WO2014021380A1 - 排煙脱硫装置および排煙脱硫方法 - Google Patents

排煙脱硫装置および排煙脱硫方法 Download PDF

Info

Publication number
WO2014021380A1
WO2014021380A1 PCT/JP2013/070742 JP2013070742W WO2014021380A1 WO 2014021380 A1 WO2014021380 A1 WO 2014021380A1 JP 2013070742 W JP2013070742 W JP 2013070742W WO 2014021380 A1 WO2014021380 A1 WO 2014021380A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
flue gas
perforated plate
supply
gas desulfurization
Prior art date
Application number
PCT/JP2013/070742
Other languages
English (en)
French (fr)
Inventor
昭浩 本間
昭雄 吉越
Original Assignee
月島機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社 filed Critical 月島機械株式会社
Priority to MYPI2015700270A priority Critical patent/MY188935A/en
Publication of WO2014021380A1 publication Critical patent/WO2014021380A1/ja
Priority to PH12015500171A priority patent/PH12015500171B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device

Definitions

  • the present invention relates to a flue gas desulfurization apparatus based on a seawater method, wherein seawater that selectively absorbs a target component in a gas and exhaust gas are contacted in the apparatus, and a seawater method that performs an absorption process for diffusing the target component in seawater.
  • the present invention relates to flue gas desulfurization equipment.
  • contact liquid used in the perforated plate type absorption tower those using a contact liquid such as sodium hydroxide, magnesium hydroxide, calcium hydroxide, calcium carbonate, seawater and the like are generally known.
  • the method of using seawater in these contact liquids has the advantage that there is no by-product compared to other methods, and seawater that has absorbed sulfur oxides can be discharged into the sea.
  • seawater descending from above and exhaust gas rising from below are in countercurrent contact on the perforated plate.
  • sulfur oxides in the exhaust gas are removed.
  • Efficient contact with seawater on the perforated plate or on the surface of the packing is extremely important in order to increase the exhaust gas treatment efficiency (desulfurization efficiency).
  • the present inventors have found that when a perforated plate type absorption tower is operated for a long period of time, the operating efficiency decreases as the operating time elapses. Furthermore, when the cause is pursued, marine life such as bivalves (for example, mussels (Mytilus galloprovincialis), green mussels (Perna viridis), etc.), fixed organisms (barnacles, etc.), etc. It was discovered that this is the reason why living organisms enter the device and stay inside the absorption tower.
  • bivalves for example, mussels (Mytilus galloprovincialis), green mussels (Perna viridis), etc.
  • fixed organisms barnacles, etc.
  • Seawater used in flue gas desulfurization equipment is designed to prevent the inflow of marine organisms and foreign substances by installing a screen at the seawater intake.
  • the size of larvae and juvenile shellfish of some shellfish eg, mussels, green mussels, etc.
  • the size of larvae and juvenile shellfish of some shellfish is as extremely small as 60-300 ⁇ m and easily passes through the screen. These adhere and grow on the inner surface of the pipe supplying seawater to the absorption tower, and shells that have left after death enter the absorption tower, causing internal clogging.
  • the present inventors were greatly surprised to see even large deposits of shell fragments that had detached after death on the Moretana of the flue gas desulfurization facility that had been operating for a long time.
  • the main problem of the present invention is to provide a porous plate on the packing material, and to supply liquid onto the packing material through each opening of the porous plate, thereby improving the dispersibility of seawater with respect to the packing material.
  • the purpose is to increase the efficiency of absorption treatment or the efficiency of treatment for diffusion from seawater.
  • Another problem is to ensure high treatment efficiency of the gas to be treated by allowing seawater to be distributed and supplied to the entire flow path of the packing material.
  • a problem peculiar to the seawater method is to prevent a decrease in contact efficiency associated with the invasion of marine organisms into the apparatus.
  • the present inventors were based on the knowledge that efficient contact with seawater on the perforated plate or on the surface of the packing is important in order to increase the exhaust gas contact efficiency (desulfurization efficiency).
  • the exhaust gas contact efficiency desulfurization efficiency
  • a porous plate is provided on the packing and seawater is supplied onto the packing through each opening of the porous plate, the dispersibility of the seawater with respect to the packing is increased, and the contact efficiency of the exhaust gas is increased. I got new knowledge that it would increase.
  • a regular packing having a flow passage having a substantially uniform cross-section with respect to the transverse cross section is provided in the tower facing to the side, and gas is blown into the tower below the tower,
  • a porous plate having a number of substantially uniformly arranged openings above the regular packing is provided, and seawater dispersion supply means for supplying and supplying seawater to the upper surface of the porous plate is provided above the porous plate,
  • the flue gas desulfurization apparatus is characterized in that the gas to be treated and the descending seawater are brought into gas-liquid contact to process the gas to be treated.
  • a porous plate is provided on the regular packing, and seawater is supplied onto the regular packing through each opening of the porous plate, so that the dispersibility of the seawater relative to the packing is enhanced and the gas contact efficiency is increased. be able to.
  • the seawater dispersion supply means includes a supply pipe and a number of downward supply nozzles communicating with the supply pipe, and supplies seawater to the perforated plate. At least a part of the supply nozzle opening is perpendicular to the opening of the perforated plate. , The flow of seawater supplied to the flow path of the regular packing through the opening of the perforated plate can be formed, and when viewed as the entire cross section of the tower, it becomes substantially uniform. The liquid can be dispersedly supplied to the entire flow path of the filling material. Therefore, the gas-liquid contact apparatus which shows high contact efficiency with gas is obtained.
  • the seawater dispersion supply means includes a supply pipe and a number of downward supply nozzles communicating with the supply pipe, and the supply nozzles are arranged in an evenly distributed manner at a rate of 2 / m 2 to 4 / m 2.
  • the diameter of the supply nozzle of the seawater dispersion supply means is preferably 50 to 150 mm, particularly 65 to 125 mm, and the cross-sectional area of the nozzle is preferably 0.002 to 0.018 m 2 / piece.
  • the perforated plate has 6 to 135 apertures, particularly 13 to 65 apertures in the projected area from the supply nozzle.
  • the present invention further provides a regular packing having a substantially uniform flow passage with respect to the cross section in the tower facing the ridge, and a gas is blown into the tower below and blown up inside the tower.
  • a porous plate having a number of substantially uniformly arranged openings above the regular packing, and providing seawater dispersion supply means for supplying seawater to the upper surface of the porous plate above the porous plate.
  • a flue gas desulfurization method characterized in that the gas to be treated is treated by gas-liquid contact between the gas that blows up and the seawater that descends.
  • the seawater dispersion supply means for supplying seawater to the perforated plate includes a supply pipe and a number of downward supply nozzles communicating with the supply pipe, and at least a part of the supply nozzle opening of the perforated plate It is desirable to coincide with the opening in the vertical direction.
  • the opening diameter of the perforated plate facing this is preferably 5 to 20 mm ⁇ , particularly 8 to 12 mm ⁇ , and the opening ratio is preferably 25 to 60%, particularly 30 to 40%.
  • the numerical aperture of the perforated plate is preferably 3000 / m 2 to 7800 / m 2 .
  • the flow velocity at the tip of the supply nozzle is 1.0 to 3.0 m / second, particularly 1.5 to 2.5 m / second.
  • the superficial velocity of the gas blown into the tower is 2.0 m / sec to 3.2 m / sec, and the flow rate of seawater immediately above the regular packing is 2.0 m / sec or more. It is.
  • the minimum passage diameter of the flow path in the height direction of the regular packing is 10 to 30 mm.
  • the operation efficiency cannot be stabilized without preventing the contact efficiency from being lowered due to the invasion of marine organisms into the device. Since the size of the larvae and juveniles of marine organisms is 60 to 300 ⁇ m, the present inventors cannot prevent intrusion into the seawater supply pipe to the absorption tower. We searched for a technique to prevent this.
  • the present inventors have focused on bivalves such as mussels as marine organisms that cause a reduction in operating efficiency in the apparatus.
  • the bivalve includes, for example, mussels, green mussels, and European mussels belonging to the mussel family mussels.
  • the adult size of mussels and green mussels is about 30-50 mm. Therefore, the idea is to catch this type of shellfish mainly on the perforated plate through the supply pipe and the supply nozzle of the seawater dispersed supply means for supplying seawater to the upper surface of the perforated plate. Then, the device was designed and operated. However, some shellfish are small, such as larvae, or small, such as cracked in piping.
  • the small diameter portion passing through the opening of the perforated plate is dropped through the flow path of the regular packing. Furthermore, shellfish captured on the perforated plate are bubbled by gas that blows from below in a liquid layer of seawater formed on the perforated plate, so that the shellfish do not block or clog the opening of the perforated plate. I found out that it was important to put it in a state.
  • the dispersibility of the seawater with respect to the regular packing is improved, and contact with gas Efficiency can be increased.
  • FIG. 1 shows an exhaust gas treatment facility using a flue gas desulfurization apparatus according to the present invention.
  • Sulfur was removed by an exhaust gas fan 51 that supplies combustion exhaust gas discharged from a thermal power plant or the like, a seawater method flue gas desulfurization device 50 that processes the exhaust gas supplied from the exhaust gas fan 51, and a seawater method flue gas desulfurization device 50
  • a chimney 52 that discharges gas, a seawater supply pump 53 that supplies seawater to the seawater method smoke treatment apparatus 50, a screen 54 that removes marine organisms in the seawater, and a seawater supply pipe 55 are included. Marine life is contained in the seawater supplied by the seawater supply pump 53.
  • seawater in the lower part of the seawater method flue gas desulfurization apparatus 50 is mixed with seawater 57 supplied separately in the wastewater treatment facility 56, and then subjected to aeration processing by an aeration blower 58 and discharged into marine seawater.
  • FIG. 2 is an elevation (cross-sectional) view of the first embodiment of the flue gas desulfurization apparatus according to the present invention applied as, for example, the seawater method flue gas treatment apparatus 50 of FIG.
  • a supply port 2 for supplying exhaust gas (for example, combustion exhaust gas from a waste heat boiler in a power generation facility) G is provided on the lower side surface of the gas-liquid contact tower 1 as a basic component of the flue gas desulfurization apparatus. Further, on the upper surface of the gas-liquid contact tower 1, an exhaust port 6 for exhausting the treated exhaust gas TG that has undergone the treatment in the gas-liquid contact tower 1 is provided.
  • exhaust gas for example, combustion exhaust gas from a waste heat boiler in a power generation facility
  • a supply pipe 3 for introducing fresh seawater SW as a contact liquid into the gas-liquid contact tower 1 and the fresh seawater supplied to the supply pipe 3 are connected.
  • a number of nozzles 4 for injecting SW downward in the gas-liquid contact tower 1 are provided.
  • “fresh seawater” SW is seawater led from the sea, and sulfur oxidation after absorption treatment performed on a perforated plate 5 in the gas-liquid contact tower 1 described later.
  • the fresh seawater can use the used cooling water which comes out of the condenser (condenser) of a boiler installation, and the brine which comes out of a seawater desalination installation other than what was directly taken in from the sea as mentioned above.
  • the supply pipe 3 and the nozzle 4 constitute seawater dispersion supply means of the present invention.
  • the shape of the outlet of the supply nozzle 4 is not limited to a round shape, a square shape, or a polygonal shape, but a round shape is preferable.
  • the diameter of the supply nozzle 4 is preferably 50 to 150 mm, particularly 65 to 125 mm.
  • the diameter of the supply nozzle 4 indicates the maximum length of the opening when the shape is a square or a polygon.
  • the fresh seawater SW may contain solids such as shellfish and seaweed, which causes the nozzle to be blocked. Therefore, by setting the diameter of the nozzle 4 to 50 mm or more, shellfish can be passed, and seawater can be jetted while preventing the nozzle from being blocked.
  • the diameter of the supply pipe 3 is also desirably 50 mm or more.
  • a perforated plate for example, a moletana
  • the perforated plate is formed with openings 5a in a range of 3000 / m 2 to 7800 / m 2 .
  • the opening shape of the perforated plate is not limited to a round shape, a square shape, or a polygonal shape, but a round shape is preferable.
  • the aperture diameter of the perforated plate is preferably 5 to 20 mm, particularly 8 to 12 mm. The opening diameter indicates the maximum length of the opening when the shape is a square or a polygon.
  • the thickness By setting the thickness to 5 to 20 mm, impurities such as shellfish contained in fresh seawater sprayed from the seawater dispersion supply means easily fall onto the regular packing from the opening of the perforated plate, while the perforated plate 5 Therefore, it is possible to prevent the liquid from staying for a long time.
  • the opening diameter on the porous plate smaller than the nozzle diameter of the seawater dispersion supply means, it becomes possible to collect impurities (particularly shellfish) contained in the seawater on the porous plate. The collected contaminants can be removed when the operation is stopped.
  • the exhaust gas G supplied from the supply port 2 installed on the lower side surface of the gas-liquid contact tower 1 is directed upward in the gas-liquid contact tower 1 through the flow path of the regular packing 20 and the opening of the porous plate 5 in order.
  • fresh seawater SW is supplied to the supply nozzle 4 through the supply pipe 3.
  • the supply pipe 3 is also connected to a pipe for supplying a part of the seawater that has absorbed sulfur oxides stored below the gas-liquid contact tower 1, and the seawater can be circulated and used in accordance with the operation. .
  • Fresh seawater SW sprayed downward from the supply nozzle 4 provided in the upper part of the gas-liquid contact tower 1 is formed of the exhaust gas G, the porous plate 5 provided in the middle part of the gas-liquid contact tower 1 and the regular packing 20.
  • Counter-current contact is made in the upper end and in the flow path. Through the countercurrent contact, the sulfur oxide contained in the exhaust gas is absorbed by the fresh seawater SW and removed from the exhaust gas. The sulfur oxide that has absorbed the sulfur content in the exhaust gas is sent from the discharge port provided below the gas-liquid contact tower 1 to the wastewater treatment facility via the flow path.
  • the ratio (L / G) of the flow rate G (kg / m 2 ⁇ hr) of the exhaust gas G to the flow rate L (kg / m 2 ⁇ hr) of the fresh seawater SW is 3 or more, preferably 4 to 15 is there.
  • the treated exhaust gas TG from which the sulfur oxide has been removed is exhausted from an exhaust port 6 provided in the upper part of the gas-liquid contact tower 1. Further, the seawater that has absorbed the sulfur oxide falls downward in the gas-liquid contact tower 1.
  • a regular packing 20 having a substantially uniform flow path with respect to the cross section is provided in a tower facing the vertical direction, and a gas to be treated (for example, exhaust gas G) is blown into the tower below the tower.
  • the seawater dispersion supply means 3 and 4 for supplying the liquid in a state of being distributed with respect to the upper surface of the porous plate 5 above the porous plate 5 by providing the porous plate 5 having substantially uniform openings above the regular packing 20.
  • the gas to be processed that blows up in the tower and the descending seawater are brought into gas-liquid contact to process the gas to be processed.
  • the seawater supplied from the seawater dispersion supply means 3, 4 passes through the openings 5 a, 5 a... While diffusing in the surface direction on the porous plate 5, and each flow path 20 a of the regular packing 20. , 20a... Therefore, the dispersibility of the seawater is improved as compared with the case where the seawater is directly flowed down from the seawater dispersion supply means 3 and 4 to the respective flow paths 20a, 20a,.
  • the gas-liquid contact efficiency is high.
  • the gas-liquid contact on the perforated plate 5 not only the gas-liquid contact on the perforated plate 5 but also the seawater supplied from the seawater dispersion supply means 3, 4 is caused to flow down to the flow paths 20 a, 20 a.
  • a gas-liquid contact is intended. Therefore, since the gas-liquid contact is made even in the process of passing through the respective flow paths 20a, 20a... Having long passages in the height direction of the regular packing 20, the gas-liquid contact time becomes long. High efficiency.
  • the seawater supplied from the seawater dispersion supply means 3, 4 is caused to flow down to the flow paths 20 a, 20 a. There is a risk of creating a flow path 20a that does not pass.
  • the cost of the seawater dispersion supply means 3 and 4 becomes high.
  • the seawater supply position is set in advance in a state of diffusing in the surface direction on the perforated plate 5, thereby dispersing the regular filler 20. Supply is possible, and it is configured to smoothly pass through each of the flow paths 20a, 20a. As a result, even if the number of nozzles 4 is reduced, sufficient diffusibility of seawater is ensured.
  • the configuration of the present invention that is, a regular packing, a perforated plate having openings, and a seawater dispersion supply means for supplying seawater are provided in the example of FIG. 2.
  • a plurality of stages can be provided at intervals.
  • the example of FIG. 4 shows an example in which a seawater dispersion supply means for supplying regular packing and seawater is provided, and further, a regular packing, a perforated plate having openings, and a seawater dispersion supply means for supplying seawater are provided thereabove. It was.
  • FIG. 4 shows an example in which a seawater dispersion supply means for supplying regular packing and seawater is provided, and further, a regular packing, a perforated plate having openings, and a seawater dispersion supply means for supplying seawater are provided thereabove.
  • the perforated hole having an opening in the lower stage is intentionally provided. There is no need to install additional plates, and there is also a meaning to prevent pressure loss.
  • FIG. 9 is a plan view of seawater dispersion supply means.
  • the seawater dispersion supply means of this structure is provided with a supply pipe 3 for carrying seawater supplied from the outside, and a number of downward supply nozzles 4 communicating with this.
  • the supply pipe 3 communicates with the supply liquid supply nozzle X on the lower side surface of the absorption tower body, extends horizontally toward the center of the flat section of the absorption tower body, and extends upward from the vicinity of the center.
  • stretching above the regular packing filled in the absorption tower it branches in a horizontal direction and the downward supply nozzle 4 is provided in each branched piping.
  • the supply nozzles are preferably arranged in a distributed manner at a rate of 1 / m 2 to 100 / m 2 , more preferably 2 / m 2 to 6 / m 2 . If the number of supply nozzles is excessively increased, the weight of the seawater dispersion supply means will increase. In particular, since the seawater dispersion supply means is installed above the absorption tower, the center of gravity of the entire absorption tower is increased, and a large-sized foundation is required. Further, as another example of the seawater dispersion supply means, as shown in FIG. 10, it includes an upper opening pipe line and an outflow weir opening formed on the side wall thereof, and the weir opening is 2 / m 2 to 50 / It may have a structure in which it is distributed at a ratio of m 2 .
  • the exhaust gas G supplied from the supply port 2 installed on the lower side surface of the gas-liquid contact tower 1 is directed upward in the gas-liquid contact tower 1, opening of the porous support member 21 (see FIG. 8), regular packing
  • the 20 flow paths and the opening of the porous plate 5 are moved in order.
  • fresh seawater SW sprayed downward from the supply nozzle 4 provided in the upper part of the gas-liquid contact tower 1 is exhaust gas G, on the perforated plate 5 provided in the middle part of the gas-liquid contact tower 1 and regularly packed.
  • Countercurrent contact is made in the upper end of 20 and in the flow path. Through the countercurrent contact, the sulfur oxide contained in the exhaust gas is absorbed by the fresh seawater SW and removed from the exhaust gas.
  • an eliminator 22 for removing mist in the treated exhaust gas G is preferably provided above the nozzle 4.
  • the superficial velocity of the gas to be treated that blows up inside the tower 1 should be 2.0 m / sec to 3.2 m / sec in relation to the required gas throughput and equipment size. desirable.
  • This factor creates new problems. That is, at first, the present inventors finally distribute the seawater discharged from the seawater dispersion supply means 3 and 4 on the perforated plate 5, so that the nozzle may be discharged upward. I thought.
  • the superficial velocity of the rising gas is high, if even a slight gas drift occurs in the cross section above the perforated plate, the seawater will be affected by the gas drift and drift down with respect to the cross section.
  • the flow rate of seawater immediately above the regular packing 20 is 2.0 m / second or more, particularly 2.5 m / second or more.
  • the depth of the liquid layer at this time is 5 mm to 200 mm in a state where the exhaust gas G is not supplied. Further, the liquid layer is fluidized violently due to the rise of the exhaust gas. Furthermore, the clogging of the opening 5a of the perforated plate 5 is prevented while fluidizing impurities such as shellfish.
  • the position of the liquid flow flowing down from the seawater dispersion supply nozzle 4 with respect to the upper surface of the porous plate 5 substantially coincides with the position of the opening 5a of the porous plate 5 in the vertical direction, the kinetic energy of the flowing-down liquid is There is a clear advantage over the rising gas energy.
  • the minimum passage diameter of the flow path in the height direction of the regular packing 20 is preferably 10 to 30 mm.
  • a part of the foreign substance floating on the perforated plate 5 is preferably dropped through the opening 5a, passes through the regular packing 20, and flows down from the lower end. Therefore, it is preferable that the minimum passage diameter of the oblique flow passage 20A, the flow passage 20B, and the flow passage 20C of the regular packing 20 described below is 10 to 30 mm.
  • This minimum passage diameter of 10-30 mm is greatly related to the opening diameter of the perforated plate being 5-20 mm ⁇ , but since most of the foreign substances are floating and staying on the perforated plate 5, it happens to be the opening of the perforated plate. It is set as a diameter that allows the contaminants that have passed through to flow smoothly.
  • the seawater dispersion supply means includes a supply pipe 3 and a number of downward supply nozzles 4 communicating with the supply pipe 3, and the supply nozzles are dispersedly arranged at a rate of 2 / m 2 to 50 / m 2 as an example. Can be mentioned.
  • the supply nozzle diameter of the seawater dispersion supply means is 50 mm to 150 mm, more preferably 65 mm to 125 mm.
  • FIG. 11 shows an example of the size of the supply nozzle 4 aperture and the aperture 5a of the perforated plate 5 and the positional relationship of the aperture 5a of the perforated plate 5 on the flow-down projection area with respect to one supply nozzle 4 aperture.
  • a positional relationship in which 6 to 135 apertures of the perforated plate are included in the projected projection area of one supply nozzle 4 is preferable, and a positional relationship in which 13 to 63 apertures are included is particularly preferable.
  • FIG. 11 shows about 13 examples. Since a plurality of apertures of the perforated plate are included in the flow-down projected area of one supply nozzle 4, even if one of the openings 5a of the perforated plate 5 located below the supply nozzle 4 is closed, the remaining aperture 5a Since at least one of these will show the peak of a flow-down speed, seawater can be reliably supplied to the regular packing 20.
  • the seawater dispersion and supply means includes an upper opening conduit 40 and an outflow weir opening 40B formed in the side wall 40A, and the weir opening 40B is 2 / m 2 to 50 / m. It may be a form that is distributed at a ratio of 2 .
  • the regular packing 20 shown in FIG. 7 can be used.
  • a large number of corrugated sheets A and B having different wave crest directions of 90 degrees are used.
  • the crossing angle may be another angle (for example, 45 or 60 degrees), or a channel whose channel is not inclined can be used.
  • the regular packing 20 is spread in the tower 1, and this spread can be performed in one stage or in appropriate plural stages.
  • the directionality can be changed for each single regular packing 20 so that the flow path direction becomes more random.
  • FIGS. 12 and 13 in the middle of the regular packing 20 in the height direction, there are a large number of oblique flow passages 20A for gas blown from below, and at least at the upper end portion, the oblique flow passages. It can be set as the form which has the flow path 20B which raises the diagonally ascending gas which passes through 20A to the soot direction.
  • a flow path 20 ⁇ / b> C that guides upward in the heel direction can also be provided at the lower end portion.
  • the number of openings 5a immediately below the supply nozzle 4 is reduced as shown in FIG.
  • a technique such as reducing the diameter of the opening 5a immediately below the supply nozzle 4 in FIG. 16 can be appropriately employed to determine the flow mode of the flow-down liquid into the regular packing.
  • FIG. 17 shows a ship desulfurization apparatus as another installation example of the flue gas desulfurization gas-liquid contact tower.
  • the exhaust gas discharged from the ship engine 61 mounted on the ship 60 is processed using the flue gas desulfurization tower 50 of the present invention.
  • a marine engine that drives the marine vessel 1
  • a seawater flue gas desulfurization tower 50 that processes exhaust gas from the marine engine 61
  • a water absorption pump 62 that supplies seawater to the seawater flue gas desulfurization tower 50A
  • marine organisms in the seawater A screen 63 for removing the exhaust gas, an exhaust gas fan 68 for discharging the exhaust gas treated in the flue gas desulfurization tower 50 to the atmosphere, a chimney 64, a seawater storage tank 65 for storing seawater that has absorbed sulfur oxides in the seawater flue gas desulfurization tower 50,
  • a wastewater treatment device 66 for removing impurities therein and an outflow pipe 67 are provided.
  • the seawater flue gas processing tower has the same structure as the first embodiment.
  • sulfur oxides in the combustion exhaust gas are absorbed into the seawater.
  • Seawater that has absorbed sulfur oxides is discharged into the sea through the discharge pipe 67.
  • the seawater method flue gas desulfurization apparatus disclosed in the present invention is not only a desulfurization process that absorbs sulfur in exhaust gas, but also equipment that absorbs hydrogen chloride into water and recovers hydrochloric acid, and nitrogen oxides in exhaust gas into seawater. It can be applied to a known absorption process such as a facility for absorbing and removing. Further, it can be applied to a diffusion process in which organic substances in wastewater are diffused into gas by air or steam.

Abstract

【課題】充填物上に多孔板を設け、その多孔板の各開口を通して充填物上に液を供給することによって、充填物に対する液の分散性を高め、被処理ガスの処理効率を高める。かつ、海生生物の装置内への侵入に伴う、接触効率の低下を防止する。 【解決手段】竪向きの塔1内に、横断面に関し実質的に均等な流通路を有する規則充填物20を設け、これより下方において、塔内に被処理ガスを吹込み、前記規則充填物20上方に実質的に均等配置の開口を有する多孔板5を設け、その多孔板5の上方に多孔板上面に対し海水を分散供給する海水分散供給手段3,4を設け、塔内を吹き上がる被処理ガスと下降する液とを気液接触させ、被処理ガスを処理するようにした。

Description

排煙脱硫装置および排煙脱硫方法
 本発明は、海水法による排煙脱硫装置に関し、装置内において気体中の目的成分を選択的に吸収する海水と排ガスとを接触させ、その目的成分を海水中に拡散させる吸収処理を行う海水法排煙脱硫装置に関する。
 たとえば発電設備から排出される燃焼排ガスには硫黄酸化物が含まれているため、排ガスを大気中に排出する前にこれを除去する必要がある。排ガスから硫黄酸化物を除去するための設備としては、スプレー式吸収塔、多孔板式吸収塔、充填塔式吸収塔などが一般に知られている。これらの設備の中で多孔板としてクボタ化水株式会社製の「モレタナ」を使用した多孔板式吸収塔(モレタナ式吸収塔)は、当該多孔板上で排ガスと接触液を接触させることで、排ガス中の硫黄酸化物を除去する装置であり、他の吸収塔と比べて硫黄酸化物の除去性能が高いという長所がある。
 多孔板式吸収塔に使用される接触液には、水酸化ナトリウム、水酸化マグネシウム、水酸化カルシウム、炭酸カルシウム、海水等の接触液を使用するものなどが一般に知られている。これらの接触液の中で海水を使用する方法は、他の方法と比べて副生成物がなく、硫黄酸化物を吸収した海水は、海へ放流できるという長所がある。
特開2001-129352号公報
 多孔板式吸収塔では、上方から降下した海水と下方から上昇した排ガスが多孔板上で向流接触する。当該多孔板上で海水と排ガスが混合することによって、排ガス中の硫黄酸化物が除去される。
 多孔板上または充填物表面で海水と効率よく接触させることは、排ガスの処理効率(脱硫効率)を高めるためにきわめて重要なことである。
 ところが、本発明者らは、多孔板式吸収塔の長期間の運転を行うと、運転時間の経過に伴って、運転効率が低下する事実が知見された。さらに、その原因を追及して行くと、2枚貝(例えばイガイ目イガイ科の2枚貝であるムラサキイガイ(Mytilus galloprovincialis)、ミドリイガイ(Perna viridis)等)、固着生物(フジツボ等)等の海生生物が装置内に侵入し、吸収塔内部に留まるが理由であることを知見した。
 排煙脱硫設備に使用する海水は、海水取水口にスクリーンを設置することで、海生生物や異物の流入防止を図っている。しかし、一部の貝(ムラサキイガイ、ミドリイガイ、 等)の幼生・稚貝の大きさは60~300μmと極めて小さく、容易にスクリーンを通過する。これらは、吸収塔への海水供給する配管内面で付着・成長し、死後離脱した貝が吸収塔内に混入することで、インターナルの閉塞を引き起こす。
 実際、本発明者らは、長期間運転した排煙脱硫設備のモレタナ上には、死後離脱した貝の欠片の大きな堆積物すら観察されることに、大いに驚いた次第である。
 従って、本発明の主たる課題は、充填物上に多孔板を設け、その多孔板の各開口を通して充填物上に液を供給することによって、充填物に対する海水の分散性を高め、被処理ガスの吸収処理効率、または海水中からの放散処理効率を高めることにある。
 他の課題は、充填物の流路全体に海水を分散供給できるようにすることにより、被処理ガスの高い処理効率を確保することにある。
 さらに、海水法特有の課題として、海生生物の装置内への侵入に伴う、接触効率の低下を防止することにある。
 本発明者らは多孔板上または充填物表面で海水と効率よく接触させることが、排ガスの接触効率(脱硫効率)を高めるために重要であるとの知見に基た。さらに排ガスの処理効率を高めるために、充填物上に多孔板を設け、その多孔板の各開口を通して充填物上に海水を供給すると、充填物に対する海水の分散性が高まり、排ガスの接触効率が高まるとの新しい知見を得た。
 かかる知見に基づく本発明は、竪向きの塔内に、横断面に関し実質的に均等な断面を有する流通路を有する規則充填物を設け、これより下方において塔内にガスを吹込み、塔内を吹き上がるようになし、
 前記規則充填物上方に実質的に均等配置の多数の開口を有する多孔板を設け、その多孔板の上方に多孔板上面に対し海水を分散供給する海水分散供給手段を設け、
 吹き上がる被処理ガスと、下降する海水とを気液接触させ、被処理ガスを処理するようにしたことを特徴とする排煙脱硫装置である。
 本発明に従って、規則充填物上に多孔板を設け、その多孔板の各開口を通して規則充填物上に海水を供給することによって、充填物に対する海水の分散性が高められ、ガスの接触効率を高めることができる。
 他方、海水分散供給手段は、供給管とこれに連通する多数の下向きの供給ノズルを含み、海水を多孔板に供給するもので、供給ノズル開口の少なくとも一部が前記多孔板の開口と鉛直方向に一致していると、多孔板の開口を通して規則充填物の流路に対して供給する海水の流れを形成でき、塔の横断面全体としてみれば、実質的に均一なものとなり、結果として、充填物の流路全体に液を分散供給できるようになる。したがって、ガスとの高い接触効率を示す気液接触装置が得られる。
 他方、海水分散供給手段は、供給管とこれに連通する多数の下向きの供給ノズルを含み、供給ノズルは2個/m2~4個/m2の割合で均等分散配置されている構造のものを使用できる。
 また、海水分散供給手段の供給ノズル径は50~150mm、特に65~125mmであるのが好ましく、ノズルの断面積は0.002~0.018m2/個が望ましい。さらに、供給ノズル1個からの流下投影面積中に多孔板の開口が6個~135個、特に13~65個有することが好ましい。 
 本発明は、さらに、竪向きの塔内に、横断面に関し実質的に均等な流通路を有する規則充填物を設け、これより下方において塔内にガスを吹込み、塔内を吹き上がるようになし、前記規則充填物上方に実質的に均等配置の多数の開口を有する多孔板を設け、その多孔板の上方に多孔板上面に対し海水を分散供給する海水分散供給手段を設け、
 吹き上がる前記ガスと、下降する海水とを気液接触させ、被処理ガスを処理することを特徴とする排煙脱硫方法を提供する。
 この海水法排煙脱硫方法においても、海水を多孔板に供給する海水分散供給手段は、供給管とこれに連通する多数の下向き供給ノズルを含み、供給ノズル開口の少なくとも一部が前記多孔板の開口と鉛直方向に一致していることが望ましい。
 これに対向する、多孔板の開口径は、5~20mmφ、特に8~12mmφであるのが好ましく、かつ、開口率は25~60%、特に30~40%であるのが望ましい。
 多孔板の開口数は、3000個/m2~7800個/m2であるのが望ましい。
 供給ノズル先端の流速が1.0~3.0m/秒、特に1.5~2.5m/秒であるのが望ましい。
 塔内に吹込まれ吹き上がる前記ガスの空塔速度を2.0m/秒~3.2m/秒とし、前記規則充填物直上での海水の流下速度が2.0m/秒以上であるのが好適である。
 前記規則充填物の高さ方向中間には、下方から吹き込まれるガスの斜め流通路を多数有し、かつ、少なくとも上端部に、前記斜め流通路を通る斜め上昇ガスを竪向きに上昇させる流通路を有する形態は望ましい。
 前記規則充填物の高さ方向流通路の最小通過径が10~30mmであるのが望ましい。
 以上が本発明の概要であり、種々の実験及び長期間に亘る運転により得た知見に基づく技術的事項である。
 前述のように、海生生物の装置内への侵入に伴う、接触効率の低下を防止すること抜きに運転効率の安定化は図れない。本発明者らは、海生生物の幼生・稚貝の大きさは60~300μmであり、吸収塔への海水供給する配管への侵入を防止できないとして、これを許容する観点から運転効率の低下を防止する手法を探求した。
 ここで本発明者らは、装置内で運転効率低下をもたらす原因となる海生生物としてイガイなどの2枚貝に着目した。ここで2枚貝とは、例えばイガイ科イガイ目に属するムラサキイガイ、ミドリイガイ、ヨーロッパイガイなどである。例えばムラサキイガイ・ミドリイガイの成体の大きさは、約30~50mmである。そこで、この種の貝類を、多孔板上面に対し海水を分散供給する海水分散供給手段の供給管及び供給ノズルを通すようにし(通す口径とし)、主に多孔板上で捕捉するようにする発想で、装置設計を行ないかつ運転を行うようにした。
 しかし、貝類には、幼生など小さいもの、あるいは配管中で割れるなどして微小化したものもある。そこで、多孔板の開口を通った小径分は、規則充填物の流通路を通して落下させるようにする。
 さらに多孔板上で捕捉された貝類は、多孔板上に形成された海水による液層中で下方から吹き上がるガスによってバブリングされ、貝類が多孔板の開口を塞がない、あるいは詰まることがない遊動状態にすることが重要であることを知見したのである。
 本発明によれば、規則充填物上に多孔板を設け、多孔板の各開口を通して規則充填物上に海水を供給することによって、規則充填物に対する海水の分散性が向上し、ガスとの接触効率を高めることができる。
 また、海生生物の装置内への侵入に伴う、接触効率の低下を防止することができ、接触効率の向上と長時間の安定した運転の両者を達成できる。
本発明の排煙脱硫装置の設置例である。 本発明の排煙脱硫装置例の立面図である。 比較例の気液接触装置の概要を示す立面図である。 本発明の排煙脱硫装置の概要を示す他の例の立面図である。 図1の要部拡大図である。 流下速度分布例の説明図である。 規則充填物例の説明図であり、(a)は斜視図、(b)はその波板要素の組立図である。 装置例の縦断面図である。 平面で示す海水分散管とノズル配置例の説明図である。 他の海水分散供給手段例を示す斜視図である。 供給ノズルと多孔板の開口との大きさ関係例を示す平面的説明図である。 他の規則充填物例を示す斜視図である。 当該他の規則充填物例を使用した場合の流下速度分布例の説明図である。 多孔板の開口形状を変更したことに伴う多孔板から規則充填物への流下速度分布例の説明図である。 多孔板の配置を変更したことに伴う多孔板から規則充填物への流下速度分布例の説明図である。 多孔板の開口径を変更したことに伴う多孔板から規則充填物への流下速度分布例の説明図である。 本発明のその他の設置例である。
 以下、本発明の排煙脱硫装置の好ましい実施形態について、図面を参照しながら説明する。なお、以下の好ましい実施形態の説明は、本質的な例示に過ぎず、本発明の適用あるいはその用途を制限することを意図するものではない。
 図1は、本発明にかかる排煙脱硫装置を使用した排ガス処理設備を示す。
 火力発電所等から排出された燃焼排ガスを供給する排ガスファン51と、排ガスファン51から供給された排ガスを処理する海水法排煙脱硫装置50、海水法排煙脱硫装置50で硫黄を除去されたガスを排出する煙突52、海水法排煙処理装置50に海水を供給する海水供給ポンプ53、海水中の海生生物を除去するスクリーン54、および海水供給配管55からなる。海水供給ポンプ53により供給される海水中に海生生物が含まれている。これらの海生生物のうち、スクリーン54で除去しきれない小さな幼生などが海水供給配管55中に付着し成長する。
 海水法排煙脱硫装置50下部の海水は、排水処理設備56において別途供給される海水57と混合されたのち、曝気ブロワ58による曝気処理を受け、海洋の海水中に排水されるものである。
 図2は、たとえば図1の海水法排煙処理装置50として適用される、本発明にかかる排煙脱硫装置の第1の実施の形態の立面(断面)図である。
 排煙脱硫装置の基本構成要素としての、気液接触塔1の下部側面には、排ガス(たとえば発電設備における廃熱ボイラーからの燃焼排ガス)Gを供給する供給口2が設けられている。また、気液接触塔1の上面には、気液接触塔1内での処理を経た処理排ガスTGを排気する排気口6が設けられている。
 また、気液接触塔1の上部には、接触液である新鮮な海水SWを気液接触塔1内へ導くための供給管3と、当該供給管3と接続され、供給された新鮮な海水SWを気液接触塔1内下方へ噴射させるための多くのノズル4が設けられている。
 なお、本実施例において「新鮮な海水」SWとは、代表例は海から導いた海水のことであり、後述する気液接触塔1内の多孔板5上で行われる吸収処理後の硫黄酸化物を含む海水と区別される。新鮮な海水は、前記のように海から直接取水したもの以外にも、ボイラー設備の復水器(コンデンサ)から出る使用済み冷却水や、海水脱塩設備から出るブラインを使用可能である。
 この第1の実施の形態では、供給管3及びノズル4が、本発明の海水分散供給手段を構成している。供給ノズル4の出口の形状は、丸形、角形、多角形など限定されないが、丸形が好ましい。なお、供給ノズル4の口径は、50~150mm、特に65~125mmであるのが好ましい。供給ノズル4の口径は、形状が、角形、多角形の場合、開口の最大長さを指す。新鮮な海水SW中には、貝や海藻などの固形物が含まれることがあり、ノズルを閉塞させる原因となる。そこでノズル4の口径を50mm以上とすることにより貝類を通過させ、ノズル閉塞を防止しつつ、海水を噴射することができる。供給管3の口径も、50mm以上であることが望ましい。
 さらに、気液接触塔1の供給管3及びノズル4の下方には、開口率が好適には25~60%、特に30~40%の多孔板(たとえばモレタナ)5が設けられている。
 多孔板には、開口5aが3000個/m2~7800個/mの範囲で形成される。
 多孔板の開口形状は、丸形、角形、多角形など限定されないが、丸形が好ましい。多孔板の開口口径は、5~20mm、特に8~12mmであるのが好ましい。開口口径は、形状が、角形、多角形の場合、開口の最大長さを指す。5~20mmとすることで、海水分散供給手段から噴射された新鮮な海水中に含まれる貝などの夾雑物が多孔板の開口から規則充填物上に、安易に落下し、他方で多孔板5で長期に滞留することを防止することができる。このように海水分散供給手段のノズル口径より多孔板上の開口口径を小さくすることで、海水中に含まれる夾雑物(特に貝類)を多孔板上で捕集することが可能となる。なお、捕集した夾雑物は、運転停止時に除去することができる。
 従来例の海水を用いた排煙脱硫装置の多くは、単に、多孔板(モレタナ)5を高さ方向に複数段設けた構造であり、規則充填物(「構造充填物」とも呼ばれる。structured packing)は設けられていない。
 他方、気液接触装置として、規則充填物を設け、その上方から海水を噴霧するものも知られている。
 本発明においては、両者を併用するもので、多孔板5の下方に、規則充填物20を設けるものである。21は、規則充填物20の底面を支持する多孔支持部材である。規則充填物は、一段に限定されず、複数段とするのが接触効率を高めるために望ましい。
 気液接触塔1下部側面に設置された前記供給口2から供給された排ガスGは、気液接触塔1内を上方へ向かって、規則充填物20の流路及び多孔板5の開口を順に移動する。
 他方、新鮮な海水SWが、供給管3を通じて供給ノズル4に供給される。なお、供給管3は、気液接触塔1の下方に貯留された硫黄酸化物を吸収した海水の一部を供給する配管とも連結されており、運転に応じて海水を循環使用することができる。気液接触塔1上部に設けられた供給ノズル4から下方へ噴射された新鮮な海水SWは、排ガスGと、気液接触塔1内中部に設けられた多孔板5上及び規則充填物20の上端及び流路内で向流接触する。当該向流接触によって、排ガス中に含まれる硫黄酸化物は新鮮な海水SWに吸収され、排ガス中から除去される。排ガス中の硫黄分を吸収した硫黄酸化物は、気液接触塔1の下方に設けられた排出口から流路を介して排水処理設備に送られる。
 このとき、排ガスGの流量G(kg/m・hr)と新鮮な海水SWの流量L(kg/m・hr)の比(L/G)は、3以上、好ましくは4~15である。
 硫黄酸化物が除去された処理排ガスTGは、気液接触塔1上部に設けられた排気口6から排気される。また、硫黄酸化物を吸収した海水は、気液接触塔1内下方へ降下する。
 本発明においては、竪向きの塔内に、横断面に関し実質的に均等な流通路を有する規則充填物20を設け、これより下方において、塔内に被処理ガス(たとえば排ガスG)を吹込み、規則充填物20上方に実質的に均等配置の開口を有する多孔板5を設け、その多孔板5の上方に多孔板5上面に対し分散した状態で液を供給する海水分散供給手段3,4を設け、塔内を吹き上がる被処理ガスと下降する海水とを気液接触させ、被処理ガスを処理するものである。
 かかる形態によれば、海水分散供給手段3,4から供給された海水は、多孔板5上で面方向に拡散しながら、各開口5a,5a…を通り、規則充填物20の各流路20a,20a…を下方に通り抜ける。したがって、多孔板5を設けないで、海水分散供給手段3,4から海水を、規則充填物20の各流路20a,20a…に直接流下させる場合に比較して、海水の分散性が高まるので、気液接触効率が高いものとなる。
 また、本発明においては、多孔板5上での気液接触だけでなく、海水分散供給手段3,4から供給された海水を、規則充填物20の各流路20a,20a…に流下させ、気液接触を図るものである。
 したがって、規則充填物20の高さ方向に長い通路をもった各流路20a,20a…を通り抜ける過程でも気液接触するので、気液接触の時間が長いものとなり、この観点からも気液接触効率が高いものとなる。
 しかるに、海水分散供給手段3,4から供給された海水を、規則充填物20の各流路20a,20a…に流下させ、気液接触を図る場合、たとえばノズル4を多数配置しないと、海水が通らない流路20aを生じる危険性がある。
 一方、ノズル4を多数配置するとなると、海水分散供給手段3,4のコストが高いものとなる。しかしながら、本発明では、各供給ノズル4から海水を供給する際に、予め海水の供給位置を多孔板5上で面方向に拡散した状態に位置設定しておくことにより、規則充填物20に分散供給が可能であり、その各流路20a,20a…を円滑に下方に通り抜けるようにしてある。その結果、ノズル4の配設個数を少なくしたとしても、十分な海水の拡散性が確保される。
 吹き上がる被処理ガスに対し、図2の例では、本発明の構成、すなわち規則充填物、開口を有する多孔板及び海水を供給する海水分散供給手段を設けたが、同構成を高さ方向に間隔を置いて複数段設けることもできる。
 図4の例は、規則充填物及び海水を供給する海水分散供給手段を設け、さらに、その上方に規則充填物、開口を有する多孔板及び海水を供給する海水分散供給手段を設けた例を示した。図4の例では、上段での海水を供給する海水分散供給手段及び多孔板によって、上段の規則充填物には均一に海水が流下するようになっているので、あえて、下段に開口を有する多孔板を追加設置する必要がなく、かつ、圧力損失の防止を図る意味もある。
 次に以下の実験条件に基づいて気液接触効率に関する比較実験を行った。
実験装置:吸収塔寸法1500mm×1500mmで高さ3000mm
充填物:樹脂製規則充填物(300mm高さ/モジュール)
充填高さ:1段積み
供給ガス流量:24,000m3/H
供給ガス成分:空気
供給液流量:144m3/H
<実験1>:規則充填物上方に多孔板なし(図3の構成)
<実験2>:規則充填物上方に多孔板あり(図2の構成)
 本実験結果に基づいて所定の気液接触効率を得るために必要なノズル個数を算出した。
 算出結果によると実験1の場合には、ノズルを約20個/m2配置する必要があったものに対し、実験2の場合には、ノズルは約4個/m2の配置で足りることを知見した。
 次に吸収塔の他の実施例を図8及び図9に示す。この例においても、海水分散供給手段3,4は高さ方向に複数設けることもできる。図9は 海水分散供給手段の平面図である。本構造の海水分散供給手段は、図8に示すように外部から供給された海水を運ぶ供給管3と、これに連通する多数の下向き供給ノズル4が設けられている。供給管3は、吸収塔本体の下方側面の供給液供給ノズルXと連通し、吸収塔本体の平断面の中心に向かって水平に延び、中心付近から上方に延伸する。また、吸収塔内に充填された規則充填物の上方まで延伸したのち、水平方向に分岐し、分岐した各配管に下向き供給ノズル4が設けられる。
 供給ノズルは、1個/m2~100個/m2の割合で分散配置される構造が好ましく、より好ましくは2個/m2~6個/m2の割合で供給管に配置される。供給ノズル数を過度に多くすると、海水分散供給手段の重量が増加することとなる。特に海水分散供給手段は吸収塔の上方に設置されるため、吸収塔全体の重心が高くなり、大型の基礎が必要となるなど、装置全体が大型化する恐れがある。
 また、海水分散供給手段の他の例として、図10に示すように、上方開口管路と、その側壁に形成された流出堰開口を含み、前記堰開口は2個/m2~50個/m2の割合で分散配置されている構造のものでもよい。
 気液接触塔1下部側面に設置された前記供給口2から供給された排ガスGは、気液接触塔1内を上方へ向かって、多孔支持部材21(図8参照)の開口、規則充填物20の流路及び多孔板5の開口を順に移動する。
 他方、気液接触塔1上部に設けられた供給ノズル4から下方へ噴射された新鮮な海水SWは、排ガスGと、気液接触塔1内中部に設けられた多孔板5上及び規則充填物20の上端及び流路内で向流接触する。当該向流接触によって、排ガス中に含まれる硫黄酸化物は新鮮な海水SWに吸収され、排ガス中から除去される。図8に示すように、好適にはノズル4の上方には、処理された排ガスG中のミストを除去するエリミネ-タ22が設けられている。
 海水法排煙脱硫装置の場合、必要なガス処理量と装置サイズとの関係で、塔1内を吹き上げる被処理ガスの空塔速度が2.0m/秒~3.2m/秒にするのが望ましい。
 この要因によって、新たな問題を生じる。すなわち、当初、本発明者らは、海水分散供給手段3,4から流出させた海水は最終的に多孔板5上で分散するので、ノズルの向きは上向きに流出させるようにしてもよいのではないかと考えた。
 しかし、上昇するガスの空塔速度が速いので、多孔板上方の横断面において、少しでもガスの偏流が生じていると、海水がガスの偏流に影響されて横断面に関し偏って流下するようになることが知見された。
 よって、海水は、供給ノズルを下向きに設置し、供給することが望ましい。海水法排煙脱硫装置として適用する場合、規則充填物20直上での海水の流下速度は2.0m/秒以上、特に2.5m/秒以上にするのが望ましい。
 本発明者らは、さらに種々検討した結果、図6に示すように、海水分散供給手段4により供給される多孔板5上面に対して流下する多くの液流(の中心)が、多孔板5の開口5a中心と鉛直方向に実質的に一致しているのが望ましいことを知見した。
 海水分散供給ノズル4から流下する海水は、多孔板5上で跳ね返ったりしながら、面方向に拡散する。通常、排ガスGの流量G(kg/m・hr)と新鮮な海水SWの流量L(kg/m・hr)の比(L/G)は、4~15であることから
海水多孔板5上で液層を形成する。このときの液層の深さは、排ガスGの供給が無い状態で5mm~200mmである。また、液層は、排ガスガスの上昇によって激しく流動化する。さらに、貝類などの夾雑物を流動化させながら、多孔板5の開口5aの閉塞防止する。
 しかるに、多孔板5上面に対して海水分散供給ノズル4から流下する液流の位置が、多孔板5の開口5a位置と鉛直方向に実質的に一致していると、その流下液の運動エネルギーが上昇するガスエネルギーに対して明確に優勢となる。
 その結果、図6に示す流下速度分布のように、多孔板5の開口5a中心と鉛直方向に実質的に一致している位置において、ピークを示す。
 そして、流下速度分布がある横断面において、多数のピークを示すと、そのピーク位置においては、流下液の運動エネルギーが、上昇ガス流れに対して遙かに優勢なのであるから、あたかも、当該開口5aから液の流下が始まるような形態となり、規則充填物20の流路20a内に確実に液が流入するようになる。しかも、多孔板5から各開口5a位置のみでなく、分散して状態で液が流下するから、規則充填物20の各流路20a内に分散して流下するようになり、きわめて好適な形態となる。
 規則充填物20の高さ方向流通路の最小通過径が10~30mmが好ましい。多孔板5上で浮動している夾雑物の一部は、開口5aを通して落下させ、規則充填物20内を通り、下端から流下させるので望ましい。このために、次述する規則充填物20の斜め流通路20A、流通路20B及びを流通路20Cの最小通過径が10~30mmが好ましいのである。この最小通過径が10~30mmは、多孔板の開口径は5~20mmφとの関係で大いにあるが、夾雑物の多くは多孔板5上で浮動・滞留状態にあるので、たまたま多孔板の開口を通過した夾雑物を円滑に流下させる径として設定されるものである。
 海水分散供給手段は、供給管3とこれに連通する多数の下向きの供給ノズル4を含み、供給ノズルは2個/m2~50個/m2の割合で分散配置されているものを例として挙げることができる。なお、海水分散供給手段の供給ノズル口径は、50mm~150mmであり、より好ましくは、65mm~125mmである。
 図11に供給ノズル4口径と多孔板5の開口5aとの大きさ、および供給ノズル4口径1個に対する流下投影面積上の多孔板5の開口5aの位置関係例を図示した。
 1つの供給ノズル4の流下投影面積中に多孔板の開口が6個~135個が含まれる位置関係が好ましく、特に13~63個が含まれる位置関係がより好ましい。図11には約13個の例で示されている。1つの供給ノズル4の流下投影面積中において多孔板の開口が複数含むよう配置されているため、供給ノズル4の下に位置する多孔板5の開孔5aの一つが閉塞したとしても残る開口5aの少なくとも1つは、流下速度のピークを示すこととなるため、確実に規則充填物20へ海水を供給することができる。
 他方、海水分散供給手段は、図10に示すように、上方開口管路40と、その側壁40Aに形成された流出堰開口40Bを含み、堰開口40Bは2個/m2~50個/m2の割合で分散配置されている形態などでもよい。
 本発明の規則充填物としては、たとえば、図7に示した規則充填物20を使用でき、これについて説明すると、波の頂き方向が90度相互に異なる波板Aと波板Bとを多数枚交互に積層配置し、これによって連続方向が90度異なる流路を多数形成したものである。なお、交差角度は他の角度(たとえば45や60度など)でもよいし、流路が傾斜していないものも使用できるのである。
 かかる適宜の容積サイズとして規則充填物20は、塔1内に敷き詰め、この敷き詰めは1段又は適宜の複数段をもって行なうことができる。規則充填物20の敷き詰めに際しては、流路方向がよりランダムになるように、単一の規則充填物20ごとに方向性を変更することができる。
 他方、図12及び図13に示すように、規則充填物20の高さ方向中間には、下方から吹き込まれるガスの斜め流通路20Aを多数有し、かつ、少なくとも上端部に、前記斜め流通路20Aを通る斜め上昇ガスを竪向きに上昇させる流通路20Bを有する形態とすることができる。下端部にも、竪向きに上昇案内させる流通路20Cを設けることができる。
 かかる態様の場合、前述のように、吹き込まれるガスが鉛直に規則的に上昇するので、下降する海水の偏流も防止できる。当該他の規則充填物例を使用した場合の流下速度分布例を図13に示した。
 規則充填物としては、挙示の例に限定されず、市販の又は公知の種々の規則充填物を使用できる。
 なお、供給ノズル4の海水の流下筒部分と多孔板の開口5aとの関係として、図14のように下拡大の開口5aとする、図15のように供給ノズル4直下の開口5a数を減らす、図16の供給ノズル4直下の開口5a径を小さくするなどの手法は、規則充填物への流下液の流下態様を定めるために、適宜採用できる。
 図17に排煙脱硫気液接触塔の他の設置事例として、船舶用脱硫装置を示す。本事例では、船舶60に搭載された船舶エンジン61から排出された排ガスを本発明の排煙脱硫装塔50を用いて処理するものである。船舶1を駆動する船舶エンジン(ディーゼルエンジン塔)、船舶エンジン61の排気ガスを処理する海水排煙脱硫塔50、海水排煙脱硫塔50Aに海水を供給する吸水ポンプ62、海水中の海生生物を除去するスクリーン63、排煙脱硫塔50で処理された排ガスを大気に排出する排ガスフアン68,煙突64、海水排煙脱硫塔50で硫黄酸化物を吸収した海水を貯留する海水貯留タンク65、その中の夾雑物を除去する廃水処理装置66、および流出管路67を備える。
 海水排煙処理塔は、第1の実施例と構造は同じである。ディーゼルエンジンの燃焼排ガスと、海水とを接触させることで燃焼排ガス中の硫黄酸化物を海水中に吸収させる。
硫黄酸化物を吸収した海水は、排出管路67と通じて海へ放出される。
 本発明で開示した海水法排煙脱硫装置は、排ガス中の硫黄分を吸収する脱硫処理のみならず、塩化水素を水に吸収させ塩酸を回収する設備や、排ガス中の窒素酸化物を海水に吸収し、除去する設備など、公知の吸収プロセスに応用できる。さらに廃水中の有機物を空気やスチームでガス中に放散させる放散プロセスにも適用可能である。
1・・・気液接触塔
2・・・供給口
3・・・供給管
4・・・ノズル
5・・・多孔板(モレタナ)
5a・・・開口
6・・・排気口
7・・・海水貯留部
8・・・堰
9・・・海水誘導部
10・・・海水路
13・・・排出口
20・・・規則充填物(構造充填物)
G・・・排ガス
TG・・・処理排ガス
SW・・・新鮮な海水

Claims (14)

  1.  竪向きの塔内に、横断面に関し実質的に均等な流通路を有する規則充填物を設け、これより下方において塔内にガスを吹込み、塔内を吹き上がるようになし、
     前記規則充填物上方に実質的に均等配置の多数の開口を有する多孔板を設け、その多孔板の上方に多孔板上面に対し海水を分散供給する海水分散供給手段を設け、
     吹き上がる被処理ガスと、下降する海水とを気液接触させ、被処理ガスを処理するようにしたことを特徴とする排煙脱硫装置。
  2.  海水分散供給手段は、海水を多孔板に供給する複数の開口を有し、前記開口の少なくとも一部は、当該開口中心が前記多孔板の開口と鉛直方向に一致している請求項1記載の排煙脱硫装置。
  3.  海水分散供給手段は、供給管とこれに連通する複数の下向きの供給ノズルを含み、前記供給ノズルは2個/m2~50個/m2の割合で分散配置されている請求項1又は2記載の排煙脱硫装置。
  4.  海水分散供給手段は、供給管とこれに連通する複数の下向きの供給ノズルを含み、前記供給ノズルは、口径が50~150mmであり、供給ノズル1個からの流下投影面積中に多孔板の開口が6個~135個含まれる位置に設けられた請求項1又は2記載の排煙脱硫装置。
  5.  前記海水供給手段は供給管と、供給管と連通する、口径が50~150mmである複数の供給ノズルを備え、かつ、前記多孔板の開口径は、5~20mmであることを特徴とする請求項1記載の海水法排煙脱硫装置
  6.  竪向きの塔内に、横断面に関し実質的に均等な流通路を有する規則充填物を設け、これより下方において塔内にガスを吹込み、塔内を吹き上がるようになし、
     前記規則充填物上方に実質的に均等配置の多数の開口を有する多孔板を設け、その多孔板の上方に多孔板上面に対し海水を分散供給する海水分散供給手段を設け、
     多孔板上には、海水により液層が形成され、前記規則充填物では
    吹き上がる前記ガスと、下降する海水とを接触させ、被処理ガスを処理することを特徴とする排煙脱硫方法。
  7.  海水分散供給手段は、海水を多孔板に供給する多数の開口を有し、前記開口の少なくとも一部は、当該開口中心が前記多孔板の開口と鉛直方向に一致している請求項6記載の排煙脱硫方法。
  8.  多孔板の開口径は、5~20mmであり、かつ、開口率は25~60%である請求項6又は7記載の排煙脱硫方法。
  9.  多孔板の開口数は、3000個/m2~7800個/m2である請求項6記載の排煙脱硫方法。
  10.  海水分散供給手段は、供給管とこれに連通する多数の下向き供給ノズルを含み、供給ノズルは2個/m2~50個/m2の割合で分散配置されている請求項6記載の排煙脱硫方法。
  11.  海水分散供給手段は、供給管とこれに連通する多数の下向き供給ノズルを含み、その供給ノズルは口径が50~150mmであり、供給ノズル1個からの流下投影面積中に多孔板の開口が6個~135個含まれる位置に設置され、供給ノズル先端の流速が2.0~3.0m/秒である請求項6記載の排煙脱硫方法。
  12.  塔内に吹込まれ吹き上がる前記ガスの空塔速度を2.0m/秒~3.2m/秒とし、前記規則充填物直上での海水の流下速度が2.0m/秒以上である請求項6記載の排煙脱硫方法。
  13.  前記規則充填物の高さ方向中間には、下方から吹き込まれるガスの斜め流通路を多数有し、かつ、少なくとも上端部に、前記斜め流通路を通る斜め上昇ガスを竪向きに上昇させる流通路を有する請求項6記載の排煙脱硫方法。
  14.  前記規則充填物の高さ方向流通路の最小通過径が10~30mmである請求項6記載の排煙脱硫方法。
PCT/JP2013/070742 2012-07-31 2013-07-31 排煙脱硫装置および排煙脱硫方法 WO2014021380A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MYPI2015700270A MY188935A (en) 2012-07-31 2013-07-31 Flue gas desulfurization apparatus and flue gas desulfurization method
PH12015500171A PH12015500171B1 (en) 2012-07-31 2015-01-26 Flue gas desulfurization apparatus and flue gas desulfurization method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012169803 2012-07-31
JP2012-169803 2012-07-31
JP2013158510A JP6142432B2 (ja) 2012-07-31 2013-07-31 排煙脱硫方法および排煙脱硫装置
JP2013-158510 2013-07-31

Publications (1)

Publication Number Publication Date
WO2014021380A1 true WO2014021380A1 (ja) 2014-02-06

Family

ID=50028050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070742 WO2014021380A1 (ja) 2012-07-31 2013-07-31 排煙脱硫装置および排煙脱硫方法

Country Status (4)

Country Link
JP (1) JP6142432B2 (ja)
MY (1) MY188935A (ja)
PH (1) PH12015500171B1 (ja)
WO (1) WO2014021380A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797659A (zh) * 2021-10-25 2021-12-17 莱芜钢铁集团泰东实业有限公司 一种具有热能转化利用的高炉烟气净化装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168596A (ja) * 2019-04-02 2020-10-15 三菱日立パワーシステムズ株式会社 海水脱硫装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494669A (ja) * 1972-05-08 1974-01-16
JPH041391U (ja) * 1990-04-18 1992-01-08
JP2001129352A (ja) * 1999-11-02 2001-05-15 Fujikasui Engineering Co Ltd 海水による排ガス脱硫高度処理プロセス
JP2008200619A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd 排煙脱硫装置
JP2011523993A (ja) * 2008-06-13 2011-08-25 斯幹 彭 航海船における排ガス洗浄装置および排ガス洗浄方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155142A (ja) * 1995-12-07 1997-06-17 Idemitsu Eng Co Ltd 気液接触による特定成分除去方法並びに除去装置及び該装置に用いるトレイ
JPH11290643A (ja) * 1998-04-13 1999-10-26 Fuji Kasui Eng Co Ltd 海水による排ガス中の酸性成分の除去方法
JP4145701B2 (ja) * 2003-04-07 2008-09-03 清水建設株式会社 空気浄化装置
JP2007098307A (ja) * 2005-10-05 2007-04-19 Fujikasui Engineering Co Ltd 循環型炭酸ガス固定化システム
JP4604014B2 (ja) * 2006-11-20 2010-12-22 株式会社清流メンテナンス 生物脱臭システム及びこのシステムに用いられる生物脱臭装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494669A (ja) * 1972-05-08 1974-01-16
JPH041391U (ja) * 1990-04-18 1992-01-08
JP2001129352A (ja) * 1999-11-02 2001-05-15 Fujikasui Engineering Co Ltd 海水による排ガス脱硫高度処理プロセス
JP2008200619A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd 排煙脱硫装置
JP2011523993A (ja) * 2008-06-13 2011-08-25 斯幹 彭 航海船における排ガス洗浄装置および排ガス洗浄方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797659A (zh) * 2021-10-25 2021-12-17 莱芜钢铁集团泰东实业有限公司 一种具有热能转化利用的高炉烟气净化装置
CN113797659B (zh) * 2021-10-25 2022-10-11 莱芜钢铁集团泰东实业有限公司 一种具有热能转化利用的高炉烟气净化装置

Also Published As

Publication number Publication date
PH12015500171A1 (en) 2015-03-16
JP6142432B2 (ja) 2017-06-07
JP2014042909A (ja) 2014-03-13
MY188935A (en) 2022-01-13
PH12015500171B1 (en) 2015-03-16

Similar Documents

Publication Publication Date Title
KR101698999B1 (ko) 선박 연도 가스 세척 장치 및 방법
JP5631985B2 (ja) 改良されたガス洗浄装置および方法
KR101431077B1 (ko) 선박용 배기가스 탈황을 위한 멀티 스크러버 장치
WO2014156985A1 (ja) 海水排煙脱硫装置とその運用方法
KR102475344B1 (ko) 듀얼 워터 시스템을 가진 인라인 스크러버
JP2020519806A (ja) 拡散手段を有する排気ガス処理装置
EP3834913B1 (en) Multi-level gas scrubber with multiple flooded scrubber heads
JP5177859B2 (ja) 脱硫脱炭装置
KR20150070110A (ko) 연도 가스 정화장치
KR101431081B1 (ko) 선박용 배기가스 탈황을 위한 고효율 멀티 스크러버 장치
WO2015030352A1 (ko) 선박용 배기가스 탈황 장치
KR101981066B1 (ko) 부식 방지 기능을 가진 배기가스 처리 시스템
JP6142432B2 (ja) 排煙脱硫方法および排煙脱硫装置
US20090151563A1 (en) Extraction device
JP2014042909A5 (ja)
CN111437694A (zh) 一种船用烟气脱硫设备
WO2022083613A1 (zh) 一种卧式气体处理装置
WO2012105905A1 (en) Apparatus and method for removing or reducing of gas pollutants from exhaust gas stream
JP2006122862A (ja) 排ガス処理装置
KR102038944B1 (ko) 향상된 공간활용도를 가진 하이브리드형 배기가스 처리 시스템
RU2356843C1 (ru) Десорбционная установка
KR102232057B1 (ko) 다중확산수단을 포함하는 배기가스 처리장치
KR102269097B1 (ko) 배기가스 처리장치
CN211025809U (zh) 一种硫磺尾气净化塔
CN202438242U (zh) 一种脱硫除尘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12015500171

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201500793

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13825772

Country of ref document: EP

Kind code of ref document: A1