WO2014021112A1 - スイッチング素子ユニット - Google Patents

スイッチング素子ユニット Download PDF

Info

Publication number
WO2014021112A1
WO2014021112A1 PCT/JP2013/069492 JP2013069492W WO2014021112A1 WO 2014021112 A1 WO2014021112 A1 WO 2014021112A1 JP 2013069492 W JP2013069492 W JP 2013069492W WO 2014021112 A1 WO2014021112 A1 WO 2014021112A1
Authority
WO
WIPO (PCT)
Prior art keywords
element unit
terminal
series
switching element
negative electrode
Prior art date
Application number
PCT/JP2013/069492
Other languages
English (en)
French (fr)
Inventor
戸谷浩久
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US14/409,848 priority Critical patent/US20150326221A1/en
Priority to CN201380027901.3A priority patent/CN104335307A/zh
Priority to DE112013002474.8T priority patent/DE112013002474T5/de
Publication of WO2014021112A1 publication Critical patent/WO2014021112A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32265Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/40227Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40265Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a switching element unit including a switching element and a diode element.
  • Patent Document 1 In semiconductor integrated circuits, it is necessary to prevent malfunctions due to switching noise. For preventing such malfunction, there is a technique described in, for example, JP-A-8-181445 (Patent Document 1). In the description of the background art section, reference numerals in Patent Document 1 are quoted in []. In FIG. 1 of Patent Document 1, an LSI chip [11] is arranged on a printed wiring board [14] via a ceramic multilayer substrate [20], and a capacitor section [20] is placed inside the ceramic multilayer substrate [20]. 23] is described. As a result, as described in paragraphs 0016 to 0017 of the document, switching noise is filtered by the capacitor unit [23], and it is possible to prevent the LSI chip [11] from malfunctioning.
  • a smoothing capacitor that suppresses fluctuations in the DC voltage supplied to the series element unit.
  • the capacitor section [23] described in Patent Document 1 is provided for the purpose of preventing malfunction of the LSI chip [11], and Patent Document 1 describes a smoothing capacitor. There is no.
  • JP-A-8-181445 (paragraphs 0016 to 0017, FIG. 1, etc.)
  • the switching element unit including a smoothing capacitor is characterized in that the smoothing capacitor is a ceramic capacitor in which a dielectric portion interposed between electrodes is formed of a ceramic material, and the dielectric is disposed on an outer surface of the smoothing capacitor.
  • An element arrangement surface formed integrally with a portion; a first plane intersecting the element arrangement surface at an end of the element arrangement surface on one side in a reference direction set along the element arrangement surface; A second plane intersecting the element arrangement plane at the end of the element arrangement plane on the other side in the reference direction,
  • the positive electrode terminal of the smoothing capacitor is formed on a plane
  • the negative electrode terminal of the smoothing capacitor is formed on the second plane
  • the element arrangement surface is electrically connected to the positive electrode terminal
  • a connection electrode and a negative electrode side connection electrode electrically connected to the negative electrode terminal are formed, and the switching element and the diode element constituting the series element unit are arranged on the element arrangement surface.
  • the positive electrode side terminal portion of the series element unit and the positive electrode side connection electrode are electrically connected
  • the negative electrode side terminal portion of the series element unit and the negative electrode side connection electrode are electrically connected. It is in.
  • the electrical connection that electrically connects the series element unit and the smoothing capacitor as compared with the case where the switching element and the diode element constituting the series element unit are arranged separately from the smoothing capacitor.
  • the length of the connection path and the length of the electrical connection path in the series element unit can be kept short.
  • route can be suppressed small, and the surge voltage (temporary voltage rise part) accompanying the switching operation of a switching element can be suppressed low.
  • power loss that causes heat generation of the switching element can be reduced according to a decrease in surge voltage, and the cooling unit necessary for heat dissipation can be simplified to reduce the size of the entire unit. .
  • the element arrangement surface is formed integrally with the dielectric portion of the smoothing capacitor, the element arrangement surface can be formed simultaneously with the dielectric portion.
  • the positive electrode side connection electrode or the negative electrode side connection electrode is formed of the same material as the internal electrode of the smoothing capacitor, or when the positive electrode side connection electrode or the negative electrode side connection electrode is formed of a material having a melting point higher than the internal electrode.
  • the dielectric portion of the smoothing capacitor is formed by firing, for example, the positive electrode side connection electrode and the negative electrode side connection electrode can be simultaneously formed. Thereby, the manufacturing process of a switching element unit can be simplified.
  • a positive side internal electrode extending from the positive terminal to the negative terminal side in the reference direction and a negative side internal electrode extending from the negative terminal to the positive terminal side in the reference direction are provided inside the smoothing capacitor.
  • a formed configuration is preferable.
  • the extending direction of the positive side internal electrode and the extending direction of the negative side internal electrode can be set in a direction parallel to the element arrangement surface, the entire unit in the direction orthogonal to the element arrangement surface can be obtained. It becomes easy to reduce the size.
  • the positive electrode side connection electrode is connected to the negative electrode terminal and the negative electrode side in the entire region in the reference orthogonal direction on the element arrangement surface with a direction orthogonal to the reference direction along the element arrangement surface as a reference orthogonal direction. It is preferable that the configuration is such that there is no portion disposed between the electrode and the reference direction.
  • the series element unit and the smoothing capacitor are electrically connected as compared with the case where the positive electrode side connection electrode has a portion disposed between the negative electrode terminal and the negative electrode side connection electrode in the reference direction. It becomes easy to keep the length of the electrical connection path short.
  • a connection portion between the switching element and the diode element constituting the series element unit is an intermediate connection portion, and the intermediate connection portions of the plurality of series element units are electrically connected to each other in series.
  • An element unit set is configured, and each of the plurality of switching elements included in the same series element unit set has the same series, with a direction orthogonal to the reference direction along the element arrangement surface being a reference orthogonal direction. It is preferable that the diode elements constituting the element unit be arranged on the same side in the reference direction or on the same side in the reference orthogonal direction.
  • a plurality of switching elements included in the same series element unit set can be arranged side by side in the reference direction or the reference orthogonal direction. Therefore, it becomes easy to simplify the wiring structure for electrically connecting the control terminal for controlling each switching element to the control unit that controls each switching element.
  • the positive electrode side element disposed on the positive electrode side of the switching element and the diode element constituting the series element unit is more positive in the reference direction than the negative electrode side element disposed on the negative electrode side.
  • a configuration arranged on the terminal side is preferable.
  • the arrangement order in the reference direction of the positive electrode terminal, the negative electrode terminal, the positive electrode side element, and the negative electrode side element matches the arrangement order in the electrical connection path between the positive electrode terminal and the negative electrode terminal. It is easy to keep the length of the electrical connection path short and simplify the wiring structure provided other than the electrodes.
  • a connecting portion between a positive electrode side element arranged on the positive electrode side of either the switching element or the diode element constituting the series element unit and a negative electrode side element arranged on either negative electrode side is an intermediate connection portion.
  • the intermediate connection portions of the plurality of series element units are electrically connected to each other to form a series element unit set, and a direction perpendicular to the reference direction along the element arrangement surface is defined as a reference As the orthogonal direction, each of the plurality of positive-side elements included in the same series element unit set is disposed on the same side in the reference orthogonal direction than the negative-side elements constituting the same series element unit. It is also suitable as a configuration.
  • the positive electrode side connection electrode and the negative electrode side connection electrode can be arranged on the same side in the reference orthogonal direction with respect to the plurality of series element units, the wiring structure provided other than the electrodes can be simplified. Can be planned.
  • the positive electrode side connection electrode is formed on the element arrangement surface so as to extend from the positive electrode terminal to the negative electrode terminal side in the reference direction. Formed on the element arrangement surface to extend from the negative electrode terminal to the positive electrode terminal side in the reference direction, and between the positive electrode side connection electrode and the negative electrode side connection electrode on the element arrangement surface in the reference direction, It is preferable that an inter-element connection electrode for electrically connecting the switching element and the diode element constituting the series element unit is formed.
  • the arrangement order in the reference direction of the positive electrode side connection electrode, the negative electrode side connection electrode, and the inter-element connection electrode matches the arrangement order in the electrical connection path between the positive electrode terminal and the negative electrode terminal.
  • the insulation distance required between the electrodes can be kept short, and the wiring structure provided other than the electrodes can be simplified.
  • FIG. 1 is a perspective view of a switching element unit according to a first embodiment of the present invention. It is the perspective view seen from the direction different from FIG. 1 of the switching element unit which concerns on 1st embodiment of this invention. It is a top view of a switching element unit concerning a first embodiment of the present invention.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a VV cross-sectional view in FIG. 3.
  • It is a schematic diagram which shows the structure of the inverter circuit which concerns on 1st embodiment of this invention. It is a top view which shows the 1st specific example of the switching element unit which concerns on 2nd embodiment of this invention.
  • First Embodiment A first embodiment of the present invention will be described with reference to FIGS.
  • a case where the switching element unit according to the present invention is applied to an inverter circuit 91 (see FIG. 7) for controlling the rotating electrical machine 2 will be described as an example.
  • the switching element 10 and the diode element 20 that constitute the switching element unit 1 are electronic elements that constitute the inverter circuit 91, and the switching element 10 includes power between DC power and AC power.
  • the Z direction is a direction orthogonal to the element arrangement surface S1, and the direction from the element arrangement surface S1 toward the switching element 10 arranged on the element arrangement surface S1 is positive. That is, the + Z direction coincides with the direction of the normal vector of the element arrangement surface S1.
  • the X direction is a reference direction set along the element arrangement surface S1, and the direction from the positive electrode terminal 51 to the negative electrode terminal 52 side of the first smoothing capacitor 50 is positive as shown in FIG.
  • the Y direction is a reference orthogonal direction orthogonal to the reference direction (X direction) along the element arrangement surface S1.
  • the direction (positive or negative) in the Y direction is defined such that the X direction, the Y direction, and the Z direction form a right-handed orthogonal coordinate system in order, as shown in FIG.
  • the switching element unit 1 includes a switching element 10, a diode element 20, and a first smoothing capacitor 50. As shown in FIG. 7, the switching element 10 and the diode element 20 provided in the switching element unit 1 are electrically connected to each other in series to form a series element unit 30.
  • the switching element unit 1 includes at least one set of the switching element 10 and the diode element 20 (hereinafter referred to as “electronic element set”) forming the series element unit 30.
  • the switching element unit 1 includes a plurality of electronic element sets, specifically, an electronic element set that forms the first series element unit 30a, and a second series element unit. Two electronic element sets are provided, with the electronic element set forming 30b.
  • the first smoothing capacitor 50 is a circuit component that suppresses fluctuations in the DC voltage supplied to the series element unit 30 (that is, smoothes the DC voltage).
  • the rotating electrical machine drive circuit that drives the rotating electrical machine 2 includes a booster circuit 92 in addition to the inverter circuit 91, and includes a first smoothing capacitor 50 as a smoothing capacitor.
  • Two smoothing capacitors 60 are provided in the rotating electrical machine drive circuit.
  • the booster circuit 92 is a circuit for boosting the DC voltage of the DC power supply 3, and includes two switching elements 10 and a total of two diode elements 20 electrically connected in parallel to the two switching elements 10,
  • the reactor 82 is comprised. In the reactor 82, energy is intermittently accumulated according to the switching of the switching element 10.
  • the DC power source 3 is constituted by, for example, a battery, a capacitor, and the like.
  • the first smoothing capacitor 50 corresponds to the “smoothing capacitor” in the present invention.
  • the first smoothing capacitor 50 is electrically connected in parallel to the DC side of the inverter circuit 91 and suppresses fluctuations in the DC voltage supplied to the series element unit 30 constituting the inverter circuit 91. That is, the first smoothing capacitor 50 suppresses fluctuations in the DC voltage supplied to the switching element 10 constituting the series element unit 30.
  • the first smoothing capacitor 50 is electrically connected in parallel with a discharge resistor 81 for discharging the charge stored in the first smoothing capacitor 50 when the power is turned off.
  • the second smoothing capacitor 60 is electrically connected to the DC power supply 3 in parallel and suppresses fluctuations in the DC voltage supplied to the switching element 10 constituting the booster circuit 92.
  • the first smoothing capacitor 50 is a post-boosting smoothing capacitor that smoothes the voltage that has been boosted by the boosting circuit 92
  • the second smoothing capacitor 60 is a pre-boosting smoothing that smoothes the voltage before the boosting by the boosting circuit 92. It is a capacitor.
  • the outer surface of the first smoothing capacitor 50 includes a planar element arrangement surface S1, a first plane S4, and a second plane S5, as shown in FIG.
  • the first plane S4 is a plane that intersects the element arrangement plane S1 at the end of the element arrangement plane S1 on the ⁇ X direction side, which is one side in the X direction
  • the second plane S4 is a surface that intersects the element arrangement surface S1 at the end of the element arrangement surface S1 on the + X direction side that is the other side in the X direction.
  • the first plane S4 and the second plane S5 are formed to face in opposite directions.
  • first smoothing capacitor 50 has a rectangular parallelepiped outer shape, and each of the element arrangement surface S1, the first plane S4, and the second plane S5 is formed in a rectangular shape, and the first plane Each of S4 and the second plane S5 is formed as a plane orthogonal to the element arrangement plane S1. That is, in the present embodiment, the first plane S4 and the second plane S5 are formed as surfaces that face in opposite directions and are parallel to each other.
  • a terminal connection electrode P (specifically, a positive electrode side connection electrode P1 and a negative electrode side) which are electrodes electrically connected to the terminals of the first smoothing capacitor 50
  • the connection element P2 is formed, and the switching element 10 and the diode element 20 constituting the series element unit 30 are arranged on the element arrangement surface S1 (in other words, in a state of being electrically connected to the terminal connection electrode P). Implementation).
  • the switching element 10 and the diode element 20 are arranged (that is, placed) so as to be placed on the element placement surface S1 from the upper side.
  • the terminal connection electrode P formed on the element arrangement surface S1, and the inter-element connection electrode P3, the control electrode P4, and the discharge resistance electrode P5 (see FIG. 6) to be described later are made of, for example, a conductor foil (copper foil or the like). It can be a formed electrode. Moreover, such an electrode can be formed on the element arrangement surface S1 by using, for example, a printing technique.
  • the first smoothing capacitor 50 includes a positive terminal 51 that is a positive terminal and a negative terminal 52 that is a negative terminal. These terminals 51 and 52 function as terminals for inputting / outputting DC power to / from the DC power source 3 and the booster circuit 92 as shown in FIG. Also functions as a terminal for output.
  • the positive electrode terminal 51 is formed on the first plane S4 arranged at the end portion on the ⁇ X direction side of the first smoothing capacitor 50
  • the negative electrode terminal 52 is
  • the first smoothing capacitor 50 is formed on the second plane S5 disposed at the end on the + X direction side. In the present embodiment, both the positive terminal 51 and the negative terminal 52 are formed so as to be exposed on the upper surface of the first smoothing capacitor 50.
  • the upper surface of the first smoothing capacitor 50 includes a portion formed by the upper end portion of the positive electrode terminal 51 and a portion formed by the upper end portion of the negative electrode terminal 52. Further, in the present embodiment, each of the positive electrode terminal 51 and the negative electrode terminal 52 is exposed on the side surfaces (lateral outer surfaces) on both sides in the Y direction of the first smoothing capacitor 50 as shown in FIGS. It is formed as follows.
  • the first smoothing capacitor 50 is a ceramic capacitor in which a dielectric portion 53 interposed between electrodes is formed of a ceramic material.
  • This ceramic material is composed of, for example, barium titanate or strontium titanate.
  • the first smoothing capacitor 50 is a multilayer ceramic capacitor, and the dielectric portion 53 is stacked in the stacking direction (in the vertical direction here) via the internal electrode 54. It has a laminated structure.
  • positive side internal electrodes 54 a electrically connected to the positive terminal 51 and negative side internal electrodes 54 b electrically connected to the negative terminal 52 are alternately arranged in the stacking direction.
  • the positive side internal electrode 54 a is formed so as to extend from the positive terminal 51 to the + X direction side inside the first smoothing capacitor 50.
  • the negative electrode side internal electrode 54 b is formed so as to extend from the negative electrode terminal 52 to the ⁇ X direction side inside the first smoothing capacitor 50. That is, both the positive electrode terminal 51 and the negative electrode terminal 52 function as external electrodes and are formed so as to extend over the entire area of the first smoothing capacitor 50 in the stacking direction. 4 and 5, the number of stacked dielectric parts 53 is shown as “5”, but the actual number of stacked dielectric parts 53 can be set to an arbitrary value. For example, as the first smoothing capacitor 50, one having 100 or more dielectric portions 53 can be used.
  • the element arrangement surface S 1 formed on the outer surface of the first smoothing capacitor 50 is formed integrally with the dielectric portion 53.
  • the upper surface of the first smoothing capacitor 50 (specifically, the portion excluding the terminals 51 and 52) is formed by the dielectric portion 53 disposed at the upper end
  • a lower surface (specifically, a portion excluding the terminals 51 and 52), which is the lower outer surface of the smoothing capacitor 50, is formed by a dielectric portion 53 disposed at the lower end. That is, in this embodiment, the upper surface of the first smoothing capacitor 50 (specifically, the portion excluding the terminals 51 and 52 on the upper surface) and the lower surface of the first smoothing capacitor 50 (specifically, the element arrangement surface S1 is formed).
  • first smoothing capacitor 50 can be manufactured, for example, by low-temperature co-firing using LTCC (Low Temperature Co-fired Ceramic) technology.
  • LTCC Low Temperature Co-fired Ceramic
  • the series element unit 30 includes a positive electrode side terminal portion 31 connected to the positive electrode side of the DC power source 3 and a negative electrode side terminal portion connected to the negative electrode side (for example, the ground side) of the DC power source 3. 32.
  • the positive terminal portion 31 of the series element unit 30 is electrically connected to the positive electrode of the DC power supply 3 via the switching element 10 and the reactor 82 that constitute the booster circuit 92.
  • the boosted DC voltage is supplied to the positive terminal portion 31 of the series element unit 30.
  • the series element unit set 40 constituted by the series element units 30 constitutes one arm set (a set of upper and lower arms, in other words, a leg) of the inverter circuit 91 that converts a DC voltage into an AC voltage. .
  • a plurality of series element units 30 constituting the same arm set are provided in the same switching element unit 1.
  • two series element units 30 constituting one arm set are provided in the same switching element unit 1 and arranged on the same element arrangement surface S1. That is, in this embodiment, the switching element unit 1 includes one series element unit set 40.
  • the rotating electrical machine 2 to which AC voltage is supplied is an AC motor driven by a three-phase AC, and each of the three phases (U phase, V phase, W phase).
  • a total of three corresponding arm groups are electrically connected in parallel to form an inverter circuit 91. That is, in this embodiment, in addition to the switching element unit 1 including the U-phase series element unit set 40U, the switching element unit including the V-phase series element unit set 40V and the switching element unit including the W-phase series element unit set 40W Is used to form an inverter circuit 91.
  • the V-phase series element unit set 40V and the W-phase series element unit set 40W are different from each other in the connection relationship with the rotating electrical machine 2 (specifically, the phase of the coil to be connected is different). Since the configuration is the same as that of the unit set 40U, the illustration of the switching element unit including the V-phase series element unit set 40V and the switching element unit including the W-phase series element unit set 40W is omitted here.
  • the inverter circuit 91 is formed using three switching element units, and one first smoothing capacitor 50 is electrically connected to each arm set (each series element unit set 40). Connected in parallel.
  • FIG. 7 shows an example in which one first smoothing capacitor 50 is connected to all three arm groups in order to avoid complication.
  • the rotating electrical machine 2 to be controlled by the inverter circuit 91 can be, for example, a rotating electrical machine provided as a driving force source for wheels in an electric vehicle, a hybrid vehicle, or the like.
  • the “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator functioning as both a motor and a generator as necessary.
  • the positive electrode side terminal portion 31 of the series element unit 30 is electrically connected to the positive electrode side connection electrode P ⁇ b> 1 (see FIG. 6), thereby being electrically connected to the positive electrode terminal 51 of the first smoothing capacitor 50.
  • the negative electrode side terminal portion 32 of the series element unit 30 is electrically connected to the negative electrode terminal 52 of the first smoothing capacitor 50 by being electrically connected to the negative electrode side connection electrode P2 (see FIG. 6).
  • the intermediate connection portions 33 of a plurality (two in this example) of the series element units 30 constituting the same series element unit set 40 are electrically connected to each other and connected to coils of corresponding phases. ing.
  • the configuration of the switching element unit 1 for realizing such an electrical connection configuration will be described.
  • the terminal connection electrode P electrically connected to the terminals 51 and 52 of the first smoothing capacitor 50 is formed on the element arrangement surface S1.
  • a positive electrode side connection electrode P ⁇ b> 1 electrically connected to the positive electrode terminal 51 and a negative electrode side connection electrode P ⁇ b> 2 electrically connected to the negative electrode terminal 52. are formed on the element arrangement surface S1.
  • a discharge resistance electrode P5 having both a portion electrically connected to the positive electrode terminal 51 and a portion electrically connected to the negative electrode terminal 52 is formed on the element arrangement surface S1. .
  • Each of the positive electrode side connection electrode P1 and the portion of the discharge resistance electrode P5 that is electrically connected to the positive electrode terminal 51 is formed so as to cover a part of the upper surface of the positive electrode terminal 51. And continuity.
  • each of the portions that are electrically connected to the negative electrode side connection electrode P2 and the negative electrode terminal 52 of the discharge resistance electrode P5 is formed so as to cover a part of the upper surface of the negative electrode terminal 52, whereby the negative electrode The terminal 52 is electrically connected.
  • the positive electrode side connection electrode P1 and the negative electrode side connection electrode P2 are electrodes for electrically connecting the switching element 10 and the diode element 20 to the first smoothing capacitor 50. Therefore, in the present embodiment, the upper surface of the positive electrode terminal 51 and the negative electrode terminal 52 forms a connection portion between the external electrode of the first smoothing capacitor 50 and the inverter circuit 91 side. Although a detailed description is omitted, the connection portion between the external electrode of the first smoothing capacitor 50 and the DC power supply 3 side can also be formed by the upper surfaces of the positive electrode terminal 51 and the negative electrode terminal 52. Note that the connection portion of the external electrode of the first smoothing capacitor 50 with the DC power supply 3 side may be formed by the side surfaces or the lower surface of the positive electrode terminal 51 and the negative electrode terminal 52.
  • an inter-element connection electrode P3 and a control electrode P4 are formed on the element arrangement surface S1.
  • These electrodes P3 and P4 are electrodes that are electrically insulated from the terminals 51 and 52 of the first smoothing capacitor 50.
  • electrically insulated means electrically insulated on the element arrangement surface S1, and the first smoothing is performed via a circuit element, a wiring member, or the like arranged on the element arrangement surface S1. This is used as a concept including the case of being electrically connected to the terminals 51 and 52 of the capacitor 50.
  • the positive electrode side connection electrode P1 is formed so as to extend from the positive electrode terminal 51 to the negative electrode terminal 52 side in the X direction (that is, the + X direction side) on the element arrangement surface S1.
  • the negative electrode side connection electrode P2 is formed so as to extend from the negative electrode terminal 52 to the positive electrode terminal 51 side in the X direction (that is, the ⁇ X direction side) on the element arrangement surface S1.
  • the positive electrode side connection electrode P1 does not have a portion arranged in the X direction between the negative electrode terminal 52 and the negative electrode side connection electrode P2 in the entire Y direction on the element arrangement surface S1. It is configured.
  • each of the positive electrode side connection electrode P1 and the negative electrode side connection electrode P2 is formed in a rectangular shape when viewed in the Z direction, and the length of the positive electrode side connection electrode P1 in the X direction and the negative electrode side connection electrode P2 are Each of the lengths in the X direction is set such that the positive electrode side connection electrode P1 and the negative electrode side connection electrode P2 are separated from each other in the X direction. And between the elements which electrically connect the switching element 10 and the diode element 20 constituting the series element unit 30 between the positive electrode side connection electrode P1 and the negative electrode side connection electrode P2 on the element arrangement surface S1 in the X direction. A connection electrode P3 is formed.
  • the positive electrode side connection electrode P1, the negative electrode side connection electrode P2, and the inter-element connection electrode P3 are formed so as to have overlapping portions when viewed in the X direction, as shown in FIG. That is, three regions, a Y-direction region where the positive electrode side connection electrode P1 is formed, a Y direction region where the negative electrode side connection electrode P2 is formed, and a Y direction region where the inter-element connection electrode P3 is formed. There is a region in the Y direction included in all of the regions, and the inter-element connection electrode P3 is formed so as to be sandwiched from both sides in the X direction by the positive electrode side connection electrode P1 and the negative electrode side connection electrode P2.
  • the inter-element connection electrode P3 is formed in a rectangular shape when viewed in the Z direction.
  • the inter-element connection electrode P3 has a ⁇ Y direction with respect to a rectangular portion at a part on the + X direction side where the second connection member 62 (described later) is disposed. It has a part protruding to the side.
  • Both the first series element unit 30a and the second series element unit 30b are configured such that the switching element 10 and the diode element 20 are electrically connected in series with each other. As shown in FIG. The arrangement configuration of the element 10 and the diode element 20 is different between the first series element unit 30a and the second series element unit 30b. Specifically, when the element disposed on the positive electrode side in the series element unit 30 is defined as “positive electrode side element” and the element disposed on the negative electrode side is defined as “negative electrode side element”, the positive electrode of the first series element unit 30a.
  • the side element is the switching element 10
  • the positive side element of the second series element unit 30 b is the diode element 20.
  • the negative element on the first series element unit 30 a is the diode element 20
  • the negative element on the second series element unit 30 b is the switching element 10.
  • connection part in other words, connection part of the switching element 10 and the diode element 20
  • connection part of the switching element 10 and the diode element 20 of the positive electrode side element and negative electrode side element which comprise the serial element unit 30
  • connection part of the switching element 10 and the diode element 20 of the positive electrode side element and negative electrode side element which comprise the serial element unit 30
  • middle connection part 33 it will be 1st serial element unit.
  • the intermediate connection portions 33 of the 30a and the second series element unit 30b are electrically connected to each other. Therefore, the element set of the positive side element of the first series element unit 30a and the positive side element of the second series element unit 30b that are electrically connected in parallel with each other, and the first set that is electrically connected in parallel with each other.
  • the element group of the negative electrode side element of the series element unit 30a and the negative electrode side element of the second series element unit 30b is electrically connected to each other in series to form the series element unit set 40. That is, the switching element 10 and the diode element 20 arranged in the upper arm in the inverter circuit shown in FIG. 7 are respectively the upper stage switching element 10a and the upper stage diode element 20a, and the switching element 10 and the diode arranged in the lower arm. Assuming that the elements 20 are a lower-stage switching element 10b and a lower-stage diode element 20b, respectively, the upper-stage switching element 10a and the lower-stage diode element 20b are electrically connected in parallel. The lower switching elements 10b connected in parallel are electrically connected to each other in series to form a series element unit set 40.
  • the upper stage side switching element 10a is arranged on the ⁇ Y direction side with respect to the lower stage side diode element 20b, and the lower stage side switching element 10b is more ⁇ Y than the upper stage side diode element 20a. It is arranged on the direction side. That is, each of the plurality of switching elements 10 included in the same series element unit set 40 is disposed on the same side in the Y direction with respect to the diode elements 20 constituting the same series element unit 30.
  • the plurality of switching elements 10 (in this example, the upper stage switching element 10a and the lower stage switching element 10b) included in the same series element unit set 40 are arranged on the element arrangement surface S1 so as to be aligned in the X direction.
  • the element arrangement surface S1 is formed in a rectangular shape having a long side and a short side, the X direction is parallel to the extending direction of the long side, and the Y direction is short. It is parallel to the extending direction of the side.
  • the diode element 20 electrically connected in parallel to the switching element 10 is arranged on the element arrangement surface S1 so as to be aligned with the switching element 10 in the Y direction.
  • the upper diode element 20a is disposed adjacent to the + Y direction side of the upper switching element 10a
  • the lower diode element 20b is adjacent to the + Y direction side of the lower switching element 10b. Are arranged.
  • adjacently arranged means that no other circuit element is arranged between the switching element 10 and the diode element 20 in the extending direction (here, the Y direction) of the element arrangement surface S1.
  • the concept includes both a state in which the separation distance between the switching element 10 and the diode element 20 is zero (that is, a state in which the outer surfaces are in contact with each other) and a state in which the separation distance is greater than zero. It is used as.
  • the switching element 10a is disposed on the ⁇ X direction side with respect to the lower stage side diode element 20b
  • the upper stage side diode element 20a is disposed on the ⁇ X direction side with respect to the lower stage side switching element 10b. That is, in the present embodiment, for each of the first series element unit 30a and the second series element unit 30b, either the switching element 10 or the diode element 20 constituting the series element unit 30 is disposed on the positive electrode side.
  • the element is arranged on the ⁇ X direction side (that is, on the positive electrode terminal 51 side in the X direction) than the negative electrode side element arranged on either negative electrode side.
  • the switching element 10 has a pair of main terminals 12 and 13 and a control terminal 11 as shown in FIGS.
  • the main terminals 12 and 13 are terminals electrically connected to a DC voltage supply source (DC power supply 3 in this example).
  • DC power supply 3 DC power supply 3 in this example.
  • the high-potential side terminal is the positive-side main terminal 12
  • the low-potential side terminal is the negative-side main terminal 13.
  • the cathode terminal 22 is electrically connected to the positive main terminal 12 of the upper switching element 10a, and the negative main terminal 13 of the upper switching element 10a.
  • the anode terminal 21 is electrically connected to the upper switching element 10a in an antiparallel relationship so that the anode terminal 21 is electrically connected to the anode terminal 21.
  • the lower diode element 20b is electrically connected to the lower switching element 10b in an antiparallel relationship.
  • the diode element 20 functions as FWD (Free Wheel Diode).
  • the control terminal 11 is a control terminal for controlling on / off of the switching element 10. When the switching element 10 is in an on state, the positive side main terminal 12 and the negative side main terminal 13 are electrically connected, and the switching element 10 is turned off. In the state, conduction between the positive-side main terminal 12 and the negative-side main terminal 13 is interrupted.
  • the positive main terminal 12 of the upper switching element 10a constitutes the positive terminal 31 of the first series element unit 30a, and the anode of the lower diode element 20b.
  • the terminal 21 constitutes the negative electrode side terminal portion 32 of the first series element unit 30a.
  • the negative main terminal 13 of the lower switching element 10b constitutes the negative terminal part 32 of the second series element unit 30b, and the cathode terminal 22 of the upper diode element 20a is the positive terminal of the second series element unit 30b.
  • the side terminal part 31 is comprised.
  • the switching element 10 is an IGBT (insulated gate bipolar ⁇ transistor), the positive side main terminal 12 is constituted by a collector terminal, and the negative side main terminal 13 is constituted by an emitter terminal.
  • the control terminal 11 is composed of a gate terminal.
  • the control terminal 11 is electrically connected to a control unit (not shown) via a gate resistor 83 (see FIGS. 3 and 5), and each switching element 10 corresponds to a gate voltage applied to the control terminal 11. Switching control is individually performed.
  • the switching element 10 it is also possible to use a MOSFET (metal-oxide-semiconductor-field-effect-transistor).
  • each of the positive-side main terminal 12 and the negative-side main terminal 13 is formed by being divided into outer surfaces facing opposite sides in the switching element 10 whose outer shape is formed in a rectangular parallelepiped shape.
  • the switching element 10 has an outer surface on which the positive-side main terminal 12 is formed and an outer surface on which the negative-side main terminal 13 is formed, and these two outer surfaces are opposite to each other and are mutually opposite. It is formed as a parallel surface.
  • the switching element 10 is arrange
  • the control terminal 11 is arrange
  • the switching element 10 is arranged on the element arrangement surface S1 so that the first opposed arrangement surface S2 and the element arrangement surface S1 are in contact directly or via a bonding member.
  • positioning surface S1 is contained in the element arrangement
  • the upper switching element 10a is arranged so as to be placed on the inter-element connection electrode P3 from above via the bonding material 93, and the upper diode element 20a is also formed. Further, it is arranged so as to be placed on the inter-element connection electrode P3 through the bonding material 93 from above.
  • an anode terminal 21 is formed on the lower surface of the diode element 20, and a cathode terminal 22 is formed on the upper surface of the diode element 20. That is, the diode element 20 is arranged on the element arrangement surface S1 so that the outer surface on which the anode terminal 21 is formed becomes the second opposite arrangement surface S3 facing the element arrangement surface S1, and the second opposite arrangement surface S3. And the element arrangement surface S1 are in contact with each other directly or via a bonding member.
  • the bonding material 93 as the bonding member is made of a conductive material such as solder or conductive paste.
  • the lower stage side switching element 10b is arranged so as to be placed on the negative electrode side connection electrode P2 via the bonding material 93 from above, and the lower stage side diode element 20b is also arranged on the negative electrode side connection electrode P2 via the bonding material 93 from above. It is arranged to be placed.
  • the negative main terminal 13 formed on the lower surface of the lower switching element 10b and the anode terminal 21 formed on the lower surface of the lower diode element 20b are electrically connected to the negative connection electrode P2. Is done.
  • the negative electrode side connection electrode P2 is electrically connected to the negative electrode terminal 52, and the negative electrode side main terminal 13 of the lower stage side switching element 10b and the anode terminal 21 of the lower stage side diode element 20b are connected to the negative electrode side connection electrode. It is electrically connected to the negative terminal 52 through P2.
  • the negative electrode side connection electrode P2 includes the negative electrode side terminal portion 32 of the first series element unit 30a constituted by the anode terminal 21 of the lower diode element 20b, and the negative electrode main terminal 13 of the lower switch element 10b. This is an electrode for electrically connecting the negative electrode side terminal portion 32 of the second series element unit 30b constituted by the negative electrode terminal 52 of the first smoothing capacitor 50.
  • the positive main terminal 12 (see FIGS. 4 and 5) formed on the upper surface of the upper switching element 10a and the cathode terminal 22 formed on the upper surface of the upper diode element 20a.
  • the conductive first connection member 61 is disposed. That is, the first connection member 61 electrically connects the positive electrode side connection electrode P1 and the upper stage side switching element 10a, and electrically connects the positive electrode side connection electrode P1 and the upper stage side diode element 20a.
  • the first connection member 61 electrically connects the positive electrode side connection electrode P1 and the upper stage side switching element 10a, and electrically connects the positive electrode side connection electrode P1 and the upper stage side diode element 20a.
  • the first connection member 61 includes a first portion 61 a disposed so as to be placed on the positive electrode side connection electrode P ⁇ b> 1 from above via the bonding material 93, and the bonding material 93.
  • a second portion 61b disposed on the upper stage side switching element 10a and the upper stage side diode element 20a so as to be placed from above.
  • the positive side main terminal 12 of the upper stage side switching element 10a and the cathode terminal 22 of the upper stage side diode element 20a are electrically connected to the positive electrode side connection electrode P1.
  • the positive electrode side connection electrode P1 is electrically connected to the positive electrode terminal 51, and the positive electrode side main terminal 12 of the upper stage side switching element 10a and the cathode terminal 22 of the upper stage side diode element 20a are connected to the positive electrode side connection electrode. It is electrically connected to the positive terminal 51 through P1.
  • the positive electrode side connection electrode P1 includes the positive electrode side terminal portion 31 of the first series element unit 30a configured by the positive electrode side main terminal 12 of the upper stage side switching element 10a and the cathode terminal 22 of the upper stage side diode element 20a. This is an electrode for electrically connecting the positive terminal portion 31 of the second series element unit 30b constituted by the positive terminal 51 of the first smoothing capacitor 50.
  • the positive main terminal 12 (see FIG. 4) formed on the upper surface of the lower switching element 10b and the cathode terminal 22 formed on the upper surface of the lower diode element 20b. Is electrically connected to the inter-element connection electrode P3.
  • the conductive second connection member 62 is disposed. That is, the second connection member 62 electrically connects the inter-element connection electrode P3 and the lower-stage switching element 10b, and electrically connects the inter-element connection electrode P3 and the lower-stage diode element 20b. Specifically, as shown in FIG.
  • the second connection member 62 includes a first portion 62 a disposed so as to be placed on the inter-element connection electrode P ⁇ b> 3 from above via the bonding material 93, and the bonding material 93.
  • the positive main terminal 12 of the lower switching element 10b and the cathode terminal 22 of the lower diode element 20b are electrically connected to the inter-element connection electrode P3.
  • the inter-element connection electrode P3 is between the switching element 10 and the diode element 20 constituting the series element unit 30 (specifically, between the upper stage side switching element 10a and the lower stage side diode element 20b, and A plurality of series element units constituting the same series element unit set 40 as well as electrodes for electrically connecting the upper stage side diode element 20a and the lower stage side switching element 10b) to form the intermediate connection portion 33.
  • This is an electrode for connecting the 30 intermediate connection portions 33 to each other.
  • the first connection member 61 and the second connection member 62 have a flat portion on the upper surface. And although illustration is abbreviate
  • This insulating member has both electrical insulation and thermal conductivity. Accordingly, it is possible to efficiently transfer the heat of the switching element 10 to the heat sink via the connection members 61 and 62 while ensuring electrical insulation between the switching element 10 and the heat sink.
  • the connection members 61 and 62 have a function as a heat spreader in addition to the function as a connection member (bus bar).
  • the control electrode P4 is a control electrode electrically connected to the control terminal 11. Specifically, as shown in FIG. 5, the control electrode P4 is disposed below the control terminal 11 and electrically connected to the control terminal 11, and the part is on the ⁇ Y direction side.
  • the gate resistor 83 is placed from above so as to electrically connect the two parts.
  • a connection terminal of a flexible printed circuit board is formed in the separated portion, and the control terminal 11 generates a switching control signal (a gate drive signal in this example) via the flexible printed circuit board. Is electrically connected to a control unit (not shown).
  • the flexible printed circuit board is a printed circuit board that is flexible and can be greatly deformed.
  • the discharge resistor electrode P5 is an electrode for disposing a discharge resistor 81 (see FIG. 7) electrically connected to the first smoothing capacitor 50 in parallel.
  • the discharge resistance electrode P5 is electrically connected to the positive electrode terminal 51 and the negative electrode terminal 52, which are two parts separated from each other in the X direction. Connected portions.
  • the discharge resistance 81 is arrange
  • Second Embodiment A second embodiment of the present invention will be described with reference to FIGS.
  • the switching element unit 1 according to the present embodiment is different from the first embodiment in that it includes a plurality of series element unit sets 40.
  • two specific examples according to the present embodiment will be described in order.
  • differences from the first embodiment will be mainly described, and points not particularly described will be described above. The same as in the first embodiment.
  • the switching element unit 1 includes two series element unit sets 40. Specifically, the switching element unit 1 includes a V-phase series element unit set 40V in addition to the U-phase series element unit set 40U. As shown in FIG. 7, the V-phase series element unit set 40 ⁇ / b> V is configured in the same manner as the U-phase series element unit set 40 ⁇ / b> U except that the phases of coils to be connected to the intermediate connection portion 33 are different. That is, the third series element unit 30c constituting the V-phase series element unit set 40V is configured similarly to the first series element unit 30a constituting the U-phase series element unit set 40U, and the V-phase series element unit set 40V. The fourth series element unit 30d constituting the same is configured in the same manner as the second series element unit 30b constituting the U-phase series element unit set 40U.
  • the V-phase series element unit set 40V is arranged side by side on the + Y direction side with respect to the U-phase series element unit set 40U as shown in FIG. That is, it can be said that the switching element unit 1 according to this example has a configuration in which two switching element units 1 (see FIG. 3) according to the first embodiment are arranged in the Y direction. In FIG. 8, in order to avoid complication, the portions related to the discharge resistor 81 and the gate resistor 83 are not shown. In this configuration, since one first smoothing capacitor 50 is electrically connected in parallel to two arm sets (two series element unit sets 40), the capacity of the first smoothing capacitor 50 in this example is This is twice that of the first embodiment.
  • FIG. 9 is a schematic diagram showing the switching element unit 1 according to this example shown in FIG. 8 in a simplified manner.
  • 9 and FIGS. 10 to 21 to be referred to later show the positional relationship between the elements 10 and 20 on the element arrangement surface S1 and the electrodes on the element arrangement surface S1 determined according to the positional relationship. It is drawing for demonstrating the mutual positional relationship between P1, P2, and P3. Therefore, in FIGS. 9 to 21, the connection members 61 and 62 are not shown and the shapes of the elements 10 and 20 and the electrodes P1, P2 and P3 are omitted in order to facilitate understanding of the positional relationship. This is shown schematically.
  • the switching element unit 1 includes three series element unit sets 40. Specifically, the switching element unit 1 includes a W-phase series element unit set 40W in addition to the U-phase series element unit set 40U and the V-phase series element unit set 40V. As shown in FIG. 7, the W-phase series element unit set 40 ⁇ / b> W is configured in the same manner as the U-phase series element unit set 40 ⁇ / b> U except that the phases of coils to be connected to the intermediate connection portion 33 are different.
  • the fifth series element unit 30e constituting the W-phase series element unit set 40W is configured similarly to the first series element unit 30a constituting the U-phase series element unit set 40U, and the W-phase series element unit set 40W.
  • the sixth series element unit 30f constituting the same is configured in the same manner as the second series element unit 30b constituting the U-phase series element unit set 40U.
  • the capacity of the first smoothing capacitor 50 in this example is This is three times that of the first embodiment.
  • the upper switching element 10a, the lower switching element 10b, and the upper diode are connected between different series element unit sets 40.
  • the arrangement relationship on the element arrangement surface S1 of the element 20a and the lower diode element 20b is the same, the arrangement relation between the different series element unit sets 40 may be different from each other.
  • the V-phase series element unit set 40V according to the specific example shown in FIG. 9, a configuration in which the upper switching element 10a and the upper diode element 20a are interchanged, and the lower switching element 10b and the lower diode element 20b are interchanged.
  • the upper switching element 10a and the upper diode element 20a can be interchanged, and the lower switching element 10b and the lower diode element 20b can be interchanged. The same replacement is possible in each specific example described later.
  • each of the plurality of positive electrode side elements included in the series element unit set 40 is the same series element. It differs from the first and second embodiments in that it is arranged on the same side in the Y direction from the negative electrode side element constituting the unit 30. Further, in the switching element unit 1 according to the present embodiment, each of the plurality of switching elements 10 included in the series element unit set 40 is the same for at least one series element unit set 40 provided in the switching element unit 1.
  • the switching element unit 1 includes two series element unit sets 40 (U-phase series element unit set 40U and V-phase series element unit set 40V). I have. In this specific example, between the U-phase series element unit set 40U and the V-phase series element unit set 40V, the upper stage side switching element 10a, the lower stage side switching element 10b, the upper stage side diode element 20a, and the lower stage side diode element 20b. Since the arrangement relationship on the element arrangement surface S1 is the same, only the U-phase series element unit set 40U will be described below.
  • the upper switching element 10a which is the positive element of the first series element unit 30a, is more negative in the ⁇ Y direction than the lower diode element 20b, which is the negative element of the first series element unit 30a.
  • the upper stage side diode element 20a that is disposed on the second series element unit 30b and that is the positive side element of the second series element unit 30b is closer to the ⁇ Y direction side than the lower stage side switching element 10b that is the negative side element of the second series element unit 30b.
  • each of the plurality of positive-side elements included in the U-phase series element unit set 40U is arranged on the ⁇ Y direction side with respect to the negative-side elements constituting the same series element unit 30.
  • each of the plurality of positive side elements included in the series element unit set 40 constitutes the same series element unit 30. It arrange
  • the positive electrode side element is arranged on the ⁇ X direction side with respect to the negative electrode side element
  • the positive electrode side The element is arranged on the + X direction side of the negative electrode side element. That is, the upper stage side switching element 10a is disposed on the ⁇ X direction side with respect to the lower stage side diode element 20b, and the lower stage side switching element 10b is disposed on the ⁇ X direction side with respect to the upper stage side diode element 20a.
  • each of the plurality of switching elements 10 included in the same series element unit set 40 is disposed on the same side in the X direction with respect to the diode elements 20 constituting the same series element unit 30.
  • the plurality of switching elements 10 (in this example, the upper stage switching element 10a and the lower stage switching element 10b) included in the same series element unit set 40 are arranged on the element arrangement surface S1 so as to be aligned in the Y direction.
  • the positive electrode side connection electrode P1 is + X of the negative electrode side connection electrode P2 over the entire area in the Y direction on the element arrangement surface S1. There is no part arranged on the direction side. That is, the positive electrode side connection electrode P1 does not have a portion arranged in the X direction between the negative electrode terminal 52 and the negative electrode side connection electrode P2 over the entire area in the Y direction on the element arrangement surface S1. In this specific example, the positive electrode side connection electrode P1 has a portion extending in the X direction on the ⁇ Y direction side with respect to the inter-element connection electrode P3, and the negative electrode side connection electrode P2 is connected to the inter-element connection electrode P3.
  • the inter-element connection electrode P3 is between the positive electrode side connection electrode P1 and the negative electrode side connection electrode P2 on the element arrangement surface S1 in the Y direction. Is formed. That is, unlike the first and second embodiments, the positive electrode side connection electrode P1, the negative electrode side connection electrode P2, and the inter-element connection electrode P3 are formed so as to have overlapping portions when viewed in the Y direction. .
  • the second specific example includes an upper switching element 10a and a lower switching element 10b for each series element unit set 40 in the first specific example (FIG. 11).
  • the positive electrode side connection electrode P1 has a portion extending in the X direction on the + Y direction side with respect to the inter-element connection electrode P3, and the negative electrode side connection electrode P2 Has a portion extending in the X direction on the ⁇ Y direction side with respect to the inter-element connection electrode P3.
  • the third specific example includes the V-phase series element unit set 40V in the first specific example (FIG. 11) and the U phase in the second specific example (FIG. 12).
  • the fourth specific example includes a U-phase series element unit set 40U in the first specific example (FIG. 11) and a V-phase in the second specific example (FIG. 12). This corresponds to a configuration in which the series element unit set 40V is combined.
  • the fifth specific example includes the U-phase series element unit set 40U in the first specific example (FIG. 9) according to the second embodiment and the present embodiment. This corresponds to a configuration in which the V-phase series element unit set 40V in the second specific example (FIG. 12) is combined.
  • some series element unit sets 40 specifically, V-phase series element unit sets 40V
  • a plurality of positive-side elements included in the series element unit set 40 are included. Are arranged on the same side in the Y direction with respect to the negative electrode side elements constituting the same series element unit 30.
  • the sixth specific example includes the U-phase series element unit set 40U in the first specific example (FIG. 9) according to the second embodiment and the present embodiment. This corresponds to a combination of the V-phase series element unit set 40V in the first specific example (FIG. 11).
  • the seventh specific example includes the V-phase series element unit set 40V in the first specific example (FIG. 9) according to the second embodiment and the present embodiment. This corresponds to a configuration in which the U-phase series element unit set 40U in the first specific example (FIG. 11) is combined.
  • the eighth specific example includes the V-phase series element unit set 40V in the first specific example (FIG. 9) according to the second embodiment and the present embodiment. This corresponds to a configuration in which the U-phase series element unit set 40U in the second specific example (FIG. 12) is combined.
  • the positive electrode side connection electrode P ⁇ b> 1 is in the X direction between the negative electrode terminal 52 and the negative electrode side connection electrode P ⁇ b> 2. It differs from the first to third embodiments in that it has a portion disposed between them.
  • three specific examples according to the present embodiment will be described in order.
  • the switching element unit 1 includes two series element unit sets 40 (a U-phase series element unit set 40U and a V-phase series element unit set 40V).
  • the positive element is disposed on the + X direction side (that is, on the negative terminal 52 side in the X direction) with respect to all the serial element units 30 with respect to the negative element.
  • the positive electrode side connection electrode P1 is arranged on the + X direction side of the negative electrode side connection electrode P2 for each of the two series element unit sets 40. It has a part to be. That is, the positive electrode side connection electrode P1 has a portion disposed between the negative electrode terminal 52 and the negative electrode side connection electrode P2 in the X direction.
  • the U-phase series element unit set 40U in the first specific example (FIG. 9) according to the second embodiment and the present embodiment This corresponds to a configuration in which the V-phase series element unit set 40V in the first specific example (FIG. 19) is combined. That is, in this specific example, the positive electrode side connection electrode P1 is disposed between the negative electrode terminal 52 and the negative electrode side connection electrode P2 in the X direction for some series element unit sets 40 provided in the switching element unit 1. Has a part.
  • the configuration in which the element arrangement surface S1 is formed of the same material as that of the dielectric portion 53 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the element arrangement surface S1 may be formed of a material different from that of the dielectric portion 53.
  • the configuration in which an even number of series element units 30 are arranged on the element arrangement surface S1 has been described as an example.
  • an odd number (for example, one, three, etc.) of series element units 30 are provided. It is also possible to adopt a configuration in which the element is arranged on the element arrangement surface S1.
  • control terminal 11 is formed on the first opposing arrangement surface S2 of the switching element 10
  • the embodiment of the present invention is not limited to this, and the control terminal 11 is formed on the outer surface (for example, the upper surface that is the upper outer surface) of the switching element 10 other than the first facing surface S2.
  • the control terminal 11 can be electrically connected to the control electrode P4 via a wire member.
  • the control electrode P4 is not formed on the element arrangement surface S1, and the control unit 11 generates a switching control signal (a gate drive signal in this example) without the element arrangement surface S1 being interposed. It is also possible to adopt a configuration that is electrically connected to (not shown).
  • the diode element 20 electrically connected in parallel to the switching element 10 is described as an example of a configuration in which the diode element 20 is disposed adjacent to the switching element 10 on the element arrangement surface S1. did.
  • the embodiment of the present invention is not limited to this, and other circuit elements are arranged between the switching element 10 and the diode element 20 that are electrically connected in parallel with each other in the extending direction of the element arrangement surface S1. It is also possible to adopt a configuration in which are arranged.
  • the inverter circuit 91 is a DC / AC conversion circuit that converts a DC voltage into a three-phase AC voltage, and the inverter circuit 91 includes six switching elements 10 as an example. .
  • the embodiment of the present invention is not limited to this, and the inverter circuit 91 is a DC / AC conversion circuit that converts a DC voltage into a single-phase AC voltage.
  • the inverter circuit 91 includes four switching elements 10. It can also be set as the structure provided.
  • the switching element unit according to the present invention is applied to the inverter circuit 91 (see FIG. 7) for controlling the rotating electrical machine 2 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the switching element unit according to the present invention can be applied to other circuits such as the booster circuit 92.
  • the booster circuit 92 for example, an element arrangement surface is formed on the outer surface of the second smoothing capacitor 60, and the element arrangement surface is formed by the switching element 10 and the diode element 20 constituting the booster circuit 92.
  • the serial element unit can be arranged. Although details are omitted, such a configuration can be configured in the same manner as in the above embodiment, except that the element arrangement surface S1 in the above embodiment is replaced with the element arrangement surface of the second smoothing capacitor 60.
  • the configuration in which the rotating electrical machine drive circuit that drives the rotating electrical machine 2 includes the booster circuit 92 in addition to the inverter circuit 91 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the rotary electric machine drive circuit that drives the rotary electric machine 2 may be configured not to include the booster circuit 92.
  • the present invention can be suitably used for a switching element unit including a switching element and a diode element.
  • switching element unit 10 switching element 20: diode element 30: direct element unit 31: positive electrode side terminal part 32: negative electrode side terminal part 33: intermediate connection part 40: direct element unit set 50: first smoothing capacitor (smoothing capacitor) ) 51: Positive electrode terminal 52: Negative electrode terminal 53: Dielectric portion 54a: Positive electrode side internal electrode 54b: Negative electrode side internal electrode P1: Positive electrode side connection electrode P2: Negative electrode side connection electrode P3: Inter-element connection electrode S1: Element arrangement surface S4: First plane S5: Second plane X: Reference direction Y: Reference orthogonal direction

Abstract

 ユニット全体の小型化を図りつつ、平滑コンデンサを備えることが可能なスイッチング素子ユニットを実現する。 平滑コンデンサ50は、誘電体部分53がセラミック材料で形成されたセラミックコンデンサであり、その外面には、誘電体部分53と一体的に形成された素子配置面S1が含まれている。素子配置面S1に、平滑コンデンサ50の正極端子51に電気的に接続される正極側接続電極P1と、平滑コンデンサ50の負極端子52に電気的に接続される負極側接続電極P2とが形成されている。直列素子ユニットを構成するスイッチング素子10とダイオード素子とが素子配置面S1に配置されていると共に、当該直列素子ユニットの正極側端子部31と正極側接続電極P1とが電気的に接続され、当該直列素子ユニットの負極側端子部32と負極側接続電極P2とが電気的に接続されている。

Description

スイッチング素子ユニット
 本発明は、スイッチング素子及びダイオード素子を備えたスイッチング素子ユニットに関する。
 半導体集積回路においては、スイッチングノイズにより誤動作が生じるのを防止する必要がある。このような誤動作の防止に関して、例えば特開平8-181445号公報(特許文献1)に記載された技術がある。なお、この背景技術の欄の説明では、〔〕内に特許文献1における符号を引用して説明する。特許文献1の図1には、LSIチップ〔11〕が、セラミックス多層基板〔20〕を介してプリント配線基板〔14〕に配置される構成において、セラミックス多層基板〔20〕の内部にコンデンサ部〔23〕が内蔵される構成が記載されている。これにより、当該文献の段落0016~0017に記載のように、スイッチングノイズをコンデンサ部〔23〕によりフィルタリングして、LSIチップ〔11〕に誤動作が生じるのを防止することが可能とされている。
 ところで、互いに電気的に直列に接続されて直列素子ユニットを形成するスイッチング素子とダイオード素子との組を備えたスイッチング素子ユニットにおいて、当該直列素子ユニットに供給される直流電圧の変動を抑制する平滑コンデンサが備えられる場合がある。しかしながら、上記特許文献1に記載のコンデンサ部〔23〕は、LSIチップ〔11〕に誤動作が生じるのを防止することを目的として備えられるものであり、特許文献1には平滑コンデンサに言及した記載はない。
特開平8-181445号公報(段落0016~0017、図1等)
 そこで、ユニット全体の小型化を図りつつ、平滑コンデンサを備えることが可能なスイッチング素子ユニットの実現が望まれる。
 本発明に係る、互いに電気的に直列に接続されて直列素子ユニットを形成するスイッチング素子とダイオード素子との組を少なくとも1つ備えると共に、前記直列素子ユニットに供給される直流電圧の変動を抑制する平滑コンデンサを備えたスイッチング素子ユニットの特徴構成は、前記平滑コンデンサは、電極の間に介在する誘電体部分がセラミック材料で形成されたセラミックコンデンサであり、前記平滑コンデンサの外面には、前記誘電体部分と一体的に形成された素子配置面と、前記素子配置面に沿って設定された基準方向における一方側の前記素子配置面の端部において当該素子配置面に交差する第一平面と、前記基準方向における他方側の前記素子配置面の端部において当該素子配置面に交差する第二平面とが含まれ、前記第一平面に前記平滑コンデンサの正極端子が形成されていると共に、前記第二平面に前記平滑コンデンサの負極端子が形成されており、前記素子配置面に、前記正極端子に電気的に接続される正極側接続電極と、前記負極端子に電気的に接続される負極側接続電極とが形成されており、前記直列素子ユニットを構成する前記スイッチング素子と前記ダイオード素子とが前記素子配置面に配置されていると共に、当該直列素子ユニットの正極側端子部と前記正極側接続電極とが電気的に接続され、当該直列素子ユニットの負極側端子部と前記負極側接続電極とが電気的に接続されている点にある。
 上記の特徴構成によれば、直列素子ユニットを構成するスイッチング素子やダイオード素子が平滑コンデンサとは分離して配置される場合に比べて、直列素子ユニットと平滑コンデンサとを電気的に接続する電気的接続経路の長さや、直列素子ユニット内での電気的接続経路の長さを短く抑えることができる。これにより、当該電気的接続経路のインダクタンスを小さく抑えて、スイッチング素子のスイッチング動作に伴うサージ電圧(一時的な電圧上昇分)を低く抑えることができる。この結果、スイッチング素子の発熱の原因となる電力損失をサージ電圧の低下に応じて低減させることができ、放熱のために必要な冷却機構を簡素なものとしてユニット全体の小型化を図ることができる。
 また、サージ電圧の低下に応じてスイッチング素子及び周辺部品に要求される耐電圧性能を低く抑えることができるため、ユニット全体のコストの低減を図ることもできる。
 さらに、上記の特徴構成によれば、素子配置面が平滑コンデンサの誘電体部分と一体的に形成されるため、素子配置面を当該誘電体部分と同時に形成することができる。また、正極側接続電極や負極側接続電極を平滑コンデンサの内部電極と同じ材料により形成する場合や、正極側接続電極や負極側接続電極を当該内部電極以上の融点を持つ材料により形成する場合には、平滑コンデンサの誘電体部分を例えば焼成により形成する際に、正極側接続電極や負極側接続電極も同時に形成することが可能となる。これにより、スイッチング素子ユニットの製造工程の簡素化を図ることができる。
 ここで、前記平滑コンデンサの内部に、前記正極端子から前記基準方向における前記負極端子側に延びる正極側内部電極と、前記負極端子から前記基準方向における前記正極端子側に延びる負極側内部電極とが形成されている構成とすると好適である。
 この構成によれば、正極側内部電極の延在方向や負極側内部電極の延在方向を、素子配置面に平行な方向とすることができるため、素子配置面に直交する方向におけるユニット全体の小型化を図ることが容易となる。
 また、前記素子配置面に沿って前記基準方向に直交する方向を基準直交方向として、前記素子配置面における前記基準直交方向の全域において、前記正極側接続電極が、前記負極端子と前記負極側接続電極との前記基準方向における間に配置される部分を有さないように構成されていると好適である。
 この構成によれば、正極側接続電極が、負極端子と負極側接続電極との基準方向における間に配置される部分を有する場合に比べて、直列素子ユニットと平滑コンデンサとを電気的に接続する電気的接続経路の長さを短く抑えることが容易となる。
 また、前記直列素子ユニットを構成する前記スイッチング素子と前記ダイオード素子との接続部が中間接続部であり、複数の前記直列素子ユニットのそれぞれの前記中間接続部同士が電気的に接続されて、直列素子ユニット組が構成されており、前記素子配置面に沿って前記基準方向に直交する方向を基準直交方向として、同じ前記直列素子ユニット組に含まれる複数の前記スイッチング素子のそれぞれが、同じ前記直列素子ユニットを構成する前記ダイオード素子よりも、前記基準方向における同じ側、又は前記基準直交方向における同じ側に配置されている構成とすると好適である。
 この構成によれば、同じ直列素子ユニット組に含まれる複数のスイッチング素子を、基準方向又は基準直交方向に並べて配置することができる。よって、各スイッチング素子の制御用の制御端子を、当該各スイッチング素子を制御する制御ユニットに電気的に接続するための配線構造の簡素化を図ることが容易となる。
 また、前記直列素子ユニットを構成する前記スイッチング素子及び前記ダイオード素子のいずれか正極側に配置される正極側素子が、いずれか負極側に配置される負極側素子よりも、前記基準方向における前記正極端子側に配置されている構成とすると好適である。
 この構成によれば、正極端子、負極端子、正極側素子、及び負極側素子の基準方向における並び順が、正極端子と負極端子との間の電気的接続経路における配置順と一致するため、当該電気的接続経路の長さを短く抑えることや、電極以外に設けられる配線構造の簡素化が容易となる。
 或いは、前記直列素子ユニットを構成する前記スイッチング素子及び前記ダイオード素子のいずれか正極側に配置される正極側素子と、いずれか負極側に配置される負極側素子との接続部が中間接続部であり、複数の前記直列素子ユニットのそれぞれの前記中間接続部同士が電気的に接続されて、直列素子ユニット組が構成されており、前記素子配置面に沿って前記基準方向に直交する方向を基準直交方向として、同じ前記直列素子ユニット組に含まれる複数の前記正極側素子のそれぞれが、同じ前記直列素子ユニットを構成する前記負極側素子よりも、前記基準直交方向における同じ側に配置されている構成としても好適である。
 この構成によれば、複数の直列素子ユニットに対して、正極側接続電極や負極側接続電極を基準直交方向における同じ側に配置することができるため、電極以外に設けられる配線構造の簡素化を図ることができる。
 上記の各構成のスイッチング素子ユニットにおいて、前記正極側接続電極は、前記素子配置面上を前記正極端子から前記基準方向における前記負極端子側に延びるように形成され、前記負極側接続電極は、前記素子配置面上を前記負極端子から前記基準方向における前記正極端子側に延びるように形成され、前記素子配置面上における前記正極側接続電極と前記負極側接続電極との前記基準方向における間に、前記直列素子ユニットを構成する前記スイッチング素子と前記ダイオード素子とを電気的に接続する素子間接続電極が形成されている構成とすると好適である。
 この構成によれば、正極側接続電極、負極側接続電極、及び素子間接続電極の基準方向における並び順が、正極端子と負極端子との間の電気的接続経路における配置順と一致するため、各電極間に必要となる絶縁距離を短く抑えることができるとともに、電極以外に設けられる配線構造の簡素化を図ることができる。
本発明の第一の実施形態に係るスイッチング素子ユニットの斜視図である。 本発明の第一の実施形態に係るスイッチング素子ユニットの図1とは異なる方向から見た斜視図である。 本発明の第一の実施形態に係るスイッチング素子ユニットの平面図である。 図3におけるIV-IV断面図である。 図3におけるV-V断面図である。 本発明の第一の実施形態に係る第一平滑コンデンサの平面図である。 本発明の第一の実施形態に係るインバータ回路の構成を示す模式図である。 本発明の第二の実施形態に係るスイッチング素子ユニットの第一の具体例を示す平面図である。 本発明の第二の実施形態に係るスイッチング素子ユニットの第一の具体例を模式的に示す平面図である。 本発明の第二の実施形態に係るスイッチング素子ユニットの第二の具体例を模式的に示す平面図である。 本発明の第三の実施形態に係るスイッチング素子ユニットの第一の具体例を模式的に示す平面図である。 本発明の第三の実施形態に係るスイッチング素子ユニットの第二の具体例を模式的に示す平面図である。 本発明の第三の実施形態に係るスイッチング素子ユニットの第三の具体例を模式的に示す平面図である。 本発明の第三の実施形態に係るスイッチング素子ユニットの第四の具体例を模式的に示す平面図である。 本発明の第三の実施形態に係るスイッチング素子ユニットの第五の具体例を模式的に示す平面図である。 本発明の第三の実施形態に係るスイッチング素子ユニットの第六の具体例を模式的に示す平面図である。 本発明の第三の実施形態に係るスイッチング素子ユニットの第七の具体例を模式的に示す平面図である。 本発明の第三の実施形態に係るスイッチング素子ユニットの第八の具体例を模式的に示す平面図である。 本発明の第四の実施形態に係るスイッチング素子ユニットの第一の具体例を模式的に示す平面図である。 本発明の第四の実施形態に係るスイッチング素子ユニットの第二の具体例を模式的に示す平面図である。 本発明の第四の実施形態に係るスイッチング素子ユニットの第三の具体例を模式的に示す平面図である。
1.第一の実施形態
 本発明の第一の実施形態について、図1~図7を参照して説明する。ここでは、本発明に係るスイッチング素子ユニットを、回転電機2を制御するためのインバータ回路91(図7参照)に適用した場合を例として説明する。すなわち、本実施形態では、スイッチング素子ユニット1を構成するスイッチング素子10及びダイオード素子20は、インバータ回路91を構成する電子素子であり、当該スイッチング素子10は、直流電力と交流電力との間の電力変換を行う電子素子である。
 以下の説明では、特に断らない限り、「上」は図1における+Z方向を指し、「下」は図1における-Z方向を指す。Z方向は、図4に示すように、素子配置面S1に直交する方向であり、素子配置面S1から当該素子配置面S1に配置されたスイッチング素子10側へ向かう方向を正とする。すなわち、+Z方向は、素子配置面S1の法線ベクトルの方向と一致する。X方向は、素子配置面S1に沿って設定される基準方向であり、図3に示すように、第一平滑コンデンサ50の正極端子51から負極端子52側へ向かう方向を正とする。Y方向は、素子配置面S1に沿って基準方向(X方向)に直交する基準直交方向である。Y方向の向き(正負)は、図1に示すように、X方向、Y方向、及びZ方向が順に右手系の直交座標系をなすように規定している。
1-1.スイッチング素子ユニットの概略構成
 図1~図3に示すように、スイッチング素子ユニット1は、スイッチング素子10と、ダイオード素子20と、第一平滑コンデンサ50とを備えている。スイッチング素子ユニット1に備えられるスイッチング素子10とダイオード素子20とは、図7に示すように、互いに電気的に直列に接続されて直列素子ユニット30を形成している。スイッチング素子ユニット1は、直列素子ユニット30を形成するスイッチング素子10とダイオード素子20との組(以下、「電子素子組」という。)を少なくとも1つ備える。本実施形態では、スイッチング素子ユニット1は、図3に示すように、電子素子組を複数備え、具体的には、第一直列素子ユニット30aを形成する電子素子組と、第二直列素子ユニット30bを形成する電子素子組との、2つの電子素子組を備えている。
 第一平滑コンデンサ50は、直列素子ユニット30に供給される直流電圧の変動を抑制する(すなわち、当該直流電圧を平滑化する)回路部品である。本実施形態では、図7に示すように、回転電機2を駆動する回転電機駆動回路は、インバータ回路91に加えて昇圧回路92を備えており、平滑コンデンサとして第一平滑コンデンサ50に加えて第二平滑コンデンサ60が回転電機駆動回路に備えられている。昇圧回路92は、直流電源3の直流電圧を昇圧するための回路であり、2つのスイッチング素子10、当該2つのスイッチング素子10のそれぞれに電気的に並列に接続された合計2つのダイオード素子20、及びリアクトル82を備えて構成されている。リアクトル82には、スイッチング素子10のスイッチングに応じて断続的にエネルギが蓄積される。直流電源3は、例えば、バッテリ、キャパシタ等により構成される。本実施形態では、第一平滑コンデンサ50が、本発明における「平滑コンデンサ」に相当する。
 第一平滑コンデンサ50は、インバータ回路91の直流側に電気的に並列に接続され、インバータ回路91を構成する直列素子ユニット30に供給される直流電圧の変動を抑制する。すなわち、第一平滑コンデンサ50は、直列素子ユニット30を構成するスイッチング素子10に供給される直流電圧の変動を抑制する。第一平滑コンデンサ50には、電源のオフ時等に第一平滑コンデンサ50に蓄えられた電荷を放電するための放電抵抗81が電気的に並列に接続されている。第二平滑コンデンサ60は、直流電源3に電気的に並列に接続され、昇圧回路92を構成するスイッチング素子10に供給される直流電圧の変動を抑制する。すなわち、第一平滑コンデンサ50は、昇圧回路92による昇圧後の電圧を平滑化する昇圧後平滑コンデンサであり、第二平滑コンデンサ60は、昇圧回路92による昇圧前の電圧を平滑化する昇圧前平滑コンデンサである。
 第一平滑コンデンサ50の外面には、図1等に示すように、平面状の素子配置面S1と、第一平面S4と、第二平面S5とが含まれる。図3及び図4に示すように、第一平面S4は、X方向の一方側である-X方向側の素子配置面S1の端部において当該素子配置面S1に交差する面であり、第二平面S5は、X方向の他方側である+X方向側の素子配置面S1の端部において当該素子配置面S1に交差する面である。第一平面S4と第二平面S5とは、互いに反対方向を向くように形成されている。ここで、2つの面について「互いに反対方向を向く」とは、それぞれの面の外方へ向かう法線ベクトル同士の内積が負となることを意味し、第一平面S4と第二平面S5とが互いに交差する場合を含む。素子配置面S1は、第一平滑コンデンサ50の上側の外面である上面(+Z方向側を向く面)に形成されている。本実施形態では、第一平滑コンデンサ50は直方体状の外形を有し、素子配置面S1、第一平面S4、及び第二平面S5のそれぞれは、矩形状に形成されていると共に、第一平面S4及び第二平面S5のそれぞれは、素子配置面S1に直交する面として形成されている。すなわち、本実施形態では、第一平面S4及び第二平面S5は、互いに反対方向を向くと共に互いに平行な面として形成されている。
 素子配置面S1には、図1等に示すように、第一平滑コンデンサ50の端子に電気的に接続される電極である端子接続電極P(具体的には、正極側接続電極P1及び負極側接続電極P2)が形成されており、直列素子ユニット30を構成するスイッチング素子10とダイオード素子20とは、端子接続電極Pと電気的に接続された状態で、素子配置面S1に配置(言い換えれば、実装)されている。これらのスイッチング素子10やダイオード素子20は、素子配置面S1に対して上側から載るように配置(すなわち載置)されている。素子配置面S1に形成される端子接続電極P、並びに後述する素子間接続電極P3、制御用電極P4、及び放電抵抗用電極P5(図6参照)は、例えば、導体箔(銅箔等)により形成された電極とすることができる。また、このような電極は、例えば、印刷技術を用いて素子配置面S1に形成することができる。
 第一平滑コンデンサ50は、正極側の端子である正極端子51と、負極側の端子である負極端子52とを備えている。これらの端子51,52は、図7に示すように、直流電源3及び昇圧回路92との間で直流電力の入出力を行う端子として機能するとともに、インバータ回路91との間で直流電力の入出力を行う端子としても機能する。本実施形態では、図4に示すように、正極端子51は、第一平滑コンデンサ50の-X方向側の端部に配置された第一平面S4に形成されており、負極端子52は、第一平滑コンデンサ50の+X方向側の端部に配置された第二平面S5に形成されている。本実施形態では、正極端子51及び負極端子52の双方は、第一平滑コンデンサ50の上面に露出するように形成されている。すなわち、本実施形態では、第一平滑コンデンサ50の上面には、正極端子51の上端部により形成される部分と、負極端子52の上端部により形成される部分とが含まれる。更に、本実施形態では、正極端子51及び負極端子52のそれぞれは、図1~図3に示すように、第一平滑コンデンサ50のY方向の両側の側面(側方側の外面)に露出するように形成されている。
 第一平滑コンデンサ50は、電極の間に介在する誘電体部分53がセラミック材料で形成されたセラミックコンデンサである。このセラミック材料は、例えば、チタン酸バリウムやチタン酸ストロンチウム等により構成される。具体的には、図4及び図5に模式的に示すように、第一平滑コンデンサ50は、積層セラミックコンデンサであり、誘電体部分53が内部電極54を介して積層方向(ここでは上下方向)に積層した構造を有している。内部電極54は、正極端子51に電気的に接続された正極側内部電極54aと、負極端子52に電気的に接続された負極側内部電極54bとが、積層方向に交互に配置されている。正極側内部電極54aは、第一平滑コンデンサ50の内部を、正極端子51から+X方向側に延びるように形成されている。負極側内部電極54bは、第一平滑コンデンサ50の内部を、負極端子52から-X方向側に延びるように形成されている。すなわち、正極端子51及び負極端子52の双方は外部電極として機能し、第一平滑コンデンサ50の積層方向の全域に亘って延びるように形成されている。なお、図4及び図5では、誘電体部分53の積層数が「5」となるように示しているが、誘電体部分53の実際の積層数は任意の値とすることができる。例えば、第一平滑コンデンサ50として、誘電体部分53の積層数が100以上のものを用いることができる。
 第一平滑コンデンサ50の外面に形成される素子配置面S1は、誘電体部分53と一体的に形成されている。具体的には、本実施形態では、第一平滑コンデンサ50の上面(具体的には端子51,52を除く部分)は、上側の端部に配置された誘電体部分53により形成され、第一平滑コンデンサ50の下側の外面である下面(具体的には端子51,52を除く部分)は、下側の端部に配置された誘電体部分53により形成されている。すなわち、本実施形態では、素子配置面S1が形成される第一平滑コンデンサ50の上面(具体的には、当該上面における端子51,52を除く部分)と、第一平滑コンデンサ50の下面(具体的には、当該下面における端子51,52を除く部分)とは、誘電体部分53と同じ材料で一体的に形成されている。このような第一平滑コンデンサ50は、例えば、LTCC(Low Temperature Co-fired Ceramics)技術を用いて低温同時焼成により製造されたものとすることができる。
1-2.直列素子ユニットの配置構成
 次に、スイッチング素子ユニット1における直列素子ユニット30の配置構成について説明する。図3に示すように、本実施形態では、素子配置面S1には、第一直列素子ユニット30aと第二直列素子ユニット30bとの2つの直列素子ユニット30が配置されている。そして、図7に示すように、これら2つの直列素子ユニット30のそれぞれの中間接続部33同士が電気的に接続されることにより、直列素子ユニット組40が構成されている。
 図7に示すように、直列素子ユニット30は、直流電源3の正極側に接続される正極側端子部31と、直流電源3の負極側(例えば、グランド側)に接続される負極側端子部32とを備えている。本実施形態では、直列素子ユニット30の正極側端子部31は、昇圧回路92を構成するスイッチング素子10及びリアクトル82を介して直流電源3の正極に電気的に接続されており、昇圧回路92により昇圧された直流電圧が、直列素子ユニット30の正極側端子部31に供給される。
 直列素子ユニット30により構成される直列素子ユニット組40は、直流電圧を交流電圧に変換するインバータ回路91の1つのアーム組(上段アームと下段アームとの組、言い換えればレッグ)を構成している。同じアーム組を構成する複数の直列素子ユニット30は、同一のスイッチング素子ユニット1に備えられる。本実施形態では、1つのアーム組を構成する2つの直列素子ユニット30が、同一のスイッチング素子ユニット1に備えられ、同一の素子配置面S1に配置されている。すなわち、本実施形態では、スイッチング素子ユニット1は、1つの直列素子ユニット組40を備えている。
 本実施形態では、図7に示すように、交流電圧の供給対象の回転電機2は、三相交流で駆動される交流電動機であり、三相(U相、V相、W相)のそれぞれに対応する合計3つのアーム組が電気的に並列に接続されて、インバータ回路91が形成されている。すなわち、本実施形態では、U相直列素子ユニット組40Uを備えるスイッチング素子ユニット1に加えて、V相直列素子ユニット組40Vを備えるスイッチング素子ユニットとW相直列素子ユニット組40Wを備えるスイッチング素子ユニットとを用いて、インバータ回路91が形成されている。V相直列素子ユニット組40VやW相直列素子ユニット組40Wは、回転電機2との接続関係が異なる(具体的には、接続対象のコイルの相が異なる)点を除いて、U相直列素子ユニット組40Uと同様に構成されているため、ここでは、V相直列素子ユニット組40Vを備えるスイッチング素子ユニットやW相直列素子ユニット組40Wを備えるスイッチング素子ユニットについては図示を省略する。
 このように、本実施形態では、3つのスイッチング素子ユニットを用いてインバータ回路91が形成されており、各アーム組(各直列素子ユニット組40)に対して1つの第一平滑コンデンサ50が電気的に並列に接続されている。図7では煩雑さを避けるために、3つのアーム組の全体に1つの第一平滑コンデンサ50を接続した例を示している。インバータ回路91の制御対象の回転電機2は、例えば、電動車両やハイブリッド車両等に車輪の駆動力源として備えられる回転電機とすることができる。本願明細書では、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 図7に示すように、直列素子ユニット30の正極側端子部31は、正極側接続電極P1(図6参照)に電気的に接続されることで、第一平滑コンデンサ50の正極端子51に電気的に接続されている。また、直列素子ユニット30の負極側端子部32は、負極側接続電極P2(図6参照)に電気的に接続されることで、第一平滑コンデンサ50の負極端子52に電気的に接続されている。同一の直列素子ユニット組40を構成する複数(本例では2つ)の直列素子ユニット30のそれぞれの中間接続部33は、互いに電気的に接続されていると共に、対応する相のコイルに接続されている。以下、このような電気的接続構成を実現するためのスイッチング素子ユニット1の構成について説明する。
 上述したように、素子配置面S1には、第一平滑コンデンサ50の端子51,52に電気的に接続された端子接続電極Pが形成されている。具体的には、図6に示すように、端子接続電極Pとして、正極端子51に電気的に接続された正極側接続電極P1と、負極端子52に電気的に接続された負極側接続電極P2とが、素子配置面S1に形成されている。本実施形態では更に、正極端子51に電気的に接続された部分と負極端子52に電気的に接続された部分との双方を有する放電抵抗用電極P5が、素子配置面S1に形成されている。正極側接続電極P1、及び放電抵抗用電極P5の正極端子51に電気的に接続される部分のそれぞれは、正極端子51の上面の一部を覆うように形成されることで、当該正極端子51と導通している。また、負極側接続電極P2、及び放電抵抗用電極P5の負極端子52に電気的に接続される部分のそれぞれは、負極端子52の上面の一部を覆うように形成されることで、当該負極端子52と導通している。
 正極側接続電極P1や負極側接続電極P2は、スイッチング素子10及びダイオード素子20と、第一平滑コンデンサ50とを電気的に接続するための電極である。よって、本実施形態では、正極端子51及び負極端子52の上面により、第一平滑コンデンサ50の外部電極におけるインバータ回路91側との接続部が形成されている。詳細な説明は省略するが、第一平滑コンデンサ50の外部電極における直流電源3側との接続部も、正極端子51及び負極端子52の上面により形成される構成とすることができる。なお、第一平滑コンデンサ50の外部電極における直流電源3側との接続部が、正極端子51及び負極端子52の側面又は下面により形成される構成とすることも可能である。
 図6に示すように、素子配置面S1には、上記3つの電極P1,P2,P5に加えて、素子間接続電極P3と制御用電極P4とが形成されている。これらの電極P3,P4は、第一平滑コンデンサ50の端子51,52とは電気的に絶縁された電極である。ここで、「電気的に絶縁」とは、素子配置面S1上で電気的に絶縁されていることを意味し、素子配置面S1に配置される回路素子や配線部材等を介して第一平滑コンデンサ50の端子51,52と電気的に接続される場合を含む概念として用いている。
 図6に示すように、本実施形態では、正極側接続電極P1は、素子配置面S1上を正極端子51からX方向における負極端子52側(すなわち、+X方向側)に延びるように形成されており、負極側接続電極P2は、素子配置面S1上を負極端子52からX方向における正極端子51側(すなわち、-X方向側)に延びるように形成されている。そして、本実施形態では、素子配置面S1におけるY方向の全域において、正極側接続電極P1が、負極端子52と負極側接続電極P2とのX方向における間に配置される部分を有さないように構成されている。具体的には、正極側接続電極P1及び負極側接続電極P2のそれぞれは、Z方向視で矩形状に形成されており、正極側接続電極P1のX方向の長さと、負極側接続電極P2のX方向の長さとのそれぞれが、正極側接続電極P1と負極側接続電極P2とが互いにX方向に離間するように設定されている。そして、素子配置面S1上における正極側接続電極P1と負極側接続電極P2とのX方向における間に、直列素子ユニット30を構成するスイッチング素子10とダイオード素子20とを電気的に接続する素子間接続電極P3が形成されている。
 本実施形態では、正極側接続電極P1、負極側接続電極P2、及び素子間接続電極P3は、図6に示すように、X方向視で重複する部分を有するように形成されている。すなわち、正極側接続電極P1が形成されているY方向の領域、負極側接続電極P2が形成されているY方向の領域、及び素子間接続電極P3が形成されているY方向の領域の3つの領域の全てに含まれるY方向の領域が存在し、素子間接続電極P3は、正極側接続電極P1と負極側接続電極P2とによりX方向の両側から挟まれるように形成されている。また、素子間接続電極P3は、Z方向視で矩形状に形成されている。なお、本例では、素子間接続電極P3は、図3に示すように、第二接続部材62(後述する)が配置される+X方向側の一部において、矩形状部分に対して-Y方向側に突出する部分を有している。
 第一直列素子ユニット30a及び第二直列素子ユニット30bの双方は、スイッチング素子10とダイオード素子20とが互いに電気的に直列に接続されて構成されているが、図7に示すように、スイッチング素子10とダイオード素子20との配置構成が、第一直列素子ユニット30aと第二直列素子ユニット30bとでは異なる。具体的には、直列素子ユニット30において正極側に配置される素子を「正極側素子」とし、負極側に配置される素子を「負極側素子」とすると、第一直列素子ユニット30aの正極側素子はスイッチング素子10であるのに対し、第二直列素子ユニット30bの正極側素子はダイオード素子20である。第一直列素子ユニット30aの負極側素子はダイオード素子20であるのに対し、第二直列素子ユニット30bの負極側素子はスイッチング素子10である。
 そして、直列素子ユニット30を構成する正極側素子と負極側素子との接続部(言い換えれば、スイッチング素子10とダイオード素子20との接続部)を中間接続部33とすると、第一直列素子ユニット30aと第二直列素子ユニット30bとは、それぞれの中間接続部33同士が互いに電気的に接続されている。よって、互いに電気的に並列に接続された第一直列素子ユニット30aの正極側素子と第二直列素子ユニット30bの正極側素子との素子組と、互いに電気的に並列に接続された第一直列素子ユニット30aの負極側素子と第二直列素子ユニット30bの負極側素子との素子組とが、互いに電気的に直列に接続されて、直列素子ユニット組40が構成されているといえる。すなわち、図7に示すインバータ回路において上段アームに配置されるスイッチング素子10及びダイオード素子20を、それぞれ、上段側スイッチング素子10a及び上段側ダイオード素子20aとし、下段アームに配置されるスイッチング素子10及びダイオード素子20を、それぞれ、下段側スイッチング素子10b及び下段側ダイオード素子20bとすると、上段側ダイオード素子20aが電気的に並列に接続された上段側スイッチング素子10aと、下段側ダイオード素子20bが電気的に並列に接続された下段側スイッチング素子10bとが、互いに電気的に直列に接続されて、直列素子ユニット組40が構成されている。
 図3に示すように、本実施形態では、上段側スイッチング素子10aは、下段側ダイオード素子20bよりも-Y方向側に配置され、下段側スイッチング素子10bは、上段側ダイオード素子20aよりも-Y方向側に配置されている。すなわち、同じ直列素子ユニット組40に含まれる複数のスイッチング素子10のそれぞれが、同じ直列素子ユニット30を構成するダイオード素子20よりも、Y方向における同じ側に配置されている。同じ直列素子ユニット組40に含まれる複数のスイッチング素子10(本例では、上段側スイッチング素子10a及び下段側スイッチング素子10b)は、X方向に並ぶように素子配置面S1に配置されている。本実施形態では、図6に示すように、素子配置面S1は長辺と短辺とを有する長方形状に形成されており、X方向が長辺の延在方向と平行となり、Y方向が短辺の延在方向と平行となっている。そして、スイッチング素子10に対して電気的に並列に接続されるダイオード素子20が、当該スイッチング素子10とY方向に並ぶように素子配置面S1に配置されている。具体的には、上段側ダイオード素子20aが、上段側スイッチング素子10aの+Y方向側に隣接して配置されていると共に、下段側ダイオード素子20bが、下段側スイッチング素子10bの+Y方向側に隣接して配置されている。ここで、「隣接して配置」とは、素子配置面S1の延在方向(ここではY方向)におけるスイッチング素子10とダイオード素子20との間に他の回路素子が配置されていないことを意味し、また、スイッチング素子10とダイオード素子20との間の離間距離が零である状態(すなわち、それぞれの外面同士が接触している状態)と当該離間距離が零より大きい状態の双方を含む概念として用いている。
 上記のように、上段側スイッチング素子10a、下段側スイッチング素子10b、上段側ダイオード素子20a、及び下段側ダイオード素子20bが配置されているため、本実施形態では、図3に示すように、上段側スイッチング素子10aが、下段側ダイオード素子20bよりも-X方向側に配置されると共に、上段側ダイオード素子20aが、下段側スイッチング素子10bよりも-X方向側に配置されている。すなわち、本実施形態では、第一直列素子ユニット30a及び第二直列素子ユニット30bのそれぞれについて、直列素子ユニット30を構成するスイッチング素子10及びダイオード素子20のいずれか正極側に配置される正極側素子が、いずれか負極側に配置される負極側素子よりも、-X方向側(すなわち、X方向における正極端子51側)に配置されている。
 スイッチング素子10は、図4及び図5に示すように、一対の主端子12,13と制御端子11とを有している。主端子12,13は、直流電圧の供給源(本例では直流電源3)に電気的に接続される端子である。ここで、一対の主端子12,13の内、高電位側の端子を正極側主端子12とし、低電位側の端子を負極側主端子13とする。図5及び図7に示すように、上段側ダイオード素子20aは、上段側スイッチング素子10aの正極側主端子12にカソード端子22が電気的に接続され、上段側スイッチング素子10aの負極側主端子13にアノード端子21が電気的に接続されるように、上段側スイッチング素子10aに対して電気的に逆並列の関係で接続されている。下段側ダイオード素子20bについても同様に、下段側スイッチング素子10bに対して電気的に逆並列の関係で接続されている。すなわち、ダイオード素子20は、FWD(Free Wheel Diode)として機能する。制御端子11は、スイッチング素子10をオンオフ制御するための制御用の端子であり、スイッチング素子10のオン状態では、正極側主端子12と負極側主端子13とが導通し、スイッチング素子10のオフ状態では、正極側主端子12と負極側主端子13との導通が遮断される。
 図4、図5、図7に示すように、上段側スイッチング素子10aの正極側主端子12が、第一直列素子ユニット30aの正極側端子部31を構成し、下段側ダイオード素子20bのアノード端子21が、第一直列素子ユニット30aの負極側端子部32を構成している。また、下段側スイッチング素子10bの負極側主端子13が、第二直列素子ユニット30bの負極側端子部32を構成し、上段側ダイオード素子20aのカソード端子22が、第二直列素子ユニット30bの正極側端子部31を構成している。
 本実施形態では、図7に示すように、スイッチング素子10はIGBT(insulated gate bipolar transistor)であり、正極側主端子12はコレクタ端子により構成され、負極側主端子13はエミッタ端子により構成され、制御端子11はゲート端子により構成されている。そして、制御端子11は、ゲート抵抗83(図3、図5参照)を介して図示しない制御ユニットに電気的に接続されており、各スイッチング素子10は制御端子11に印加されるゲート電圧に応じて、個別にスイッチング制御される。なお、スイッチング素子10として、MOSFET(metal oxide semiconductor field effect transistor)等を用いることも可能である。
 図5に示すように、正極側主端子12と負極側主端子13とのそれぞれは、外形が直方体状に形成されたスイッチング素子10における、互いに反対側を向く外面に分かれて形成されている。具体的には、スイッチング素子10は、正極側主端子12が形成された外面と、負極側主端子13が形成された外面とを有し、これら2つの外面は、互いに逆方向を向くとともに互いに平行な面として形成されている。そして、スイッチング素子10は、負極側主端子13が形成された外面が素子配置面S1に対向する第一対向配置面S2となるように、素子配置面S1に配置されている。すなわち、スイッチング素子10が素子配置面S1に配置された状態で、スイッチング素子10の上面に正極側主端子12が配置され、スイッチング素子10の下面に負極側主端子13が配置される。そして、本実施形態では、制御端子11は、負極側主端子13が形成されているスイッチング素子10の外面において、当該負極側主端子13とは絶縁距離を隔てて配置されている。すなわち、本実施形態では、スイッチング素子10が有する第一対向配置面S2に、主端子12,13(具体的には負極側主端子13)が形成されており、更に本実施形態では、当該第一対向配置面S2に、制御端子11も形成されている。
 スイッチング素子10は、第一対向配置面S2と素子配置面S1とが直接又は接合部材を介して当接するように、素子配置面S1に配置されている。なお、「素子配置面S1と直接又は接合部材を介して当接」というときの素子配置面S1には、当該素子配置面S1に形成された電極が含まれる。具体的には、図3~図5に示すように、上段側スイッチング素子10aは、接合材料93を介して素子間接続電極P3に上側から載るように配置されており、上段側ダイオード素子20aも、接合材料93を介して素子間接続電極P3に上側から載るように配置されている。図5に示すように、本例では、ダイオード素子20の下面にはアノード端子21が形成されており、ダイオード素子20の上面にはカソード端子22が形成されている。すなわち、ダイオード素子20は、アノード端子21が形成された外面が素子配置面S1に対向する第二対向配置面S3となるように、素子配置面S1に配置されており、第二対向配置面S3と素子配置面S1とは、直接又は接合部材を介して当接する。接合部材としての接合材料93は、例えばハンダや導電性ペースト等の、導電性材料により構成される。これにより、上段側スイッチング素子10aの下面に形成された負極側主端子13と、上段側ダイオード素子20aの下面に形成されたアノード端子21とが、素子間接続電極P3に対して電気的に接続される。
 下段側スイッチング素子10bは、接合材料93を介して負極側接続電極P2に上側から載るように配置されており、下段側ダイオード素子20bも、接合材料93を介して負極側接続電極P2に上側から載るように配置されている。これにより、下段側スイッチング素子10bの下面に形成された負極側主端子13と、下段側ダイオード素子20bの下面に形成されたアノード端子21とが、負極側接続電極P2に対して電気的に接続される。なお、負極側接続電極P2は、負極端子52に電気的に接続されており、下段側スイッチング素子10bの負極側主端子13と、下段側ダイオード素子20bのアノード端子21とは、負極側接続電極P2を介して負極端子52に電気的に接続される。このように、負極側接続電極P2は、下段側ダイオード素子20bのアノード端子21により構成される第一直列素子ユニット30aの負極側端子部32と、下段側スイッチング素子10bの負極側主端子13により構成される第二直列素子ユニット30bの負極側端子部32とを、第一平滑コンデンサ50の負極端子52に電気的に接続するための電極である。
 図1及び図2に示すように、上段側スイッチング素子10aの上面に形成された正極側主端子12(図4、図5参照)と、上段側ダイオード素子20aの上面に形成されたカソード端子22とを、正極側接続電極P1に対して電気的に接続するように、導電性の第一接続部材61が配置されている。すなわち、第一接続部材61は、正極側接続電極P1と上段側スイッチング素子10aとを電気的に接続すると共に、正極側接続電極P1と上段側ダイオード素子20aとを電気的に接続する。具体的には、図4に示すように、第一接続部材61は、接合材料93を介して正極側接続電極P1に上側から載るように配置された第一部分61aと、接合材料93を介して上段側スイッチング素子10a及び上段側ダイオード素子20aに上側から載るように配置された第二部分61bとを有する。これにより、上段側スイッチング素子10aの正極側主端子12と、上段側ダイオード素子20aのカソード端子22とが、正極側接続電極P1に対して電気的に接続される。なお、正極側接続電極P1は、正極端子51に電気的に接続されており、上段側スイッチング素子10aの正極側主端子12と、上段側ダイオード素子20aのカソード端子22とは、正極側接続電極P1を介して正極端子51に電気的に接続される。このように、正極側接続電極P1は、上段側スイッチング素子10aの正極側主端子12により構成される第一直列素子ユニット30aの正極側端子部31と、上段側ダイオード素子20aのカソード端子22により構成される第二直列素子ユニット30bの正極側端子部31とを、第一平滑コンデンサ50の正極端子51に電気的に接続するための電極である。
 また、図1及び図2に示すように、下段側スイッチング素子10bの上面に形成された正極側主端子12(図4参照)と、下段側ダイオード素子20bの上面に形成されたカソード端子22とを、素子間接続電極P3に対して電気的に接続するように、導電性の第二接続部材62が配置されている。すなわち、第二接続部材62は、素子間接続電極P3と下段側スイッチング素子10bとを電気的に接続すると共に、素子間接続電極P3と下段側ダイオード素子20bとを電気的に接続する。具体的には、図4に示すように、第二接続部材62は、接合材料93を介して素子間接続電極P3に上側から載るように配置された第一部分62aと、接合材料93を介して下段側スイッチング素子10b及び下段側ダイオード素子20bに上側から載るように配置された第二部分62bとを有する。これにより、下段側スイッチング素子10bの正極側主端子12と、下段側ダイオード素子20bのカソード端子22とが、素子間接続電極P3に対して電気的に接続される。この結果、素子間接続電極P3を介して、上段側スイッチング素子10aの負極側主端子13及び上段側ダイオード素子20aのアノード端子21が、下段側スイッチング素子10bの正極側主端子12及び下段側ダイオード素子20bのカソード端子22に電気的に接続される。このように、素子間接続電極P3は、直列素子ユニット30を構成するスイッチング素子10とダイオード素子20との間(具体的には、上段側スイッチング素子10aと下段側ダイオード素子20bとの間、並びに上段側ダイオード素子20aと下段側スイッチング素子10bとの間)を電気的に接続して中間接続部33を形成するための電極であると共に、同じ直列素子ユニット組40を構成する複数の直列素子ユニット30のそれぞれの中間接続部33同士を接続するための電極である。
 本実施形態では、図1、図4等に示すように、第一接続部材61及び第二接続部材62は、上面に平坦部分を有する。そして、図示は省略するが、この平坦部分の上側に、絶縁部材を介してヒートシンクが配置されている。この絶縁部材は、電気的絶縁性及び熱伝導性の双方を備える。これにより、スイッチング素子10とヒートシンクとの間の電気的絶縁性を確保しつつ、スイッチング素子10の熱を効率良く接続部材61,62を介してヒートシンクに伝達させることが可能となっている。このように、接続部材61,62は、接続部材(バスバー)としての機能に加えて、ヒートスプレッダとしての機能も有している。
 制御用電極P4は、制御端子11に電気的に接続される制御用の電極である。具体的には、制御用電極P4は、図5に示すように、制御端子11の下側に配置されて当該制御端子11に電気的に接続された部分と、当該部分とは-Y方向側に分離された部分(分離部分)とを有し、これら2つの部分を電気的に接続するようにゲート抵抗83が上側から載るように配置されている。また、図示は省略するが、上記分離部分にはフレキシブルプリント基板の接続端子が形成されており、制御端子11は当該フレキシブルプリント基板を介して、スイッチング制御信号(本例ではゲート駆動信号)を生成する制御ユニット(図示せず)に電気的に接続されている。なお、フレキシブルプリント基板は、柔軟性があり大きく変形させることが可能なプリント基板である。
 また、放電抵抗用電極P5は、第一平滑コンデンサ50に電気的に並列に接続される放電抵抗81(図7参照)を配置するための電極である。具体的には、図6に示すように、放電抵抗用電極P5は、互いにX方向に分離された2つの部分である、正極端子51に電気的に接続された部分と、負極端子52に電気的に接続された部分とを有する。そして、図1に示すように、これら2つの部分を電気的に接続するように、放電抵抗81が上側から載るように配置されている。
2.第二の実施形態
 本発明の第二の実施形態について図8~図10を参照して説明する。本実施形態に係るスイッチング素子ユニット1は、複数の直列素子ユニット組40を備えている点で、上記第一の実施形態とは異なる。以下、本実施形態に係る2つの具体例について順に説明する。なお、本実施形態並びに以下に説明する第三及び第四の実施形態の各実施形態についての説明では、上記第一の実施形態との相違点を中心に説明し、特に説明しない点については上記第一の実施形態と同様とする。
2-1.第一の具体例
 図8に示すように、第一の具体例では、スイッチング素子ユニット1が2つの直列素子ユニット組40を備えている。具体的には、スイッチング素子ユニット1は、U相直列素子ユニット組40Uに加えてV相直列素子ユニット組40Vを備えている。図7に示すように、V相直列素子ユニット組40Vは、中間接続部33の接続対象のコイルの相が異なる点を除いて、U相直列素子ユニット組40Uと同様に構成されている。すなわち、V相直列素子ユニット組40Vを構成する第三直列素子ユニット30cは、U相直列素子ユニット組40Uを構成する第一直列素子ユニット30aと同様に構成され、V相直列素子ユニット組40Vを構成する第四直列素子ユニット30dは、U相直列素子ユニット組40Uを構成する第二直列素子ユニット30bと同様に構成されている。
 そして、V相直列素子ユニット組40Vは、図8に示すように、U相直列素子ユニット組40Uに対して+Y方向側に並べて配置されている。すなわち、本具体例に係るスイッチング素子ユニット1は、上記第一の実施形態に係るスイッチング素子ユニット1(図3参照)を、Y方向に2つ並べた構成といえる。なお、図8では煩雑さを避けるため、放電抵抗81やゲート抵抗83に関する部分については図示を省略している。この構成では、2つのアーム組(2つの直列素子ユニット組40)に対して1つの第一平滑コンデンサ50が電気的に並列に接続されるため、本例での第一平滑コンデンサ50の容量は、上記第一の実施形態に比べて2倍となる。
 図9は、図8に示す本具体例に係るスイッチング素子ユニット1を、簡略化して示す模式図である。図9並びに後に参照する図10~21の各図面は、素子配置面S1における各素子10,20の間での互いの位置関係と、当該位置関係に応じて定まる、素子配置面S1における各電極P1,P2,P3の間での互いの位置関係とを説明するための図面である。そのため、図9~図21においては、これらの位置関係の理解を容易にすべく、接続部材61,62の図示を省略すると共に、各素子10,20や各電極P1,P2,P3の形状を模式的に示している。
2-2.第二の具体例
 図10に示すように、第二の具体例では、上記第一の具体例とは異なり、スイッチング素子ユニット1は、3つの直列素子ユニット組40を備えている。具体的には、スイッチング素子ユニット1は、U相直列素子ユニット組40UとV相直列素子ユニット組40Vとに加えて、W相直列素子ユニット組40Wを備えている。図7に示すように、W相直列素子ユニット組40Wは、中間接続部33の接続対象のコイルの相が異なる点を除いて、U相直列素子ユニット組40Uと同様に構成されている。すなわち、W相直列素子ユニット組40Wを構成する第五直列素子ユニット30eは、U相直列素子ユニット組40Uを構成する第一直列素子ユニット30aと同様に構成され、W相直列素子ユニット組40Wを構成する第六直列素子ユニット30fは、U相直列素子ユニット組40Uを構成する第二直列素子ユニット30bと同様に構成されている。この構成では、3つのアーム組(3つの直列素子ユニット組40)に対して1つの第一平滑コンデンサ50が電気的に並列に接続されるため、本例での第一平滑コンデンサ50の容量は、上記第一の実施形態に比べて3倍となる。
 なお、これらの第一の具体例(図9)や第二の具体例(図10)では、異なる直列素子ユニット組40の間で、上段側スイッチング素子10a、下段側スイッチング素子10b、上段側ダイオード素子20a、及び下段側ダイオード素子20bの素子配置面S1上での配置関係が互いに同一であるが、異なる直列素子ユニット組40の間でこの配置関係を互いに異ならせることも可能である。例えば、図9に示す具体例に係るV相直列素子ユニット組40Vについて、上段側スイッチング素子10aと上段側ダイオード素子20aとを入れ替えた構成、下段側スイッチング素子10bと下段側ダイオード素子20bとを入れ替えた構成、或いは、上段側スイッチング素子10aと上段側ダイオード素子20aとを入れ替えると共に下段側スイッチング素子10bと下段側ダイオード素子20bとを入れ替えた構成とすることが可能である。後述する各具体例においても、同様の入れ替えが可能である。
3.第三の実施形態
 本発明の第三の実施形態について図11~図18を参照して説明する。本実施形態に係るスイッチング素子ユニット1は、当該スイッチング素子ユニット1に備えられる少なくとも1つの直列素子ユニット組40について、当該直列素子ユニット組40に含まれる複数の正極側素子のそれぞれが、同じ直列素子ユニット30を構成する負極側素子よりも、Y方向における同じ側に配置されている点で、上記第一及び第二の実施形態とは異なる。また、本実施形態に係るスイッチング素子ユニット1は、当該スイッチング素子ユニット1に備えられる少なくとも1つの直列素子ユニット組40について、当該直列素子ユニット組40に含まれる複数のスイッチング素子10のそれぞれが、同じ直列素子ユニット30を構成するダイオード素子20よりも、X方向における同じ側に配置されている点で、上記第一及び第二の実施形態とは異なる。以下、本実施形態に係る8個の具体例について順に説明する。
3-1.第一の具体例
 図11に示すように、第一の具体例では、スイッチング素子ユニット1は、2つの直列素子ユニット組40(U相直列素子ユニット組40U及びV相直列素子ユニット組40V)を備えている。本具体例では、U相直列素子ユニット組40UとV相直列素子ユニット組40Vとの間で、上段側スイッチング素子10a、下段側スイッチング素子10b、上段側ダイオード素子20a、及び下段側ダイオード素子20bの素子配置面S1上での配置関係が互いに同一であるため、以下では、U相直列素子ユニット組40Uについてのみ説明する。
 図11に示すように、第一直列素子ユニット30aの正極側素子である上段側スイッチング素子10aは、第一直列素子ユニット30aの負極側素子である下段側ダイオード素子20bよりも-Y方向側に配置されており、第二直列素子ユニット30bの正極側素子である上段側ダイオード素子20aは、第二直列素子ユニット30bの負極側素子である下段側スイッチング素子10bよりも-Y方向側に配置されている。すなわち、U相直列素子ユニット組40Uに含まれる複数の正極側素子のそれぞれが、同じ直列素子ユニット30を構成する負極側素子よりも、-Y方向側に配置されている。そして、本具体例では、スイッチング素子ユニット1に備えられる全ての直列素子ユニット組40のそれぞれについて、当該直列素子ユニット組40に含まれる複数の正極側素子のそれぞれが、同じ直列素子ユニット30を構成する負極側素子よりも、Y方向における同じ側に配置されている。
 また、本具体例では、第一直列素子ユニット30aについては、正極側素子が負極側素子よりも-X方向側に配置されているのに対し、第二直列素子ユニット30bについては、正極側素子が負極側素子よりも+X方向側に配置されている。すなわち、上段側スイッチング素子10aは、下段側ダイオード素子20bよりも-X方向側に配置され、下段側スイッチング素子10bは、上段側ダイオード素子20aよりも-X方向側に配置されている。よって、本具体例では、同じ直列素子ユニット組40に含まれる複数のスイッチング素子10のそれぞれが、同じ直列素子ユニット30を構成するダイオード素子20よりも、X方向における同じ側に配置されている。同じ直列素子ユニット組40に含まれる複数のスイッチング素子10(本例では、上段側スイッチング素子10a及び下段側スイッチング素子10b)は、Y方向に並ぶように素子配置面S1に配置されている。
 図11に示すように、本具体例においても、上記第一及び第二の実施形態と同様、素子配置面S1におけるY方向の全域において、正極側接続電極P1は、負極側接続電極P2の+X方向側に配置される部分を有さない。すなわち、素子配置面S1におけるY方向の全域において、正極側接続電極P1は、負極端子52と負極側接続電極P2とのX方向における間に配置される部分を有さない。また、本具体例では、正極側接続電極P1は、素子間接続電極P3に対して-Y方向側においてX方向に延びる部分を有し、負極側接続電極P2は、素子間接続電極P3に対して+Y方向側においてX方向に延びる部分を有する。よって、本具体例では、上記第一及び第二の実施形態とは異なり、素子間接続電極P3は、素子配置面S1上における正極側接続電極P1と負極側接続電極P2とのY方向における間に形成されている。すなわち、上記第一及び第二の実施形態とは異なり、正極側接続電極P1、負極側接続電極P2、及び素子間接続電極P3は、Y方向視で重複する部分を有するように形成されている。
3-2.第二の具体例
 図12に示すように、第二の具体例は、第一の具体例(図11)における各直列素子ユニット組40について、上段側スイッチング素子10aと下段側スイッチング素子10bとを入れ替えると共に上段側ダイオード素子20aと下段側ダイオード素子20bとを入れ替えた構成に相当する。すなわち、本具体例では、上記第一の具体例とは異なり、U相直列素子ユニット組40Uに含まれる複数の正極側素子のそれぞれは、同じ直列素子ユニット30を構成する負極側素子よりも、+Y方向側に配置されている。また、本具体例では、上記第一の具体例とは異なり、正極側接続電極P1は、素子間接続電極P3に対して+Y方向側においてX方向に延びる部分を有し、負極側接続電極P2は、素子間接続電極P3に対して-Y方向側においてX方向に延びる部分を有する。
3-3.第三の具体例
 図13に示すように、第三の具体例は、第一の具体例(図11)におけるV相直列素子ユニット組40Vと、第二の具体例(図12)におけるU相直列素子ユニット組40Uとを組み合わせた構成に相当する。すなわち、本具体例では、異なる直列素子ユニット組40の間で、上段側スイッチング素子10a、下段側スイッチング素子10b、上段側ダイオード素子20a、及び下段側ダイオード素子20bの素子配置面S1上での配置関係が互いに異なる。
3-4.第四の具体例
 図14に示すように、第四の具体例は、第一の具体例(図11)におけるU相直列素子ユニット組40Uと、第二の具体例(図12)におけるV相直列素子ユニット組40Vとを組み合わせた構成に相当する。
3-5.第五の具体例
 図15に示すように、第五の具体例は、上記第二の実施形態に係る第一の具体例(図9)におけるU相直列素子ユニット組40Uと、本実施形態に係る第二の具体例(図12)におけるV相直列素子ユニット組40Vとを組み合わせた構成に相当する。本具体例では、スイッチング素子ユニット1に備えられる一部の直列素子ユニット組40(具体的には、V相直列素子ユニット組40V)について、当該直列素子ユニット組40に含まれる複数の正極側素子のそれぞれが、同じ直列素子ユニット30を構成する負極側素子よりも、Y方向における同じ側に配置される。
3-6.第六の具体例
 図16に示すように、第六の具体例は、上記第二の実施形態に係る第一の具体例(図9)におけるU相直列素子ユニット組40Uと、本実施形態に係る第一の具体例(図11)におけるV相直列素子ユニット組40Vとを組み合わせた構成に相当する。
3-7.第七の具体例
 図17に示すように、第七の具体例は、上記第二の実施形態に係る第一の具体例(図9)におけるV相直列素子ユニット組40Vと、本実施形態に係る第一の具体例(図11)におけるU相直列素子ユニット組40Uとを組み合わせた構成に相当する。
3-8.第八の具体例
 図18に示すように、第八の具体例は、上記第二の実施形態に係る第一の具体例(図9)におけるV相直列素子ユニット組40Vと、本実施形態に係る第二の具体例(図12)におけるU相直列素子ユニット組40Uとを組み合わせた構成に相当する。
4.第四の実施形態
 本発明の第四の実施形態について図19~図21を参照して説明する。本実施形態に係るスイッチング素子ユニット1は、当該スイッチング素子ユニット1に備えられる少なくとも1つの直列素子ユニット組40について、正極側接続電極P1が、負極端子52と負極側接続電極P2とのX方向における間に配置される部分を有する点で上記第一~第三の実施形態とは異なる。以下、本実施形態に係る3個の具体例について順に説明する。
4-1.第一の具体例
 図19に示すように、第一の具体例では、スイッチング素子ユニット1は、2つの直列素子ユニット組40(U相直列素子ユニット組40U及びV相直列素子ユニット組40V)を備えており、全ての直列素子ユニット30について、正極側素子が負極側素子よりも+X方向側(すなわち、X方向における負極端子52側)に配置されている。このような配置構成を備えるため、図19に示すように、本具体例では、2つの直列素子ユニット組40のそれぞれについて、正極側接続電極P1が、負極側接続電極P2の+X方向側に配置される部分を有する。すなわち、正極側接続電極P1が、負極端子52と負極側接続電極P2とのX方向における間に配置される部分を有する。
4-2.第二の具体例
 図20に示すように、第二の具体例では、上記第二の実施形態に係る第一の具体例(図9)におけるU相直列素子ユニット組40Uと、本実施形態に係る第一の具体例(図19)におけるV相直列素子ユニット組40Vとを組み合わせた構成に相当する。すなわち、本具体例では、スイッチング素子ユニット1に備えられる一部の直列素子ユニット組40について、正極側接続電極P1が、負極端子52と負極側接続電極P2とのX方向における間に配置される部分を有する。
4-3.第三の具体例
 図21に示すように、第三の具体例では、上記第二の実施形態に係る第一の具体例(図9)におけるV相直列素子ユニット組40Vと、本実施形態に係る第一の具体例(図19)におけるU相直列素子ユニット組40Uとを組み合わせた構成に相当する。
5.その他の実施形態
 最後に、本発明に係るスイッチング素子ユニットの、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成、並びに上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。
(1)上記の各実施形態では、素子配置面S1が、誘電体部分53と同じ材料で形成された構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、素子配置面S1が、当該誘電体部分53とは別の材料で形成された構成とすることも可能である。また、上記の各実施形態では、素子配置面S1に偶数個の直列素子ユニット30が配置された構成を例として説明したが、奇数個(例えば1個、3個等)の直列素子ユニット30が素子配置面S1に配置された構成とすることも可能である。
(2)上記の各実施形態では、スイッチング素子10が有する第一対向配置面S2に、制御端子11が形成されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、スイッチング素子10における第一対向配置面S2以外の外面(例えば上側の外面である上面)に制御端子11が形成された構成とすることも可能である。この場合、例えば、ワイヤ部材を介して制御端子11が制御用電極P4に電気的に接続される構成とすることができる。また、この場合、素子配置面S1に、制御用電極P4が形成されず、制御端子11が素子配置面S1を介することなく、スイッチング制御信号(本例ではゲート駆動信号)を生成する制御ユニット(図示せず)に電気的に接続される構成とすることも可能である。
(3)上記の各実施形態では、スイッチング素子10に対して電気的に並列に接続されるダイオード素子20が、当該スイッチング素子10に隣接して素子配置面S1に配置される構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、互いに電気的に並列に接続されるスイッチング素子10とダイオード素子20との素子配置面S1の延在方向における間に他の回路素子が配置された構成とすることも可能である。
(4)上記の各実施形態では、インバータ回路91が直流電圧を三相の交流電圧に変換する直流交流変換回路であり、インバータ回路91が6個のスイッチング素子10を備える構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、インバータ回路91が直流電圧を単相の交流電圧に変換する直流交流変換回路であり、インバータ回路91が4個のスイッチング素子10を備える構成とすることもできる。
(5)上記の各実施形態では、本発明に係るスイッチング素子ユニットを、回転電機2を制御するためのインバータ回路91(図7参照)に適用した場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、本発明に係るスイッチング素子ユニットを、昇圧回路92等の他の回路に適用することも可能である。昇圧回路92に適用する場合には、例えば、第二平滑コンデンサ60の外面に素子配置面を形成し、当該素子配置面に、昇圧回路92を構成するスイッチング素子10とダイオード素子20とにより形成される直列素子ユニットが配置された構成とすることができる。詳細は省略するが、このような構成では、上記実施形態における素子配置面S1が第二平滑コンデンサ60の上記素子配置面に置き換わる点を除いて、上記実施形態と同様に構成することができる。
(6)上記の各実施形態では、回転電機2を駆動する回転電機駆動回路が、インバータ回路91に加えて昇圧回路92を備えた構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、回転電機2を駆動する回転電機駆動回路が昇圧回路92を備えない構成とすることも可能である。
(7)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
 本発明は、スイッチング素子及びダイオード素子を備えたスイッチング素子ユニットに好適に利用することができる。
1:スイッチング素子ユニット
10:スイッチング素子
20:ダイオード素子
30:直接素子ユニット
31:正極側端子部
32:負極側端子部
33:中間接続部
40:直接素子ユニット組
50:第一平滑コンデンサ(平滑コンデンサ)
51:正極端子
52:負極端子
53:誘電体部分
54a:正極側内部電極
54b:負極側内部電極
P1:正極側接続電極
P2:負極側接続電極
P3:素子間接続電極
S1:素子配置面
S4:第一平面
S5:第二平面
X:基準方向
Y:基準直交方向

Claims (7)

  1.  互いに電気的に直列に接続されて直列素子ユニットを形成するスイッチング素子とダイオード素子との組を少なくとも1つ備えると共に、前記直列素子ユニットに供給される直流電圧の変動を抑制する平滑コンデンサを備えたスイッチング素子ユニットであって、
     前記平滑コンデンサは、電極の間に介在する誘電体部分がセラミック材料で形成されたセラミックコンデンサであり、
     前記平滑コンデンサの外面には、前記誘電体部分と一体的に形成された素子配置面と、前記素子配置面に沿って設定された基準方向における一方側の前記素子配置面の端部において当該素子配置面に交差する第一平面と、前記基準方向における他方側の前記素子配置面の端部において当該素子配置面に交差する第二平面とが含まれ、前記第一平面に前記平滑コンデンサの正極端子が形成されていると共に、前記第二平面に前記平滑コンデンサの負極端子が形成されており、
     前記素子配置面に、前記正極端子に電気的に接続される正極側接続電極と、前記負極端子に電気的に接続される負極側接続電極とが形成されており、
     前記直列素子ユニットを構成する前記スイッチング素子と前記ダイオード素子とが前記素子配置面に配置されていると共に、当該直列素子ユニットの正極側端子部と前記正極側接続電極とが電気的に接続され、当該直列素子ユニットの負極側端子部と前記負極側接続電極とが電気的に接続されているスイッチング素子ユニット。
  2.  前記平滑コンデンサの内部に、前記正極端子から前記基準方向における前記負極端子側に延びる正極側内部電極と、前記負極端子から前記基準方向における前記正極端子側に延びる負極側内部電極とが形成されている請求項1に記載のスイッチング素子ユニット。
  3.  前記素子配置面に沿って前記基準方向に直交する方向を基準直交方向として、
     前記素子配置面における前記基準直交方向の全域において、前記正極側接続電極が、前記負極端子と前記負極側接続電極との前記基準方向における間に配置される部分を有さないように構成されている請求項1又は2に記載のスイッチング素子ユニット。
  4.  前記直列素子ユニットを構成する前記スイッチング素子と前記ダイオード素子との接続部が中間接続部であり、
     複数の前記直列素子ユニットのそれぞれの前記中間接続部同士が電気的に接続されて、直列素子ユニット組が構成されており、
     前記素子配置面に沿って前記基準方向に直交する方向を基準直交方向として、
     同じ前記直列素子ユニット組に含まれる複数の前記スイッチング素子のそれぞれが、同じ前記直列素子ユニットを構成する前記ダイオード素子よりも、前記基準方向における同じ側、又は前記基準直交方向における同じ側に配置されている請求項1から3のいずれか一項に記載のスイッチング素子ユニット。
  5.  前記直列素子ユニットを構成する前記スイッチング素子及び前記ダイオード素子のいずれか正極側に配置される正極側素子が、いずれか負極側に配置される負極側素子よりも、前記基準方向における前記正極端子側に配置されている請求項1から4のいずれか一項に記載のスイッチング素子ユニット。
  6.  前記直列素子ユニットを構成する前記スイッチング素子及び前記ダイオード素子のいずれか正極側に配置される正極側素子と、いずれか負極側に配置される負極側素子との接続部が中間接続部であり、
     複数の前記直列素子ユニットのそれぞれの前記中間接続部同士が電気的に接続されて、直列素子ユニット組が構成されており、
     前記素子配置面に沿って前記基準方向に直交する方向を基準直交方向として、 
     同じ前記直列素子ユニット組に含まれる複数の前記正極側素子のそれぞれが、同じ前記直列素子ユニットを構成する前記負極側素子よりも、前記基準直交方向における同じ側に配置されている請求項1から4のいずれか一項に記載のスイッチング素子ユニット。
  7.  前記正極側接続電極は、前記素子配置面上を前記正極端子から前記基準方向における前記負極端子側に延びるように形成され、
     前記負極側接続電極は、前記素子配置面上を前記負極端子から前記基準方向における前記正極端子側に延びるように形成され、
     前記素子配置面上における前記正極側接続電極と前記負極側接続電極との前記基準方向における間に、前記直列素子ユニットを構成する前記スイッチング素子と前記ダイオード素子とを電気的に接続する素子間接続電極が形成されている請求項1から6のいずれか一項に記載のスイッチング素子ユニット。
PCT/JP2013/069492 2012-07-31 2013-07-18 スイッチング素子ユニット WO2014021112A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/409,848 US20150326221A1 (en) 2012-07-31 2013-07-18 Switching element unit
CN201380027901.3A CN104335307A (zh) 2012-07-31 2013-07-18 开关元件单元
DE112013002474.8T DE112013002474T5 (de) 2012-07-31 2013-07-18 Schaltelementeinheit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012170193A JP2014029944A (ja) 2012-07-31 2012-07-31 スイッチング素子ユニット
JP2012-170193 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014021112A1 true WO2014021112A1 (ja) 2014-02-06

Family

ID=50027794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069492 WO2014021112A1 (ja) 2012-07-31 2013-07-18 スイッチング素子ユニット

Country Status (5)

Country Link
US (1) US20150326221A1 (ja)
JP (1) JP2014029944A (ja)
CN (1) CN104335307A (ja)
DE (1) DE112013002474T5 (ja)
WO (1) WO2014021112A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154189A1 (ja) * 2016-03-11 2017-09-14 新電元工業株式会社 半導体装置
JP2017183430A (ja) * 2016-03-29 2017-10-05 アイシン・エィ・ダブリュ株式会社 スイッチング素子ユニット
DE102016106284A1 (de) * 2016-04-06 2017-10-12 Epcos Ag Modul
JP7088132B2 (ja) * 2019-07-10 2022-06-21 株式会社デンソー 半導体装置及び電子装置
JPWO2021187409A1 (ja) 2020-03-19 2021-09-23
DE102022200168A1 (de) 2022-01-10 2023-03-09 Magna powertrain gmbh & co kg Power Modul Vorrichtung
JP2024048494A (ja) * 2022-09-28 2024-04-09 マツダ株式会社 スイッチングモジュールおよびインバータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961917A (ja) * 1982-10-01 1984-04-09 松下電器産業株式会社 複合電子部品
JPH02142109A (ja) * 1988-11-23 1990-05-31 Tdk Corp 集積回路部品
JPH06112091A (ja) * 1992-09-29 1994-04-22 Taiyo Yuden Co Ltd 積層電子部品及びその製造方法
JP2007142073A (ja) * 2005-11-17 2007-06-07 Fuji Electric Device Technology Co Ltd パワー半導体モジュール
JP2011238906A (ja) * 2010-04-14 2011-11-24 Denso Corp 半導体モジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543298A (zh) * 2000-06-27 2004-11-03 ���µ�����ҵ��ʽ���� 陶瓷叠层器件
KR101549455B1 (ko) * 2007-04-20 2015-09-03 티+잉크, 인코포레이티드 인몰드된 정전용량 방식 스위치
US8451044B2 (en) * 2009-06-29 2013-05-28 Sige Semiconductor, Inc. Switching circuit
JP5935672B2 (ja) * 2012-01-31 2016-06-15 アイシン・エィ・ダブリュ株式会社 スイッチング素子ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961917A (ja) * 1982-10-01 1984-04-09 松下電器産業株式会社 複合電子部品
JPH02142109A (ja) * 1988-11-23 1990-05-31 Tdk Corp 集積回路部品
JPH06112091A (ja) * 1992-09-29 1994-04-22 Taiyo Yuden Co Ltd 積層電子部品及びその製造方法
JP2007142073A (ja) * 2005-11-17 2007-06-07 Fuji Electric Device Technology Co Ltd パワー半導体モジュール
JP2011238906A (ja) * 2010-04-14 2011-11-24 Denso Corp 半導体モジュール

Also Published As

Publication number Publication date
CN104335307A (zh) 2015-02-04
US20150326221A1 (en) 2015-11-12
DE112013002474T5 (de) 2015-01-29
JP2014029944A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5935672B2 (ja) スイッチング素子ユニット
WO2014021112A1 (ja) スイッチング素子ユニット
US9871465B2 (en) Semiconductor device including positive, negative and intermediate potential conductor plates
JP4920677B2 (ja) 電力変換装置およびその組み立て方法
US11538794B2 (en) Power converter with an upper arm and a lower arm and at least first and second semiconductor devices connected by a bridging member
US20100328833A1 (en) Power module with additional transient current path and power module system
JP5807516B2 (ja) 電力変換装置及び電力変換装置における導体の配置方法
JP5132175B2 (ja) 電力変換装置
CN110120736B (zh) 水冷电源模块
JP2014072344A (ja) 平滑コンデンサ
JP2013038848A (ja) 半導体装置
JP2008306867A (ja) 電力変換装置および電気部品の接続方法
JP2005192328A (ja) 半導体装置
JP2005191233A (ja) パワーモジュール
JP4156258B2 (ja) 共振型インバータ
JP7086308B2 (ja) Dc/dcコンバータ装置
JP2018174654A (ja) マルチレベルインバータの導体接続構造
JP2024048494A (ja) スイッチングモジュールおよびインバータ
JP6451347B2 (ja) 電力変換装置
JP2023018359A (ja) 電力変換装置
CN112152471A (zh) 用于电源装置的集成功率单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013002474

Country of ref document: DE

Ref document number: 1120130024748

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14409848

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13825842

Country of ref document: EP

Kind code of ref document: A1