WO2014021293A1 - 非水電解質電池用セパレータ及び非水電解質電池 - Google Patents

非水電解質電池用セパレータ及び非水電解質電池 Download PDF

Info

Publication number
WO2014021293A1
WO2014021293A1 PCT/JP2013/070541 JP2013070541W WO2014021293A1 WO 2014021293 A1 WO2014021293 A1 WO 2014021293A1 JP 2013070541 W JP2013070541 W JP 2013070541W WO 2014021293 A1 WO2014021293 A1 WO 2014021293A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
adhesive
porous layer
electrolyte battery
resin
Prior art date
Application number
PCT/JP2013/070541
Other languages
English (en)
French (fr)
Inventor
吉冨 孝
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2014510341A priority Critical patent/JP5624251B2/ja
Priority to US14/413,586 priority patent/US20150207122A1/en
Priority to KR1020157001090A priority patent/KR101577383B1/ko
Priority to CN201380040439.0A priority patent/CN104521030B/zh
Publication of WO2014021293A1 publication Critical patent/WO2014021293A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a nonaqueous electrolyte battery and a nonaqueous electrolyte battery.
  • Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders. Furthermore, in recent years, these batteries have been studied for application to automobiles and the like because of their high energy density.
  • a technique using a separator in which a porous layer made of a polyvinylidene fluoride resin (hereinafter also referred to as “adhesive porous layer”) is formed on a polyolefin microporous film, which is a conventional separator, is known.
  • the adhesive porous layer can satisfactorily bond the electrode and the separator and can function as an adhesive when it is hot-pressed over the electrode while containing the electrolytic solution. Therefore, the cycle life of the soft pack battery can be improved.
  • a battery element is manufactured by winding the electrode and the separator in an overlapped state, and this element is enclosed in the metal can exterior together with an electrolytic solution. Make it.
  • a battery element is produced in the same manner as the battery with the above metal can, and this is put together with the electrolyte in the soft pack exterior.
  • the battery is manufactured by adding a heat press step at the end. Therefore, when a separator having an adhesive porous layer as described above is used, a battery element can be produced in the same manner as the battery with the above metal can outer case.
  • the polyvinylidene fluoride-based resin used in Patent Document 1 generally has a tendency to have poor slipperiness, and the desired slipperiness cannot be ensured in the battery manufacturing transport process, and there is a concern that the yield may be reduced. .
  • it is effective to roughen the surface.
  • the surface unevenness that is, the level of the unevenness or the width of the unevenness
  • the volume of the recessed portion into which the electrolytic solution enters is increased. If the electrolyte is satisfactorily held at the adhesive interface between the electrode and the separator, the ionic conduction between the two becomes good, the ion distribution is made uniform with respect to the electrode active material, and the cycle characteristics are easily improved.
  • the contact area with an electrode surface becomes small, there exists a problem that adhesiveness with an electrode will fall.
  • the present invention has been made in view of the above, and has a non-aqueous electrolyte battery separator that has excellent adhesion to electrodes, high process yield, and excellent electrolyte solution retention, and a high process yield and a stable cycle. It aims at providing the nonaqueous electrolyte battery which expresses a characteristic, and makes it a subject to achieve this objective.
  • Rz ten-point average roughness
  • the adhesive resin is a copolymer in which at least vinylidene fluoride and hexafluoropropylene are copolymerized, and has a structural unit derived from hexafluoropropylene of 0.1% to 5% on a molar basis.
  • the adhesive porous layer includes a filler, the dynamic friction coefficient is 0.1 or more and 0.4 or less, and the ten-point average roughness Rz is 1.5 ⁇ m or more and 8.0 ⁇ m or less ⁇ 1>.
  • the adhesive porous layer has a filler content of less than 1% by mass with respect to the adhesive resin, the dynamic friction coefficient is 0.2 or more and 0.6 or less, and a ten-point average roughness.
  • ⁇ 6> A positive electrode, a negative electrode, and the separator for a nonaqueous electrolyte battery according to any one of ⁇ 1> to ⁇ 5> disposed between the positive electrode and the negative electrode.
  • ADVANTAGE OF THE INVENTION while being excellent in the adhesiveness with respect to an electrode, the process yield is high and the separator for nonaqueous electrolyte batteries excellent in electrolyte solution retainability is provided. Also, ADVANTAGE OF THE INVENTION According to this invention, the process yield is high and the nonaqueous electrolyte battery which expresses stable cycling characteristics is provided.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the separator for a non-aqueous electrolyte battery of the present invention has a porous substrate and an adhesive porous layer provided on one or both surfaces of the porous substrate and containing an adhesive resin.
  • the dynamic friction coefficient on the surface is 0.1 or more and 0.6 or less, and the ten-point average roughness (Rz) is 1.0 ⁇ m or more and 8.0 ⁇ m or less.
  • the dynamic friction coefficient of the surface of the adhesive porous layer that forms the outermost layer as viewed from the porous substrate is set within a predetermined range, and slipperiness for maintaining a high process yield is provided. While ensuring, the surface roughness (Rz) of the layer satisfies a predetermined range, thereby achieving a balance between process yield, adhesion to electrodes, and electrolyte retention.
  • the technical value of the present invention lies in the balance between the mutually contradictory characteristics. This will be specifically described with reference to FIG. As shown in FIG.
  • the electrode 15 is brought into contact with the adhesive porous layer 13 on the porous substrate 11, and the convex and concave convex ends of the adhesive porous layer 13 are bonded to the electrode surface and fixed. Is done.
  • Rz is too small
  • the number of convex portions of the adhesive porous layer is large and the area of the adhesive surface is increased, so that the adhesion with the electrode is improved.
  • the area ratio of the bonding surface is high, the dynamic friction coefficient becomes too large, and the yield of the manufacturing process is deteriorated.
  • the dynamic friction coefficient of the surface of the adhesive porous layer provided on one surface and / or the other surface of the porous substrate is 0.1 or more and 0.6 or less. Range.
  • the dynamic friction coefficient and Rz of the surface of the porous substrate having the adhesive porous layer satisfy the above range.
  • the dynamic friction coefficient and Rz of the surface of one adhesive porous layer on a porous base material should satisfy
  • the coefficient of dynamic friction is less than 0.1, the surface of the adhesive porous layer becomes rough, which is advantageous in terms of electrolyte holding and process yield. Sex worsens. From this perspective.
  • a dynamic friction coefficient 0.15 or more is more preferable, and 0.2 or more is still more preferable.
  • the coefficient of dynamic friction exceeds 0.6, the surface of the adhesive porous layer is conversely smooth, which is advantageous in terms of adhesiveness. Retainability and process yield are significantly reduced. From such a viewpoint, the coefficient of dynamic friction is more preferably 0.55 or less, and still more preferably 0.5 or less.
  • the dynamic friction coefficient is a value measured by a method according to JIS K7125.
  • the dynamic friction coefficient in the present invention is a value measured using a surface property tester manufactured by Haydon.
  • the ten-point average roughness Rz of the adhesive porous layer provided on one surface and / or the other surface of the porous base material is set in the range of 1.0 ⁇ m or more and 8.0 ⁇ m or less.
  • Rz is less than 1.0 ⁇ m, the area to be an adhesive surface is increased, which is advantageous in terms of adhesiveness, but the yield of the manufacturing process is deteriorated and the retention of the electrolytic solution is also deteriorated.
  • Rz is more preferably 1.5 ⁇ m or more, and further preferably 2.0 ⁇ m or more.
  • Rz exceeds 8.0 ⁇ m
  • the process yield is improved and the retention of the electrolytic solution is also improved, but the adhesiveness is remarkably deteriorated.
  • Rz is preferably 7.5 ⁇ m or less, and more preferably 7.0 ⁇ m or less.
  • the ten-point average roughness (Rz) is a value measured by a method according to JIS B-0601-1994 (or Rzjis of JIS B0601-2001). Specifically, Rz in the present invention is a value measured using ET4000 manufactured by Kosaka Laboratory. The measurement is performed under the conditions of measurement length: 1.25 mm, measurement speed: 0.1 mm / second, temperature and humidity: 25 ° C., and 50% RH.
  • the method for controlling the dynamic friction coefficient and Rz on the surface of the adhesive porous layer is not particularly limited.
  • the addition and the amount of filler added to the adhesive porous layer, the size of the filler (diameter) Etc.), the molecular weight of the adhesive resin, the solidification temperature at the time of forming the adhesive porous layer, the concentration of the phase separation agent, and the like are not particularly limited.
  • the addition and the amount of filler added to the adhesive porous layer the size of the filler (diameter) Etc.), the molecular weight of the adhesive resin, the solidification temperature at the time of forming the adhesive porous layer, the concentration of the phase separation agent, and the like.
  • the dynamic friction coefficient is: The range is preferably 0.1 or more and 0.4 or less, and the ten-point average roughness Rz is preferably 1.5 ⁇ m or more and 8.0 ⁇ m or less.
  • the lower limit value of the dynamic friction coefficient is more preferably 0.12 or more, and further preferably 0.15 or more.
  • the upper limit value of the dynamic friction coefficient is more preferably 0.35 or less.
  • the lower limit value of the ten-point average roughness Rz is preferably 2.0 ⁇ m or more, and more preferably 2.5 ⁇ m or more.
  • the upper limit of the ten-point average roughness Rz is preferably 7.5 ⁇ m or less, and more preferably 7.0 ⁇ m or less.
  • the preferable content rate of the filler in the adhesive porous layer of a filler is 1 to 90 mass% with respect to the total solid.
  • the preferred content ratio of the filler can also vary depending on the average particle size of the filler used.
  • weight average molecular weight of adhesive resin especially polyvinylidene fluoride resin
  • solidification temperature when solidified by immersion in coagulation liquid
  • phase separation agent that induces phase separation when immersed in coagulation liquid
  • the dynamic friction coefficient is used from the viewpoint of more appropriate balance of adhesion with the electrode, process yield, and electrolyte retention.
  • the lower limit value of the dynamic friction coefficient is more preferably 0.22 or more.
  • the upper limit value of the dynamic friction coefficient is more preferably 0.55 or less, and further preferably 0.50 or less.
  • the lower limit value of the ten-point average roughness Rz is more preferably 1.1 ⁇ m or more, and further preferably 1.2 ⁇ m or more.
  • the upper limit value of the ten-point average roughness Rz is more preferably 4.0 ⁇ m or less.
  • the preferable content ratio of the filler in the adhesive porous layer of the filler is less than 1% by mass with respect to the total solid content, and more preferably no filler is contained (zero mass%).
  • the weight-average molecular weight of the adhesive resin particularly polyvinylidene fluoride resin
  • the solidification temperature when solidified by dipping in the coagulation liquid and the coagulation liquid
  • the porous substrate in the present invention means a substrate having pores or voids therein.
  • a substrate include a microporous film, a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet, or one or more other porous layers laminated on the microporous film or the porous sheet.
  • a microporous membrane is a membrane that has a large number of micropores inside and a structure in which these micropores are connected, and allows gas or liquid to pass from one surface to the other. Means.
  • the material constituting the porous substrate may be either an organic material or an inorganic material as long as it is an electrically insulating material.
  • the material constituting the porous substrate is preferably a thermoplastic resin from the viewpoint of imparting a shutdown function to the porous substrate.
  • the shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the constituent materials and closing the pores of the porous base material when the battery temperature increases.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
  • a polyolefin microporous membrane As the porous substrate using polyolefin, a polyolefin microporous membrane is suitable.
  • the polyolefin microporous membrane those having sufficient mechanical properties and ion permeability can be suitably used from among polyolefin microporous membranes applied to conventional separators for nonaqueous electrolyte batteries.
  • the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of exhibiting a shutdown function, and the polyethylene content is preferably 95% by mass or more.
  • a polyolefin microporous film containing polyethylene and polypropylene is suitable from the viewpoint of imparting heat resistance that does not easily break when exposed to high temperatures.
  • a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one layer.
  • Such a microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
  • the polyolefin microporous membrane has a laminated structure of two or more layers, and at least one layer contains polyethylene and at least one layer contains a polyolefin microporous membrane having a structure containing polypropylene. .
  • the polyolefin contained in the polyolefin microporous membrane preferably has a weight average molecular weight of 100,000 to 5,000,000. When the weight average molecular weight is 100,000 or more, sufficient mechanical properties can be secured. On the other hand, when the weight average molecular weight is 5 million or less, the shutdown characteristics are good and the film can be easily formed.
  • the polyolefin microporous membrane can be produced, for example, by the following method. That is, (i) the molten polyolefin resin is extruded from a T-die to form a sheet, (ii) the sheet is crystallized, (iii) stretched, and (iv) the stretched sheet is heat treated. Thus, a method of forming a microporous film can be mentioned.
  • a polyolefin resin is melted together with a plasticizer such as liquid paraffin, extruded from a T-die, cooled to form a sheet, (ii) the sheet is stretched, iii) A method of forming a microporous film by extracting a plasticizer from the stretched sheet and further (iv) heat-treating it may be mentioned.
  • a plasticizer such as liquid paraffin
  • porous sheet made of a fibrous material examples include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; heat-resistant polymers such as aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide; And the like, or a porous sheet made of a mixture of the fibrous materials.
  • a composite porous sheet the structure which laminated
  • a composite porous sheet is preferable in that a further function can be added by the functional layer.
  • the functional layer for example, from the viewpoint of imparting heat resistance, a porous layer made of a heat resistant resin or a porous layer made of a heat resistant resin and an inorganic filler can be adopted.
  • the heat resistant resin include one or more heat resistant polymers selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone and polyetherimide.
  • a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be suitably used.
  • a method of applying a functional layer to a microporous membrane or a porous sheet a method of bonding the microporous membrane or porous sheet and the functional layer with an adhesive, a microporous membrane or a porous layer Examples thereof include a method of thermocompression bonding the sheet and the functional layer.
  • the film thickness of the porous substrate is preferably in the range of 5 ⁇ m to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
  • the Gurley value (JIS P8117) of the porous substrate is preferably in the range of 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of preventing short circuit of the battery and obtaining sufficient ion permeability.
  • the puncture strength of the porous substrate is preferably 300 g or more from the viewpoint of improving the production yield.
  • the adhesive porous layer in the present invention has a large number of micropores inside and has a porous structure in which these micropores are connected to each other, allowing gas or liquid to pass from one surface to the other. It is the layer that became.
  • the adhesive porous layer is provided as the outermost layer of the separator on one side or both sides of the porous substrate, and can be adhered to the electrode by this adhesive porous layer. That is, the adhesive porous layer is a layer that can adhere the separator to the electrode when hot-pressed with the separator and the electrode overlapped.
  • the separator for nonaqueous electrolyte batteries of the present invention has an adhesive porous layer only on one side of the porous substrate, the adhesive porous layer is bonded to either the positive electrode or the negative electrode.
  • the separator for nonaqueous electrolyte batteries of this invention has an adhesive porous layer on both sides of the said porous base material, an adhesive porous layer is adhere
  • the adhesive porous layer is preferable not only on one side of the porous base material but also on both sides in terms of excellent battery cycle characteristics. This is because the adhesive porous layer is on both surfaces of the porous substrate, so that both surfaces of the separator are well bonded to both electrodes via the adhesive porous layer.
  • the coating amount of the adhesive porous layer is 1.0 g as the total amount on both sides of the porous substrate. / M 2 to 3.0 g / m 2 is preferable.
  • “the total of both surfaces of the porous substrate” means that when the adhesive porous layer is provided on one surface of the porous substrate, the coating on one surface In the case where the adhesive porous layer is provided on both sides of the porous substrate, it is the total amount of coating on both sides.
  • the coating amount is 1.0 g / m 2 or more, the adhesion with the electrode is good and the cycle characteristics of the battery are good.
  • the coating amount is 3.0 g / m 2 or less, the ion permeability is good and the load characteristics of the battery are good.
  • the difference between the coating amount on one side and the coating amount on the other side is 20% with respect to the total coating amount on both sides.
  • the following is preferable. If it is 20% or less, the separator is difficult to curl. As a result, the handling property is good and the problem that the cycle characteristics are deteriorated hardly occurs.
  • the thickness of the adhesive porous layer is preferably 0.5 ⁇ m to 5 ⁇ m on one side of the porous substrate.
  • the thickness of the adhesive porous layer is more preferably 1 ⁇ m to 5 ⁇ m, and even more preferably 2 ⁇ m to 5 ⁇ m on one side of the porous substrate.
  • the adhesive porous layer preferably has a sufficiently porous structure from the viewpoint of ion permeability.
  • the porosity is preferably 30% to 60%.
  • the porosity is 30% or more, the ion permeability is good and the battery characteristics are excellent.
  • the porosity is 60% or less, sufficient mechanical properties are obtained such that the porous structure is not crushed when bonded to the electrode by hot pressing.
  • the porosity is 60% or less, the surface porosity becomes low, and the area occupied by the adhesive resin (preferably polyvinylidene fluoride resin) increases, so that a better adhesive force can be secured. it can.
  • the porosity of the adhesive porous layer is more preferably in the range of 30 to 50%.
  • the adhesive porous layer preferably has an average pore size of 1 nm to 100 nm.
  • the average pore size of the adhesive porous layer is 100 nm or less, a porous structure in which uniform pores are uniformly dispersed can be easily obtained, and the adhesion points with the electrode can be evenly dispersed. Sex is obtained. In that case, the movement of ions is also uniform, better cycle characteristics can be obtained, and better load characteristics can be obtained.
  • the average pore diameter is desirably as small as possible from the viewpoint of uniformity, but it is practically difficult to form a porous structure smaller than 1 nm.
  • the resin for example, polyvinylidene fluoride resin
  • the resin may swell. If the average pore diameter is too small, the pores are blocked by swelling and the ion permeability is impaired. It is. From this point of view.
  • the average pore diameter is preferably 1 nm or more.
  • the average pore size of the adhesive porous layer is more preferably 20 nm to 100 nm.
  • the fibril diameter of the polyvinylidene fluoride resin in the adhesive porous layer is preferably in the range of 10 nm to 1000 nm from the viewpoint of cycle characteristics.
  • the adhesive porous layer in the present invention contains at least an adhesive resin, and preferably contains a filler. Moreover, the adhesive porous layer can be constituted by using other components as required.
  • the adhesive resin contained in the adhesive porous layer is not particularly limited as long as it can adhere to the electrode.
  • the adhesive porous layer may contain only one type of adhesive resin or two or more types.
  • the adhesive resin contained in the adhesive porous layer is preferably a polyvinylidene fluoride resin from the viewpoint of adhesiveness with the electrode.
  • a polyvinylidene fluoride resin a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride); a copolymer of vinylidene fluoride and another copolymerizable monomer (polyvinylidene fluoride copolymer); a mixture thereof ;
  • Examples of the monomer copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene (HFP), trifluoroethylene, trichloroethylene, vinyl fluoride, and the like, and one kind or two or more kinds can be used.
  • the polyvinylidene fluoride resin is obtained by emulsion polymerization or suspension polymerization.
  • the polyvinylidene fluoride resins is a copolymer in which at least vinylidene fluoride and hexafluoropropylene are copolymerized, and 0.1 mol% or more and 5 mol on a molar basis. % Or less (preferably 0.5 mol% or more and 2 mol% or less) of a copolymer containing structural units derived from hexafluoropropylene.
  • the adhesive resin (particularly polyvinylidene fluoride resin) preferably has a weight average molecular weight (Mw) in the range of 300,000 to 3,000,000.
  • Mw weight average molecular weight
  • the weight average molecular weight of the adhesive resin is preferably 500,000 or more, and more preferably 600,000 or more.
  • the weight average molecular weight is 3 million or less, the viscosity at the time of molding does not become too high, the moldability and crystal formation are good, and the porosity is good.
  • the weight average molecular weight of the adhesive resin is preferably 2 million or less, and more preferably 1.5 million or less.
  • the weight average molecular weight (Dalton) of the adhesive resin is a molecular weight measured by gel permeation chromatography (hereinafter also referred to as GPC) under the following conditions and expressed in terms of polystyrene.
  • GPC gel permeation chromatography
  • the adhesive porous layer may contain a filler made of an inorganic material or an organic material. Since the adhesive porous layer contains a filler, it is effective to adjust the dynamic friction coefficient and Rz of the separator (particularly, the adhesive porous layer in contact with the electrode) to the ranges described above. Heat resistance is improved.
  • organic filler examples include cross-linked polyacrylic acid, cross-linked polyacrylic ester, cross-linked polymethacrylic acid, cross-linked polymethacrylic acid ester, cross-linked polymethyl methacrylate, cross-linked polysilicon (polymethylsilsesquioxane, etc.), cross-linked polystyrene.
  • the heat-resistant polymer fine particles are as follows.
  • the organic resin (polymer) constituting these organic fine particles is a mixture, modified body, derivative, or copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) of the above exemplified materials. Polymer) or a crosslinked product (in the case of the above-mentioned heat-resistant polymer).
  • 1 selected from the group consisting of cross-linked polyacrylic acid, cross-linked polyacrylic ester, cross-linked polymethacrylic acid, cross-linked polymethacrylic acid ester, cross-linked polymethyl methacrylate, and cross-linked polysilicon (polymethylsilsesquioxane, etc.) It is preferable that it is a resin of a seed or more.
  • the inorganic filler examples include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, and boron hydroxide; metals such as alumina, magnesium oxide, and zirconia Examples thereof include oxides; carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate and calcium sulfate; clay minerals such as calcium silicate and talc.
  • metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, and boron hydroxide
  • metals such as alumina, magnesium oxide, and zirconia
  • oxides carbonates such as calcium carbonate and magnesium carbonate
  • sulfates such as barium sulfate and calcium sulfate
  • clay minerals such as calcium silicate and talc.
  • said various fillers may be used individually, respectively, or may be used in combination of 2 or more type.
  • magnesium hydroxide is preferable.
  • an inorganic filler whose surface is modified with a silane coupling agent or the like can also be used.
  • the filler has an average particle size of 0.1 ⁇ m or more from the viewpoint of improving the slipping property at the time of production, improving the yield, and achieving a balance of properties that satisfy the adhesion to the electrode and the retention of the electrolytic solution. What is 0 micrometer or less is preferable.
  • the average particle size of the filler is more preferably in the range of 0.5 ⁇ m to 3.0 ⁇ m.
  • the average particle size of the filler was measured using a laser diffraction particle size distribution measuring device. Water was used as the dispersion medium for the inorganic fine particles, and a small amount of nonionic surfactant “Triton X-100” was used as the dispersant. The center particle size (D50) in the volume particle size distribution obtained from this was taken as the average particle size.
  • the content of the filler in the adhesive porous layer is preferably 1% by mass or more and 90% by mass or less with respect to the adhesive resin.
  • the filler content is 1% by mass or more, it is easy to adjust the dynamic friction coefficient and Rz to the above-mentioned ranges, the slipperiness is imparted, which is advantageous for improving the process yield, and the electrolyte solution is more excellently retained.
  • the content ratio of the filler is 90% by mass or less in order to balance the adhesion with the electrode, the process yield, and the electrolyte retention.
  • the content of the filler is more preferably 20% by mass or more and 80% by mass or less from the viewpoint of appropriately controlling the dynamic friction coefficient and Rz and balancing the adhesion with the electrode, the process yield, and the electrolyte retention.
  • the separator for a nonaqueous electrolyte battery of the present invention preferably has a total film thickness of 5 ⁇ m to 35 ⁇ m from the viewpoint of mechanical strength and energy density when used as a battery.
  • the porosity of the separator for a nonaqueous electrolyte battery of the present invention is preferably 30% to 60% from the viewpoint of mechanical strength, handling properties, and ion permeability.
  • the Gurley value (JIS P8117) of the nonaqueous electrolyte battery separator of the present invention is preferably 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of a good balance between mechanical strength and membrane resistance.
  • the separator for a nonaqueous electrolyte battery of the present invention has a difference between the Gurley value of the porous substrate and the Gurley value of the separator provided with the adhesive porous layer on the porous substrate from the viewpoint of ion permeability. 300 seconds / 100 cc or less, more preferably 150 seconds / 100 cc or less, and even more preferably 100 seconds / 100 cc or less.
  • Membrane resistance of the separator for a nonaqueous electrolyte battery of the present invention from the viewpoint of the load characteristics of the battery, it is preferable that 1ohm ⁇ cm 2 ⁇ 10ohm ⁇ cm 2.
  • the membrane resistance is a resistance value when the separator is impregnated with an electrolytic solution, and is measured by an alternating current method.
  • the above numerical values are values measured at 20 ° C. using 1 M LiBF 4 -propylene carbonate / ethylene carbonate (mass ratio 1/1) as the electrolytic solution.
  • the curvature of the separator for a nonaqueous electrolyte battery of the present invention is preferably 1.5 to 2.5 from the viewpoint of ion permeability.
  • the separator for a non-aqueous electrolyte battery of the present invention is formed by, for example, applying a coating liquid containing a resin such as polyvinylidene fluoride resin on a porous substrate to form a coating layer, and then applying the resin of the coating layer. By solidifying, it is manufactured by a method of integrally forming an adhesive porous layer on a porous substrate.
  • a coating liquid containing a resin such as polyvinylidene fluoride resin
  • the adhesive porous layer using the polyvinylidene fluoride resin as the adhesive resin can be suitably formed by, for example, the following wet coating method.
  • the wet coating method includes (i) a step of dissolving a polyvinylidene fluoride resin in an appropriate solvent to prepare a coating solution, (ii) a step of applying this coating solution to a porous substrate, (iii) By immersing the porous base material in an appropriate coagulating liquid, a step of solidifying the polyvinylidene fluoride resin while inducing phase separation, (iv) a water washing step, and (v) a drying step are performed to obtain a porous material.
  • This is a film forming method for forming a porous layer on a substrate.
  • the details of the wet coating method suitable for the present invention are as follows.
  • Solvents for dissolving the polyvinylidene fluoride resin used for preparing the coating liquid include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide. Preferably used. From the viewpoint of forming a good porous structure, it is preferable to mix a phase separation agent that induces phase separation in addition to a good solvent. Examples of the phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • the phase separation agent is preferably added in a range that can ensure a viscosity suitable for coating.
  • the solvent from the viewpoint of forming a good porous structure, a mixed solvent containing 60 to 95% by mass of a good solvent and 5 to 40% by mass of a phase separation agent is preferable.
  • the coating liquid preferably contains a polyvinylidene fluoride resin at a concentration of 3% by mass to 10% by mass from the viewpoint of forming a good porous structure. What is necessary is just to mix or dissolve in a coating liquid, when making an adhesive porous layer contain a filler and another component.
  • the coagulation liquid is generally composed of a good solvent used for preparing the coating liquid, a phase separation agent, and water. It is preferable in production that the mixing ratio of the good solvent and the phase separation agent is adjusted to the mixing ratio of the mixed solvent used for dissolving the polyvinylidene fluoride resin.
  • the water concentration is suitably 40% by mass to 90% by mass from the viewpoint of formation of a porous structure and productivity.
  • the temperature of the coagulation liquid is preferably 0 to 43 ° C.
  • the conventional coating method such as Meyer bar, die coater, reverse roll coater or gravure coater may be applied to the coating liquid on the porous substrate.
  • the adhesive porous layer is formed on both surfaces of the porous substrate, it is preferable from the viewpoint of productivity to apply the coating liquid to both surfaces simultaneously on both surfaces.
  • the adhesive porous layer can be produced by a dry coating method other than the wet coating method described above.
  • the dry coating method refers to, for example, coating a porous substrate with a coating liquid containing a polyvinylidene fluoride resin and a solvent, and drying the coating layer to volatilize and remove the solvent. It is a method of obtaining a layer.
  • the wet coating method is preferred in that a good porous structure can be obtained.
  • the separator for a non-aqueous electrolyte battery of the present invention is produced by a method in which an adhesive porous layer is produced as an independent sheet, and this adhesive porous layer is laminated on a porous substrate and combined by thermocompression bonding or an adhesive. Can also be manufactured.
  • a method for producing the adhesive porous layer as an independent sheet a coating liquid containing a resin is applied onto a release sheet, and the above-mentioned wet coating method or dry coating method is applied to form the adhesive porous layer.
  • the method of forming and peeling an adhesive porous layer from a peeling sheet is mentioned.
  • the non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte battery that obtains an electromotive force by doping or dedoping lithium, and includes a positive electrode, a negative electrode, and the separator for a non-aqueous electrolyte battery of the present invention described above.
  • the dope means occlusion, support, adsorption, or insertion, and means a phenomenon in which lithium ions enter the active material of an electrode such as a positive electrode.
  • the nonaqueous electrolyte battery has a structure in which a battery element in which a negative electrode and a positive electrode face each other with a separator interposed therebetween is impregnated with an electrolytic solution.
  • the nonaqueous electrolyte battery of the present invention is suitable for a nonaqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
  • the nonaqueous electrolyte battery of the present invention is provided with the above-described separator for nonaqueous electrolyte batteries of the present invention as a separator, so that the adhesiveness between the electrode and the separator is excellent, and the yield in the manufacturing process is high. It also has excellent retention. Therefore, the nonaqueous electrolyte battery of the present invention exhibits stable cycle characteristics.
  • the positive electrode can have a structure in which an active material layer containing a positive electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive additive.
  • the positive electrode active material include lithium-containing transition metal oxides. Specifically, LiCoO 2 , LiNiO 2 , LiMn 1/2 Ni 1/2 O 2 , LiCo 1/3 Mn 1/3 Ni 1 / 3 O 2, LiMn 2 O 4 , LiFePO 4, LiCo 1/2 Ni 1/2 O 2, LiAl 1/4 Ni 3/4 O 2 and the like.
  • the binder resin include polyvinylidene fluoride resins and styrene-butadiene copolymers.
  • the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • the current collector include aluminum foil, titanium foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m.
  • the separator when the separator includes an adhesive porous layer containing a polyvinylidene fluoride resin, and the adhesive porous layer is disposed on the positive electrode side, the polyvinylidene fluoride resin has oxidation resistance. Since it is excellent, it is easy to apply positive electrode active materials such as LiMn 1/2 Ni 1/2 O 2 and LiCo 1/3 Mn 1/3 Ni 1/3 O 2 that can be operated at a high voltage of 4.2 V or more. is there.
  • the negative electrode may have a structure in which an active material layer including a negative electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive additive.
  • the negative electrode active material include materials that can occlude lithium electrochemically, and specifically include carbon materials, silicon, tin, aluminum, wood alloys, and the like.
  • the binder resin include polyvinylidene fluoride resins and styrene-butadiene copolymers.
  • the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • Examples of the current collector include copper foil, nickel foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m. Moreover, it may replace with said negative electrode and may use metal lithium foil as a negative electrode.
  • the electrolytic solution is a solution in which a lithium salt is dissolved in a non-aqueous solvent.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
  • non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and fluorine-substituted products thereof; ⁇ -butyrolactone And cyclic esters such as ⁇ -valerolactone, and these may be used alone or in combination.
  • a solution in which a cyclic carbonate and a chain carbonate are mixed at a mass ratio (cyclic carbonate / chain carbonate) of 20/80 to 40/60 and a lithium salt is dissolved in an amount of 0.5 M to 1.5 M is preferable. is there.
  • Examples of the exterior material include a metal can and a pack made of an aluminum laminate film.
  • the shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the nonaqueous electrolyte battery separator of the present invention is suitable for any shape.
  • the film thickness was determined by measuring 20 points with a contact-type thickness meter (LITEMATIC manufactured by Mitutoyo Corporation) and arithmetically averaging this.
  • the measurement terminal was a cylindrical shape having a diameter of 5 mm, and was adjusted so that a load of 7 g was applied during the measurement.
  • the average particle diameter of the filler was measured using a laser diffraction particle size distribution measuring device. Water was used as the dispersion medium for the inorganic fine particles, and a small amount of nonionic surfactant “Triton X-100” was used as the dispersant. The center particle size (D50) in the volume particle size distribution obtained from this was taken as the average particle size.
  • the surface of the adhesive porous layer of the separator was measured using a surface property tester manufactured by Haydon.
  • the surface of the adhesive porous layer of the separator was measured according to JIS B 0601-1994 using ET4000 manufactured by Kosaka Laboratory. The measurement was performed under the conditions of measurement length: 1.25 mm, measurement speed: 0.1 mm / second, temperature and humidity: 25 ° C., and 50% RH.
  • Adhesiveness with electrode (1) Production of Positive Electrode and Negative Electrode A positive electrode and a negative electrode were produced in the same manner as “Production of Nonaqueous Electrolyte Battery” described later. (2) Adhesion test method The prepared positive electrode and negative electrode are joined via a separator, and an electrolytic solution is impregnated therein. The positive electrode / separator / negative electrode assembly impregnated with the electrolytic solution is attached to an aluminum laminate pack with a vacuum sealer. A test cell was produced by encapsulating the test cell. Here, 1 M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 mass ratio) was used as the electrolytic solution.
  • the pressing conditions were such that the applied load was 20 kg per 1 cm 2 of electrode, the temperature was 90 ° C., and the time was 2 minutes.
  • the peel strength is peeled from the separator by pulling the negative electrode and the positive electrode in a direction of 90 degrees with respect to the separator surface direction at a speed of 20 mm / min using a tensile tester (manufactured by A & D, RTC-1225A). The measurement was performed by the method.
  • the adhesiveness is shown in Table 1 as a relative value when the peel force of Comparative Example 2 is 100.
  • the weight of the separator cut out to 100 mm ⁇ 50 mm was set to W0, and measured after immersing the electrolyte in 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 mass ratio) and removing the electrolyte on the separator surface after 30 minutes.
  • the weight was W1, and the amount of electrolyte retained was expressed as W1-W0.
  • the relative value when the holding amount (W1-W0) of Example 1 is set to 100 is obtained, and when the relative value of the holding amount is 90 or more, AA, 60 to less than 90 is A, and less than 60 Things were done as B.
  • Example 1 (Preparation of separator)
  • a working solution was prepared.
  • the obtained coating solution was applied on both sides of a polyethylene microporous film (thickness: 9 ⁇ m, Gurley value: 160 seconds / 100 cc, porosity: 43%) in an equal amount.
  • Example 1 In Example 1, a separator was prepared in the same manner as in Example 1 except that the dynamic friction coefficient and Rz were adjusted by changing the filler mass ratio to the values shown in Table 1, and a test battery (lithium ion secondary) was prepared. Battery). [Examples 4 to 7] In Example 1, a separator was prepared and tested in the same manner as in Example 1 except that the dynamic friction coefficient and Rz were adjusted by changing the weight average molecular weight of the polyvinylidene fluoride resin to the values shown in Table 1. A battery (lithium ion secondary battery) was produced.
  • Example 1 is the same as Example 1 except that the dynamic friction coefficient and Rz are adjusted by changing the filler to crosslinked polymethyl methacrylate having an average particle diameter of 2 ⁇ m and changing the filler mass ratio to the values shown in Table 1. Thus, a separator was produced, and a test battery (lithium ion secondary battery) was produced.
  • Example 10 In Example 3, a separator was prepared in the same manner as in Example 3 except that the dynamic friction coefficient and Rz were adjusted by changing the filler to crosslinked polymethyl methacrylate having an average particle diameter of 3 ⁇ m. An ion secondary battery) was produced.
  • Example 11 In Example 1, a separator was prepared in the same manner as in Example 1 except that a slurry made of polyvinylidene fluoride resin and magnesium hydroxide was applied on one side, and a test battery (lithium ion secondary battery) was prepared. Produced.
  • a separator was produced in the same manner as in Example 1 except that the coefficient and Rz were adjusted, and a test battery (lithium ion secondary battery) was produced.
  • Example 13 In Example 12, a separator was prepared in the same manner as in Example 12 except that the dynamic friction coefficient and Rz were adjusted by adjusting the ratio of tripropylene glycol as a phase separator and the solidification temperature as shown in Table 1. A test battery (lithium ion secondary battery) was produced.
  • Example 14 In Example 1, a slurry in which the vinylidene fluoride resin was changed to an aqueous emulsion of a styrene-butadiene copolymer and the content of the inorganic filler in the total weight of the polymer and the inorganic filler was adjusted to 50% by mass was used as the polyethylene microporous membrane.
  • the separator was prepared by applying the sample to the substrate and drying it without using a coagulating liquid, and a test battery (lithium ion secondary battery) was prepared.
  • the separator obtained had a thickness of 12 ⁇ m, a dynamic friction coefficient of 0.40, and Rz of 4.0 ⁇ m.
  • Example 1 In Example 1, except that the dynamic friction coefficient and Rz were adjusted by changing the filler mass ratio to 90%, a separator was prepared and a test battery (lithium ion secondary battery) was prepared. Produced.
  • Example 8 a separator was prepared in the same manner as in Example 8 except that the dynamic friction coefficient and Rz were adjusted by changing the filler mass ratio to 50%, and a test battery (lithium ion secondary battery) was prepared. Produced.
  • Example 12 a separator was prepared in the same manner as in Example 12 except that the dynamic friction coefficient and Rz were adjusted by adjusting the ratio of tripropylene glycol as a phase separator and the solidification temperature, and a test battery ( Lithium ion secondary battery) was produced.
  • Example 10 a separator was prepared in the same manner as in Example 10 except that the dynamic friction coefficient and Rz were adjusted by changing the filler mass ratio to 30%, and a test battery (lithium ion secondary battery) was prepared. Was made.
  • Example 14 As shown in Table 1, in Examples, compared to Comparative Examples, by adjusting the dynamic friction coefficient and Rz of the separators to a predetermined range, the yield is high, and the adhesiveness to the electrodes and the electrolyte retention are excellent. It was. For Example 14, the same evaluation results as in Example 1 were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

 多孔質基材と、前記多孔質基材の片面又は両面に設けられ、接着性樹脂を含む接着性多孔質層とを有し、多孔質基材の接着性多孔質層を有する側の表面における、動摩擦係数が0.1以上0.6以下であり、十点平均粗さ(Rz)が1.0μm以上8.0μm以下である、非水電解質電池用セパレータ。

Description

非水電解質電池用セパレータ及び非水電解質電池
 本発明は、非水電解質電池用セパレータ及び非水電解質電池に関する。
 リチウムイオン二次電池に代表される非水系二次電池は、ノートパソコン、携帯電話、デジタルカメラ、カムコーダなどの携帯用電子機器の電源として広く利用されている。さらに近年では、これら電池は、高エネルギー密度を有するという特徴から自動車などへの適用も検討されている。
 携帯用電子機器の小型化・軽量化に伴ない、非水系二次電池の外装の簡素化がなされてきている。当初は、外装としてステンレス製の電池缶が用いられていたが、その後アルミ缶製の外装が開発され、さらに現在では、アルミラミネートパック製のソフトパック外装が開発されている。
 アルミラミネート製のソフトパック外装の場合、外装が柔らかいため、充放電に伴なって電極とセパレータとの間に隙間が形成される場合がある。これは、サイクル寿命を悪化させる一因であり、技術的課題となっている。この課題を解決する観点から、電極とセパレータとを接着する技術は重要であり、多くの技術的提案がなされている。
 その1つの提案として、従来のセパレータであるポリオレフィン微多孔膜にポリフッ化ビニリデン系樹脂からなる多孔質層(以下、「接着性多孔質層」ともいう。)を成形したセパレータを用いる技術が知られている(例えば、特許文献1参照)。接着性多孔質層は、電解液を含んだ状態で電極に重ねて熱プレスした際に、電極とセパレータとを良好に接合させることができ、接着剤として機能し得る。そのため、ソフトパック電池のサイクル寿命を改善することができる。
 また、従来の金属缶外装を用いて電池を作製する場合、電極とセパレータを重ね合わせた状態で捲回して電池素子を作製し、この素子を電解液と共に金属缶外装内に封入して電池を作製する。一方、上述した特許文献1のようなセパレータを用いてソフトパック電池を作製する場合は、上記の金属缶外装の電池と同様にして電池素子を作製し、これを電解液と共にソフトパック外装内に封入して、最後に熱プレス工程を加えて電池を作製する。よって、上記のような接着性多孔質層を有するセパレータを用いた場合、上記の金属缶外装の電池と同様にして電池素子を作製することができるため、従来の金属缶外装電池の製造工程に対し、大幅な変更を加える必要がないというメリットもある。
 上述のような背景から、ポリオレフィン微多孔膜に接着性多孔質層を積層したセパレータは、過去に様々な技術提案がなされてきた。例えば上記の特許文献1では、充分な接着性の確保とイオン透過性の両立という観点から、ポリフッ化ビニリデン系樹脂層の多孔構造と厚みとに着眼し、新たな技術提案がなされている。
特許第4127989号
 しかしながら、特許文献1に使用されているポリフッ化ビニリデン系の樹脂は、一般に滑り性に乏しい傾向があり、電池製造の搬送過程で所望とする滑り性を確保できず、歩留まりが低下する懸念がある。滑り性を確保する観点からは、表面を粗くすることが有効である。この場合、表面凹凸(すなわち凹凸の高低や広狭)が大きくなるため、電解液が入り込む凹部体積が増大するために、電解液の保持能が向上しやすくなる。電極とセパレータとの接着界面で電解液が良好に保持されていれば、両者間のイオン伝導が良好となり、電極活物質に対してイオンの配分が均一化され、サイクル特性が向上しやすくなる。一方で、電極面との接触面積が小さくなるため、電極との接着性が低下してしまう問題がある。
 したがって、電極との接着性を確保しながら、製造工程での歩留まり及び電極との接着界面での電解液の保持性のバランスを図ることが重要である。
 本発明は、上記に鑑みなされたものであり、電極に対する接着性に優れると共に、工程歩留まりが高くかつ電解液保持性に優れた非水電解質電池用セパレータ、及び工程歩留まりが高く、安定的なサイクル特性を発現する非水電解質電池を提供することを目的とし、該目的を達成することを課題とする。
 前記課題を達成するための具体的手段は以下の通りである。
  <1> 多孔質基材と、前記多孔質基材の片面又は両面に設けられ、接着性樹脂を含む接着性多孔質層とを有し、接着性多孔質層の表面における、動摩擦係数が0.1以上0.6以下であり、十点平均粗さ(Rz)が1.0μm以上8.0μm以下である、非水電解質電池用セパレータ。
  <2> 前記接着性樹脂は、重量平均分子量が30万以上300万以下である<1>に記載の非水電解質電池用セパレータ。
  <3> 前記接着性樹脂は、フッ化ビニリデンとヘキサフロロプロピレンとが少なくとも共重合された共重合体であって、モル基準で0.1%以上5%以下のヘキサフロロプロピレン由来の構造単位を含むポリフッ化ビニリデン系樹脂である<1>または<2>に記載の非水電解質電池用セパレータ。
  <4> 前記接着性多孔質層は、フィラーを含み、前記動摩擦係数が0.1以上0.4以下であり、十点平均粗さRzが1.5μm以上8.0μm以下である<1>~<3>のいずれか1項に記載の非水電解質電池用セパレータ。
  <5> 前記接着性多孔質層は、フィラーの含有量が前記接着性樹脂に対して1質量%未満であり、前記動摩擦係数が0.2以上0.6以下であり、十点平均粗さRzが1.0μm以上6.0μm以下である<1>~<3>のいずれか1項に記載の非水電解質電池用セパレータ。
  <6> 正極と、負極と、前記正極及び前記負極の間に配置された<1>~<5>のいずれか1項に記載の非水電解質電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水電解質電池。
 本発明によれば、電極に対する接着性に優れると共に、工程歩留まりが高くかつ電解液保持性に優れた非水電解質電池用セパレータが提供される。また、
 本発明によれば、工程歩留まりが高く、安定的なサイクル特性を発現する非水電解質電池が提供される。
セパレータの接着性多孔質層の表面が電極面に接着されている状態を示す概略断面図である。
11・・・多孔質基材
13・・・接着性多孔質層
15・・・電極
17・・・電解液
 以下、本発明の非水電解質電池用セパレータ及びこれを用いた非水電解質電池について詳細に説明する。なお、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
<非水電解質電池用セパレータ>
 本発明の非水電解質電池用セパレータは、多孔質基材と、前記多孔質基材の片面又は両面に設けられ、接着性樹脂を含む接着性多孔質層とを有し、接着性多孔質層の表面における、動摩擦係数が0.1以上0.6以下であり、十点平均粗さ(Rz)が1.0μm以上8.0μm以下である。
 従来、ポリフッ化ビニリデン系樹脂等を接着性樹脂としてセパレータに用いる例は知られている。このような樹脂を例えばセパレータの電極と接着する最外層に用いた場合、電池製造の搬送過程で所望の滑り性を確保できず、歩留まりの低下を招きやすい。そのため、滑り性を確保する観点からは、搬送面の表面状態を粗くすること、つまり動摩擦係数を小さくすることが有効である。搬送面となるセパレータ最外層の表面粗さを大きくすることは、表面に存在する凹凸形状が大きく電解液を保持し易くなるが、電極と接着させたときの接着面積は減るため、電極との接着性は低下する。つまり、製造歩留まりの向上及び電解液の保持性向上と、電極との接着性向上との間には、互いに相反する関係がある。
 このような状況に照らし、本発明においては、多孔質基材からみて最外の層をなす接着性多孔質層の表面の動摩擦係数を所定の範囲とし、工程歩留まりを高く保つための滑り性を確保しながら、該層の表面粗さ(Rz)が所定の範囲を満足することで、工程歩留まり、電極との接着性、及び電解液保持性のバランスが図られる。このように互いに相反する特性をバランス良く両立させた点に本発明の技術的価値がある。
 具体的に図1を参照して説明する。図1に示すように、多孔質基材11上の接着性多孔質層13に電極15が当接され、接着性多孔質層13の凹凸形状の凸部先端が電極面と接着して固定化される。
 ここで、Rzが小さ過ぎる場合、接着性多孔質層の凸部の数が多く、接着面の面積が増すため、電極との接着性は向上する。一方、接着面の面積比が高いために、動摩擦係数は大きくなり過ぎ、製造工程の歩留まりが悪化してしまう。また、図1の電解液17が入り込む領域が小さくなるので、電解液の保持性も悪化してしまう。
 逆に、Rzが大き過ぎる場合、接着性多孔質層の凸部の数が少なく、接着面の面積が減る。そのため、接着面の面積比が低いために、動摩擦係数は小さくなって、製造工程の歩留まりは良好になる。また、図1の電解液17が入り込む領域も大きくなって電解液の保持性も良好になる。しかし、電極との接着性は低下してしまう。
 上記のように、本発明においては、電極と接着する接着性多孔質層の表面における動摩擦係数とRzとを所定の範囲にバランスよく調節することで、工程歩留まり、接着性、及び電解液保持性のバランスをとることが可能になる。これにより、電池を作製したときに安定的なサイクル特性が得られる。
 本発明の非水電解質電池用セパレータにおいては、多孔質基材の一方の面及び/又は他方の面に設けられた接着性多孔質層の表面の動摩擦係数を0.1以上0.6以下の範囲とする。
 本発明においては、多孔質基材の片側にのみ接着性多孔質層を有する態様では、多孔質基材の接着性多孔質層を有する側の表面の動摩擦係数及びRzが上記の範囲を満たせばよい。また、多孔質基材の両側に接着性多孔質層を有する態様では、多孔質基材上の一方の接着性多孔質層の表面の動摩擦係数及びRzが上記の範囲を満たしていればよいが、両方の接着性多孔質層が上記の範囲を満たしていることが好ましい。
 前記動摩擦係数が0.1未満である場合、接着性多孔質層の表面が粗くなるため、電解液の保持および工程歩留りの点では有利であるが、接着面となる面積が少なくなり過ぎて接着性が悪化する。このような観点では。動摩擦係数としては、0.15以上がより好ましく、0.2以上が更に好ましい。また、前記動摩擦係数が0.6を超える場合には、逆に接着性多孔質層の表面が平滑になるため、接着性の点では有利であるが、表面凹凸が小さくなり過ぎて電解液の保持性および工程歩留りが著しく低下する。このような観点では動摩擦係数としては、0.55以下がより好ましく、0.5以下が更に好ましい。
 動摩擦係数は、JIS K7125に準じた方法により測定される値である。具体的には、本発明における動摩擦係数は、ヘイドン社製のサーフェイスプロパティテスターを用いて測定される値である。
 また、本発明において、多孔質基材の一方の面及び/又は他方の面に設けられた接着性多孔質層の十点平均粗さRzを1.0μm以上8.0μm以下の範囲とする。前記Rzが1.0μm未満である場合、接着面となる面積が大きくなるため、接着性の点では有利であるが、製造工程の歩留まりが悪化し、電解液の保持性も悪化する。このような観点ではRzとしては、1.5μm以上がより好ましく、2.0μm以上が更に好ましい。また、前記Rzが8.0μmを超える場合には、逆に、工程歩留まりが良好になり、電解液の保持性も良好になるが、接着性が著しく悪化する。このような観点ではRzとしては、7.5μm以下が好ましく、7.0μm以下が更に好ましい。
 十点平均粗さ(Rz)は、JIS B 0601-1994(又はJIS B 0601-2001のRzjis)に準じた方法により測定される値である。具体的には、本発明におけるRzは、小坂研究所社製のET4000を用いて測定される値である。なお、測定は、測定長:1.25mm、測定速度:0.1mm/秒、温湿度:25℃、50%RHの条件にて行なわれる。
 なお、接着性多孔質層表面の動摩擦係数およびRzの制御方法としては特に限定されるものではないが、例えば接着性多孔質層へのフィラーの添加及びその添加量、添加するフィラーのサイズ(径など)、接着性樹脂の分子量、並びに接着性多孔質層の形成時における凝固温度、相分離剤の濃度などにより制御することができる。
 接着性多孔質層が接着性樹脂と共にフィラーを含有している場合、電極との接着性、工程歩留まり、及び電解液の保持性のバランスをより適切なものとする観点から、前記動摩擦係数は、好ましくは0.1以上0.4以下の範囲であり、前記十点平均粗さRzは、好ましくは1.5μm以上8.0μm以下である。この場合、動摩擦係数の下限値としては0.12以上がより好ましく、0.15以上がさらに好ましい。動摩擦係数の上限値としては0.35以下がより好ましい。十点平均粗さRzの下限値としては、2.0μm以上が好ましく、2.5μm以上がさらに好ましい。十点平均粗さRzの上限値としては、7.5μm以下が好ましく、7.0μm以下がさらに好ましい。このとき、フィラーの接着性多孔質層中におけるフィラーの好ましい含有比率は、全固形分に対して1質量%以上90質量%以下である。ただし、用いるフィラーの平均粒子径に応じて、フィラーの好ましい含有比率も変わり得る。
 フィラーを含有する場合、接着性樹脂(特にポリフッ化ビニリデン系樹脂)の重量平均分子量、凝固液に浸漬して固化するときの凝固温度、凝固液への浸漬時に相分離を誘発させる相分離剤の濃度、あるいはフィラーの平均粒子径、含有量などを調整することにより、動摩擦係数及びRzの値を上記範囲に調整することができる。
 一方、接着性多孔質層がフィラーを積極的に含有していない場合は、電極との接着性、工程歩留まり、及び電解液の保持性のバランスをより適切なものとする観点から、前記動摩擦係数は、好ましくは0.2以上0.6以下の範囲であり、前記十点平均粗さRzは、好ましくは1.0μm以上6.0μm以下である。この場合、動摩擦係数の下限値としては、0.22以上がより好ましい。動摩擦係数の上限値としては0.55以下がより好ましく、0.50以下がさらに好ましい。十点平均粗さRzの下限値としては、1.1μm以上がより好ましく、1.2μm以上がさらに好ましい。十点平均粗さRzの上限値としては、4.0μm以下がより好ましい。このとき、フィラーの接着性多孔質層中におけるフィラーの好ましい含有比率は、全固形分に対して1質量%未満であり、更に好ましくはフィラーを含有しない(ゼロ質量%)場合である。
 接着性多孔質層がフィラーを積極的に含有していない場合は、接着性樹脂(特にポリフッ化ビニリデン系樹脂)の重量平均分子量、凝固液に浸漬して固化するときの凝固温度、凝固液への浸漬時に相分離を誘発させる相分離剤の濃度などを調整することにより、動摩擦係数及びRzの値を上記範囲に調整することができる。
[多孔質基材]
 本発明における多孔質基材は、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜や、不織布、紙状シート等の繊維状物からなる多孔性シート、あるいは、これら微多孔膜や多孔性シートに他の多孔性層を1層以上積層した複合多孔質シート等が挙げられる。なお、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材を構成する材料は、電気絶縁性を有する材料であれば、有機材料及び無機材料のいずれでもよい。多孔質基材を構成する材料は、多孔質基材にシャットダウン機能を付与する観点からは、熱可塑性樹脂が好ましい。
 ここで、シャットダウン機能とは、電池温度が高まった場合に、構成材料が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。
 前記熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、特にポリオレフィンが好ましい。
 ポリオレフィンを用いた多孔質基材としては、ポリオレフィン微多孔膜が好適である。
 ポリオレフィン微多孔膜としては、従来の非水電解質電池用セパレータに適用されているポリオレフィン微多孔膜の中から、充分な力学物性とイオン透過性を有するものを好適に用いることができる。
 ポリオレフィン微多孔膜は、シャットダウン機能を発現する観点から、ポリエチレンを含むことが好ましく、ポリエチレンの含有量としては95質量%以上が好ましい。
 上記のほか、高温に曝されたときに容易に破膜しない程度の耐熱性を付与す観点では、ポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜が好適である。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つの層において混在している微多孔膜が挙げられる。このような微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95質量%以上のポリエチレンと5質量%以下のポリプロピレンとを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点では、ポリオレフィン微多孔膜が2層以上の積層構造を備え、少なくとも1層はポリエチレンを含み、少なくとも1層はポリプロピレンを含む構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィン微多孔膜に含まれるポリオレフィンは、重量平均分子量が10万~500万のものが好適である。重量平均分子量が10万以上であると、十分な力学物性を確保できる。一方、重量平均分子量が500万以下であると、シャットダウン特性が良好であるし、膜の成形がしやすい。
 ポリオレフィン微多孔膜は、例えば以下の方法で製造可能である。すなわち、(i)溶融したポリオレフィン樹脂をT-ダイから押し出し、シート化し、(ii)このシートに結晶化処理を施した後、(iii)延伸し、さらに(iv)延伸後のシートを熱処理することで、微多孔膜を形成する方法が挙げられる。また別の方法として、(i)流動パラフィンなどの可塑剤と一緒にポリオレフィン樹脂を溶融し、これをT-ダイから押し出し、冷却してシート化した後、(ii)このシートを延伸し、(iii)延伸後のシートから可塑剤を抽出し、さらに(iv)熱処理することで、微多孔膜を形成する方法等も挙げられる。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性高分子;等の繊維状物からなる多孔性シート、又は前記繊維状物の混合物からなる多孔性シートが挙げられる。
 複合多孔質シートとしては、微多孔膜や繊維状物からなる多孔性シートに、機能層を積層した構成を採用できる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる点で好ましい。機能層としては、例えば耐熱性を付与するという観点では、耐熱性樹脂からなる多孔質層や、耐熱性樹脂および無機フィラーからなる多孔質層を採用できる。耐熱性樹脂としては、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン及びポリエーテルイミドから選ばれる1種又は2種以上の耐熱性高分子が挙げられる。無機フィラーとしては、アルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等を好適に使用できる。
 なお、複合化の手法としては、微多孔膜や多孔性シートに機能層を塗工する方法、微多孔膜や多孔性シートと機能層とを接着剤で接合する方法、微多孔膜や多孔性シートと機能層とを熱圧着する方法等が挙げられる。
 多孔質基材の膜厚としては、良好な力学物性と内部抵抗を得る観点から、5μm~25μmの範囲が好適である。
 多孔質基材のガーレ値(JIS P8117)としては、電池の短絡防止や充分なイオン透過性を得る観点から、50秒/100cc以上800秒/100cc以下の範囲が好適である。
 多孔質基材の突刺強度は、製造歩留まりを向上させる観点から、300g以上が好適である。
[接着性多孔質層]
 本発明における接着性多孔質層は、内部に多数の微細孔を有し、これら微細孔が互いに連結された多孔構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層である。
 接着性多孔質層は、多孔質基材の片面又は両面にセパレータの最外層として設けられ、この接着性多孔質層によって電極と接着させることができる。すなわち、接着性多孔質層は、セパレータと電極とを重ねた状態で熱プレスしたときにセパレータを電極に接着させ得る層である。本発明の非水電解質電池用セパレータが前記多孔質基材の片側のみに接着性多孔質層を有する場合、接着性多孔質層は正極又は負極のいずれかに接着される。また、本発明の非水電解質電池用セパレータが前記多孔質基材の両側に接着性多孔質層を有する場合、接着性多孔質層は正極及び負極の双方に接着される。接着性多孔質層は、多孔質基材の片面のみに設けるのみならず両面に設けることで、電池のサイクル特性に優れる点で好ましい。接着性多孔質層が多孔質基材の両面にあることで、セパレータの両面が接着性多孔質層を介して両電極とよく接着するためである。
 本発明においては、接着性多孔質層が多孔質基材の両面に塗布形成されている場合、接着性多孔質層の塗工量は、多孔質基材の両面の合計量として、1.0g/m~3.0g/mが好ましい。ここで、接着性多孔質層の塗工量について「多孔質基材の両面の合計」とは、接着性多孔質層が多孔質基材の片面に設けられている場合は、片面の塗工量であり、接着性多孔質層が多孔質基材の両面に設けられている場合は、両面の塗工量の合計である。
 前記塗工量が1.0g/m以上であると、電極との接着性が良好で、電池のサイクル特性がよい。一方、前記塗工量が3.0g/m以下であると、イオン透過性が良好で、電池の負荷特性がよい。
 接着性多孔質層が多孔質基材の両面に設けられている場合、一方の面の塗工量と他方の面の塗工量との差は、両面合計の塗工量に対して20%以下であることが好ましい。20%以下であると、セパレータがカールしにくいので、その結果、ハンドリング性がよく、またサイクル特性が低下する問題が起きにくい。
 接着性多孔質層の厚さは、多孔質基材の片面において、0.5μm~5μmであることが好ましい。厚さが0.5μm以上であると、電極との接着性が良好になり、電池のサイクル特性が良好である。厚さが5μm以下であると、イオン透過性が良好であり、電池の負荷特性に優れている。接着性多孔質層の厚さは、多孔質基材の片面において、1μm~5μmであることがより好ましく、2μm~5μmであることが更に好ましい。
 本発明において接着性多孔質層は、イオン透過性の観点から十分に多孔化された構造であることが好ましい。具体的には、空孔率が30%~60%であることが好ましい。空孔率が30%以上であると、イオン透過性が良好であり、電池特性により優れる。また、空孔率が60%以下であると、熱プレスにより電極と接着させる際に、多孔質構造が潰れない程度の充分な力学物性が得られる。また、空孔率が60%以下であると、表面開孔率が低くなり、接着性樹脂(好ましくはポリフッ化ビニリデン系樹脂)が占める面積が増えるため、より良好な接着力を確保することができる。なお、接着性多孔質層の空孔率は、30~50%の範囲がより好ましい。
 接着性多孔質層は、平均孔径が1nm~100nmであることが好ましい。接着性多孔質層の平均孔径が100nm以下であると、均一な空孔が均一に分散した多孔質構造が得られ易く、電極との接着点が均一に散在させることができるため、良好な接着性が得られる。その場合、イオンの移動も均一となり、より良好なサイクル特性が得られ、さらに良好な負荷特性が得られる。一方、平均孔径は、均一性という観点からはできるだけ小さいことが望ましいが、1nmより小さい多孔構造を形成することは現実的には難しい。また、接着性多孔質層に電解液を含浸させた場合、樹脂(例えばポリフッ化ビニリデン系樹脂)が膨潤する場合があり、平均孔径が小さ過ぎると、膨潤により孔が閉塞しイオン透過性が損なわれる。このような観点からも。平均孔径は1nm以上であることが好ましい。
 接着性多孔質層の平均孔径としては、20nm~100nmがより好ましい。
 接着性多孔質層におけるポリフッ化ビニリデン系樹脂のフィブリル径は、サイクル特性の観点から、10nm~1000nmの範囲であることが好ましい。
 本発明における接着性多孔質層は、少なくとも接着性樹脂を含有し、好ましくはフィラーを含有する。また、接着性多孔質層は、必要に応じて、更に他の成分を用いて構成することができる。
(接着性樹脂)
 接着性多孔質層に含まれる接着性樹脂は、電極と接着し得るものであれば特に制限されない。例えば、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体、スチレン-ブタジエン共重合体、アクリロニトリル、メタクリロニトリル等のビニルニトリル類の単独重合体又は共重合体、ポリエチレンオキサイド、ポリプロピレンオキサイド等のポリエーテル類、ポリビニルアルコール等が好適である。
 接着性多孔質層は、接着性樹脂を1種のみ含んでもよく、2種以上を含んでもよい。
 接着性多孔質層に含まれる接着性樹脂としては、電極との接着性の観点から、ポリフッ化ビニリデン系樹脂であることが好ましい。
 ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと他の共重合可能なモノマーとの共重合体(ポリフッ化ビニリデン共重合体);これらの混合物;が挙げられる。
 フッ化ビニリデンと共重合可能なモノマーとしては、例えば、テトラフロロエチレン、ヘキサフロロプロピレン(HFP)、トリフロロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられ、1種類又は2種類以上を用いることができる。
 ポリフッ化ビニリデン系樹脂は、乳化重合または懸濁重合により得られる。
 ポリフッ化ビニリデン系樹脂の中では、電極との接着性の観点から、フッ化ビニリデンとヘキサフロロプロピレンとが少なくとも共重合された共重合体であって、モル基準で0.1モル%以上5モル%以下(好ましくは0.5モル%以上2モル%以下)のヘキサフロロプロピレン由来の構造単位を含む共重合体であることがより好ましい。
 接着性樹脂(特にポリフッ化ビニリデン系樹脂)は、重量平均分子量(Mw)が30万~300万の範囲であることが好ましい。重量平均分子量が30万以上であると、接着性多孔質層が電極との接着処理に耐え得る力学物性を確保でき、十分な接着性が得られる。このような観点では接着性樹脂の重量平均分子量は、50万以上が好ましく、60万以上がさらに好ましい。一方、重量平均分子量が300万以下であると、成形時の粘度が高くなり過ぎず成形性及び結晶形成がよく、多孔化が良好である。このような観点では接着性樹脂の重量平均分子量は、200万以下が好ましく、150万以下がさらに好ましい。
 なお、接着性樹脂の重量平均分子量(ダルトン)は、ゲル浸透クロマトグラフィー(以下、GPCともいう。)により下記の条件で測定し、ポリスチレン換算して表した分子量である。
 <条件>
・GPC:Alliance GPC 2000型〔Waters社製〕
・カラム:TSKgel GMH-HT×2 + TSKgel GMH-HTL×2〔東ソー(株)製〕
・移動相溶媒:o-ジクロロベンゼン
・標準試料 :単分散ポリスチレン〔東ソー(株)製〕
・カラム温度:140℃
[フィラー]
 接着性多孔質層は、無機物又は有機物からなるフィラーを含有していてもよい。
 接着性多孔質層がフィラーを含有することで、セパレータ(特に電極と接する接着性多孔質層)の動摩擦係数及びRzを、既述の範囲に調整するのに有効であり、セパレータの滑り性や耐熱性が向上する。
 有機フィラーとしては、例えば、架橋ポリアクリル酸、架橋ポリアクリル酸エステル、架橋ポリメタクリル酸、架橋ポリメタクリル酸エステル、架橋ポリメタクリル酸メチル、架橋ポリシリコーン(ポリメチルシルセスキオキサン等)、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子微粒子;ポリスルホン、ポリアクリロニトリル、アラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子微粒子などが例示できる。また、これらの有機微粒子を構成する有機樹脂(高分子)は、前記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(前記の耐熱性高分子の場合)であってもよい。
 中でも、架橋ポリアクリル酸、架橋ポリアクリル酸エステル、架橋ポリメタクリル酸、架橋ポリメタクリル酸エステル、架橋ポリメタクリル酸メチル、および架橋ポリシリコーン(ポリメチルシルセスキオキサン等)からなる群より選ばれる1種以上の樹脂であることが好ましい。
 無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化ニッケル、水酸化ホウ素などの金属水酸化物;アルミナや酸化マグネシウムやジルコニア等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の炭酸塩;硫酸バリウムや硫酸カルシウム等の硫酸塩;ケイ酸カルシウム、タルク等の粘土鉱物等などが挙げられる。
 中でも金属水酸化物および金属酸化物の少なくとも一方からなることが好ましい。特に、難燃性付与や除電効果の観点から金属水酸化物を用いることが好ましい。なお、上記の各種フィラーは、それぞれ単独で使用しても2種以上を組み合わせて使用してもよい。
 以上の中でも水酸化マグネシウムが好ましい。また、シランカップリング剤等により表面修飾された無機フィラーも使用することができる。
 フィラーは、製造時の滑り性を高めて歩留まりを高め、かつ電極との接着性及び電解液の保持性をも満たすような特性のバランスが図れる観点から、平均粒子径が0.1μm以上5.0μm以下であるものが好ましい。フィラーの平均粒子径は、0.5μm以上3.0μm以下の範囲がより好ましい。
 なお、フィラーの平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定を行なった。無機微粒子の分散媒としては水を用い、分散剤として非イオン性界面活性剤「Triton X-100」を微量用いた。これより得られた体積粒度分布における中心粒子径(D50)を平均粒子径とした。
 フィラーの接着性多孔質層中における含有量は、接着性樹脂に対して、1質量%以上90質量%以下であることが好ましい。フィラーの含有量が1質量%以上であると、動摩擦係数及びRzを既述の範囲に調整しやすく、滑り性が付与されて工程歩留まりの改善に有利であり、電解液の保持にもより優れる。また、フィラーの含有比率が90質量%以下であると、電極との接着性と工程歩留まりと電解液の保持性とのバランスをとる上で好ましい。
 フィラーの含有量は、動摩擦係数及びRzを適切に制御し、電極との接着性と工程歩留まりと電解液の保持性とのバランスを図る観点で、20質量%以上80質量%以下がより好ましい。
[セパレータの諸特性]
 本発明の非水電解質電池用セパレータは、機械強度と電池としたときのエネルギー密度の観点から、全体の膜厚が5μm~35μmであることが好ましい。
 本発明の非水電解質電池用セパレータの空孔率は、機械的強度、ハンドリング性、及びイオン透過性の観点から、30%~60%であることが好ましい。
 本発明の非水電解質電池用セパレータのガーレ値(JIS P8117)は、機械強度と膜抵抗のバランスがよい点で、50秒/100cc~800秒/100ccであることが好ましい。
 本発明の非水電解質電池用セパレータは、イオン透過性の観点から、多孔質基材のガーレ値と、前記多孔質基材上に接着性多孔質層を設けたセパレータのガーレ値との差が、300秒/100cc以下であることが好ましく、150秒/100cc以下であることがより好ましく、100秒/100cc以下であることが更に好ましい。
 本発明の非水電解質電池用セパレータの膜抵抗は、電池の負荷特性の観点から、1ohm・cm~10ohm・cmであることが好ましい。ここで膜抵抗とは、セパレータに電解液を含浸させたときの抵抗値であり、交流法にて測定される。当然、電解液の種類、温度によって異なるが、上記の数値は電解液として1M LiBF-プロピレンカーボネート/エチレンカーボネート(質量比1/1)を用い、20℃にて測定した数値である。
 本発明の非水電解質電池用セパレータの曲路率は、イオン透過性の観点から、1.5~2.5であることが好ましい。
[セパレータの製造方法]
 本発明の非水電解質電池用セパレータは、例えば、ポリフッ化ビニリデン系樹脂等の樹脂を含む塗工液を多孔質基材上に塗工し塗工層を形成し、次いで塗工層の樹脂を固化させることで、接着性多孔質層を多孔質基材上に一体的に形成する方法で製造される。
 以下、接着性多孔質層をポリフッ化ビニリデン系樹脂で形成する場合について説明する。
 接着性樹脂としてポリフッ化ビニリデン系樹脂を用いた接着性多孔質層は、例えば以下の湿式塗工法によって好適に形成することができる。
 湿式塗工法は、(i)ポリフッ化ビニリデン系樹脂を適切な溶媒に溶解させて塗工液を調製する工程、(ii)この塗工液を多孔質基材に塗工する工程、(iii)当該多孔質基材を適切な凝固液に浸漬させることで、相分離を誘発しつつポリフッ化ビニリデン系樹脂を固化させる工程、(iv)水洗工程、および(v)乾燥工程を行って、多孔質基材上に多孔質層を形成する製膜法である。本発明に好適な湿式塗工法の詳細は、以下のとおりである。
 塗工液の調製に用いる、ポリフッ化ビニリデン系樹脂を溶解する溶媒(以下、「良溶媒」とも称する。)としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の極性アミド溶媒が好適に用いられる。
 良好な多孔構造を形成する観点からは、良溶媒に加えて相分離を誘発させる相分離剤を混合させることが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。相分離剤は、塗工に適切な粘度が確保できる範囲で添加することが好ましい。
 溶媒としては、良好な多孔構造を形成する観点から、良溶媒を60~95質量%、相分離剤を5~40質量%含む混合溶媒が好ましい。
 塗工液は、良好な多孔構造を形成する観点から、ポリフッ化ビニリデン系樹脂が3質量%~10質量%の濃度で含まれていることが好ましい。
 接着性多孔質層にフィラーやその他の成分を含有させる場合は、塗工液中に混合あるいは溶解させればよい。
 凝固液は、塗工液の調製に用いた良溶媒と相分離剤、及び水から構成されるのが一般的である。良溶媒と相分離剤の混合比はポリフッ化ビニリデン系樹脂の溶解に用いた混合溶媒の混合比に合わせるのが生産上好ましい。水の濃度は40質量%~90質量%であることが、多孔構造の形成および生産性の観点から適切である。凝固液の温度は0~43℃であることが好ましい。
 多孔質基材への塗工液の塗工は、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーターなど従来の塗工方式を適用してもよい。接着性多孔質層を多孔質基材の両面に形成する場合、塗工液を両面同時に基材へ塗工することが生産性の観点から好ましい。
 接着性多孔質層は、上述した湿式塗工法以外にも、乾式塗工法で製造し得る。ここで、乾式塗工法とは、例えばポリフッ化ビニリデン系樹脂と溶媒を含んだ塗工液を多孔質基材に塗工し、この塗工層を乾燥させて溶媒を揮発除去することにより、多孔層を得る方法である。ただし、乾式塗工法は湿式塗工法と比べて塗工層が緻密になり易いので、良好な多孔質構造を得られる点で湿式塗工法のほうが好ましい。
 本発明の非水電解質電池用セパレータは、接着性多孔質層を独立したシートとして作製し、この接着性多孔質層を多孔質基材に重ねて、熱圧着や接着剤によって複合化する方法によっても製造し得る。接着性多孔質層を独立したシートとして作製する方法としては、樹脂を含む塗工液を剥離シート上に塗工し、上述した湿式塗工法あるいは乾式塗工法を適用して接着性多孔質層を形成し、剥離シートから接着性多孔質層を剥離する方法が挙げられる。
<非水電解質電池>
 本発明の非水電解質電池は、リチウムのドープ・脱ドープにより起電力を得る非水電解質電池であり、正極と、負極と、既述の本発明の非水電解質電池用セパレータとを設けて構成されている。なお、ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
 非水電解質電池は、負極と正極とがセパレータを介して対向した構造体に電解液が含浸された電池要素が、外装材内に封入された構造を有している。本発明の非水電解質電池は、非水電解質二次電池、特にはリチウムイオン二次電池に好適である。
 本発明の非水電解質電池は、セパレータとして、既述の本発明の非水電解質電池用セパレータを備えることにより、電極とセパレータ間の接着性に優れると共に、製造工程での歩留まりが高く、電解液の保持性にも優れている。したがって、本発明の非水電解質電池は、安定的なサイクル特性を発現するものである。
 正極は、正極活物質及びバインダー樹脂を含む活物質層が集電体上に成形された構造とすることができる。活物質層は、さらに導電助剤を含んでもよい。
 正極活物質としては、例えばリチウム含有遷移金属酸化物等が挙げられ、具体的にはLiCoO、LiNiO、LiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3、LiMn、LiFePO、LiCo1/2Ni1/2、LiAl1/4Ni3/4等が挙げられる。
 バインダー樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体などが挙げられる。
 導電助剤としては、例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末といった炭素材料が挙げられる。
 集電体としては、例えば厚さ5μm~20μmの、アルミ箔、チタン箔、ステンレス箔等が挙げられる。
 本発明の非水電解質電池において、セパレータがポリフッ化ビニリデン系樹脂を含む接着性多孔質層を備え、該接着性多孔質層を正極側に配置した場合、ポリフッ化ビニリデン系樹脂が耐酸化性に優れるため、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3等の正極活物質を適用しやすく有利である。
 負極は、負極活物質及びバインダー樹脂を含む活物質層が集電体上に成形された構造としてよい。活物質層は、さらに導電助剤を含んでもよい。
 負極活物質としては、例えばリチウムを電気化学的に吸蔵し得る材料が挙げられ、具体的には炭素材料、シリコン、スズ、アルミニウム、ウッド合金等が挙げられる。
 バインダー樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体などが挙げられる。
 導電助剤としては、例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末といった炭素材料が挙げられる。
 集電体としては、例えば厚さ5μm~20μmの、銅箔、ニッケル箔、ステンレス箔等が挙げられる。
 また、上記の負極に代えて、金属リチウム箔を負極として用いてもよい。
 電解液は、リチウム塩を非水系溶媒に溶解した溶液である。
 リチウム塩としては、例えばLiPF、LiBF、LiClO等が挙げられる。
 非水系溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、フロロエチレンカーボネート、ジフロロエチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、及びそのフッ素置換体等の鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル;が挙げられ、これらは単独で用いても混合して用いてもよい。
 電解液としては、環状カーボネートと鎖状カーボネートとを質量比(環状カーボネート/鎖状カーボネート)20/80~40/60で混合し、リチウム塩を0.5M~1.5M溶解したものが好適である。
 外装材としては、金属缶やアルミラミネートフィルム製のパック等が挙げられる。
 電池の形状は角型、円筒型、コイン型等があるが、本発明の非水電解質電池用セパレータはいずれの形状にも好適である。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。
[測定・評価]
 以下に示す実施例及び比較例で作製したセパレータ及びリチウムイオン二次電池について、以下の測定、評価を行なった。測定及び評価の結果は、下記の表1にまとめて示す。
(膜厚)
 膜厚(μm)は、接触式の厚み計(ミツトヨ社製LITEMATIC)にて20点測定し、これを算術平均することで求めた。測定端子は直径5mmの円柱状のものを用い、測定中に7gの荷重が印加されるように調整した。
(フィラーの平均粒子径)
 フィラーの平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定を行なった。無機微粒子の分散媒としては水を用い、分散剤として非イオン性界面活性剤「Triton X-100」を微量用いた。これより得られた体積粒度分布における中心粒子径(D50)を平均粒子径とした。
(接着性樹脂の重量平均分子量)
 接着性樹脂の重量平均分子量は、下記の条件で測定し、ポリスチレン換算して得た。
 <条件>
・GPC:Alliance GPC 2000型〔Waters社製〕
・カラム:TSKgel GMH-HT×2 + TSKgel GMH-HTL×2〔東ソー(株)製〕
・移動相溶媒:o-ジクロロベンゼン
・標準試料 :単分散ポリスチレン〔東ソー(株)製〕
・カラム温度:140℃
(動摩擦係数)
 セパレータの接着性多孔質層の表面を、ヘイドン社製のサーフェイスプロパティテスターを用い測定した。
(十点平均粗さ(Rz))
 セパレータの接着性多孔質層の表面を、小坂研究所社製のET4000を用い、JIS B 0601-1994に準じて測定した。測定は、測定長:1.25mm、測定速度:0.1mm/秒、温湿度:25℃、50%RHの条件にて行った。
(電極との接着性)
(1)正極及び負極の作製
 後述する「非水電解質電池の作製」と同様の方法で、正極及び負極を作製した。
(2)接着性テストの方法
 作製した正極と負極とをセパレータを介して接合させこれに電解液をしみ込ませ、電解液をしみ込ませた正極/セパレータ/負極接合体をアルミラミネートパックに真空シーラーを用いて封入し試験セルを作製した。ここで、電解液は1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7質量比)を用いた。この試験セルを熱プレス機によりプレスした後にセルを解体し、剥離強度を測定することで、接着性を評価した。プレス条件は、印加荷重が電極1cm当たり20kgの荷重がかかる条件で、温度は90℃、時間は2分とした。
 剥離強度は、セパレータから負極と正極とをそれぞれ引張試験機(A&D社製、RTC-1225A)を用いて、20mm/minの速度でセパレータの面方向に対して90度の方向に引張って剥離する方法により行ない、測定した。接着性は、下記表1に比較例2の剥離力を100とした場合の相対値で示した。
(電解液の保持性)
 100mm×50mmに切り出したセパレータの重量をW0とし、電解液1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7質量比)に浸漬して30分後に取り出しセパレータ表面の電解液を拭き取った後に測定した重量をW1とし、電解液の保持量をW1-W0で表した。
 評価は、実施例1の保持量(W1-W0)を100とした場合における相対値を求め、保持量の相対値が90以上の場合をAA、60以上90未満のものをA、60未満のものをBとして行なった。
(工程歩留まり)
 ロール状に巻いたセパレータを送り出し、複数のロールを介して搬送し再び別のロールに巻き取るロールトゥロールプロセス(Roll-to-roll processing)を利用して、搬送の直進性や皺や折れを観察した。比較例1の巻き取りの状態を「A」、それよりも直進性に優れ皺や折れが少ない場合は「AA」、皺や折れが多くなると「B」、皺や折れが更に多くなると「C」とした。これらの搬送性が良いほど工程歩留りは良くなるため、搬送性を工程歩留りの指標とした。
[実施例1]
(セパレータの作製)
 ポリフッ化ビニリデン系樹脂として、フッ化ビニリデン/ヘキサフロロプロピレン共重合体(=98.9/1.1[モル比]、重量平均分子量:180万)のポリマーを用いた。また、無機フィラーとして、平均粒子径0.8μmの水酸化マグネシウムを用い、前記フィラーの質量比率を50%(=フィラー/(フィラー+ポリフッ化ビニリデン系樹脂))とした。
 ポリフッ化ビニリデン系樹脂と上記の比率の水酸化マグネシウムとを、ジメチルアセトアミドとトリプロピレングリコールとの混合溶媒(=7/3[質量比])に5質量%の濃度となるように溶解し、塗工液を調製した。得られた塗工液を、ポリエチレン微多孔膜(厚さ:9μm、ガーレ値:160秒/100cc、空孔率:43%)の両面に等量塗工した。続いて、水とジメチルアセトアミドとトリプロピレングリコールとを混合した凝固液(=57/30/13[質量比])を用意し、この凝固液(40℃)に浸漬し、固化させた。
 次に、水洗、乾燥させて、ポリオレフィン系微多孔膜の両面にポリフッ化ビニリデン系樹脂からなる接着性多孔質層が形成されたセパレータを得た。
(非水電解質電池の作製)
(1)負極の作製
 負極活物質である人造黒鉛300g、バインダーであるスチレン-ブタジエン共重合体の変性体を40質量%含む水溶性分散液7.5g、増粘剤であるカルボキシメチルセルロース3g、及び適量の水を双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ10μmの銅箔に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
(2)正極の作製
 正極活物質であるコバルト酸リチウム粉末89.5g、導電助剤であるアセチレンブラック4.5g、及びバインダーであるポリフッ化ビニリデン6gを、ポリフッ化ビニリデンの濃度が6質量%となるようにN-メチル-ピロリドン(NMP)に溶解し、双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
(3)電池の作製
 前記の正極と負極にリードタブを溶接した後、正極、セパレータ、負極をこの順に重ねて接合し、電解液を染み込ませてアルミパック中に真空シーラーを用いて封入した。電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(DMC)とを3:7の質量比(=EC:DMC)で混合した1M LiPF混合溶液を用いた。
 電解液が封入されたアルミパックに対して、熱プレス機により電極1cm当たり20kgの荷重をかけ、90℃、2分間の熱プレスを行なうことで、試験電池(リチウムイオン二次電池)を作製した。
[実施例2~3]
 実施例1において、フィラー質量比を表1に示す値に変更することで動摩擦係数及びRzを調節したこと以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例4~7]
 実施例1において、ポリフッ化ビニリデン系樹脂の重量平均分子量を表1に示す値に変更することで動摩擦係数及びRzを調節したこと以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例8~9]
 実施例1において、フィラーを平均粒径2μmの架橋ポリメタクリル酸メチルに変え、フィラー質量比を表1に示す値に変更することで動摩擦係数及びRzを調節したこと以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例10]
 実施例3において、フィラーを平均粒径3μmの架橋ポリメタクリル酸メチルに変更することで動摩擦係数及びRzを調節したこと以外は、実施例3と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例11]
 実施例1において、ポリフッ化ビニリデン系樹脂と水酸化マグネシウムからなるスラリーを片面に塗工すること以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例12]
 実施例1において、フィラーを使用せず、水とジメチルアセトアミドとトリプロピレングリコールとを混合した凝固液(水/ジメチルアセトアミド/トリプロピレングリコール=57/31/12[質量比])を用いることで動摩擦係数及びRzを調節したこと以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例13]
 実施例12において、相分離剤であるトリプロピレングリコールの比率および凝固温度を表1の通り調整することで動摩擦係数及びRzを調節したこと以外は、実施例12と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例14]
 実施例1において、フッ化ビニリデン樹脂をスチレン-ブタジエン共重合体の水系エマルジョンに変え、ポリマーと無機フィラーの合計重量における無機フィラーの含有量を50質量%に調整したスラリーを、前記ポリエチレン微多孔膜に塗布し、凝固液を用いずに乾燥させることで、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。得られたセパレータの厚みは12μm、動摩擦係数は0.40、Rzは4.0μmであった。
[比較例1]
 実施例1において、フィラー質量比を90%に変更することで動摩擦係数及びRzを調節したこと以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[比較例2]
 実施例8において、フィラー質量比を50%に変更することで動摩擦係数及びRzを調節したこと以外は、実施例8と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[比較例3~4]
 実施例12において、相分離剤であるトリプロピレングリコールの比率および凝固温度を調整することで動摩擦係数及びRzを調節したこと以外は、実施例12と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[比較例5]
 実施例10において、フィラーの質量比を30%に変更することで動摩擦係数及びRzを調節したこと以外は、実施例10と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[比較例6]
 ポリフッ化ビニリデン(Kynar720)を、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)との混合溶媒(DMAc:TPG=50:50[質量比])に溶解させ、塗工用スラリーを得た。なお、この塗工用スラリーは、ポリフッ化ビニリデンの濃度が5.5質量%である。
 この塗工用スラリーを用いたこと以外は、実施例1と同様にしてセパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
Figure JPOXMLDOC01-appb-T000001
 前記表1に示すように、実施例では、比較例に比べ、セパレータの動摩擦係数及びRzを所定の範囲に調節することで、歩留まりが高く、電極との接着性及び電解液の保持性に優れていた。なお、実施例14についても、実施例1と同程度の評価結果が得られた。
 

Claims (6)

  1.  多孔質基材と、前記多孔質基材の片面又は両面に設けられ、接着性樹脂を含む接着性多孔質層とを有し、
     接着性多孔質層の表面における、動摩擦係数が0.1以上0.6以下であり、十点平均粗さ(Rz)が1.0μm以上8.0μm以下である、非水電解質電池用セパレータ。
  2.  前記接着性樹脂は、重量平均分子量が30万以上300万以下である請求項1に記載の非水電解質電池用セパレータ。
  3.  前記接着性樹脂は、フッ化ビニリデンとヘキサフロロプロピレンとが少なくとも共重合された共重合体であって、モル基準で0.1%以上5%以下のヘキサフロロプロピレン由来の構造単位を含むポリフッ化ビニリデン系樹脂である請求項1または請求項2に記載の非水電解質電池用セパレータ。
  4.  前記接着性多孔質層は、フィラーを含み、前記動摩擦係数が0.1以上0.4以下であり、十点平均粗さRzが1.5μm以上8.0μm以下である請求項1~請求項3のいずれか1項に記載の非水電解質電池用セパレータ。
  5.  前記接着性多孔質層は、フィラーの含有量が前記接着性樹脂に対して1質量%未満であり、前記動摩擦係数が0.2以上0.6以下であり、十点平均粗さRzが1.0μm以上6.0μm以下である請求項1~請求項3のいずれか1項に記載の非水電解質電池用セパレータ。
  6.  正極と、負極と、前記正極及び前記負極の間に配置された請求項1~請求項5のいずれか1項に記載の非水電解質電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水電解質電池。
     
PCT/JP2013/070541 2012-07-30 2013-07-30 非水電解質電池用セパレータ及び非水電解質電池 WO2014021293A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014510341A JP5624251B2 (ja) 2012-07-30 2013-07-30 非水電解質電池用セパレータ及び非水電解質電池
US14/413,586 US20150207122A1 (en) 2012-07-30 2013-07-30 Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
KR1020157001090A KR101577383B1 (ko) 2012-07-30 2013-07-30 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
CN201380040439.0A CN104521030B (zh) 2012-07-30 2013-07-30 非水电解质电池用隔膜及非水电解质电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-168979 2012-07-30
JP2012168979 2012-07-30

Publications (1)

Publication Number Publication Date
WO2014021293A1 true WO2014021293A1 (ja) 2014-02-06

Family

ID=50027967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070541 WO2014021293A1 (ja) 2012-07-30 2013-07-30 非水電解質電池用セパレータ及び非水電解質電池

Country Status (5)

Country Link
US (1) US20150207122A1 (ja)
JP (1) JP5624251B2 (ja)
KR (1) KR101577383B1 (ja)
CN (1) CN104521030B (ja)
WO (1) WO2014021293A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2557182A1 (es) * 2014-07-21 2016-01-22 Jofemar, S.A. Membrana polimérica para su utilización como separador en baterías de flujo
JP2016093941A (ja) * 2014-11-13 2016-05-26 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2016139490A (ja) * 2015-01-26 2016-08-04 旭化成株式会社 電池用セパレータ、及び非水電解液電池
JP2016139489A (ja) * 2015-01-26 2016-08-04 旭化成株式会社 電池用セパレータ、及び非水電解液電池
KR20170027715A (ko) 2014-06-30 2017-03-10 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
WO2017082259A1 (ja) * 2015-11-11 2017-05-18 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US9711776B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
JP2019013886A (ja) * 2017-07-07 2019-01-31 旭化成株式会社 複合分離膜
WO2019107521A1 (ja) 2017-11-30 2019-06-06 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US10811654B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
US11777175B2 (en) 2015-07-02 2023-10-03 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
KR20240006493A (ko) 2021-05-10 2024-01-15 도레이 카부시키가이샤 다공성 필름, 이차 전지용 세퍼레이터 및 이차 전지
KR20240007116A (ko) 2021-05-10 2024-01-16 도레이 카부시키가이샤 다공성 필름, 이차 전지용 세퍼레이터 및 이차 전지
WO2024111323A1 (ja) * 2022-11-22 2024-05-30 パナソニックIpマネジメント株式会社 二次電池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172083B2 (ja) * 2014-08-04 2017-08-02 トヨタ自動車株式会社 リチウム固体二次電池およびその製造方法
US20170155114A1 (en) * 2015-11-30 2017-06-01 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
JPWO2017130574A1 (ja) * 2016-01-25 2018-12-20 株式会社ダイセル 二次電池
KR102011906B1 (ko) * 2016-04-28 2019-08-19 삼성에스디아이 주식회사 다공성 접착층을 포함하는 분리막 및 이를 이용한 리튬 이차 전지
US10023266B2 (en) 2016-05-11 2018-07-17 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmissions
JP6566265B2 (ja) * 2016-09-09 2019-08-28 トヨタ自動車株式会社 密閉型二次電池
CN110679007B (zh) * 2017-05-30 2023-02-28 东丽株式会社 隔膜
JP6663469B2 (ja) * 2017-10-24 2020-03-11 住友化学株式会社 非水電解液二次電池用多孔質層
EP3875397B1 (en) * 2018-11-02 2023-08-30 Zeon Corporation Container
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
CN111834584A (zh) * 2019-04-16 2020-10-27 住友化学株式会社 非水电解液二次电池用多孔层
CN112002865A (zh) * 2020-08-25 2020-11-27 苏州捷力新能源材料有限公司 一种有机/无机复合多孔隔膜
CN112490588A (zh) * 2020-12-11 2021-03-12 易佰特新能源科技有限公司 一种电池隔离膜及含该隔离膜的锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127989B2 (ja) * 2001-09-12 2008-07-30 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2009227819A (ja) * 2008-03-24 2009-10-08 Toray Ind Inc ポリプロピレン多孔性フィルム、その製造方法、および蓄電デバイス
JP2012014914A (ja) * 2010-06-30 2012-01-19 Asahi Kasei E-Materials Corp 微多孔膜及びその製造方法、並びに非水電解液2次電池用セパレータ
JP2012119224A (ja) * 2010-12-02 2012-06-21 Teijin Ltd 非水電解質電池用セパレータ及び非水電解質電池
WO2013058371A1 (ja) * 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743876B2 (en) * 1997-02-28 2004-06-01 Atofina Chemicals, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene having reduced extractable content and improved solution clarity
US6080507A (en) * 1998-04-13 2000-06-27 Celgard Inc. Trilayer battery separator
US6607631B1 (en) * 2000-09-08 2003-08-19 Closure Medical Corporation Adhesive compositions with reduced coefficient of friction
US20030036085A1 (en) * 2002-08-19 2003-02-20 Salinaro Richard F Membranes
KR100573358B1 (ko) * 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
JP2006120462A (ja) 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池
CN104393219B (zh) * 2007-06-19 2017-08-29 帝人株式会社 非水系二次电池用隔膜、其制造方法和非水系二次电池
KR100877161B1 (ko) * 2007-09-17 2009-01-07 코오롱글로텍주식회사 열 안정성이 우수한 고출력 이차전지용 다공성 분리막 및그 제조 방법
JP5500424B2 (ja) * 2008-12-24 2014-05-21 三菱樹脂株式会社 電池用セパレータおよび非水系リチウム二次電池
US8785032B2 (en) * 2011-06-02 2014-07-22 Mitsubishi Plastics, Inc. Multilayer porous film, separator for batteries, and battery
JP5910164B2 (ja) * 2012-02-28 2016-04-27 日産自動車株式会社 非水電解質二次電池
US20150111085A1 (en) * 2012-05-09 2015-04-23 Kyushu University, National University Corporation Separator for Electrochemical Element and Fabrication Method for Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127989B2 (ja) * 2001-09-12 2008-07-30 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2009227819A (ja) * 2008-03-24 2009-10-08 Toray Ind Inc ポリプロピレン多孔性フィルム、その製造方法、および蓄電デバイス
JP2012014914A (ja) * 2010-06-30 2012-01-19 Asahi Kasei E-Materials Corp 微多孔膜及びその製造方法、並びに非水電解液2次電池用セパレータ
JP2012119224A (ja) * 2010-12-02 2012-06-21 Teijin Ltd 非水電解質電池用セパレータ及び非水電解質電池
WO2013058371A1 (ja) * 2011-10-21 2013-04-25 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714723B2 (en) 2014-06-30 2020-07-14 Teijin Limited Separator for a non-aqueous secondary battery, and non-aqueous secondary battery
KR20170027715A (ko) 2014-06-30 2017-03-10 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
ES2557182A1 (es) * 2014-07-21 2016-01-22 Jofemar, S.A. Membrana polimérica para su utilización como separador en baterías de flujo
US9711776B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9711775B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9865857B2 (en) 2014-08-29 2018-01-09 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US10014506B2 (en) 2014-08-29 2018-07-03 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
JP2016093941A (ja) * 2014-11-13 2016-05-26 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2016139490A (ja) * 2015-01-26 2016-08-04 旭化成株式会社 電池用セパレータ、及び非水電解液電池
JP2016139489A (ja) * 2015-01-26 2016-08-04 旭化成株式会社 電池用セパレータ、及び非水電解液電池
US11777175B2 (en) 2015-07-02 2023-10-03 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JP6171117B1 (ja) * 2015-11-11 2017-07-26 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US10811654B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2017082259A1 (ja) * 2015-11-11 2017-05-18 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2019013886A (ja) * 2017-07-07 2019-01-31 旭化成株式会社 複合分離膜
WO2019107521A1 (ja) 2017-11-30 2019-06-06 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR20240006493A (ko) 2021-05-10 2024-01-15 도레이 카부시키가이샤 다공성 필름, 이차 전지용 세퍼레이터 및 이차 전지
KR20240007116A (ko) 2021-05-10 2024-01-16 도레이 카부시키가이샤 다공성 필름, 이차 전지용 세퍼레이터 및 이차 전지
WO2024111323A1 (ja) * 2022-11-22 2024-05-30 パナソニックIpマネジメント株式会社 二次電池

Also Published As

Publication number Publication date
JP5624251B2 (ja) 2014-11-12
JPWO2014021293A1 (ja) 2016-07-21
US20150207122A1 (en) 2015-07-23
CN104521030A (zh) 2015-04-15
CN104521030B (zh) 2016-04-06
KR20150032297A (ko) 2015-03-25
KR101577383B1 (ko) 2015-12-14

Similar Documents

Publication Publication Date Title
JP5624251B2 (ja) 非水電解質電池用セパレータ及び非水電解質電池
JP6171117B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP5643465B2 (ja) 非水電解質電池用セパレータ及び非水電解質電池
US10074840B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
US9065119B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5670811B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5603522B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP5964951B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
WO2016098684A1 (ja) 非水電解質電池用セパレータ、非水電解質電池、および、非水電解質電池の製造方法
JP5952509B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP5745174B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5612797B1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
WO2013058367A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2013058371A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
KR20200108418A (ko) 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
WO2014021289A1 (ja) 非水電解質電池用セパレータ、非水電解質電池、および、非水電解質電池の製造方法
JP2014026946A (ja) 非水電解質電池用セパレータ及び非水電解質電池
JP2014026947A (ja) 非水電解質電池用セパレータ及び非水電解質電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380040439.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014510341

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14413586

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157001090

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825333

Country of ref document: EP

Kind code of ref document: A1