、枚様の表偏光板12及び裏偏光板13の作製にも適用可能である。なお、上記偏光子については、後述する。
<C-1.偏光子>
本実施形態に用いられる偏光子は、任意の適切なものが採用され得る。好ましくは、表偏光板12は第1の偏光子を含み、裏偏光板13は第2の偏光子を含み、該第1の偏光子及び該第2の偏光子は、それぞれヨウ素を含有するポリビニルアルコール系樹脂を主成分とする。上記偏光子は、通常、ヨウ素を含有するポリビニルアルコール系樹脂を主成分とする高分子フィルムを延伸して得ることができる。このような偏光子を含む偏光板は、光学特性に優れる。
上記ポリビニルアルコール系樹脂を主成分とする高分子フィルムは、市販のフィルムをそのまま用いることもできる。市販のポリビニルアルコール系樹脂を主成分とする高分子フィルムとしては、例えば、クラレ社製の商品名「クラレビニロンフィルム」、東セロ社製の商品名「トーセロビニロンフィルム」、日本合成化学工業社製の商品名「日合ビニロンフィルム」等が挙げられる。
<C-2.保護層>
表偏光板12及び裏偏光板13は、好ましくは、偏光子と、該偏光子の両側に配置された保護層とを備える。上記保護層は、例えば、偏光子が収縮や膨張することを防いだり、紫外線による劣化を防いだりすることができ、耐久性の高い偏光板を得ることができる。
表偏光板12は、好ましくは、第1の偏光子と、該第1の偏光子の液晶セル11側に配置された第1の保護層と、該第1の偏光子の液晶セル11側とは反対側に配置された第2の保護層とを備える。また、裏偏光板13は、好ましくは、第2の偏光子と、該第2の偏光子の液晶セル11側に配置された第3の保護層と、該第2の偏光子の液晶セル11側とは反対側に配置された第4の保護層とを備える。
上記保護層と上記偏光子とは、任意の適切な接着層を介して、積層させることができる。本明細書において、「接着層」とは、隣り合う光学部材の面と面とを接合し、実用上充分な接着力と接着時間で一体化させるものをいう。上記接着層を形成する材料としては、例えば、接着剤、アンカーコート剤が挙げられる。上記接着層は、被着体の表面にアンカーコート層が形成され、その上に接着剤層が形成されたような、多層構造であってもよい。また、肉眼的に認知できないような薄い層(ヘアーラインともいう)であってもよい。
上記偏光子が、ヨウ素を含有するポリビニルアルコール系樹脂を主成分とする場合、上記接着層を形成する材料としては、好ましくは、水溶性接着剤である。上記水溶性接着剤としては、好ましくは、ポリビニルアルコール系樹脂を主成分とする水溶性接着剤である。上記接着層は、市販の接着剤をそのまま用いることもできる。あるいは、市販の接着剤に溶剤や添加剤を混合して用いることもできる。市販のポリビニルアルコール系樹脂を主成分とする接着剤としては、例えば、日本合成化学工業社製の商品名「ゴーセファイマーZ200」が挙げられる。
上記水溶性接着剤は、添加剤として、架橋剤を更に含有し得る。架橋剤の種類としては、例えば、アミン化合物、アルデヒド化合物、メチロール化合物、エポキシ化合物、イソシアネート化合物、多価金属塩等が挙げられる。上記架橋剤は、市販のものをそのまま用いることもできる。市販の架橋剤としては、日本合成化学工業社製のアルデヒド化合物、商品名「グリオキサザール」が挙げられる。上記架橋剤の添加量は、目的に応じて、適宜、調整され得るが、通常、水溶性接着剤の固形分100重量部に対して、0を超え10重量部以下である。
〔第1の保護層〕
第1の保護層は、第1の偏光子の液晶セル11側に配置される。上記第1の保護層の厚みは、目的に応じて、任意の適切な値が選択され得る。上記保護層の厚みは、好ましくは、20~100μmである。第1の保護層の厚みを上記の範囲とすることによって、機械的強度や耐久性に優れた偏光板が得られ得る。
上記第1の保護層は、表裏の両側の偏光子の間に配置されるため、その光学特性が液晶表示装置の表示特性に影響を与える場合がある。したがって、上記第1の保護層は、光学的に透明性が高いものが好ましく、第1の偏光子の耐久性向上の観点からは、耐熱性、透湿性及び機械強度に優れているものが好ましく、第1の偏光子との密着性向上の観点からは、表面平滑性及び接着剤との密着性に優れているものが好ましく、液晶セル11との密着性向上の観点からは、粘着剤との密着性に優れているものが好ましい。
上記第1の保護層を形成する材料としては、任意の適切なものが採用され得る。例えば、ノルボルネン系樹脂からなる高分子フィルム、セルロース系樹脂からなる高分子フィルム等が挙げられる。なかでも、温度ムラ等に起因して黒表示時の光漏れにムラが生じることを抑える観点からは、ノルボルネン系樹脂からなる高分子フィルムを用いることが最も好ましい。
上記第1の保護層は、市販のフィルムをそのまま用いることができる。あるいは、光学補償のための位相差フィルムの機能を持たせるために、市販のフィルムに延伸処理及び/又は収縮処理等の2次的加工を施したものを用いることができる。市販のセルロース系樹脂からなる高分子フィルムとしては、例えば、富士写真フイルム社製の商品名「フジタック」、コニカミノルタオプト社製の商品名「KC8UX2M」等が挙げられる。ノルボルネン系樹脂からなる高分子フィルムのとしては、例えば、日本ゼオン社製の商品名「ゼオノアフィルム」や、JSR社製の商品名「ARTON」等が挙げられる。
〔第2の保護層〕
第2の保護層は、第1の偏光子の液晶セル11側とは反対側に配置される。上記第2の保護層としては、任意の適切なものが採用され得る。上記第2の保護層は、上記第1の偏光子の耐久性向上の観点からは、耐熱性、透湿性及び機械強度に優れているものが好ましく、上記第1の偏光子との密着性向上の観点からは、表面平滑性及び接着剤との密着性に優れているものが好ましい。
上記第2の保護層を形成する材料としては、任意の適切なものが採用され得る。好ましくは、上記第2の保護層は、第1の偏光子との密着性の観点からは、セルロース系樹脂からなる高分子フィルムである。上記セルロース系樹脂からなる高分子フィルムは、好ましくは、第1の保護層で記載したものと同様のものが用いられる。
上記第2の保護層は、上記透過率及びコントラストの関係を満足する限り、その表面に任意の適切な表面処理が施されてもよい。例えば、上記第2の保護層として、表面処理が施された市販の高分子フィルムをそのまま用いることができる。あるいは、市販の高分子フィルムに任意の表面処理を施して用いることもできる。表面処理としては、拡散処理(アンチグレア処理)、反射防止処理(アンチリフレクション処理)、ハードコート処理、帯電防止処理等が挙げられる。市販の拡散処理(アンチグレア処理)品としては、例えば、日東電工社製のAG150、AGS1、AGS2、AGT1等が挙げられる。市販の反射防止処理(アンチリフレクション処理)品としては、日東電工社製のARS、ARC等が挙げられる。ハードコート処理及び帯電防止処理が施された市販のフィルムとしては、例えば、コニカミノルタオプト社製の商品名「KC8UX-HA」等が挙げられる。
〔表面処理層〕
必要に応じて、上記第2の保護層の第1の偏光子を備える側とは反対側に、表面処理層を設けてもよい。上記表面処理層は、目的に応じて、任意の適切なものを採用し得る。例えば、拡散処理(アンチグレア処理)層、反射防止処理(アンチリフレクション処理)層、ハードコート処理層、帯電防止処理層等が挙げられる。これらの表面処理層は、画面の汚れや傷つきを防止したり、室内の蛍光灯や太陽光線が画面に写り込むことによって、表示画像が見え難くなることを防止したりする目的で使用される。表面処理層は、一般的には、ベースフィルムの表面に上記の処理層を形成する処理剤を固着させたものが用いられる。上記ベースフィルムは、上記第2の保護層を兼ねていてもよい。更に、表面処理層は、例えば、帯電防止処理層の上にハードコート処理層を積層したような多層構造を有してもよい。反射防止処理が施された市販の表面処理層としては、例えば、日本油脂社製のReaLookシリーズ等が挙げられる。
また、上記表面処理層は、凹凸の周期が可視光の波長以下に制御された微細な凹凸パターンがベースフィルムの表面に形成された、いわゆる、モスアイ構造を有していることが好ましい。これにより、白輝度の向上が更に得られ、本発明の効果が更に発揮される。更に、明室において表面反射が低減され、本発明の効果が明室においても充分に発揮される。なお、上記モスアイ構造は、例えば、国際公開2006/059686号に記載の方法により、任意に作製することができる。
〔第3の保護層〕
第3の保護層は、第2の偏光子の液晶セル11側に配置される。上記第3の保護層としては、上述した第1の保護層に記載した材料、特性、条件等から任意の適切なものが採用され得る。上記第1の保護層と上記第3の保護層とは、それぞれ同一であってもよいし、異なっていてもよい。
〔第4の保護層〕
第4の保護層は、第2の偏光子の液晶セル11側とは反対側に配置される。上記第4の保護層としては、上述した第2の保護層に記載した材料、特性、条件等から任意の適切なものが採用され得る。上記第2の保護層と上記第4の保護層とは、それぞれ同一であってもよいし、異なっていてもよい。
また、上記第1の保護層と第3の保護層とは、少なくともどちらか一方が光学補償(視野角補償)のための位相差フィルム(光学補償層)の役割を兼ね備えていることが好ましい。これにより、黒表示時の斜め方向の光漏れを低減することができるので、本来、斜め方向に射出し、表面処理層等で散乱することによって、正面方向に出射していた光を低減することができる。したがって、本発明の効果をより効果的に奏することができる。
また、上記第1の保護層と第3の保護層とのどちらか一方のみに位相差フィルムの役割を持たせる場合、第3の保護層にその機能を持たせることが好ましい。すなわち、裏偏光板が液晶セル側に位相差フィルムを有することが好ましい。液晶セル内部には、スイッチング素子やその他、配線、カラーフィルターといった、偏光解消を引き起こす散乱成分が多く存在する。そのため、偏光解消を引き起こした後に光学補償を行う場合(第1の保護層に位相差フィルムの役割を持たせた場合)よりも、偏光解消を引き起こす前に光学補償を行う場合(第3の保護層に位相差フィルムの役割を持たせた場合)の方が、より効果的に光学補償が可能になる。これにより、第3の保護層に位相差フィルムの役割を持たせた場合の方が、黒表示時の斜め方向の光漏れをより低減することができるので、本来、斜め方向に射出し、表面処理層等で散乱することによって、正面方向に出射していた光をより低減することができる。したがって、本発明の効果を更に効果的に奏することができる。
上記位相差フィルムの屈折率楕円体は、主屈折率nx、ny、nzが、nx≧ny>nzの関係を満たしていることが好ましい。これにより、屈折率楕円体がnz>nx=nyの関係を有する液晶分子を含む液晶セル(垂直配向モードの液晶セル)において、黒表示時の斜め方向の光漏れを効果的に低減することができる。したがって、垂直配向モードの液晶セルにおいて、本来、斜め方向に射出し、表面処理層等で散乱することによって、正面方向に出射していた光を低減することができる。その結果、垂直配向モードの液晶セルに対して本発明の効果をより効果的に奏することができる。
nx>ny>nzの関係を満たす位相差フィルムは、より具体的には、nx>ny>nzの関係を満たす1枚の位相差フィルムを第1の保護層又は第3の保護層として配置する形態、nx=ny>nzの関係を満たす1枚の位相差フィルムを第1の保護層及び第3の保護層の一方として配置するとともに、nx>ny>nzの関係を満たす1枚の位相差フィルムを第1の保護層及び第3の保護層の他方として配置する形態、nx>ny>nzの関係を満たす1枚の位相差フィルムを第1の保護層として配置するとともに、nx>ny>nzの関係を満たす1枚の位相差フィルムを第3の保護層として配置する形態等により実現することができる。なお、位相差フィルムの組み合わせや、具体的な位相差値については、斜め方向の光漏れが低減される設計であれば特に限定されず、任意に設定することができる。
ところで、ホメオトロピック配向(垂直配向)の液晶表示装置において、現状では通常、第4の保護層として、セルロース系樹脂からなる高分子フィルムが使用される。また、この高分子フィルムとしては、通常、TAC(nx=ny>nzの関係を満たすネガティブCプレート)が使用されている。しかしながら、この場合、第3の保護層として、上記位相差フィルムを配置したとき、位相差フィルムの遅相軸と、第2の偏光子の吸収軸とのなす角が理想的な設計値(例えば90°)からずれると、斜め視野角における液晶表示装置のコントラストが悪化してしまう。
通常、偏光板の貼り合せに関しては、貼り合せ時の加工、位相差フィルム製造時の遅相軸のバラツキ等により、位相差フィルムの遅相軸と、偏光子の吸収軸とのなす角を理想的な設計値通りすることは困難である。すなわち、第3の保護層として位相差フィルムを有する、従来のホメオトロピック配向(垂直配向)の液晶表示装置においては、斜め視野角における液晶表示装置のコントラストが悪化しやすかった。
それに対して、本実施形態の液晶表示装置によれば、液晶層が垂直配向液晶を含み、かつ第3の保護層として位相差フィルムを配置したとしても、表偏光板及び裏偏光板に同じ偏光子を用いる従来の垂直配向の液晶表示装置に比べて、裏偏光板13における位相差フィルム及び偏光子の軸のずれに起因する、斜め視野角におけるコントラストの悪化を抑制し、更には斜め視野角におけるコントラストを向上することができる。すなわち、本実施形態の液晶表示装置は、裏偏光板13における位相差フィルムと偏光子との軸ずれに強い設計(軸ずれのマージンの大きな設計)を実現することができる。
より具体的には、この場合、第3の保護層としての位相差フィルムの遅相軸と、第2の偏光子の吸収軸とのなす角は、好適には、90°±1°(より好適には、90°±0.5°)の範囲内に設定することができる。
一方、第1の保護層として位相差フィルムを配置した場合、第1の保護層としての位相差フィルムと、第1の偏光子との軸ずれのマージンは、裏偏光板13側のマージンよりも小さい。より具体的には、第1の保護層としての位相差フィルムの遅相軸と、第1の偏光子の吸収軸とのなす角は、90°±0.5°(より好適には、90°±0.3°)の範囲内に設定することが好ましい。
このように、本実施形態の液晶表示装置は、裏偏光板13が液晶セル11側に位相差層を備え、かつ液晶層が垂直配向液晶を含む形態に対して好適であり、なかでも、裏偏光板13が液晶セル11側に位相差層を備え、かつ液晶層が垂直配向液晶を含み、更に、裏偏光板13が偏光度を持つ光学素子30側にネガティブCプレートを備える形態に対して特に好適である。
なお、保護層として機能する上記ネガティブCプレートの厚み方向の位相差値Rth[550]は、100nm(より好適には70nm)以下であることが好ましい。100nmを超えると、斜め視野角のコントラストが低下することがある。
一方、上記ネガティブCプレートの面内の位相差値Re[550]は、本発明の作用効果を得られる範囲であれば必ずしも0nmである必要はなく、10nm(より好適には5nm)以下であることが好ましい。10nmを超えると、正面コントラストが低下することがある。
<D.接着層>
好ましい実施形態においては、上記偏光板(表偏光板12及び裏偏光板13)は、接着層を介して、液晶パネルに貼着される。上記接着層を形成する材料としては、被着体の種類や用途に応じて、適切な接着剤及び/又はアンカーコート剤が選択され得る。接着剤の具体例としては、形状による分類によれば、溶剤形接着剤、エマルジョン形接着剤、感圧性接着剤、再湿性接着剤、重縮合形接着剤、無溶剤形接着剤、フィルム状接着剤、ホットメルト形接着剤等が挙げられる。化学構造による分類によれば、合成樹脂接着剤、ゴム系接着剤、天然物接着剤等が挙げられる。なお、上記接着剤は、加圧接触で感知し得る接着力を常温で示す粘弾性物質(粘着剤ともいう)を包含する。
好ましくは、上記接着層を形成する材料は、アクリル系重合体をベースポリマーとする感圧性接着剤(アクリル系粘着剤ともいう)である。これは、透明性、接着性、耐候性及び耐熱性に優れるからである。上記アクリル系粘着剤層の厚みは、被着体の材質や用途に応じて、適宜、調整され得るが、通常、5~50μmである。
<E.偏光度を持つ光学素子>
偏光度を持つ光学素子30は、入射する光を直交する2つの偏光成分に分離し、一方の偏光成分を透過させ、他方の偏光成分を吸収、または反射させる機能を有するものであればよい。例としては、ワイヤーグリッド偏光子、ヨウ素系偏光子、染料系偏光子等が挙げられるが、液晶表示装置に白画像を表示した場合の輝度(白輝度)をより向上させる観点からは、透過させない偏光成分を反射させる機能を持っている、輝度向上フィルム又はワイヤーグリッド偏光子を用いることが好ましい。これにより、透過しない光を反射して再利用することができるので、光の有効利用の観点からも好ましい。
偏光度を持つ光学素子30の主透過率k1は、80~86%であるが、好ましくは、82~84%である。主透過率k1が80%未満であると、正面白輝度が低下するおそれがある。一方、主透過率k1が86%を超えると、主透過率k2との両立が困難となる。
また、偏光度を持つ光学素子30の主透過率k2は、2~8%であるが、好ましくは、2~6%である。主透過率k2が8%を超えると、正面コントラスト比が低下するおそれがある。一方、主透過率k2が2%未満であると、正面白輝度が低下するおそれがある。
<E-1.輝度向上フィルム>
上記輝度向上フィルムは、液晶表示装置の白輝度を向上させるために用いられる。好ましくは、上記輝度向上フィルムは、熱可塑性樹脂層(A)と熱可塑性樹脂層(B)とを含む積層体である。代表的には、上記輝度向上フィルムは、熱可塑性樹脂層(A)と熱可塑性樹脂層(B)とを交互に並べたもの(ABABAB・・・)である。上記輝度向上フィルムを構成する層の数は、好ましくは2~20層であり、より好ましくは2~15層である。このような構造を有する輝度向上フィルムは、例えば、2種類の樹脂を共押出し、その押出フィルムを延伸して作製される。上記輝度向上フィルムの総厚みは、好ましくは20~800μmである。
好ましくは、上記熱可塑性樹脂層(A)は、光学的に異方性を示す。上記熱可塑性樹脂(A)の面内の複屈折率(ΔnA)は、好ましくは0.05以上であり、より好ましくは、0.1以上であり、更に好ましくは0.15以上である。光学的な均一性の観点から、上記ΔnAの上限値は、好ましくは0.2である。ここで、上記ΔnAは、nxA(遅相軸方向の屈折率)とnyA(進相軸方向の屈折率)との差(nxA-nyA)を表す。
上記熱可塑性樹脂層(B)は、好ましくは、実質的に光学的に等方性を示す。上記熱可塑性樹脂(B)の面内の複屈折率(ΔnB)は、好ましくは5×10-4以下であり、より好ましくは1×10-4以下であり、更に好ましくは0.5×10-4以下である。上記ΔnBの下限値は、好ましくは0.01×10-4である。ここで、上記ΔnBは、nxB(遅相軸方向の屈折率)とnyB(進相軸方向の屈折率)との差(nxB-nyB)を表す。
上記熱可塑性樹脂層(A)のnyAと上記熱可塑性樹脂層(B)のnyBとは、好ましくは、実質的に同一である。nyAとnyBとの差の絶対値は、好ましくは5×10-4以下であり、より好ましくは1×10-4以下であり、更に好ましくは0.5×10-4以下である。このような光学特性を有する輝度向上フィルムは、偏光成分を反射させる機能に優れる。
上記熱可塑性樹脂層(A)を形成する樹脂としては、任意の適切なものが選択され得る。上記熱可塑性樹脂層(A)は、好ましくは、ポリエチレンテレフタレート系樹脂、ポリトリメチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、ポリブチレンナフタレート系樹脂、又はこれらの混合物を含む。これらの樹脂は、延伸による複屈折の発現性に優れ、延伸後の複屈折の安定性に優れる。
上記熱可塑性樹脂層(B)としては、任意の適切なものが選択され得る。上記熱可塑性樹脂層(B)は、好ましくは、ポリスチレン系樹脂、ポリメチルメタクリレート系樹脂、ポリスチレングリシジルメタクリレート系樹脂、又はこれらの混合物を含む。上記の樹脂は、屈折率を高めるために、塩素、臭素、ヨウ素等のハロゲン基が導入されていてもよい。あるいは、上記の樹脂は、屈折率を調整するために、任意の添加剤を含有し得る。
<E-2.ワイヤーグリッド偏光子>
上記ワイヤーグリッド偏光子は、液晶表示装置の白輝度を向上させるために用いられる。上記ワイヤーグリッド偏光子は、好ましくは、基板上に金属等の導電体線が特定のピッチでスリット状に配列される。そして、そのピッチが入射光(例えば、可視光の波長400~800nm)に比べてかなり小さい場合(例えば、2分の1以下)であれば、導電体線に対して平行に振動する電場ベクトル成分をほとんど反射し、垂直な電場ベクトル成分をほとんど透過させるため、単一偏光を作り出すことができる。
上記ワイヤーグリッド偏光子は、例えば、特開2005-70456号公報に記載の方法で任意に作製することができる。ワイヤーグリッド偏光子の性能(透過率やコントラスト)については、導電体線(金属ワイヤー)の幅、周期(ピッチ)及び高さ(厚み)を調整することによって変更することができる。より具体的には、本実施形態においては、導電体線の幅W及び周期(ピッチ)Pの割合W/Pは25~50%であることが好ましく、更に好ましくは30~42%である。また、上記導電体線の周期(ピッチ)は、500nm以下であることが好ましく、更に好ましくは200nm以下である。また、上記導電体線の厚みは、10~300nmであることが好ましく、更に好ましくは80~150nmである。
導電体線の材料としては、金、銀、銅、アルミニウム、鉄、ニッケル、チタン、タングステン等、もしくはこれらの合金を用いることができるが、なかでも、高い反射率であり、可視光に対する波長依存性がフラットで、経時変化(曇り)に対して高い反射率を維持しやすいという観点からは、アルミニウムを用いることが最も好ましい。
<F.光学シート>
光学シート24は、枚数、種類に特に制限がなく、任意に選定される。このように、図1に例示した光学部材は、本発明の効果が奏する限りにおいて、液晶表示装置の照明方式や液晶セルの駆動モード等、用途に応じてその一部が省略され得るか、又は、他の光学部材に代替され得る。光学シート24の例としては、プリズムシート(例えば、住友スリーエム社製の商品名「BEF」)、拡散シート(例えば、恵和社製の商品名「オパルス」)等が挙げられる。なお、プリズムシートは、光出射角度を規則的に変えて法線方向の輝度を向上するものである。拡散シートは、光出射角度を不規則に変えて法線方向の輝度を向上するとともに、冷陰極管21の輝度ムラをより目立たなくするためのものである。
<G.拡散板>
拡散板23は、冷陰極管21から発光された光を拡散させることによって、面発光させる。拡散板23は、冷陰極管21の出射する光を面方向に拡散させることによって、冷陰極管21の輝度ムラを目立たなくする。拡散板23は、例えば、ポリカーボネート系樹脂、アクリル系樹脂等から構成される。拡散板23を構成する材料、厚さ、ヘイズ値等は、特に限定されるものではない。
本実施形態の液晶表示装置は、任意の適切な用途に使用される。その用途は、例えば、パソコンモニター、ノートパソコン、コピー機等のOA機器、携帯電話、時計、デジタルカメラ、携帯情報端末(PDA)、携帯ゲーム機等の携帯機器、ビデオカメラ、テレビ、電子レンジ等の家庭用電気機器、バックモニター、カーナビゲーションシステム用モニター、カーオーディオ等の車載用機器、商業店舗用インフォメーション用モニター等の展示機器、監視用モニター等の警備機器、介護用モニター、医療用モニター等の介護・医療機器等である。
好ましくは、本実施形態の液晶表示装置の用途は、テレビである。上記テレビの画面サイズは、好ましくはワイド17型(373mm×224mm)以上であり、より好ましくはワイド23型(499mm×300mm)以上であり、更に好ましくはワイド32型(687mm×412mm)以上である。
<H.シミュレーションによる検証>
以下に、コンピュータシミュレーションにより本発明の効果を検証した結果を示す。
液晶パネル10の白輝度及び黒輝度は、主に表偏光板12及び裏偏光板13の平行透過率及び直交透過率によって決定される。よってそれぞれを計算すれば、液晶パネル10の白輝度及び黒輝度が見積もることができる。図2は、実施形態1の液晶表示装置における白輝度及び黒輝度の求め方を説明するための模式図であり、(a)は、白輝度の場合を、(b)は、黒輝度の場合を示す。
本実施形態の液晶表示装置における正面白輝度は、図2(a)に示すように、表偏光板12、裏偏光板13及び偏光度を持つ光学素子30を、表偏光板12の透過軸12tと、裏偏光板13の透過軸13tと、偏光度を持つ光学素子30の透過軸30tとがそれぞれ平行になるように配置した場合の平行透過率(白透過率)に相当する。
一方、本実施形態の液晶表示装置における正面黒輝度は、図2(b)に示すように、裏偏光板13及び偏光度を持つ光学素子30を、裏偏光板13の透過軸13tと、偏光度を持つ光学素子30の透過軸30tとがそれぞれ平行になるように配置するとともに、表偏光板12を、表偏光板12の透過軸12tが裏偏光板13の透過軸13t及び偏光度を持つ光学素子30の透過軸30tと直交するように配置した場合の直交透過率(黒透過率)に相当する。
より具体的には、以下の方法により算出できる。ここでは、偏光度を持つ光学素子30の平行透過率(偏光度を持つ光学素子30の主透過率k1に相当)をk1a、偏光度を持つ光学素子30の直交透過率(偏光度を持つ光学素子30の主透過率k2に相当)をk2a、裏偏光板13の平行透過率(裏偏光板13の主透過率k1に相当)をk1b、裏偏光板13の直交透過率(裏偏光板13の主透過率k2に相当)をk2b、表偏光板12の平行透過率(表偏光板12の主透過率k1に相当)をk1c、表偏光板12の直交透過率(表偏光板12の主透過率k2に相当)をk2c、自然光の光量(偏光度を持つ光学素子30に入射する全光量)を1とする。
本実施形態の液晶表示装置の正面白輝度については、偏光度を持つ光学部材が3枚あり、それぞれの透過軸が平行であるため、まず、自然光の光量を直交する2つの偏光成分に分割し、次に、分割された各光量1/2の光に、各偏光度を持つ光学部材のk1及びk2を掛けて、最後に、これらを足し合わせれば、平行透過率(白透過率)が算出できる(下記式(1)参照。)。
平行透過率(白透過率)=(k1a×k1b×k1c)/2+(k2a×k2b×k2c)/2  (1)
一方、本実施形態の液晶表示装置の正面黒輝度に相当する直交透過率(黒透過率)を計算する場合は、表偏光板12の透過軸12tのみが直交しているため、平行透過率(白透過率)の計算の場合において、最後の『k1c』と『k2c』とを入れ替えることによって算出できる(下記式(2)参照。)。
直交透過率(黒透過率)=(k1a×k1b×k2c)/2+(k2a×k2b×k1c)/2  (2)
本シミュレーションに使用した表偏光板12及び裏偏光板13の各パラメータを表1に示し、本シミュレーションに使用した偏光度を持つ光学素子30の各パラメータを表2に示す。表2に示すように、本シミュレーションでは、偏光度を持つ光学素子30の主透過率k1が78%、80%、82%、84%、86%の場合、主透過率k2が2%、4%、6%、8%、10%の場合について計算した。偏光度を持つ光学素子30の主透過率k1が78%の場合と、主透過率k2が10%の場合は、本発明の比較形態に相当する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
また、図3~27に、本シミュレーションにより求めた液晶表示装置の白輝度及びコントラストをプロットしたグラフを示す。図3~27において、横軸は、自然光(バックライト)を100%とし、偏光度を持つ光学素子30、裏偏光板13及び表偏光板12の透過軸を平行にした場合の平行透過率(白透過率)であり、液晶表示装置の白輝度に相当する。図3~27において、縦軸は、横軸にプロットした平行透過率(白透過率)を、偏光度を持つ光学素子30及び裏偏光板13の透過軸を平行にし、裏偏光板13の透過軸と表偏光板12の透過軸とを直交にした場合の直交透過率(黒透過率)で割った値、すなわち液晶表示装置のコントラスト(CR)に相当する。図3~27中、「同一」と記載された系列は、裏偏光板13及び表偏光板12の両方に同じ単体透過率(表1中の41~48%)の偏光板を用いた場合を示し、本発明の比較形態に相当する。図3~27中、「同一」と記載された系列以外の系列は、表偏光板12の単体透過率を凡例に記載の数値に固定し、すなわち表偏光板12の単体透過率を表1中のP(41)、P(42)、P(43)又はP(44)に固定し、裏偏光板13の単体透過率を表1中の41%から48%まで変化させた、すなわち裏偏光板13の単体透過率を表1中のP(41)、P(41.5)、P(42)、P(42.5)、P(43)、P(43.5)、P(44)、P(44.5)、P(45)、P(45.5)、P(46)、P(46.5)、P(47)、P(47.5)又はP(48)に変化させた場合を示す。
なお、図3~27においては、いずれの系も、透過率が大きくなるにしたがって白輝度は大きくなる方向(図中、左から右方向)に変化していく。したがって、図3~27の「同一」と記載された系列以外の系列においては、「同一」と記載された系列のプロットと重なる点よりも白輝度が大きくなる領域(各図中、「同一」と記載された系列のプロットよりも右の領域)に位置するプロットが、裏偏光板13のコントラストが表偏光板12のコントラストよりも低く、かつ、裏偏光板13の透過率が表偏光板12の透過率よりも高い場合の計算結果であり、すなわち本発明に係る実施例に相当する。
本シミュレーションの結果、図8~11、図13~16、図18~21及び図23~26に示すように、偏光度を持つ光学素子30の主透過率k1を80~86%にし、主透過率k2を2~8%にすることによって、液晶表示装置のコントラスト(正面コントラスト比)を同程度に維持しつつ正面白輝度を向上できることがわかった。そして、図8~11、図13~16、図18~21及び図23~26の「同一」と記載された系列以外の系列における裏偏光板13の透過率が表偏光板12の透過率よりも高いプロット(本発明に係る実施例に相当)は、図8~11、図13~16、図18~21及び図23~26の「同一」と記載された系列(本発明の比較形態に相当)よりも優れたコントラスト及び正面白輝度を示した。
一方、図3~6に示すように、偏光度を持つ光学素子30の主透過率k1を78%に設定すると、一見、本発明に係る実施例と同様の挙動が見られたが、液晶表示装置としての白輝度が低下しており、本発明の目的である正面白輝度及び正面コントラスト比の両立を充分に実現できていない。また、図12、図17、図22及び図27に示すように、偏光度を持つ光学素子30の主透過率k2を10%に設定すると、表偏光板12として透過率が低く、かつコントラストが高い偏光板を用い、裏偏光板13として透過率が高く、かつコントラストが低い偏光板を用いたとしても、正面白輝度の向上はほとんど見られなかった。
(実施例17)
実施例17の液晶表示装置は、図28に示すように、バックライト光源側から、偏光度を持つ光学素子30と、裏偏光板13と、液晶セル11と、表偏光板12とがこの順に積層された構造を有する。
表偏光板12は、液晶セル11側から、位相差フィルム15Aと、透過率の低い偏光子14Aとがこの順に積層された構造を有する。
裏偏光板13は、偏光度を持つ光学素子30側から、TAC等からなるネガティブCプレート16と、透過率の高い偏光子14Bと、位相差フィルム15Bとがこの順に積層された構造を有する。
本実施例において、液晶セル11は、ホメオトロピック配向(垂直配向)の液晶セルであり、屈折率楕円体がnz>nx=nyの関係を有する。また、本実施例において、液晶セル11のRth[550]は、325nmに設定した。
本実施例において、偏光子14A及び偏光子14Bの各パラメータについては、下記表3に示すとおりである。また、偏光子14A及び偏光子14Bは、互いの吸収軸方向が直交するように、クロスニコルに配置した。更に、偏光子14B及び偏光度を持つ光学素子30は、互いの吸収軸方向が平行になるように、平行ニコルに配置した。
Figure JPOXMLDOC01-appb-T000003
本実施例において、偏光度を持つ光学素子30の各パラメータについては、下記表4に示すとおりである。
Figure JPOXMLDOC01-appb-T000004
位相差フィルム15A、15Bは、nx>ny>nzの関係を満たす2軸性位相差フィルムであり、Re[550]は、50nmに、Rth[550]は、135nmに設定した。
ネガティブCプレート16は、nx=ny>nzの関係を満たす1軸性位相差フィルムであり、Rth[550]は、60nmに設定した。
また、位相差フィルム15Aの遅相軸と偏光子14Aの吸収軸とのなす角(平面視したときのなす角)は、90°に設定した。一方、位相差フィルム15Bの遅相軸と偏光子14Bの吸収軸とのなす角(平面視したときのなす角)は、90°から89°まで0.1°ずつ変化させて配置した。
(比較例11)
比較例11の液晶表示装置は、図29に示すように、表偏光板12及び裏偏光板13がともに、透過率の低い偏光子14Aを有すること以外は、実施例17の液晶表示装置と同じ構成を有する。
(比較例12)
比較例12の液晶表示装置は、図30に示すように、表偏光板12及び裏偏光板13がともに、透過率の高い偏光子14Bを有すること以外は、実施例17の液晶表示装置と同じ構成を有する。
(斜めコントラスト)
実施例17及び比較例11、12について、斜め視野角から観察したときの液晶表示装置のコントラストをシミュレーションした。なお、斜め視野角からの観察とは、偏光子14A、14Bの吸収軸を2等分する方向、かつ表示面の法線方向から60°傾斜した方向からの観察である。その結果、図31に示すように、実施例17では、位相差フィルム15Bの遅相軸と、偏光子14Bの吸収軸とのなす角が、90°から少しずれた場合にコントラストが上昇した。
また、実施例17では、位相差フィルム15Bの遅相軸と、偏光子14Bの吸収軸とのなす角の90°からのズレが大きくなった場合でも、比較例11、12よりも大きなコントラストを維持することができた。
更に、実施例17及び比較例11、12と同様の構成を有する液晶表示装置を実際に作製し、斜め視野角からの目視観察を行ったところ、実施例17の方が比較例11、12よりも優れたコントラストを発揮することが確認できた。
本願は、2009年2月17日に出願された日本国特許出願2009-034405号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
10:液晶パネル
11:液晶セル
12:表偏光板
13:裏偏光板
14A、14B:偏光子
15A、15B:位相差フィルム
16:ネガティブCプレート
20:バックライト光源
21:冷陰極管
22:筐体
23:拡散板
24:光学シート
30:偏光度を持つ光学素子
 

Claims (13)

  1. 表偏光板、液晶セル、裏偏光板及び偏光度を持つ光学素子をこの順に有する液晶表示装置であって、
    前記裏偏光板の透過率は、前記表偏光板の透過率よりも大きく、
    前記裏偏光板のコントラストは、前記表偏光板のコントラストよりも小さく、
    前記偏光度を持つ光学素子は、主透過率k1が80~86%であり、主透過率k2が2~8%であることを特徴とする液晶表示装置。
  2. 前記表偏光板及び前記裏偏光板の少なくとも一方は、前記液晶セル側に位相差層を備えることを特徴とする請求項1に記載の液晶表示装置。
  3. 前記液晶セルは、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層を備えることを特徴とする請求項1又は2記載の液晶表示装置。
  4. 前記位相差層は、屈折率楕円体がnx≧ny>nzの条件を満たす位相差フィルムであることを特徴とする請求項2又は3記載の液晶表示装置。
  5. 前記裏偏光板は、前記液晶セル側に位相差層を備え、
    前記液晶セルは、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層を備えることを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記裏偏光板は、前記偏光度を持つ光学素子側にネガティブCプレートを備えることを特徴とする請求項5記載の液晶表示装置。
  7. 前記偏光度を持つ光学素子の主透過率k1は、82~84%であることを特徴とする請求項1~6のいずれかに記載の液晶表示装置。
  8. 前記偏光度を持つ光学素子の主透過率k2は、2~6%であることを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  9. 前記表偏光板の透過率は、40~45%であることを特徴とする請求項1~8のいずれかに記載の液晶表示装置。
  10. 前記表偏光板の透過率は、42~44%であることを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
  11. 前記裏偏光板の透過率は、42~48%であることを特徴とする請求項1~10のいずれかに記載の液晶表示装置。
  12. 前記裏偏光板の透過率は、43~46%であることを特徴とする請求項1~11のいずれかに記載の液晶表示装置。
  13. 前記偏光度を持つ光学素子は、輝度向上フィルム又はワイヤーグリッド偏光子であることを特徴とする請求項1~12のいずれかに記載の液晶表示装置。
     
     
PCT/JP2009/067568 2009-02-17 2009-10-08 液晶表示装置 WO2010095308A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/002,607 US8013954B2 (en) 2009-02-17 2009-10-08 Liquid crystal display
EP09840411.4A EP2400341B1 (en) 2009-02-17 2009-10-08 Liquid crystal display device
JP2010545325A JP4691615B2 (ja) 2009-02-17 2009-10-08 液晶表示装置
BRPI0924038A BRPI0924038A2 (pt) 2009-02-17 2009-10-08 visor de cristal líquido.
CN2009801155191A CN102016700B (zh) 2009-02-17 2009-10-08 液晶显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-034405 2009-02-17
JP2009034405 2009-02-17

Publications (1)

Publication Number Publication Date
WO2010095308A1 true WO2010095308A1 (ja) 2010-08-26

Family

ID=42633601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067568 WO2010095308A1 (ja) 2009-02-17 2009-10-08 液晶表示装置

Country Status (7)

Country Link
US (1) US8013954B2 (ja)
EP (1) EP2400341B1 (ja)
JP (1) JP4691615B2 (ja)
CN (1) CN102016700B (ja)
BR (1) BRPI0924038A2 (ja)
RU (1) RU2451314C1 (ja)
WO (1) WO2010095308A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005050A1 (ja) * 2010-07-05 2012-01-12 シャープ株式会社 液晶表示装置
WO2014027459A1 (ja) * 2012-08-14 2014-02-20 日本電気株式会社 光学素子、光学装置及び映像表示装置
JP2019505081A (ja) * 2016-06-01 2019-02-21 武漢華星光電技術有限公司 バックライトモジュール
JP2019086719A (ja) * 2017-11-09 2019-06-06 パナソニック液晶ディスプレイ株式会社 液晶表示装置
JPWO2020070962A1 (ja) * 2018-10-02 2021-09-02 日東電工株式会社 偏光板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395727B2 (en) * 2009-11-30 2013-03-12 Fujifilm Corporation VA mode liquid crystal display device
JP2015082017A (ja) * 2013-10-22 2015-04-27 株式会社ジャパンディスプレイ 液晶表示装置
TWI636566B (zh) * 2017-09-11 2018-09-21 友達光電股份有限公司 顯示面板

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074935A (ja) 1999-09-03 2001-03-23 Sumitomo Chem Co Ltd ワイヤーグリッド型偏光光学素子
JP2005070456A (ja) 2003-08-25 2005-03-17 Enplas Corp ワイヤーグリッド偏光子及びその製造方法
WO2006059686A1 (ja) 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha 反射防止材、光学素子、および表示装置ならびにスタンパの製造方法およびスタンパを用いた反射防止材の製造方法
JP2007108592A (ja) * 2005-10-17 2007-04-26 Nitto Denko Corp 液晶表示装置用積層体、及びそれを備えた液晶表示装置
JP2007298958A (ja) 2006-04-05 2007-11-15 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2007328217A (ja) 2006-06-09 2007-12-20 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2008009388A (ja) 2006-05-29 2008-01-17 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2008015307A (ja) 2006-07-07 2008-01-24 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2008033250A (ja) 2006-07-07 2008-02-14 Nitto Denko Corp 液晶パネルおよび液晶表示装置
JP2008058980A (ja) 2006-07-07 2008-03-13 Nitto Denko Corp 液晶パネル、液晶パネルの製造方法および液晶表示装置
JP2009034405A (ja) 2007-08-03 2009-02-19 Hitachi Appliances Inc 乾燥機及び洗濯乾燥機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9322948D0 (en) * 1993-11-08 1994-01-05 Varintelligent Bvi Ltd Liquid crystal display
JP2000180844A (ja) * 1998-12-11 2000-06-30 Toshiba Corp 液晶表示装置
JP2005283846A (ja) * 2004-03-29 2005-10-13 Nitto Denko Corp 光学フィルムおよび液晶表示装置
US7414784B2 (en) * 2004-09-23 2008-08-19 Rohm And Haas Denmark Finance A/S Low fill factor wire grid polarizer and method of use
WO2007116683A1 (ja) * 2006-04-05 2007-10-18 Nitto Denko Corporation 液晶パネル及び液晶表示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074935A (ja) 1999-09-03 2001-03-23 Sumitomo Chem Co Ltd ワイヤーグリッド型偏光光学素子
JP2005070456A (ja) 2003-08-25 2005-03-17 Enplas Corp ワイヤーグリッド偏光子及びその製造方法
WO2006059686A1 (ja) 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha 反射防止材、光学素子、および表示装置ならびにスタンパの製造方法およびスタンパを用いた反射防止材の製造方法
JP2007108592A (ja) * 2005-10-17 2007-04-26 Nitto Denko Corp 液晶表示装置用積層体、及びそれを備えた液晶表示装置
JP2007298958A (ja) 2006-04-05 2007-11-15 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2008009388A (ja) 2006-05-29 2008-01-17 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2007328217A (ja) 2006-06-09 2007-12-20 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2008015307A (ja) 2006-07-07 2008-01-24 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2008033250A (ja) 2006-07-07 2008-02-14 Nitto Denko Corp 液晶パネルおよび液晶表示装置
JP2008058980A (ja) 2006-07-07 2008-03-13 Nitto Denko Corp 液晶パネル、液晶パネルの製造方法および液晶表示装置
JP2009034405A (ja) 2007-08-03 2009-02-19 Hitachi Appliances Inc 乾燥機及び洗濯乾燥機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2400341A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005050A1 (ja) * 2010-07-05 2012-01-12 シャープ株式会社 液晶表示装置
US8913217B2 (en) 2010-07-05 2014-12-16 Sharp Kabushiki Kaisha Liquid crystal display device
WO2014027459A1 (ja) * 2012-08-14 2014-02-20 日本電気株式会社 光学素子、光学装置及び映像表示装置
JPWO2014027459A1 (ja) * 2012-08-14 2016-07-25 日本電気株式会社 光学素子、光学装置及び映像表示装置
JP2019505081A (ja) * 2016-06-01 2019-02-21 武漢華星光電技術有限公司 バックライトモジュール
JP2019086719A (ja) * 2017-11-09 2019-06-06 パナソニック液晶ディスプレイ株式会社 液晶表示装置
JP7030480B2 (ja) 2017-11-09 2022-03-07 パナソニック液晶ディスプレイ株式会社 液晶表示装置
JPWO2020070962A1 (ja) * 2018-10-02 2021-09-02 日東電工株式会社 偏光板

Also Published As

Publication number Publication date
BRPI0924038A2 (pt) 2019-09-24
JPWO2010095308A1 (ja) 2012-08-23
EP2400341A1 (en) 2011-12-28
RU2451314C1 (ru) 2012-05-20
EP2400341A4 (en) 2012-08-08
US8013954B2 (en) 2011-09-06
JP4691615B2 (ja) 2011-06-01
US20110109850A1 (en) 2011-05-12
CN102016700B (zh) 2013-06-05
EP2400341B1 (en) 2014-12-03
CN102016700A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4726148B2 (ja) 液晶パネル、及び液晶表示装置
CN104755999B (zh) 液晶显示装置
JP4691615B2 (ja) 液晶表示装置
US11604379B2 (en) Liquid crystal display device and polarizing plate
JP5073427B2 (ja) 液晶パネル、及び液晶表示装置
US7852441B2 (en) Liquid crystal panel and liquid crystal display
JP4807774B2 (ja) 液晶パネルおよび液晶表示装置
WO2012005050A1 (ja) 液晶表示装置
WO2010137372A1 (ja) 液晶表示装置
WO2012133137A1 (ja) 液晶表示装置
JP4827255B2 (ja) 液晶パネル及び液晶表示装置
WO2010001920A1 (ja) 液晶表示装置
JP2012145732A (ja) 液晶パネルおよび液晶表示装置
US9684201B2 (en) Liquid crystal display device
CN111771159A (zh) 层合体和包括其的液晶显示装置
JP2012145731A (ja) 液晶パネルおよび液晶表示装置
US11982896B2 (en) Liquid crystal display device and polarizing plate
US11927850B2 (en) Liquid crystal display device
JP2008256951A (ja) 組み合わせ型偏光板
JP2012145735A (ja) 液晶パネルおよび液晶表示装置
JP2007286388A (ja) 光学補償膜を備えた薄型偏光板及びその製造方法
WO2012133140A1 (ja) 液晶表示装置
KR20120029558A (ko) 포지티브 a의 굴절률 이방성을 나타내는 층이 형성된 네거티브 a 플레이트를 포함하는 수평배향 모드 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115519.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4035/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010545325

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009840411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13002607

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011118349

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924038

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924038

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110714