WO2014017390A1 - Nad依存型グルコースデヒドロゲナーゼおよびその製造方法 - Google Patents

Nad依存型グルコースデヒドロゲナーゼおよびその製造方法 Download PDF

Info

Publication number
WO2014017390A1
WO2014017390A1 PCT/JP2013/069606 JP2013069606W WO2014017390A1 WO 2014017390 A1 WO2014017390 A1 WO 2014017390A1 JP 2013069606 W JP2013069606 W JP 2013069606W WO 2014017390 A1 WO2014017390 A1 WO 2014017390A1
Authority
WO
WIPO (PCT)
Prior art keywords
nadgdh
nad
glucose dehydrogenase
zinc
dependent glucose
Prior art date
Application number
PCT/JP2013/069606
Other languages
English (en)
French (fr)
Inventor
幸夫 岩井
岸本 高英
誠嗣 竹嶋
柳谷 周作
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2014526889A priority Critical patent/JP6036826B2/ja
Publication of WO2014017390A1 publication Critical patent/WO2014017390A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01047Glucose 1-dehydrogenase (1.1.1.47)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an NAD-dependent glucose dehydrogenase and a method for producing the same.
  • the present invention further relates to the use of the enzyme.
  • NAD-dependent glucose dehydrogenase (EC 1.1.47, hereinafter glucose dehydrogenase is also referred to as GDH, and NAD-dependent glucose dehydrogenase is also referred to as NADGDH) is an enzyme used for measuring blood glucose concentration, etc. Catalyze the reaction.
  • NADGDH examples include bacteria derived from bacteria belonging to the genus Bacillus, such as Bacillus subtilis, Bacillus megaterium, Bacillus cereus, and the like. These bacteria-derived NADGDHs have relatively good substrate specificity, but have a thermal stability of around 50 ° C. and cannot be said to have sufficient stability.
  • NADGDH derived from hyperthermophilic archaea is derived from Sulfolobus solfataricus, derived from Thermoplasma acidtrophyte and Thermoproteum. It has been reported. While these enzymes are excellent in heat resistance, their substrate specificity is inferior to those derived from bacteria.
  • the present inventors searched for NADGDH which is excellent in both thermal stability and substrate specificity, acquired such an enzyme from Thermoproteus, and succeeded in production using an E. coli recombinant (Patent Document 1).
  • the present inventors further created an enzyme having a higher affinity for NAD by modifying its amino acid sequence (Patent Document 2).
  • An object of the present invention is to create NADGDH having more excellent characteristics in aspects other than thermal stability and substrate specificity and a method for producing such NADGDH when used for glucose measurement.
  • the present inventors have found that the specific activity of the purified NADGDH obtained is increased by culturing a microorganism that expresses (produces) NADGDH in a medium supplemented with zinc. The present inventors further confirmed that NADGDH is different from NADGDH produced in a culture solution without addition of zinc as a substance. The present inventors have further found that the enzyme has increased resistance to EDTA, and have completed the present invention.
  • NADGDH obtained from a microorganism that expresses NADGDH and having the characteristics shown in the following (A) and (B).
  • NADGDH according to (1) which has one or more of the following characteristics (C) to (E): (C) Temperature stability: stable at 80 ° C.
  • NADGDH as described in (1) or (2) which has the following characteristics of (F) or (G).
  • the amino acid sequence has 70% or more identity with the amino acid sequence shown in SEQ ID NO: 1.
  • the amino acid sequence is an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1.
  • a method for producing NADGDH comprising culturing a microorganism expressing NADGDH in a medium supplemented with zinc and purifying the obtained culture solution. (6) The method for producing NADGDH according to (5), wherein the amount of zinc added to the medium is 0.01 mM to 0.1 mM. (7) (1) A method for measuring glucose concentration using NADGDH according to any one of (4). (8) (1) A composition for measuring glucose concentration comprising NADGDH according to any one of (4). (9) (1) A glucose sensor comprising NADGDH according to any one of (4). (10) (1) A fuel cell comprising NADGDH according to any one of (4).
  • NADGDH having high specific activity and high resistance to EDTA used for the purpose of antiseptic or the like can be obtained.
  • a glucose sensor, a glucose determination composition, and the like that allow accurate and highly sensitive glucose measurement over a long period of time.
  • Thermoproteus sp Effect of divalent metal on the culture of transformants producing GDH1 strain-derived NADGDH (relative activity with 100% enzyme activity when produced in TB medium).
  • A Type of metal
  • B Zinc metal concentration Thermoproteus sp. Using a medium obtained by adding 0.01 mM ZnCl 2 to a TB medium (hereinafter also referred to as “TB + 0.01 mM ZnCl 2 ”) as a production medium. Thermoproteus sp. Using purified enzyme of NADGDH derived from GDH1 strain and TB as production medium. The results of SDS-PAGE of the GDH1 strain-derived NADGDH purified enzyme are shown.
  • Thermoproteus sp. Using TB as production medium. It shows the effect of ZnCl 2 processing for GDH1 strain derived NADGDH purified enzyme. Thermoproteus sp. The influence of EDTA with respect to the activity of GDH1 strain origin NADGDH is shown.
  • B A purified enzyme using TB as a production medium. Thermoproteus sp. The result of having measured the optimal pH of GDH1 strain origin NADGDH is shown.
  • the relationship between the reaction rate of GDH1 strain-derived NADGDH and the D-glucose concentration is shown.
  • B A purified enzyme using TB as a production medium. Thermoproteus sp. The relationship between the reaction rate of GDH1 strain-derived NADGDH and the NAD concentration is shown.
  • B A purified enzyme using TB as a production medium.
  • New NADGDH One aspect of the present invention is NADGDH obtained from a microorganism that expresses NADGDH and has the characteristics shown in the following (A) and (B).
  • NADGDH activity can be measured by various known methods. In this document, GDH activity is carried out according to the following method unless otherwise specified.
  • the NADGDH solution is diluted to 0.8 to 1.2 U / ml with the above enzyme-diluted solution that has been ice-cooled in advance, and the one that has been ice-cooled and stored is used as the enzyme solution.
  • ⁇ Procedure 2> Mix the above Tris-HCl buffer solution (2.6 mL), D-glucose aqueous solution (0.3 mL), and NAD + aqueous solution (0.1 mL), and preheat at 37 ° C. for 5 minutes to obtain a reaction mixture.
  • ⁇ Measurement conditions Add 0.05 mL of the enzyme solution to 3.0 mL of the reaction mixture, mix gently, and change the absorbance at 340 nm by 2 to 3 using a spectrophotometer (optical path length: 1.0 cm) controlled at 37 ° C. with water as a control. Record for minutes, and then measure the change in absorbance per minute ( ⁇ OD TEST ) from the linear portion (ie, after the reaction rate is constant). In the blind test, 0.05 mL of the enzyme diluted solution is added instead of the enzyme solution, and the change in absorbance per minute ( ⁇ OD BLANK ) is similarly measured. From these values, NADGDH activity is determined according to the following formula.
  • 1 unit (U) in NADGDH activity is the amount of enzyme that produces NADH in 1 minute under the above measurement conditions.
  • GDH activity (U / mL) [( ⁇ OD TEST ⁇ OD BLANK ) ⁇ 3.05 ⁇ dilution ratio] /(6.22 ⁇ 1.0 ⁇ 0.05)
  • 3.05 Volume after mixing with GDH solution (mL)
  • 6.22 NADH molecular extinction coefficient of NADH (cm 2 / micromol)
  • 1.0 Optical path length (cm) 0.05: Volume of GDH solution to be added (mL) It is.
  • the NADGDH of the present invention preferably has a high specific activity.
  • the preparation containing NADGDH is solid (including powder)
  • the solid weight is regarded as the protein weight, and the enzyme activity is separately measured to determine the specific activity.
  • the protein weight is determined by measuring and calculating the absorbance at A280 nm and using a protein determination reagent (trade name: Bio-Rad Protein Assay Concentrated Dye Reagent) manufactured by Bio-Rad. If the preparation containing NADGDH is solid and appears to contain components other than NADGDH, the specific activity can be determined by dissolving it in an appropriate solution and handling it as a liquid preparation.
  • the lower limit of the specific activity of NADGDH of the present invention is 450 (U / mg) or more.
  • the lower limit of the specific activity is preferably 600 (U / mg) or more, more preferably 800 (U / mg) or more, more preferably 1000 (U / mg) or more, and further preferably 1100 (U / mg) or more.
  • the upper limit of the specific activity is not particularly limited, but is preferably 1500 (U / mg) or less, more preferably 1400 (U / mg) or less, still more preferably 1300 (U / mg) or less, more preferably 1200 (U / mg).
  • the final form of the FGDH preparation of the present invention may be liquid or solid (including powder).
  • the NADGDH of the present invention maintains a residual enzyme activity of 60% or more after treatment for 3 hours in the presence of 1 mM EDTA compared to the enzyme activity before treatment.
  • the preparation containing NADGDH was adjusted to an enzyme concentration of 1 mg / mL with potassium phosphate buffer (pH 6.5), and the residual enzyme activity after treatment for 3 hours in the presence of 1 mM EDTA was measured. Obtained by comparing. If the enzyme concentration of the sample containing NADGDH is low and cannot be adjusted to 1 mg / mL, EDTA is directly added to the sample so as to be 1 mM and dissolved, and the residual enzyme activity after 3 hours of treatment is dissolved before EDTA dissolution. Compared to the enzyme activity of
  • the NADGDH of the present invention is preferably stable at least at 80 ° C. or lower (that is, a temperature range of 0 ° C. to 80 ° C.).
  • pH stability when the residual enzyme activity after treating a 5 U / mL enzyme at 25 ° C. for 16 hours under a specific pH condition is 80% or more compared to the enzyme activity before the treatment. In addition, the enzyme is judged to be stable at the pH condition.
  • the NADGDH of the present invention is preferably stable at least in the range of pH 5.0 to 10.0.
  • NADGDH of the present invention preferably exhibits the highest activity at pH 8.8 (glycine hydrochloride buffer). Further, pH 3.5 to 5.6 (acetic acid buffer), pH 5.6 to 7.6 (potassium phosphate buffer), pH 6.5 to 8.8 (Tris-HCl buffer), pH 8.8 to 10. 5 (glycine-NaOH buffer), NADGDH of the present invention preferably exhibits a relative activity of 80% or more, with the activity at pH 8.8 (glycine hydrochloride buffer) being 100%. That is, the optimum pH of the NADGDH of the present invention is 7.6 to 10.5, and preferably pH 8.8.
  • the origin of NADGDH having the above characteristics such as origin or structure is not particularly limited.
  • the thing derived from microorganisms is mentioned.
  • the genus Pyrodictim, Sulfolobus, Desulfurococcus, Thermoproteus, Thermofilum And the genus Thermoplasma is preferable.
  • NADGDH derived from the genus Thermoproteus include NADGDH derived from Thermoproteus sp. GDH1 strain disclosed in WO2009 / 087929 (Patent Document 1). Moreover, what modified the amino acid sequence of this NADGDH (WO2010 / 137487, patent document 2) is mentioned as a more preferable thing. Examples of such include, but are not limited to, the polypeptide of SEQ ID NO: 1.
  • the polypeptide of SEQ ID NO: 1 is NADGDH in which NADGDH derived from Thermoproteus sp. GDH1 strain is substituted with arginine at position 202 and serine and tryptophan at position 334 with arginine.
  • Patent Document 2 exemplifies many other modifications.
  • the NADGDH of the present invention retains NADGDH activity and retains the above characteristics of 1-2 and 1-3 (more preferably any of the characteristics shown in 1-4 to 1-6 above). Therefore, it is preferably a polypeptide consisting of an amino acid sequence having an identity of 80% or more compared to the amino acid sequence shown in SEQ ID NO: 1. More preferably, the identity between the amino acid sequence of NADGDH of the present invention and the amino acid sequence shown in SEQ ID NO: 1 is 85% or more, more preferably 88% or more, still more preferably 90% or more, and still more preferably Is 93% or more, more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
  • Such a polypeptide comprising an amino acid sequence having a certain identity or more can be prepared based on a known genetic engineering technique as described later.
  • the NADGDH of the present invention retains NADGDH activity and retains the above characteristics of 1-2 and 1-3 (more preferably any of the characteristics shown in 1-4 to 1-6 above). Therefore, it is preferable to have an amino acid sequence in which one or several amino acids are deleted, substituted, inserted or added in the amino acid sequence shown in SEQ ID NO: 1.
  • NADGDH of the present invention those derived from protozoa having the characteristics shown in the following (A) to (G) can be exemplified as preferable ones.
  • A The base sequence shown in SEQ ID NO: 2 is included as the base sequence on the genomic DNA encoding 16S rRNA.
  • B It can grow at a temperature of 80 ° C. or higher, and the optimum growth temperature is about 90 ° C.
  • C The GC content of the genomic DNA is 58 to 62 mol%.
  • D Absolute anaerobic bacteria.
  • E Good growth is obtained when thiosulfate is added as an electron acceptor.
  • F It can grow at a NaCl concentration of 1% or less.
  • G The shape is a koji mold having a length of 10 to 30 ⁇ m and a width of about 5 ⁇ m.
  • a hyperthermophilic protozoan is defined as a protozoa that can grow at 90 ° C. or higher, or an optimal growth temperature of 80 ° C. or higher.
  • Isolation sources may be those derived from microorganisms that grow in a low temperature environment, a high temperature environment such as a volcano, an oxygen-free, high-pressure, light-free environment such as the deep sea, and an oil field.
  • the NADGDH of the present invention includes not only NADGDH directly isolated from microorganisms but also those obtained by modifying the isolated NADGDH by a protein engineering method or by modifying a genetic engineering method.
  • it may be a modified enzyme obtained from a microorganism classified into the genus Thermoproteus.
  • the NADGDH of the present invention may be obtained by culturing a microorganism that expresses NADGDH in a medium supplemented with zinc as described later and purifying the obtained culture solution.
  • NADGDH produced in the culture solution to which zinc is added and NADGDH produced in the culture solution to which no metal is added are different as substances. If it is confirmed that a certain NADGDH has the characteristics shown in the following (A) and (B), the culture solution obtained by culturing the NADGDH-expressing microorganism in a medium supplemented with zinc is purified. It is strongly suggested that it is obtained by doing.
  • A Specific activity: When nicotinamide adenine dinucleotide (NAD) is used as a coenzyme and reacted with glucose, the specific activity is 450 U / mg or more.
  • B When treated with 1 mM EDTA for 3 hours, the residual activity is 60% or more.
  • Another aspect of the present invention is a method for producing NADGDH, comprising culturing a microorganism that expresses NADGDH in a medium supplemented with zinc, and purifying the obtained culture solution.
  • the method for constructing the NADGDH expression system is not particularly limited.
  • a microorganism having the ability to produce NADGDH may be used as an expression system as it is.
  • a gene recombinant also referred to as a transformant
  • a genetic recombinant prepared by introducing DNA encoding NADGDH into an appropriate host vector system may be used as the expression system. From an industrial viewpoint, it is preferable to use a genetic recombinant for reasons such as easy control and higher safety.
  • microorganism having the ability to produce NADGDH examples include those derived from the above-mentioned hyperthermophilic archaeon.
  • DNA encoding NADGDH can be easily prepared using standard genetic engineering techniques (Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989); Chemistry experiment course "gene research method I, II, III", Japan Biochemical Society edition (1986) etc.).
  • a cDNA library is prepared according to a conventional method from an appropriate source microorganism that expresses NADGDH to which the production method of the present invention is applied, and the DNA sequence of NADGDH is converted from the library to the DNA sequence of NADGDH. This can be performed by selecting a desired clone using a specific appropriate probe or antibody.
  • Isolation of total RNA from the above microorganisms, isolation and purification of mRNA, acquisition and cloning of cDNA, determination of base sequence, etc. can all be carried out according to conventional methods.
  • the method for screening the DNA of the present invention from a cDNA library is not particularly limited, and can be performed according to a usual method.
  • a method for selecting a corresponding cDNA clone by immunoscreening using the polypeptide-specific antibody, a plaque high using a probe that selectively binds to a target nucleotide sequence Hybridization, colony hybridization, etc., and combinations thereof can be selected as appropriate.
  • a PCR method or a modified DNA or RNA amplification method thereof can be suitably used.
  • Primers used in the PCR method can also be appropriately designed and synthesized based on the base sequence determined above.
  • isolation and purification of the amplified DNA or RNA fragment can be carried out according to a conventional method as described above, for example, by gel electrophoresis, hybridization or the like.
  • DNA encoding NADGDH can be incorporated into an appropriate expression vector.
  • the type and structure of the expression vector are not particularly limited as long as the DNA can be replicated in an appropriate host cell and can be expressed.
  • the type of vector is appropriately selected in consideration of the type of host cell.
  • Specific examples of the vector include a plasmid vector, a cosmid vector, a phage vector, a virus vector (an adenovirus vector, an adeno-associated virus vector, a retrovirus vector, a herpes virus vector, etc.) and the like. It is also possible to use a vector suitable for self-cloning.
  • An expression vector incorporating DNA encoding NADGDH can be introduced into a suitable host cell and used as a transformant having the ability to produce NADGDH.
  • the host cell is not particularly limited as long as it can express the DNA and produce NADGDH.
  • prokaryotic cells such as Escherichia coli and Bacillus subtilis
  • molds such as yeast and filamentous fungi
  • eukaryotic cells such as insect cells, cultured plant cells, and mammalian cells can be used.
  • Escherichia coli, Bacillus subtilis and filamentous fungi are preferable. E. coli is more preferred.
  • a K-12-derived strain is particularly preferable, and BL21 (DE3), BB4, BM25.5, BMH71-18mutS, BW313, C-la, C600, CJ236, DH1, DH5, DH5 ⁇ , DH10B, DP50supF, ED8654, ED8767, ER1647, HB101, HMS174, HST02, HST04 dam- / dcm-, HST08 Premium, JM83, JM101, JM105, JM106, JM107, JM108, JM109, JM110, K802, K803, LE392, MC1061, 194118, M1061, 194118, M1381, 1938 RR1, TAP90, TG1, TG2, TH2, XL1-Blue, ⁇ -1776, ⁇ -1088, ⁇ -1089, ⁇ -1090, etc.
  • M13 phage or a variant thereof, ⁇ phage or a variant thereof, pBR322 or a variant thereof are used as vectors.
  • M13 phage or a variant thereof, ⁇ phage or a variant thereof, pBR322 or a variant thereof are used as vectors.
  • M13 phage or a variant thereof, ⁇ phage or a variant thereof, pBR322 or a variant thereof pB325, pAT153, pUC8, etc.
  • Bacillus subtilis examples include Bacillus subtilis, Brevibacillus brevis, Brevibacillus choshinensis, etc.
  • vectors include pTB53 or a variant thereof, pHY300PLK or a variant thereof, pAL10, pAL12, pHT01, pHT08, pHT09, pHT10, pHT43, pNY326, pNCMO2, etc. are mentioned.
  • examples include Saccharomyces genus, Schizosaccharomyces genus, Candida genus, Pichia genus, Cryptococcus genus, etc., respectively, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida utilis, Pichia pastoris, An example is Cryptococcus sp.
  • Examples of the vector include pYepSec1, pMFa, pAUR101, pAUR224, and pYE32.
  • vectors such as pAc and pVL can be used.
  • vectors such as pCDM8 and pMT2PC can be used.
  • examples include Aspergillus genus, Trichoderma genus, Coretotricum genus, and the like, and examples thereof include Aspergillus oryzae, Aspergillus niger, Trichoderma reesei, and Choletotricum hyaeris.
  • exogenous DNA is usually present in the host cell, but a transformant obtained by so-called self-cloning using the microorganism from which the DNA is derived as a host is also a preferred embodiment.
  • the transformant of the present invention is preferably prepared by transfection or transformation using the expression vector shown above. Transformation may be transient or stable. Transfection and transformation can be performed using calcium phosphate coprecipitation method, electroporation, lipofection, microinjection, Hanahan method, lithium acetate method, protoplast-polyethylene glycol method, and the like.
  • the present invention is a method for producing NADGDH, which comprises culturing a gene recombinant expressing NADGDH in a medium supplemented with zinc, and purifying the obtained culture solution.
  • the lower limit of the concentration of zinc in the medium is preferably more than 0.001 mM.
  • a more preferred lower limit is 0.005 mM, more preferably 0.008 mM, and more preferably 0.01 mM.
  • the upper limit of the amount of zinc added is preferably 1 mM, more preferably 0.5 mM, and more preferably 0.1 mM.
  • the source of zinc is not particularly limited, and examples thereof include zinc chloride, zinc sulfate, zinc acetate dihydrate, zinc carbonate, zinc nitrate hexahydrate, zinc oxide, zinc sulfate heptahydrate, and the like.
  • culture methods and culture conditions are not particularly limited as long as NADGDH is produced. That is, on the condition that NADGDH is produced, a method and conditions suitable for the growth of the microorganism to be used can be appropriately set.
  • examples of the culture conditions include a culture medium, a culture temperature, and a culture time.
  • the medium composition other than zinc is not particularly limited as long as the microorganism to be used can grow.
  • carbon sources such as glucose, sucrose, gentiobiose, soluble starch, glycerin, dextrin, molasses, organic acids, ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or peptone, yeast extract, corn steep liquor, casein
  • Nitrogen sources such as hydrolysates, bran and meat extracts, and further added with inorganic salts such as potassium salts, magnesium salts, sodium salts, phosphate salts, manganese salts and iron salts can be used.
  • LB medium Lia-Bertai Medium
  • M9 medium M9 Minimal Medium
  • NZCYM medium NZCYM Medium
  • NZYM medium NZYM Medium
  • NZM medium NZM Medium, B medium
  • 2XYT medium 2XYT Medium
  • the culture conditions may be selected in consideration of the nutritional physiological properties of the microorganism. In many cases, it is advantageous to use liquid culture and industrially perform aeration and agitation culture. However, when productivity is considered, it may be advantageous to carry out by solid culture.
  • the pH of the medium is only required to be suitable for the growth of the microorganism to be cultured.
  • it is adjusted to about 4 to 9, preferably about 6 to 8, and the culture temperature is usually about 10 to 50 ° C., preferably about 25 to 35.
  • Culturing is carried out under aerobic conditions at about 0 ° C. for 1 to 15 days, preferably about 3 to 7 days.
  • a shaking culture method or an aerobic deep culture method using a jar fermenter can be used as the culture method.
  • NADGDH is preferably recovered from the culture solution or the cells.
  • the culture supernatant is filtered, centrifuged, etc. to remove insolubles, then concentrated with an ultrafiltration membrane, salting out such as ammonium sulfate precipitation, dialysis,
  • the present enzyme can be obtained by performing separation and purification by appropriately combining various types of chromatography.
  • the microbial cells are crushed by pressure treatment, ultrasonic treatment, mechanical method, or a method using an enzyme such as lysozyme, and if necessary, such as EDTA.
  • This enzyme can be obtained by adding a chelating agent and a surfactant to solubilize NADGDH, separating and collecting it as an aqueous solution, separating and purifying it. After the cells are collected from the culture solution in advance by filtration, centrifugation, or the like, the above series of steps (crushing, separating, and purifying the cells) may be performed.
  • Purification includes, for example, concentration under reduced pressure, membrane concentration, salting-out treatment such as ammonium sulfate and sodium sulfate, or precipitation treatment by a fractional precipitation method using a hydrophilic organic solvent such as methanol, ethanol, acetone, etc., heat treatment or isoelectric point treatment.
  • adsorbent or a gel filtration agent adsorption chromatography, ion exchange chromatography, affinity chromatography, and the like can be combined as appropriate.
  • any one or more of NADGDH activity, thermal stability, etc. may be used as an index.
  • this enzyme is obtained as a recombinant protein, various modifications are possible. For example, if a DNA encoding this enzyme and other appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the peptide consists of a recombinant protein linked to any peptide or protein. This enzyme can be obtained. In addition, modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur. By the modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible.
  • product comprising NADGDH
  • product means a product that constitutes a part or all of one set used by a user for the purpose of executing a certain application, and that includes the NADGDH of the present invention.
  • the product of the present invention can be applied to various uses and is not particularly limited, but typically, one using one of the following two principles can be exemplified.
  • Examples of using the principle (a) include in vitro diagnostic applications (for example, measurement of various biological components). These biological component measurement methods have already been established in the art. Therefore, according to a known method, the amount or concentration of the biological component in various samples can be measured using the NADGDH of the present invention. As long as the concentration or amount of the biological component is measured using the NADGDH of the present invention, the mode is not particularly limited. For example, glucose, lactate dehydrogenase (LDH), creatine kinase (CK), neutral fat (TG), bile Various forms such as reagents, kits, and sensors for measuring biological components such as acids and total branched chain amino acids (BCAA) can be exemplified. Hereinafter, the case of measuring glucose will be described as an example.
  • NADH generated by the GDH reaction reduces the electron acceptor such as DCPIP through NADGDH and returns itself to NAD, and the difference in absorbance caused by the change in the structure of DCPIP. Can be determined colorimetrically to determine the glucose concentration.
  • the sample containing glucose is not particularly limited, and examples thereof include blood, beverages, and foods.
  • the composition for measuring glucose may be in the form of a kit.
  • the kit includes, for example, NADGDH in an amount sufficient for at least one assay, and typically includes the buffers necessary for the assay, mediators, glucose standard solutions for creating calibration curves, and guidelines for use. Including.
  • the NADGDH of the present invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the measurement of the glucose concentration in the form of a sensor can be performed, for example, as follows. Put buffer in constant temperature cell and maintain at constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. An electrode on which NADGDH of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration glucose solution.
  • Immobilization methods include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, a redox polymer, etc., or ferrocene or a derivative thereof. It may be fixed in a polymer or adsorbed and fixed on an electrode together with a representative electron mediator, or a combination of these may be used.
  • NADGDH is immobilized on a carbon electrode using glutaraldehyde and then treated with a reagent having an amine group to block glutaraldehyde.
  • Examples of using the principle of (b) include various forms such as an enzyme electrode (may be an immobilized electrode), an enzyme sensor, a fuel cell, and an electronic device having one or more fuel cells. It can be illustrated. *
  • NADGDH of the present invention is immobilized together with electron mediators such as GDH and osmium complex in a negative electrode of a biofuel cell, while redox selected from bilirubin oxidase (BOD), laccase, ascorbate oxidase and the like at the positive electrode.
  • BOD bilirubin oxidase
  • Immobilize enzyme and mediator such as hexacyanoferrate ion Further, a structure is constructed in which the negative electrode and the positive electrode are opposed to each other via an electrolyte layer that does not have electron conductivity and conducts only protons.
  • glucose supplied as fuel is decomposed by an enzyme to extract electrons and protons (H +
  • H + In the positive electrode, water is generated by protons transported from the negative electrode through the electrolyte layer, electrons sent from the negative electrode through an external circuit, and oxygen in the air, for example.
  • the fuel containing glucose is not particularly limited, and examples thereof include blood, beverages, and foods.
  • the fuel cell of the present invention can be used for anything that requires electric power, and can be of any size. Specifically, this fuel cell is used for, for example, an electronic device, a moving body (automobile, motorcycle, aircraft, rocket, spacecraft, etc.), power unit, construction machine, machine tool, power generation system, cogeneration system, etc. Can do.
  • a moving body autonomous, motorcycle, aircraft, rocket, spacecraft, etc.
  • power unit construction machine, machine tool, power generation system, cogeneration system, etc.
  • Example 1 Obtaining Transformant
  • the polypeptide of SEQ ID NO: 1 was obtained by substituting arginine at position 202 of NADGDH derived from Thermoproteus sp. GDIII strain with serine and tryptophan at position 334 with arginine. It is.
  • the NADGDH and the gene clone encoding it are described in WO2010 / 137589.
  • An expression plasmid carrying a structural gene encoding the polypeptide of SEQ ID NO: 1 was transformed into Escherichia coli DH5 ⁇ strain competent cell (manufactured by Toyobo), and pre-cultured at 37 ° C. for 1 hr in an SOC medium. Then, it was developed on an LB-amp agar medium, and the transformant as a colony was obtained.
  • the obtained transformant was named Escherichia coli DH5 ⁇ (TspGDH).
  • Example 2 Composition of culture medium 5 mL of TB liquid medium (tryptone 1.2%, yeast extract 2.4%, glycerol 0.4%, KH 2 PO 4 0.23%, K 2 HPO 4 1.25% , PH 7.0) was put in a test tube and sterilized by an autoclave to obtain a main culture medium. Furthermore, eight types of liquid culture media each containing 0.01 mM of each of the bivalent metals listed in Table 1 were prepared in the above-mentioned TB medium as culture solutions to which divalent metals were artificially added.
  • TB liquid medium tryptone 1.2%, yeast extract 2.4%, glycerol 0.4%, KH 2 PO 4 0.23%, K 2 HPO 4 1.25% , PH 7.0
  • Example 3 Liquid Culture A colony of the transformant Escherichia coli DH5 ⁇ (TspGDH) obtained in Example 1 was inoculated into a 5 ml LB-amp liquid medium in one platinum ear test tube and cultured at 30 ° C. for 16 hours. From the LB medium, the medium prepared in Example 2 was planted and used as the main culture. The amount of planting from the LB medium to the TB medium and the medium obtained by adding various metals to the TB medium is 1% (v / v). The culture was performed at 37 ° C. for 24 hours, and the culture was terminated.
  • TspGDH transformant Escherichia coli DH5 ⁇
  • the cells are collected by centrifugation, suspended in 50 mM phosphate buffer (pH 7.5), disrupted by beads crushing, further centrifuged, and the supernatant liquid is roughly collected. Obtained as an enzyme solution.
  • Example 4 Influence of NADGDH Activity by Metal Species
  • NADGDH activity in the crude enzyme solution obtained in Example 3 was determined according to 1-1. It measured using the NADGDH activity measuring method shown in 1. As a result, it was possible to obtain a higher enzyme activity in a medium supplemented with zinc than in the TB medium as a comparison target (FIG. 1A). When other divalent metals were added, the enzyme activity was almost the same as in the TB medium, or the result in the TB medium was lower.
  • Example 5 Influence of NADGDH activity by zinc concentration 5 mL of the TB medium prepared in Example 2 was put in a test tube and sterilized by an autoclave to obtain a main culture medium.
  • a culture solution to which zinc was artificially added a liquid medium containing 0.00001 mM to 0.1 mM zinc chloride in the above TB medium was prepared.
  • NADGDH activity in the crude enzyme solution was measured by the same method as in Example 3 and Example 4. As a result, it was possible to obtain a particularly high enzyme activity in a medium supplemented with 0.01 mM or more zinc as compared with the TB medium as a comparison target (FIG. 1B). When 0.001 mM or less of zinc was added, the enzyme activity was almost the same as in the TB medium.
  • Example 6 Enzyme Preparation NADGDH produced in a culture solution without addition of metal and NADGDH produced in a culture solution to which zinc was added were prepared.
  • a culture solution without addition of metal 500 mL of the TB medium prepared in Example 2 was placed in a 2 L Sakaguchi flask and sterilized by autoclaving to obtain a main culture medium. 5 mL of the seed culture solution was inoculated into the main culture medium, and cultured with shaking at a culture temperature of 30 ° C. and 180 rpm for 24 hours. Thereafter, the cells were collected by centrifugation, and the cells were collected. The obtained microbial cells were suspended in 20 mM potassium phosphate buffer (pH 8.0). As a culture solution to which zinc was added, a medium containing 0.01 mM zinc chloride was prepared in 500 mL of the TB medium prepared in Example 2, and the same operation was performed.
  • the suspension was fed to a French press (manufactured by Niro Soavi) at a flow rate of 160 mL / min and crushed at 700 to 1000 bar. Subsequently, a 5% polyethyleneimine solution (pH 7.5) prepared by adjusting ethyleneimine (polymer) (Nacalai Tesque Co., Ltd.) so as to have a polyethyleneimine content of 5% was prepared. %, And the mixture was stirred at room temperature for 30 minutes, and then excess precipitate was removed using a filter aid.
  • a 5% polyethyleneimine solution pH 7.5
  • ethyleneimine (polymer) Nacalai Tesque Co., Ltd.
  • ammonium sulfate (manufactured by Sumitomo Chemical Co., Ltd.) is gradually added to reach 0.5 saturation, ammonium sulfate fractionation is performed, and a protein having NAD-dependent glucose dehydrogenase activity is precipitated and recovered.
  • the precipitate was suspended in 20 mM potassium phosphate buffer (pH 8.0).
  • the suspension was then desalted using Sephadex G-25 gel. Thereafter, it is applied to a 400 mL DEAE Sepharose FastFlow (GE Healthcare) column previously equilibrated with 20 mM potassium phosphate buffer (pH 8.0), and 20 mM potassium phosphate buffer (pH 8.0) containing 0.5 M NaCl is added. Elute with a linear gradient.
  • the eluted NAD-dependent glucose dehydrogenase fraction was concentrated with a hollow fiber membrane (manufactured by Spectrum Laboratories) having a fractional molecular weight of 10,000.
  • the concentrated solution was desalted using Sephadex G-25 gel to obtain a purified enzyme.
  • Example 7 Verification of the degree of purification and specific activity
  • NADGDH activity is measured according to 1-1. It measured using the NADGDH activity measuring method shown in 1.
  • the amount of protein was determined from the value of A280 absorbance, and the specific activity was calculated.
  • the specific activity of NADGDH produced in the culture solution without addition of metal was 382 U / mg
  • the specific activity of NADGDH produced in the culture solution to which zinc was added was 1137 U / mg.
  • NADGDH 1000 U / mL
  • NADGDH 1000 U / mL
  • SDS-polyacrylamide gel electrophoresis SDS-polyacrylamide gel electrophoresis
  • phosphorylase b 97,000 dalton
  • albumin 66,000 dalton
  • ovalbumin 45,000 dalton
  • carbonic anhydrase 30,000 dalton
  • trypsin inhibitor 20, 100 Dalton
  • ⁇ -lactalbumin 14,400 Dalton
  • NADGDH produced in the culture solution without addition of metal and NADGDH produced in the culture solution to which zinc has been added are sufficiently purified.
  • the specific activity 382 U / mg of NADGDH produced in the culture solution without addition of metal and the specific activity 1137 U / mg of NADGDH produced in the culture solution to which zinc was added were not different in the purity of the enzyme, It turns out that it is a property (specific activity).
  • Example 8 Effect of Zinc Metal on Purified Enzyme Addition of zinc chloride to NADGDH (specific activity is 382 U / mg) produced in a culture solution without addition of metal obtained in Example 6 and changes in specific activity I investigated.
  • a NADGDH enzyme solution containing a final concentration of 0 to 0.1 mM zinc chloride was prepared, and the influence of the zinc chloride concentration on NADGDH activity was examined.
  • an enzyme solution of 0 to 0.1 mM zinc chloride (0 is a negative control without zinc chloride) was prepared and stored at 25 ° C. Thereafter, after treatment at each zinc chloride concentration for 0 hour (immediately after enzyme solution adjustment), 3 hours, and 24 hours, the activity was measured and the specific activity was calculated (FIG. 3). As a result, even when zinc chloride was added, no significant increase in specific activity occurred.
  • the specific activity was improved by about 5% compared to the negative control, but the specific activity was less than 450 U / mg.
  • Example 9 Resistance to EDTA Using NADGDH produced in a culture solution without addition of metal obtained in Example 6 and a NADGDH enzyme solution (1 mg / mL) produced in a culture solution added with zinc, the effect of EDTA was observed. Examined. A NADGDH enzyme solution containing a final concentration of 1 mM EDTA and a NADGDH enzyme solution containing a final concentration of 5 mM EDTA were prepared, and the influence of the EDTA concentration on NADGDH activity was examined. For EDTA treatment, an enzyme solution of 0 mM EDTA (negative control without EDTA), 1 mM EDTA, and 5 mM EDTA was prepared and stored at 25 ° C.
  • NADGDH produced in the culture solution added with zinc was less likely to be deactivated by EDTA.
  • NADGDH produced in the culture solution added with zinc had a residual rate of 61% after treatment with 1 mM EDTA ⁇ 3 hours (FIG. 4A).
  • NADGDH produced in the culture solution without addition of metal had a 48% survival rate after treatment with 1 mM EDTA ⁇ 3 hours (FIG. 4B).
  • NADGDH produced in the culture solution added with zinc had a residual rate of 21%, and NADGDH produced in the culture solution without addition of metal was 13%. From this, it was shown that NADGDH produced in the culture solution added with zinc is resistant to EDTA.
  • Example 10 Optimum active pH The optimal pH was examined using the NADGDH produced in the culture solution without addition of metal obtained in Example 6 and the NADGDH enzyme solution (2 U / mL) produced in the culture solution to which zinc was added.
  • 100 mM potassium phosphate buffer pH 6.0-8.0, plotted with ⁇ in the figure
  • 100 mM Tris-HCl buffer pH 7.0-8.0, plotted with ⁇ in the figure
  • 100 mM Using glycine-NaOH buffer pH 9.0-11.0, plotted as x in the figure
  • enzymatic reactions were carried out at each temperature at a temperature of 25 ° C., and the relative activities were compared. The results are shown in FIGS. 5A and 5B.
  • NADGDH produced in a culture solution without addition of metal and NADGDH produced in a culture solution to which zinc was added had similar pH characteristics. Specifically, all NADGDH showed the highest activity values at pH 9.0 to pH 10.0 as the optimum activity pH. In addition, since any NADGDH showed a relative activity of 80% or more of the maximum activity value between about pH 7.5 and pH 10.5, it is considered that it can be suitably used in this pH range.
  • Example 11 pH Stability Using the NADGDH enzyme solution (5 U / mL) produced in the culture solution to which NADGDH produced in the culture solution without addition of metal obtained in Example 6 and zinc was added, pH stability was used. I investigated. 100 mM acetate buffer (pH 3.5 to 6.0, plotted with ⁇ in the figure), 100 mM potassium phosphate buffer (pH 6.0-pH 8.0: plotted with ⁇ in the figure), 100 mM Tris-HCl buffer (PH 7.0-pH 9.0: plotted with ⁇ in the figure), 100 mM Using a glycine-NaOH buffer solution (pH 9.0-11.0, plotted as x in the figure), the residual ratio of activity after treatment at 25 ° C. for 16 hours was measured. The results are shown in FIGS. 6A and 6B.
  • NADGDH produced in the culture solution without addition of metal and NADGDH produced in the culture solution to which zinc was added had the same pH stability. Specifically, any NADGDH was shown to be stable between pH 4.8 and pH 9.7.
  • Example 12 Temperature Stability Temperature stability using NADGDH enzyme solution (5 U / mL) produced in a culture solution added with zinc and a culture solution added with zinc obtained in Example 6 without addition of metal. I investigated. The NAD-dependent glucose dehydrogenase enzyme solution was treated with 100 mM potassium phosphate buffer (pH 8.0) at each temperature (50 ° C., 60 ° C., 70 ° C., 80 ° C., 90 ° C.) for 30 minutes, and then apparent The residual rate of activity was measured. The results are shown in FIGS. 7A and 7B.
  • NADGDH produced in the culture solution without addition of metal and NADGDH produced in the culture solution to which zinc was added had the same pH stability. Specifically, it was found that any NADGDH had a residual activity of 80% or more after treatment at 80 ° C. for 30 minutes. Therefore, it was shown to be stable at 80 ° C. or lower.
  • Example 13 Measurement of Km value for D-glucose
  • activity was measured by changing the concentration of D-glucose as a substrate, and graphs of substrate concentration and reaction rate (FIGS. 8A and 8B).
  • FIGS. 8A and 8B graphs of substrate concentration and reaction rate
  • Example 14 Measurement of Km value for NAD
  • the activity was measured by changing the concentration of NAD as a substrate, and Lineweaver ⁇ was obtained from the graph of substrate concentration and reaction rate (FIG. 9A, FIG. 9B).
  • a blank plot was created and the Km value was calculated.
  • the Km value for NAD of NADGDH produced in the culture solution without metal addition was found to be 0.24 mM.
  • the Km value for NAD of NADGDH produced in the culture solution added with zinc was found to be 0.26 mM.
  • the glucose dehydrogenase produced according to the present invention can be supplied as a raw material for a reagent for measuring blood glucose level, a blood glucose sensor, and a glucose concentration determination kit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】グルコース測定に用いるにあたり、熱安定性と基質特異性以外の面において、より優れた特性を有するNAD依存型グルコースデヒドロゲナーゼを創出する。 【解決手段】NAD依存型グルコースデヒドロゲナーゼを発現する微生物から得られ、補酵素としてNADを用いて、グルコースへ反応させた場合、比活性が450U/mg以上であり、かつ、1mM EDTAで3時間処理した場合、残存活性が60%以上である、NAD依存型グルコースデヒドロゲナーゼ。

Description

NAD依存型グルコースデヒドロゲナーゼおよびその製造方法
 本発明はNAD依存型グルコースデヒドロゲナーゼおよびその製造方法に関する。さらに本発明は当該酵素の用途に関する。
NAD依存型グルコースデヒドロゲナーゼ(EC 1.1.1.47、以下グルコースデヒドロゲナーゼをGDH、またNAD依存型グルコースデヒドロゲナーゼをNADGDHとも記す)は、血中のグルコース濃度測定などに用いられる酵素であり、以下の反応を触媒する。
D-グルコース + NAD 
→ D-グルコノ-δ-ラクトン + NADH
公知のNADGDHとしては、バチルス(Bacillus)属バクテリア、例えばバチルス・スブチリス(Bacillus subtilis)、バチルス・メガテリウム(Bacillus megaterium)、バチルス・セレウス(Bacillus cereus)などに由来するものが例示される。これらのバクテリア由来NADGDHは、基質特異性が比較的良好である反面、熱安定性は50℃前後であり十分な安定性を有しているとはいえない。
また、超好熱性始原菌(hyperthermophilic archaea)由来のNADGDHとして、スルフォロバス・ソルファタリカス(Sulforobus solfataricus)由来、サーモプラズマ・アシドフィラム(Thermoplasma acidophilum)由来、サーモプロテウス・テナックス(Thermoproteus tenax)由来のGDHがそれぞれ報告されている。これら酵素は耐熱性に優れる一方で、バクテリア由来のものと比して基質特異性が劣る。
そこで本発明者らは、熱安定性と基質特異性の両方に優れるNADGDHを探索し、サーモプロテウスよりそのような酵素を取得し、大腸菌組換え体による生産に成功した(特許文献1)。本発明者らは、さらに、そのアミノ酸配列を改変することによりNADに対する親和性をより高めた酵素を創出(特許文献2)した。
WO2009/087929 WO2010/137489
本発明の目的は、グルコース測定に用いるにあたり、熱安定性と基質特異性以外の面において、より優れた特性を有するNADGDH、および、そのようなNADGDHの製造方法を創出することである。
本発明者らは、NADGDHを発現(生産)する微生物を、亜鉛を添加した培地で培養することにより、得られた精製NADGDHの比活性が高まることを見出した。本発明者らは、さらに、該NADGDHは、亜鉛添加なしの培養液にて生産したNADGDHと、物質として異なるものであることを確認した。本発明者らは、さらに、該酵素がEDTAに対して耐性が高まることを見出し、本発明を完成するに至った。
すなわち、本発明は以下に関する。
(1)
NADGDHを発現する微生物から得られたNADGDHであって、以下の(A)および(B)に示す特性を有するNADGDH。
(A)比活性:補酵素としてニコチンアミドアデニンジヌクレオチド(NAD)を用いて、グルコースへ反応させた場合、比活性が450U/mg以上である。
(B)1mM EDTAで3時間処理した場合、残存活性が60%以上である。
(2)
さらに、以下の(C)~(E)のうちいずれか1つ以上の特性を有する、(1)に記載のNADGDH。
(C)温度安定性:80℃で安定
(D)pH安定性:4.8~9.7
(E)至適pH:7.5~10.5
(3)
さらに、以下の(F)または(G)の特性を有する、(1)または(2)に記載のNADGDH。
(F)アミノ酸配列が、配列番号1に示すアミノ酸配列と70%以上の同一性を有する。
(G)アミノ酸配列が、配列番号1に示すアミノ酸配列において1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列である。
(4)
NADGDHが、微生物を、亜鉛を添加した培地で培養し、得られた培養液を精製することにより得られたものである、(1)~(3)のいずれかに記載のNADGDH。
(5)
NADGDHを発現する微生物を、亜鉛を添加した培地で培養し、得られた培養液を精製することを特徴とする、NADGDHの製造方法。
(6)
培地への亜鉛の添加量が0.01mM~0.1mMである、(5)に記載のNADGDHの製造方法。
(7)
(1)~(4)のいずれかに記載のNADGDHを用いるグルコース濃度の測定方法。
(8)
(1)~(4)のいずれかに記載のNADGDHを含むグルコース濃度測定用組成物。
(9)
(1)~(4)のいずれかに記載のNADGDHを含むグルコースセンサ。
(10)
(1)~(4)のいずれかに記載のNADGDHを含む燃料電池。
本発明により、高比活性であり、かつ、防腐等の目的で用いられるEDTAに対する高い耐性を有するNADGDHを得ることができる。これにより、正確かつ高感度のグルコース測定が長期間に亘って可能なグルコースセンサ並びにグルコース定量用組成物などを提供することができる。
Thermoproteus sp. GDH1株由来NADGDHを生産する形質転換体の培養に二価金属が与える影響(TB培地で生産した時の酵素活性を100%とした相対活性)。(A)金属の種類(B)亜鉛金属の添加濃度 TB培地に0.01mM ZnClを添加した培地(以下、‘TB+0.01mM ZnCl’とも記載。)を生産培地に用いたThermoproteus sp. GDH1株由来NADGDHの精製酵素とTBを生産培地に用いたThermoproteus sp. GDH1株由来NADGDH精製酵素のSDS-PAGEの結果を示す。 TBを生産培地に用いたThermoproteus sp. GDH1株由来NADGDH精製酵素に対するZnCl処理の影響を示す。 Thermoproteus sp. GDH1株由来NADGDHの活性に対するEDTAの影響を示す。(A)TB+0.01mM ZnClを生産培地に用いた精製酵素。(B)TBを生産培地に用いた精製酵素。 Thermoproteus sp. GDH1株由来NADGDHの至適pHを測定した結果を示す。(A)TB+0.01mM ZnClを生産培地に用いた精製酵素。(B)TBを生産培地に用いた精製酵素。 Thermoproteus sp. GDH1株由来NADGDHのpH安定性を測定した結果を示す。(A)TB+0.01mM ZnClを生産培地に用いた精製酵素。(B)TBを生産培地に用いた精製酵素。 Thermoproteus sp. GDH1株由来NADGDHの温度安定性を測定した結果を示す。(A)TB+0.01mM ZnClを生産培地に用いた精製酵素。(B)TBを生産培地に用いた精製酵素。 Thermoproteus sp. GDH1株由来NADGDHの反応速度とD-グルコース濃度との関係を示す。(A)TB+0.01mM ZnClを生産培地に用いた精製酵素。(B)TBを生産培地に用いた精製酵素。 Thermoproteus sp. GDH1株由来NADGDHの反応速度とNAD濃度との関係を示す。(A)TB+0.01mM ZnClを生産培地に用いた精製酵素。(B)TBを生産培地に用いた精製酵素。
以下、本発明を詳細に説明する。
1.新規なNADGDH
本発明の一の態様は、NADGDHを発現する微生物から得られたNADGDHであって、以下の(A)および(B)に示す特性を有するNADGDHである。
(A)比活性:補酵素としてニコチンアミドアデニンジヌクレオチド(NAD)を用いて、グルコースへ反応させた場合、比活性が400U/mg以上である。
(B)1mM EDTAで3時間処理した場合、残存活性が60%以上である。
1-1.NADGDH活性の測定方法
NADGDH活性は種々の公知の方法で測定することができるが、本書では、GDH活性は特に断りのない限り、以下の方法に従って行われる。
<試薬>
100mM Tris-HCl緩衝液pH8.0
80mg/mL NAD水溶液
1.5M D‐グルコース水溶液
酵素希釈溶液 0.1%牛血清アルブミンを含む50mM リン酸カリウム緩衝液pH7.0
<手順1>
NADGDH溶液を、予め氷冷した上記酵素希釈溶液で0.8~1.2U/mlに希釈し、氷冷保存したものを酵素溶液とする。
<手順2>
上記Tris-HCl緩衝液2.6mL、D‐グルコース水溶液0.3mL、NAD水溶液0.1mLを混合し、37℃にて5分間予備加温したものを反応混液とする。
<測定条件>
 反応混液3.0mLに、酵素溶液0.05mLを添加しゆるやかに混和後、水を対照に37℃に制御された分光光度計(光路長1.0cm)で、340nmの吸光度変化を2~3分間記録し、その後直線部分から(即ち、反応速度が一定になってから)1分間あたりの吸光度変化(ΔODTEST)を測定する。盲検は酵素溶液の代わりに酵素希釈溶液を0.05mL加えて同様に1分間あたりの吸光度変化(ΔODBLANK)を測定する。これらの値から次の式に従ってNADGDH活性を求める。ここでNADGDH活性における1単位(U)とは、上記の測定条件で1分間にNADHを生成する酵素量である。
 
GDH活性(U/mL)=[(ΔODTEST-ΔODBLANK)×3.05×希釈倍率]
/(6.22×1.0×0.05)
なお、ここで
3.05:GDH溶液混和後の容量(mL)
6.22 :NADHのミリモル分子吸光係数(cm/マイクロモル)
1.0  :光路長(cm)
0.05:添加するGDH溶液の液量(mL)
である。
1-2.比活性
本発明のNADGDHは、高い比活性を有していることが好ましい。
NADGDHを含む標品が固体状(粉末状を含む)の場合は、その固体重量をタンパク質重量とみなし、別途酵素活性を測定して比活性を求める。標品が液体状の場合は、タンパク質重量を、A280nmの吸光度および、バイオラッド社のタンパク質定量試薬(商品名:バイオラッドプロテインアッセイ濃縮色素試薬)を用いて測定、計算して求める。NADGDHを含む標品が固体状であってNADGDH以外の成分を含むと思われる場合は、適当な溶液に溶解した上で液体状の標品として取り扱うことで比活性を求めることが出来る。
本発明のNADGDHの比活性の下限は450(U/mg)以上である。比活性の下限は、好ましくは600(U/mg)以上、さらに好ましくは800(U/mg)以上、さらに好ましくは1000(U/mg)以上、さらに好ましくは1100(U/mg)以上である。比活性の上限は特に限定されないが、好ましくは1500(U/mg)以下、さらに好ましくは1400(U/mg)以下、さらに好ましくは1300(U/mg)以下、さらに好ましくは1200(U/mg)以下である。
また、本発明のFGDHの標品の最終的な形態は液体状であっても固体状(粉体状を含む)であってもよい。
1-3.EDTA耐性
本発明のNADGDHは、1mMのEDTA存在下、3時間処理した後の残存酵素活性が、処理前の酵素活性と比較して60%以上を維持する。
NADGDHを含む標品をリン酸カリウムバッファー(pH6.5)で酵素濃度1mg/mLに調整し、1mMのEDTA存在下、3時間処理した後の残存酵素活性を測定し、その値を処理前と比較することにより求める。
NADGDHを含む標品の酵素濃度が低く、1mg/mLに調整できない場合は、標品に EDTAを1mMになるように直接添加して溶解し、3時間処理した後の残存酵素活性をEDTA溶解前の酵素活性と比較する。
1-4.温度安定性
本明細書において、特定の温度条件の下、リン酸カリウムバッファー(pH8.0)で5U/mLの精製酵素を30分間処理した後の残存酵素活性が、処理前の酵素活性と比較して80%以上を維持するとき、当該酵素は当該温度条件において安定であると判断する。
本発明のNADGDHは、少なくとも80℃以下(即ち、0℃~80℃の温度範囲)において安定であることが好ましい。
1-5.pH安定性
本明細書において、特定のpH条件の下、5U/mLの酵素を25℃で16時間処理した後の残存酵素活性が、処理前の酵素活性と比較して80%以上である場合に、当該酵素は、当該pH条件において安定であると判断する。
本発明のNADGDHは、少なくともpH5.0~10.0の範囲で安定であることが好ましい。
1-6.至適pH
本発明のNADGDHは、実施例に示す通り、pH8.8(グリシン塩酸緩衝液)において最も高い活性を示すことが好ましい。
また、pH3.5~5.6(酢酸緩衝液)、pH5.6~7.6(リン酸カリウム緩衝液)、pH6.5~8.8(トリス塩酸緩衝液)、pH8.8~10.5(グリシン-NaOH緩衝液)において、本発明のNADGDHは、pH8.8(グリシン塩酸緩衝液)における活性を100%として、80%以上の相対活性を示すことが好ましい。即ち、本発明のNADGDHの至適pHは7.6~10.5であり、好ましくはpH8.8である。
1-7.由来または構造など
上記の特性を有するNADGDHの由来は、特に限定されない。例えば、微生物に由来するものが挙げられる。
例えば、超好熱性始原菌に由来するものであれば、パイロディクティム(Pyrodictim)属、スルフォロバス(Sulfolobus)属、デスルフロコッカス(Desulfurococcus)属、サーモプロテウス(Thermoproteus)属、サーモフィラム(Thermofilum)属、サーモプラズマ(Thermoplasma)属などが挙げられる。好ましくはサーモプロテウス属である。
1-7-1.
サーモプロテウス属由来のNADGDHとして、具体的には、WO2009/087929(特許文献1)に開示されているサーモプロテウス・エスピー・GDH1株に由来するNADGDHが挙げられる。
また、該NADGDHのアミノ酸配列を改変したもの(WO2010/137489、特許文献2)がより好ましいものとして挙げられる。そのようなものとして、例えば、配列番号1のポリペプチドが挙げられるが、これに限定されない。配列番号1のポリペプチドは、サーモプロテウス・エスピー・GDH1株に由来するNADGDHの202位のアルギニンをセリンに、および、334位のトリプトファンをアルギニンに、それぞれ置換したNADGDHである。特許文献2には、その他の改変体が多数例示されている。
1-7-2.
本発明のNADGDHは、NADGDH活性を保持し、かつ、上記1-2および1-3の特性を保持する限度で(さらに好ましくは上記1-4~1-6に示したいずれかの特性を保持する限度で)、配列番号1に示されるアミノ酸配列と比較した同一性が80%以上であるアミノ酸配列からなるポリペプチドであることが好ましい。さらに好ましくは、本発明のNADGDHが有するアミノ酸配列と配列番号1に示されるアミノ酸配列との同一性は、85%以上であり、より好ましくは88%以上、更に好ましくは90%以上、より更に好ましくは93%以上、一層好ましくは95%以上、特に好ましくは98%以上、最も好ましくは99%以上である。このような一定以上の同一性を有するアミノ酸配列からなるポリペプチドは、後述するような公知の遺伝子工学的手法に基づいて作成することができる。
アミノ酸配列の同一性を算出する方法としては、種々の方法が知られている。例えば、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができる。
本書では、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/においてデフォルト(初期設定)のパラメーターを用いることにより、アミノ酸配列の同一性を算出する。
1-7-3.
本発明のNADGDHは、NADGDH活性を保持し、かつ、上記1-2および1-3の特性を保持する限度で(さらに好ましくは上記1-4~1-6に示したいずれかの特性を保持する限度で)、配列番号1に示すアミノ酸配列において1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列を有することが好ましい。
1-7-4.
本発明のNADGDHの別の由来として、以下の(A)~(G)に示す特徴を有する始原菌に由来するものが好ましいものとして例示できる。(A)16SrRNAをコードするゲノムDNA上の塩基配列として、配列番号2に示す塩基配列を含む。(B)80℃以上の温度で生育可能であり、至適生育温度は約90℃である。(C)ゲノムDNAのGC含量が58~62モル%である。(D)絶対嫌気性菌である。(E)電子受容体としてチオ硫酸塩を加えた場合に良好な増殖を示す。(F)NaCl濃度1%以下で生育可能である。(G)形状は長さ10~30μm、幅約5μmの長桿菌である。
16SリボソームRNA(16SrRNA)の塩基配列(真核生物の場合は18SrRNA)に基づいた進化系統樹によれば、生物はEucarya、Bacteria、Archaeaの3つの大きな生物界に分類される。本発明に述べる「始原菌」とは、この16SrRNAの進化系統樹に基づいて「Archaea」という生物界に分類される生物を指す。さらに超好熱性始原菌とは、90℃以上で生育可能な始原菌であるか、もしくは至適生育温度が80℃以上である始原菌として定義される。
1-7-5.
本発明のNADGDHの別の由来として、例えば、土壌や河川・湖沼などの水系又は海洋に存在する微生物や各種動植物の表面または内部に常在する微生物等を挙げることができる。低温環境、火山などの高温環境、深海などの無酸素・高圧・無光環境、油田など特殊な環境に生育する微生物に由来するものを単離源としてもよい。
本発明のNADGDHには、微生物から直接単離されるNADGDHだけでなく、単離されたNADGDHを蛋白質工学的な方法によりアミノ酸配列等を改変したものや、遺伝子工学的手法により改変したものも含まれる。例えば、前述の、サーモプロテウス属に分類される微生物等から取得した酵素を改変したものであってもよい。
1-7-8.
本発明のNADGDHは、NADGDHを発現する微生物を、後述のように、亜鉛を添加した培地で培養し、得られた培養液を精製することにより得られたものであってもよい。
後の実施例でも述べるように、本発明の、亜鉛を添加した培養液にて生産したNADGDHと、金属添加なしの培養液にて生産したNADGDHとは、物質として異なるものである。
あるNADGDHが、以下の(A)および(B)に示す特性を有することを確認すれば、該NADGDHが、NADGDHを発現する微生物を亜鉛を添加した培地で培養して得られた培養液を精製することにより得られたものであることが、強く示唆される。 
(A)比活性:補酵素としてニコチンアミドアデニンジヌクレオチド(NAD)を用いて、グルコースへ反応させた場合、比活性が450U/mg以上である。
(B)1mM EDTAで3時間処理した場合、残存活性が60%以上である。
2.NADGDHの製造方法
本発明の別の態様は、NADGDHを発現する微生物を、亜鉛を添加した培地で培養し、得られた培養液を精製することを特徴とする、NADGDHの製造方法である。
2-1.NADGDHの発現系の構築
本発明のNADGDHの製造方法において、NADGDHの発現系を構築する方法は特に限定されない。例えば、NADGDHの生産能を有する微生物をそのまま発現系として用いればよい。あるいは、NADGDHをコードするDNAを適当な宿主ベクター系に導入して作製した遺伝子組み換え体(形質転換体とも言う)を発現系としてもよい。産業上は、制御がしやすい、安全性がより高い、等の理由で遺伝子組み換え体を用いることが好ましい。
NADGDHの生産能を有する微生物としては、上述の超好熱性始原菌に由来するもの等が挙げられる。
遺伝子組み換え体を作製する場合、NADGDHをコードするDNAは、標準的な遺伝子工学的手法を用いて容易に調製することができる(Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989);続生化学実験講座「遺伝子研究法I、II、III」、日本生化学会編(1986)等参照)。具体的には、上述の、本発明の製造方法の適用対象となるNADGDHが発現される適当な起源微生物より、常法に従ってcDNAライブラリーを調製し、該ライブラリーから、前記NADGDHのDNA配列に特有の適当なプローブや抗体を用いて所望クローンを選択することにより実施できる。
上記の微生物からの全RNAの分離、mRNAの分離や精製、cDNAの取得とそのクローニング、塩基配列の決定等は、いずれも常法に従って実施することができる。本発明のDNAをcDNAライブラリーからスクリーニングする方法も、特に制限されず、通常の方法に従うことができる。例えば、cDNAによって産生されるポリペプチドに対して、該ポリペプチド特異抗体を使用した免疫的スクリーニングにより対応するcDNAクローンを選択する方法、目的のヌクレオチド配列に選択的に結合するプローブを用いたプラークハイブリダイゼーション、コロニーハイブリダイゼーション等やこれらの組合せ等を適宜選択して実施することができる。
DNAの取得に際しては、PCR法またはその変法によるDNA若しくはRNA増幅法が好適に利用できる。PCR法に使用されるプライマーも上記で決定した塩基配列に基づいて適宜設計し合成することができる。尚、増幅させたDNA若しくはRNA断片の単離精製は、前記の通り常法に従うことができ、例えばゲル電気泳動法、ハイブリダイゼーション法等によることができる。
NADGDHをコードするDNAは、適当な発現ベクターに組み込むことができる。発現ベクターは、適当な宿主細胞内で該DNAを複製可能であり、且つ、その発現が可能である限り、その種類や構造は特に限定されない。ベクターの種類は、宿主細胞の種類を考慮して適当に選択される。ベクターの具体例としては、プラスミドベクター、コスミドベクター、ファージベクター、ウイルスベクター(アデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、ヘルペスウイルスベクター等)等を挙げることができる。また、セルフクローニングに適したベクターを使用することも可能である。
NADGDHをコードするDNAが組み込まれた発現ベクターは、適当な宿主細胞に導入され、該NADGDHを産生する能力を有する形質転換体とすることができる。宿主細胞は、そのDNAを発現してNADGDHを生産することが可能である限り、特に制限されない。具体的には、大腸菌、枯草菌等の原核細胞や、酵母、糸状菌などのカビ、昆虫細胞、植物培養細胞、哺乳動物細胞等の真核細胞等を使用することができる。中でも大腸菌、枯草菌、糸状菌が好ましい。大腸菌がさらに好ましい。
宿主が大腸菌の場合、特にK-12由来株が好ましく、BL21(DE3),BB4,BM25.5,BMH71-18mutS,BW313,C-la,C600,CJ236,DH1,DH5,DH5α,DH10B,DP50supF,ED8654,ED8767,ER1647,HB101,HMS174,HST02,HST04dam-/dcm-,HST08Premium,JM83,JM101,JM105,JM106,JM107,JM108,JM109,JM110,K802,K803,LE392,MC1061,MV1184,MV1193,NovaBlue,RR1,TAP90,TG1,TG2,TH2,XL1-Blue,Χ-1776,γ-1088,γ-1089,γ-1090などが用いられ、ベクターとしては、M13ファージ又はその改変体、λファージ又はその改変体、pBR322又はその改変体(pB325、pAT153、pUC8など)、pUC19、pUC57、pBluescript、pET22b,pUC18,pHSG398,pHSG399,pRIT2T,pUEX1~3,pKK223-3,pINIII 1,pTTQ18,pGEMEX-1,pGH-L9,pKK233-2などが例として挙げられる。
宿主が枯草菌の場合は、バチルス・スブチルス、ブレビバチルス・ブレビス、ブレビバチルス・チョウシネンシスなどが例として挙げられ、ベクターとしてはpTB53又はその改変体、pHY300PLK又はその改変体、pAL10,pAL12、pHT01、pHT08、pHT09、pHT10、pHT43、pNY326、pNCMO2などが挙げられる。
宿主が酵母の場合は、サッカロミセス属、シゾサッカロミセス属、キャンデイダ属、ピキア属、クリプトコッカス属などが例として挙げられ、それぞれ、サッカロミセス・セレビシエ、シゾサッカロミセス・ポンベ、キャンデイダ・ウチリス、ピキア・パストリス、クリプトコッカス・エスピーなどが例として挙げられる。ベクターとしてはpYepSec1、pMFa、pAUR101、pAUR224、pYE32などが挙げられる。
昆虫細胞を宿主とする場合は、ベクターとして、例えば、pAc、pVL等が使用でき、哺乳類細胞を宿主とする場合は、ベクターとして、例えば、pCDM8、pMT2PC等を使用することができる。
宿主が糸状菌細胞である場合は、アスペルギルス属、トリコデルマ属、コレトトリカム属などが例として挙げられ、それぞれ、アスペルギルス・オリゼ、アスペルギルス・ニガー、トリコデルマ・レセイ、コレトトリカム・ヒエマリス等を例示することができる。
また、形質転換体では、通常、外来性のDNAが宿主細胞中に存在するが、DNAが由来する微生物を宿主とするいわゆるセルフクローニングによって得られる形質転換体も好適な実施形態である。
本発明の形質転換体は、好ましくは、上記に示される発現ベクターを用いたトランスフェクション乃至はトランスフォーメーションによって調製される。形質転換は、一過性であっても安定的な形質転換であってもよい。トランスフェクション及びトランスフォーメーションはリン酸カルシウム共沈降法、エレクトロポーレーション、リポフェクション、マイクロインジェクション、Hanahanの方法、酢酸リチウム法、プロトプラスト-ポリエチレングリコール法、等を利用して実施することができる。
2-2.NADGDHの製造
本発明は、NADGDHを発現する遺伝子組換え体を、亜鉛を添加した培地で培養し、得られた培養液を精製することを特徴とする、NADGDHの製造方法である。
本発明のNADGDHの製造方法において、亜鉛の培地中の添加濃度の下限は0.001mMを超えることが好ましい。より好ましい下限は0.005mM、より好ましくは0,008mM、より好ましくは0.01mMである。また、亜鉛の添加量の上限は好ましくは1mM、より好ましくは0.5mM、より好ましくは0.1mMである。
亜鉛の給源は特に限定されないが、塩化亜鉛、硫酸亜鉛、酢酸亜鉛二水和物、炭酸亜鉛、硝酸亜鉛六水和物、酸化亜鉛、硫酸亜鉛七水和物、などが挙げられる。
その他の培養方法及び培養条件は、NADGDHが生産される限り特に限定されない。即ち、NADGDHが生産されることを条件として、使用する微生物の生育に適合した方法及び条件を適宜設定できる。以下に、培養条件として、培地、培養温度、及び培養時間を例示する。
亜鉛以外の培地組成としては、使用する微生物が生育可能であれば、特に制限されない。例えば、グルコース、シュクロース、ゲンチオビオース、可溶性デンプン、グリセリン、デキストリン、糖蜜、有機酸等の炭素源、更に硫酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム、あるいは、ペプトン、酵母エキス、コーンスティープリカー、カゼイン加水分解物、ふすま、肉エキス等の窒素源、更にカリウム塩、マグネシウム塩、ナトリウム塩、リン酸塩、マンガン塩、鉄塩等の無機塩を添加したものを用いることができる。使用する微生物の生育を促進するためにビタミン、アミノ酸などを培地に添加してもよい。
市販のLB培地(Luria-Bertai Medium)、M9培地(M9 Minimal Medium)、NZCYM培地(NZCYM Medium)、NZYM培地(NZYM Medium)、NZM培地(NZM Medium)、SOB培地(SOB Medium)、TB培地(Terrific
Broth)、2XYT培地(2XYT Medium)を用いてもよい。
サーモプロテウス(Thermoproteus)属に分類される微生物を培養して本発明のNADGDHを得る場合は、その微生物の栄養生理的性質を考慮して培養条件を選択すればよい。多くの場合は液体培養で行い、工業的には通気攪拌培養を行うのが有利である。ただし、生産性を考えた場合に、固体培養で行った方が有利な場合もある。
培地のpHは、培養する微生物の生育に適していればよく、例えば約4~9、好ましくは約6~8程度に調整し、培養温度は通常約10~50℃、好ましくは約25~35℃程度で、1~15日間、好ましくは3~7日間程度好気的条件下で培養する。培養法としては例えば振盪培養法、ジャー・ファーメンターによる好気的深部培養法が利用できる。
上記のような条件で培養した後、培養液又は菌体よりNADGDHを回収することが好ましい。NADGDHを菌体外に分泌する微生物を用いる場合は、例えば培養上清をろ過、遠心処理等することによって不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析、透析、各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことにより本酵素を得ることができる。
他方、菌体内から回収する場合には、例えば菌体を加圧処理、超音波処理、機械的手法、又はリゾチーム等の酵素を利用した手法等によって破砕した後、必要に応じて、EDTA等のキレート剤及び界面活性剤を添加してNADGDHを可溶化し、水溶液として分離採取し、分離、精製を行うことにより本酵素を得ることができる。ろ過、遠心処理などによって予め培養液から菌体を回収した後、上記一連の工程(菌体の破砕、分離、精製)を行ってもよい。
精製は、例えば、減圧濃縮、膜濃縮、さらに硫酸アンモニウム、硫酸ナトリウムなどの塩析処理、あるいは親水性有機溶媒、例えばメタノール、エタノール、アセトンなどによる分別沈殿法により沈殿処理、加熱処理や等電点処理、吸着剤あるいはゲルろ過剤などによるゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等を適宜組み合わせて実施することができる。
カラムクロマトグラフィーを用いる場合は、例えば、セファデックス(Sephadex)ゲル(GEヘルスケア バイオサイエンス社製)などによるゲルろ過、DEAEセファロースCL-6B (GEヘルスケア バイオサイエンス社製)、オクチルセファロースCL-6B(GEヘルスケア バイオサイエンス社製)等を用いることができる。該精製酵素標品は、電気泳動(SDS-PAGE)的に単一のバンドを示す程度に純化されていることが好ましい。
なお、培養液からのNADGDH活性を有するタンパク質の採取(抽出、精製など)にあたっては、NADGDH活性、熱安定性などのうちいずれか1つ以上を指標に行ってもよい。
各精製工程では原則としてNADGDH活性を指標として分画を行い、次のステップへと進む。但し、予備試験などによって、適切な条件を予め設定可能な場合にはこの限りでない。
組換えタンパク質として本酵素を得ることにすれば種々の修飾が可能である。例えば、本酵素をコードするDNAと他の適当なDNAとを同じベクターに挿入し、当該ベクターを用いて組換えタンパク質の生産を行えば、任意のペプチドないしタンパク質が連結された組換えタンパク質からなる本酵素を得ることができる。また、糖鎖及び/又は脂質の付加や、あるいはN末端若しくはC末端のプロセッシングが生ずるような修飾を施してもよい。以上のような修飾により、組換えタンパク質の抽出、精製の簡便化、又は生物学的機能の付加等が可能である。
3.NADGDHを含むプロダクト
本発明の別の態様は、NADGDHを含むプロダクトである。
本明細書において「プロダクト」とは、使用者が或る用途を実行する目的で用いる1セットのうち一部または全部を構成する製品であって、本発明のNADGDHを含むものを意味する。
本発明のプロダクトは、種々の用途に適用することができ、特に限定されるものではないが、典型的には以下の2つの原理のうちいずれかを利用するものが例示できる。
(a)NADGDHによりNADHなどの基質を測定すること。
(b)NADGDHによる酵素反応により電流を発生させること。
上記の(a)の原理を用いるものとしては、体外診断の用途(例えば種々の生体成分の測定)が挙げられる。これらの生体成分測定方法は既に当該技術分野において確立されている。よって、公知の方法に従い、本発明のNADGDHを用いて、各種試料中の生体成分の量又は濃度を測定することができる。
本発明のNADGDHを用いて生体成分の濃度又は量を測定する限り、その態様は特に制限されないが、例えば、グルコース、ラクテートデヒドロゲナーゼ(LDH)、クレアチンキナーゼ(CK)、中性脂肪(TG)、胆汁酸および総分岐鎖アミノ酸(BCAA)などの生体成分等を測定するための試薬、キット、センサなど種々の形態が例示できる。
以下、グルコースを測定する場合を例にとり、説明する。
グルコース測定用組成物の場合は、GDH反応により生じたNADHが、NADGDHを介して、DCPIPなどの電子受容体を還元させて自身はNADに戻り、DCPIPの構造が変化することによって生じる吸光度の差を比色定量することにより、グルコースの濃度を求めることができる。グルコースを含有する試料は、特に制限されないが、例えば、血液、飲料、食品等を挙げることができる。
グルコース測定用組成物は、キットの形態であってもよい。該キットは、例えば、NADGDHを少なくとも1回のアッセイに十分な量で含み、典型的には、アッセイに必要な緩衝液、メディエータ、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。本発明のNADGDHは種々の形態で、例えば、凍結乾燥された試薬として、または適切な保存溶液中の溶液として提供することができる。
センサの形態でのグルコース濃度の測定は、例えば、以下のようにして実施することができる。恒温セルに緩衝液を入れ、一定温度に維持する。メディエータとしては、フェリシアン化カリウム、フェナジンメトサルフェートなどを用いることができる。作用電極として本発明のNADGDHを固定化した電極を用い、対極(例えば白金電極)および参照電極(例えばAg/AgCl電極)を用いる。カーボン電極に一定の電圧を印加して、電流が定常になった後、グルコースを含む試料を加えて電流の増加を測定する。標準濃度のグルコース溶液により作製したキャリブレーションカーブに従い、試料中のグルコース濃度を計算することができる。
電極としては、カーボン電極、金電極、白金電極などを用い、この電極上に本発明の酵素を固定化する。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどがあり、あるいはフェロセンあるいはその誘導体に代表される電子メディエータとともにポリマー中に固定あるいは電極上に吸着固定してもよく、またこれらを組み合わせて用いてもよい。典型的には、NADGDHを、グルタルアルデヒドを用いてカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングする。
上記の(b)の原理を用いるものとしては、酵素電極(固定化電極であっても良い)、酵素センサ、燃料電池、さらには一つまたは複数の燃料電池を有する電子機器など種々の形態が例示できる。 
グルコースデヒドロゲナーゼおよびNADGDHを用いた、グルコースの酸化反応により電子を取り出す燃料電池は既に当該技術分野において確立されている。よって、公知の方法に従い、本発明のNADGDHを用いて、燃料電池を作製し稼動させることができる。
本発明のNADGDHを用いて燃料電池を作製し稼動させる限り、その態様は特に制限されないが、例えば、以下のような手段により電池として稼動させることができる。まず、本発明のNADGDHをバイオ燃料電池の負極において、GDH、オスミウム錯体などの電子メディエータなどとともに固定化し、一方、正極において、ビリルビンオキシダーゼ(BOD)、ラッカーゼ、アスコルビン酸オキシダーゼなどから選択される酸化還元酵素と、ヘキサシアノ鉄酸イオンなどのメディエータを固定化する。さらに、負極と正極とを電子伝導性を持たずプロトンのみ伝導する電解質層を介して対向した構造を構築し、負極では、燃料として供給されたグルコースを酵素により分解し電子を取り出すとともにプロトン(H+)を発生させ、正極では、負極から電解質層を通って輸送されたプロトンと負極から外部回路を通って送られた電子と例えば空気中の酸素とにより水を生成させる。
グルコースを含有する燃料は、特に制限されないが、例えば、血液、飲料、食品等を挙げることができる。
本発明の燃料電池は電力が必要なものであれば何にでも用いることができ、また、大きさも問わない。具体的には、この燃料電池は、例えば、電子機器、移動体(自動車、二輪車、航空機、ロケット、宇宙船など)、動力装置、建設機械、工作機械、発電システム、コージェネレーションシステムなどに用いることができる。
以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例1 形質転換体の取得
配列番号1のポリペプチドは、サーモプロテウス・エスピー・GDIII株に由来するNADGDHの202位のアルギニンをセリンに、および、334位のトリプトファンをアルギニンに、それぞれ置換したNADGDHである。該NADGDHならびにこれをコードする遺伝子クローンは、WO2010/137489に記載されている。配列番号1のポリペプチドをコードする構造遺伝子を保持する発現プラスミドをエシェリヒア・コリー(Escherichia coli)DH5α株コンピテントセル(東洋紡製)に形質転換し、SOC培地中で1hr、37℃で前培養後、LB-amp寒天培地に展開し、コロニーである該形質転換体を取得した。得られた形質転換体を、エシェリヒア・コリーDH5α(TspGDH)と命名した。
実施例2 培養液の組成
5mLのTB液体培地(トリプトン1.2%、イーストイクストラクト2.4%、グリセロール0.4%、KHPO 0.23%、KHPO 1.25%、pH7.0)を試験管に入れ、オートクレーブで滅菌し、本培養培地の培地とした。さらに、二価金属を人為的に添加した培養液として、上記のTB培地に表1記載の二価金属のうち各1種類ずつをそれぞれ0.01mM含む8種類の液体培地を作成した。
Figure JPOXMLDOC01-appb-T000001
実施例3 液体培養
実施例1にて取得した形質転換体エシェリヒア・コリーDH5α(TspGDH)のコロニーを一白金耳試験管5mlのLB-amp液体培地に植菌し、30℃で16時間培養した。
LB培地から、実施例2にて用意した培地に植え継ぎを行い、本培養とした。LB培地からTB培地およびTB培地に各種金属を添加した培地への植え継ぎ量は1%(v/v)である。37℃、24時間培養を行い、培養終了とした。培養終了より菌体を遠心分離により集菌し、50mMリン酸緩衝液(pH7.5)に懸濁した後、ビーズ破砕にて菌体を破砕し、更に遠心分離を行い、上清液を粗酵素液として得た。
実施例4 金属種によるNADGDH活性の影響
実施例3で得た粗酵素液中のNADGDH活性を、上記1-1.に示したNADGDH活性測定方法を用いて測定した。その結果、比較対象であるTB培地に比べ、亜鉛を添加した培地で高い酵素活性を得ることができた(図1A)。その他の二価金属を添加した場合は、TB培地の場合とほぼ同じ酵素活性か、または、TB培地での結果を下回った。
実施例5 亜鉛濃度によるNADGDH活性の影響 
実施例2で用意したTB培地5mLを試験管に入れ、オートクレーブで滅菌し、本培養培地の培地とした。亜鉛を人為的に添加した培養液として、上記のTB培地に塩化亜鉛を0.00001mM~0.1mM含む液体培地を作成した。実施例3および実施例4と同様の方法にて粗酵素液中のNADGDH活性を測定した。その結果、比較対象であるTB培地に比べ、0.01mM以上の亜鉛を添加した培地で特に高い酵素活性を得ることができた(図1B)。0.001mM以下の亜鉛を添加した場合は、TB培地の場合とほぼ同じ酵素活性であった。
実施例6 酵素の準備
金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDHを作成した。金属添加なしの培養液として、実施例2で用意したTB培地500mLを2L坂口フラスコに入れ、オートクレーブで滅菌し、本培養培地とした。5mLの種培養液を本培養培地に植菌し、培養温度30℃、180rpmで24時間振とう培養した。その後、菌体を遠心分離により集菌し、菌体を回収した。得られた菌体を20mMリン酸カリウム緩衝液(pH8.0)に懸濁した。亜鉛を添加した培養液として、実施例2で用意したTB培地500mLに0.01mMの塩化亜鉛を含む培地を作成し、同様の操作を行った。
懸濁液をフレンチプレス(Niro Soavi製)に流速160mL/分で送液し、700~1000barで破砕した。続いて、エチレンイミン(ポリマー)(ナカライテスク株式会社)をポリエチレンイミン含有量5%になるように調整した5%ポリエチレンイミン溶液(pH7.5)を準備し、破砕液へ破砕液量に対し5%になるように徐々に添加して、室温で30分間攪拌した後、ろ過助剤を用いて余分な沈殿を除去した。次に0.5飽和になるように硫酸アンモニウム(住友化学(株)製)を徐々に添加し、硫安分画を行い、NAD依存型グルコースデヒドロゲナーゼ活性を持つタンパク質を沈殿させ回収し、回収したタンパク質の沈殿を20mMリン酸カリウム緩衝液(pH8.0)に懸濁した。次に、懸濁液をSephadex G-25のゲルを用いて脱塩した。その後、予め20mMリン酸カリウム緩衝液(pH8.0)で平衡化した400mLのDEAEセファロースFastFlow(GEヘルスケア製)カラムにかけ、0.5M NaClを含む20mMリン酸カリウム緩衝液(pH8.0)のリニアグラジエントで溶出させた。そして、溶出されたNAD依存型グルコースデヒドロゲナーゼ画分を分画分子量10,000の中空糸膜(スペクトラムラボラトリーズ製)で濃縮した。濃縮液をSephadex G-25のゲルを用いて脱塩し、精製酵素を得た。
実施例7 精製度と比活性の検証
実施例6で得られた金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDH酵素液を用いて、NADGDHの精製度と比活性を調べた。NADGDH活性を、上記1-1.に示したNADGDH活性測定方法を用いて測定した。タンパク質量はA280吸光度の値でもとめ、比活性を算出した。その結果、金属添加なしの培養液にて生産したNADGDHの比活性は382U/mg、亜鉛を添加した培養液にて生産したNADGDHの比活性は1137U/mgであった。
金属添加なしの培養液にて生産したNADGDH(1000U/mL)と亜鉛を添加した培養液にて生産したNADGDH(1000U/mL)をSDS-ポリアクリルアミドゲル電気泳動法(PhastSystemおよびPhastGelTM Gradient 10-15 、GEヘルスケアバイオサイエンス製)に供した。この際、タンパク質分子量マーカーとしてフォスフォリラーゼb(97,000ダルトン)、アルブミン(66,000ダルトン)、オバルブミン(45,000ダルトン)、カルボニックアンヒドラーゼ(30,000ダルトン)、トリプシンインヒビター(20,100ダルトン)、α-ラクトアルブミン(14,400ダルトン)を用いた。
その結果、いずれのNADGDHも約37kDaの位置に単一のバンドが得られた。よって、金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDHがそれぞれ十分に精製されていることが分かる。つまり、金属添加なしの培養液にて生産したNADGDHの比活性382U/mgと亜鉛を添加した培養液にて生産したNADGDHの比活性1137U/mgが、酵素の精製純度の差ではなく、酵素の性質(比活性)であることがわかる。また、約37kDaの位置するタンパク質の染色強度により、NADGDH量を比較すると、金属添加なしの培養液にて生産したNADGDH(1000U/mL)の染色強度は、亜鉛を添加した培養液にて生産したNADGDH(1000U/mL)の染色強度より低いことが明らかであった。電気泳動の結果からも、亜鉛を添加した培養液にて生産したNADGDHがタンパク質量あたりの活性が高い(比活性が高い)ことが確認できた(図2)。
以上の事実は、金属添加なしの培養液にて生産したNADGDHと、亜鉛を添加した培養液にて生産したNADGDHとは、物質として異なるものであることを示している。
実施例8 精製酵素に亜鉛金属が与える影響
実施例6で得られた、金属添加なしの培養液にて生産したNADGDH(比活性は382U/mg)、に塩化亜鉛を添加し、比活性の変化を調べた。終濃度0~0.1mM 塩化亜鉛を含むNADGDH酵素液を調整し、塩化亜鉛濃度がNADGDH活性に与える影響を調べた。塩化亜鉛処理は、0~0.1mM 塩化亜鉛(0は塩化亜鉛なしのネガティブコントロール)、の酵素液を調整し、25℃で保存した。その後、各塩化亜鉛濃度で0時間(酵素液調整直後)、3時間、24時間処理した後、活性を測定し、比活性を算出した(図3)。その結果、塩化亜鉛を添加しても、顕著な比活性向上は起こらなかった。亜鉛濃度が0.1mMの場合、ネガティブコントロールと比べ、5%ほど比活性の向上が観察されたが、比活性は450U/mg未満であった。
実施例9 EDTA耐性
実施例6で得られた金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDH酵素液(1mg/mL)を用いて、EDTAの影響を調べた。終濃度1mM EDTAを含むNADGDH酵素液と終濃度5mM EDTAを含むNADGDH酵素液を調整し、EDTA濃度がNADGDH活性に与える影響を調べた。EDTA処理は、0mM EDTA (EDTAなしのネガティブコントロール)、1mM EDTA,5mM EDTAの酵素液を調整し、25℃で保存した。その後、各EDTA濃度で0時間(酵素液調整直後)、3時間、24時間処理した後、見かけの活性の残存率を測定した(図4A、図4B)。図4Aと図4Bは0時間(酵素液調整直後)の活性を100%とした時の相対活性を示している。
その結果、EDTAを添加していないNADGDHに失活は起こらなかったが、EDTAを添加したNADGDHには失活が起こった。特に、亜鉛を添加した培養液にて生産したNADGDHと金属添加なしの培養液にて生産したNADGDHでは、EDTA処理による失活率に差があることが明らかとなった。亜鉛を添加した培養液にて生産したNADGDHはEDTAによる失活が起こりにくくなっていた。
具体的には、亜鉛を添加した培養液にて生産したNADGDHは1mM EDTA・3時間での処理後61%の残存率を有していた(図4A)。それに対し、金属添加なしの培養液にて生産したNADGDHは1mM EDTA・3時間での処理後48%の残存率であった(図4B)。5mM EDTA・3時間での処理した場合、亜鉛を添加した培養液にて生産したNADGDHは21%の残存率であり、金属添加なしの培養液にて生産したNADGDHは13%であった。このことから、亜鉛を添加した培養液にて生産したNADGDHはEDTAに対し耐性があることが示された。
実施例10 至適活性pH
実施例6で得られた金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDH酵素液(2U/mL)を用いて、至適pHを調べた。100mM 酢酸緩衝液(pH3.5~6.0、図中◆印でプロット)、100mM リン酸カリウム緩衝液(pH6.0-8.0、図中■印でプロット)、100mMTris-HCl緩衝液(pH7.0-8.0、図中▲印でプロット)、100mM
グリシン-NaOH緩衝液(pH9.0-11.0、図中×でプロット)、を用い、それぞれのpHにおいて、温度25℃にて酵素反応を行い、相対活性を比較した。結果を図5Aと図5Bに示す。
その結果、金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDHは同様のpH特性を持つことがわかった。具体的には、いずれのNADGDHも、至適活性pHは、pH9.0~pH10.0において最も高い活性値を示した。また、いずれのNADGDHも、凡そpH7.5~pH10.5の間においては、最大活性値の80%以上の相対活性を示したことから、このpH域では好適に使用できると考えられる。
実施例11 pH安定性
実施例6で得られた金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDH酵素液(5U/mL)を用いて、pH安定性を調べた。100mM 酢酸緩衝液(pH3.5~6.0、図中◆印でプロット)、100mM リン酸カリウム緩衝液(pH6.0-pH8.0:図中■印でプロット)、100mM Tris-HCl緩衝液(pH7.0-pH9.0:図中▲印でプロット)、100mM
グリシン-NaOH緩衝液(pH9.0-11.0、図中×でプロット)を用い、25℃、16時間処理した後の活性の残存率を測定した。結果を図6Aと図6Bに示す。
その結果、金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDHは同様のpH安定性を持つことがわかった。具体的には、いずれのNADGDHも、pH4.8~pH9.7の間において安定であることが示された。
実施例12 温度安定性
実施例6で得られた金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDH酵素液(5U/mL)を用いて、温度安定性を調べた。100mMリン酸カリウム緩衝液(pH8.0)を用いて、NAD依存型グルコースデヒドロゲナーゼ酵素液を各温度(50℃、60℃、70℃、80℃、90℃)で30分間処理した後、見かけの活性の残存率を測定した。結果を図7Aと図7Bに示す。
その結果、金属添加なしの培養液にて生産したNADGDHと亜鉛を添加した培養液にて生産したNADGDHは同様のpH安定性を持つことがわかった。具体的には、いずれのNADGDHも、80℃・30分処理で80%以上の残存活性を持つことがわかった。よって、80℃以下で安定であることが示された。
実施例13 D-グルコースに対するKm値の測定
上述したNADGDHの活性測定法において、基質であるD-グルコースの濃度を変化させて活性測定を行い、基質濃度と反応速度のグラフ(図8A、図8B)からLineweaver-burk plotを作成し、Km値を算出した。その結果、金属添加なしの培養液にて生産したNADGDHのD-グルコースに対するKm値は、7.49mMであることが判明した。亜鉛を添加した培養液にて生産したNADGDHのD-グルコースに対するに対するKm値は、7.55mMであることが判明した。
実施例14 NADに対するKm値の測定
上述したNADGDHの活性測定法において、基質であるNADの濃度を変化させて活性測定を行い、基質濃度と反応速度のグラフ(図9A、図9B)からLineweaver-burk plotを作成し、Km値を算出した。その結果、金属添加なしの培養液にて生産したNADGDHのNADに対するKm値は、0.24mMであることが判明した。亜鉛を添加した培養液にて生産したNADGDHのNADに対するKm値は、0.26mMであることが判明した。
本発明により製造したグルコースデヒドロゲナーゼは、血糖値測定用試薬、血糖センサー並びにグルコース濃度定量キットの原料としての供給が可能である。

Claims (10)

  1. NAD依存型グルコースデヒドロゲナーゼを発現する微生物から得られたNAD依存型グルコースデヒドロゲナーゼであって、以下の(A)および(B)に示す特性を有するNAD依存型グルコースデヒドロゲナーゼ。
    (A)比活性:補酵素としてニコチンアミドアデニンジヌクレオチド(NAD)を用いて、グルコースへ反応させた場合、比活性が450U/mg以上である。
    (B)1mM EDTAで3時間処理した場合、残存活性が60%以上である。
  2. さらに、以下の(C)~(E)のうちいずれか1つ以上の特性を有する、請求項1に記載のNAD依存型グルコースデヒドロゲナーゼ。
    (C)温度安定性:80℃で安定
    (D)pH安定性:4.8~9.7
    (E)至適pH:7.5~10.5
  3. さらに、以下の(F)または(G)の特性を有する、請求項1または2に記載のNAD依存型グルコースデヒドロゲナーゼ。
    (F)アミノ酸配列が、配列番号1に示すアミノ酸配列と70%以上の同一性を有する。
    (G)アミノ酸配列が、配列番号1に示すアミノ酸配列において1または数個のアミノ酸が欠失、置換、挿入または付加されたアミノ酸配列である。
  4. NAD依存型グルコースデヒドロゲナーゼが、微生物を、亜鉛を添加した培地で培養し、得られた培養液を精製することにより得られたものである、請求項1~3のいずれかに記載のNAD依存型グルコースデヒドロゲナーゼ。
  5. NAD依存型グルコースデヒドロゲナーゼを発現する微生物を、亜鉛を添加した培地で培養し、得られた培養液を精製することを特徴とする、NAD依存型グルコースデヒドロゲナーゼの製造方法。
  6. 培地への亜鉛の添加量が0.01mM~0.1mMである、請求項5に記載のNAD依存型グルコースデヒドロゲナーゼの製造方法。
  7. 請求項1~4のいずれかに記載のNAD依存型グルコースデヒドロゲナーゼを用いるグルコース濃度の測定方法。
  8. 請求項1~4のいずれかに記載のNAD依存型グルコースデヒドロゲナーゼを含むグルコース濃度測定用組成物。
  9. 請求項1~4のいずれかに記載のNAD依存型グルコースデヒドロゲナーゼを含むグルコースセンサ。
  10. 請求項1~4のいずれかに記載のNAD依存型グルコースデヒドロゲナーゼを含む燃料電池。
     
     
PCT/JP2013/069606 2012-07-24 2013-07-19 Nad依存型グルコースデヒドロゲナーゼおよびその製造方法 WO2014017390A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526889A JP6036826B2 (ja) 2012-07-24 2013-07-19 Nad依存型グルコースデヒドロゲナーゼおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012163773 2012-07-24
JP2012-163773 2012-07-24

Publications (1)

Publication Number Publication Date
WO2014017390A1 true WO2014017390A1 (ja) 2014-01-30

Family

ID=49997203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069606 WO2014017390A1 (ja) 2012-07-24 2013-07-19 Nad依存型グルコースデヒドロゲナーゼおよびその製造方法

Country Status (2)

Country Link
JP (1) JP6036826B2 (ja)
WO (1) WO2014017390A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087929A1 (ja) * 2008-01-07 2009-07-16 Toyo Boseki Kabushiki Kaisha 新規なグルコースデヒドロゲナーゼ
WO2010137489A1 (ja) * 2009-05-28 2010-12-02 東洋紡績株式会社 特性の改変されたグルコースデヒドロゲナーゼ
JP2011053052A (ja) * 2009-09-01 2011-03-17 Toyobo Co Ltd バイオセンサ
JP2011050299A (ja) * 2009-09-01 2011-03-17 Toyobo Co Ltd グルコースデヒドロゲナーゼの活性向上方法
JP2011050300A (ja) * 2009-09-01 2011-03-17 Toyobo Co Ltd グルコースセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087929A1 (ja) * 2008-01-07 2009-07-16 Toyo Boseki Kabushiki Kaisha 新規なグルコースデヒドロゲナーゼ
WO2010137489A1 (ja) * 2009-05-28 2010-12-02 東洋紡績株式会社 特性の改変されたグルコースデヒドロゲナーゼ
JP2011053052A (ja) * 2009-09-01 2011-03-17 Toyobo Co Ltd バイオセンサ
JP2011050299A (ja) * 2009-09-01 2011-03-17 Toyobo Co Ltd グルコースデヒドロゲナーゼの活性向上方法
JP2011050300A (ja) * 2009-09-01 2011-03-17 Toyobo Co Ltd グルコースセンサ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANGELOV A ET AL.: "Properties of the recombinant glucose/galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus", FEES J., vol. 272, no. 4, 2005, pages 1054 - 1062 *
BAKER PJ ET AL.: "Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily", PROC. NATL. ACAD. SCI. USA, vol. 106, no. 3, 2009, pages 779 - 784 *
DING HT ET AL.: "Cloning and expression in E. coli of an organic solvent-tolerant and alkali- resistant glucose 1-dehydrogenase from Lysinibacillus sphaericus G10", BIORESOUR. TECHNOL., vol. 102, no. 2, 2011, pages 1528 - 1536 *
SIEBERS B ET AL.: "Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data", J. BACTERIOL., vol. 186, no. 7, 2004, pages 2179 - 2194 *

Also Published As

Publication number Publication date
JPWO2014017390A1 (ja) 2016-07-11
JP6036826B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6212852B2 (ja) 新規なグルコース脱水素酵素
JP5969392B2 (ja) フラビン結合型グルコースデヒドロゲナーゼ、フラビン結合型グルコースデヒドロゲナーゼの製造方法およびそれに用いる酵母形質転換体
US9404144B2 (en) Glucose dehydrogenase
US9506042B2 (en) Glucose dehydrogenase
WO2010140431A1 (ja) フラビン結合型グルコースデヒドロゲナーゼ
JP6184326B2 (ja) 基質特異性が向上したフラビン結合型グルコースデヒドロゲナーゼ
JP2017169585A (ja) 新規なグルコース脱水素酵素
US9796963B2 (en) Glucose dehydrogenase
WO2016076364A1 (ja) 基質特異性が向上したフラビン結合型グルコースデヒドロゲナーゼ
JP6127496B2 (ja) ジアホラーゼ
CN108350438B (zh) 新型葡萄糖脱氢酶
JP6036826B2 (ja) Nad依存型グルコースデヒドロゲナーゼおよびその製造方法
JP6160094B2 (ja) ジアホラーゼ組成物
JP2014097050A (ja) ジアホラーゼ
WO2020116330A1 (ja) グルコースデヒドロゲナーゼ
JP2014180223A (ja) アルドヘキソースデヒドロゲナーゼ及びその製造方法
JP2017112858A (ja) 新規グルコースデヒドロゲナーゼ
JP2017112860A (ja) 新規グルコースデヒドロゲナーゼ
JP2017221147A (ja) 新規グルコースデヒドロゲナーゼ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823098

Country of ref document: EP

Kind code of ref document: A1