WO2014017372A1 - 継目無金属管の製造方法、マンドレルミル及び補助治具 - Google Patents

継目無金属管の製造方法、マンドレルミル及び補助治具 Download PDF

Info

Publication number
WO2014017372A1
WO2014017372A1 PCT/JP2013/069491 JP2013069491W WO2014017372A1 WO 2014017372 A1 WO2014017372 A1 WO 2014017372A1 JP 2013069491 W JP2013069491 W JP 2013069491W WO 2014017372 A1 WO2014017372 A1 WO 2014017372A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
mandrel bar
outer diameter
auxiliary jig
rolling
Prior art date
Application number
PCT/JP2013/069491
Other languages
English (en)
French (fr)
Inventor
明仁 山根
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112015000206A priority Critical patent/BR112015000206A2/pt
Priority to MX2015000371A priority patent/MX352221B/es
Priority to EP13823801.9A priority patent/EP2878390B1/en
Priority to JP2013541098A priority patent/JP5459455B1/ja
Priority to US14/403,241 priority patent/US9884355B2/en
Priority to RU2015103079/02A priority patent/RU2599931C2/ru
Priority to CN201380035895.6A priority patent/CN104428073B/zh
Publication of WO2014017372A1 publication Critical patent/WO2014017372A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B25/00Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
    • B21B25/02Guides, supports, or abutments for mandrels, e.g. carriages or steadiers; Adjusting devices for mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/08Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process
    • B21B13/10Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process all axes being arranged in one plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/02Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/02Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length
    • B21B17/04Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/08Diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B25/00Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
    • B21B25/06Interchanging mandrels, fixing plugs on mandrel rods or cooling during interchanging mandrels

Definitions

  • the present invention relates to a method for manufacturing a seamless metal pipe, a mandrel mill, and an auxiliary jig, and more particularly, to a method for manufacturing a seamless metal pipe using a mandrel mill, a mandrel mill, and a method for manufacturing a seamless metal pipe. It relates to the auxiliary jig used.
  • This application claims priority based on Japanese Patent Application No. 2012-163437 filed in Japan on July 24, 2012, the contents of which are incorporated herein by reference.
  • a heated round billet is pierced and rolled by a piercing machine to manufacture a hollow shell.
  • a mandrel bar is inserted into the manufactured hollow shell.
  • the hollow shell in which the mandrel bar is inserted is stretch-rolled by a mandrel mill.
  • each stand of the mandrel mill reduces the thickness of the hollow shell. Therefore, the outer diameter and the wall thickness of the hollow shell are changed by drawing and rolling.
  • the stretched hollow shell is heated as necessary, and further drawn and rolled with a sizer or a reducer.
  • the seamless metal pipe is manufactured by the above process.
  • a plurality of mandrel bars (for example, 10 to 20) are used every time one lot of a hollow shell having a specific size (outer diameter and wall thickness) is manufactured. Therefore, if there are a plurality of sizes of seamless metal pipes to be manufactured, the number of mandrel bars in stock becomes very large. The more inventory, the higher the mandrel bar cost.
  • Patent Document 1 and Patent Document 2 propose a technique for reducing the cost of a mandrel bar.
  • Patent Document 1 the first half of the rolled part is cut from the used mandrel bar, and the latter half of the support part is left. Then, the first half is replaced with a new first half. At this time, a short joining material is arrange
  • Patent Document 2 also divides the mandrel bar into a rolling part that contacts the shell and a holding part that does not contact the shell, as in Patent Document 1.
  • the rolling part is coupled to the holding part with screws. Even in this case, since only the rolling part can be repaired and replaced, Patent Document 2 describes that the cost of the mandrel bar can be suppressed.
  • the length of the rolled portion is considered to be constant. This is because each stand of the mandrel mill performs thickness reduction, so that the rolling part needs to have a length corresponding to at least the distance from the head stand to the tail stand of the mandrel mill. Therefore, even if the manufacturing cost of the holding part can be reduced by reusing the holding part (supporting part), the manufacturing cost of the rolling part is still applied.
  • the rolling part is made of a material superior in strength, heat crack resistance and wear resistance than the holding part, and is more expensive than the material used in the holding part. That is, the manufacturing cost of the mandrel bar depends on the rolling part.
  • An object of the present invention is to provide a method of manufacturing a seamless metal pipe, a mandrel mill, and an auxiliary jig that can suppress the cost of a mandrel bar necessary for drawing and rolling.
  • a first aspect according to the present invention is a rear-stage stand including a front-stage stand group including a plurality of stands arranged from the top along a pass line, and a plurality of stands arranged behind the front-stage stand group. And a plurality of mandrel bars having different lengths of work parts that are in contact with the hollow shell during stretching and rolling.
  • either the front stand group or the rear stand group is subjected to outer diameter reduction and the other is subjected to thickness reduction, or The thickness reduction is performed in both the front stand group and the rear stand group.
  • the step of adjusting when the outer diameter of the auxiliary jig is larger than the outer diameter of the mandrel bar, before the auxiliary jig passes through the support roll, The support roll may be lowered.
  • a second aspect according to the present invention includes: a plurality of stands arranged along a pass line; and a rear end portion of a mandrel bar disposed on an entrance side of a leading stand among the plurality of stands.
  • a retainer comprising: a rod-shaped auxiliary jig having a gripping portion at the front end thereof; a gripping device capable of gripping the rear end of the auxiliary jig; and a drive device that advances the gripping device along the pass line;
  • a mandrel mill comprising: (7)
  • a third aspect according to the present invention is an auxiliary jig used for a retainer including a gripping device capable of gripping a rear end of a mandrel bar and a driving device for moving the gripping device forward.
  • the cost of the mandrel bar necessary for stretching and rolling can be suppressed.
  • FIG. 5 is a front view of the stand in FIG. 4, which is a cross-sectional view taken along line AA in FIG. 4.
  • FIG. 6 is a front view of another stand different from FIG. 5 and is a cross-sectional view taken along the line BB of FIG.
  • FIG. 10A It is a front view of the support member in FIG. It is a top view of the holding member and mandrel bar of a retainer. It is a longitudinal cross-sectional view of the holding member and mandrel bar shown in FIG. 10A. It is a top view which shows the state in which the mandrel bar was attached to the holding member of FIG. 10A. It is a longitudinal cross-sectional view of the holding member and mandrel bar shown in FIG. 10C. It is a schematic diagram of the rolling mill main body and extractor shown in FIG. It is a schematic diagram for demonstrating "all thickness reduction" in a mandrel mill. It is a schematic diagram for demonstrating "partial outer diameter reduction” in a mandrel mill.
  • FIG. 21 is a front view of the auxiliary jig of FIG. 20 and is a cross-sectional view taken along the line CC of FIG. 20. It is a top view of the auxiliary jig
  • a front stand group including a plurality of stands arranged from the top along a pass line
  • a rear stand group including a plurality of stands arranged behind the front stand group.
  • a seamless metal tube is manufactured from a hollow shell using a mandrel mill having the following.
  • This method of manufacturing a seamless metal pipe includes a step of preparing a plurality of mandrel bars having different lengths of work parts that are in contact with the hollow shell at the time of stretching and rolling; A step of selecting a mandrel bar having a work part having a length corresponding to the number of stands to be inserted; a step of inserting the mandrel bar selected in the selecting step into the hollow shell; and a hollow shell in which the mandrel bar is inserted Stretching and rolling. And in the process of drawing and rolling, either the front stage stand group or the rear stage stand group performs the outer diameter reduction and the other side performs the thickness reduction, or in either the front stage stand group or the rear stage stand group Carry out wall thickness reduction.
  • the mandrel mill not only performs thickness reduction on all the stands, but also performs outer diameter reduction on either the front stand group or the rear stand group.
  • stretch rolling in which one of the front stand group and the rear stand group is subjected to outer diameter reduction and the other is subjected to thickness reduction is referred to as “partial outer diameter reduction”.
  • stretching rolling that reduces the thickness in both the front stand group and the rear stand group is referred to as “total thickness reduction”.
  • the work part When a part of the mandrel mill performs outer diameter reduction, the work part is not required for the stand that performs outer diameter reduction. This is because it is not necessary to contact the inner surface of the hollow shell with the work part under the outer diameter pressure. Therefore, when part of the outer diameter reduction is performed, the work part can be shortened by a length corresponding to the number of stands of the stand group that performs the outer diameter reduction compared to the case of performing full thickness reduction. Good.
  • the length of the work part may be a length corresponding to the number of stands for the thickness reduction.
  • a plurality of mandrel bars having different work part lengths are prepared in advance, and among the plurality of stands of the mandrel mill, work parts having a length corresponding to the number of stands used for thickness reduction are provided. Use the mandrel bar provided.
  • the manufacturing method further includes a step of attaching a rod-shaped auxiliary jig provided with a grip portion at a tip end capable of gripping a rear end portion of the mandrel bar to the rear end of the mandrel bar, and a rear end of the auxiliary jig. And a step of moving the gripping device forward while gripping by the gripping device.
  • the length of the mandrel bar can be shortened by using an auxiliary jig. Therefore, the inventory space of the mandrel bar can be reduced, and the cost of the mandrel bar can be reduced.
  • the manufacturing method further includes a step of raising a support roll which is disposed between the plurality of stands and the gripping device and can be moved up and down to support the mandrel bar being advanced by the support roll; A step of adjusting the height of the support roll by raising and lowering the support roll based on the advance distance of the auxiliary jig when the outer diameter is different from the outer diameter of the mandrel bar.
  • the support roll can be adjusted to an appropriate height for the auxiliary jig.
  • the support roll is lowered before the auxiliary jig passes through the support roll.
  • the overall lengths of the plurality of mandrel bars may be equal to each other.
  • the thickness reduction is performed in the rear stage stand group.
  • the final stand of the rear stage stand group performs wall thickness reduction, the total lengths of the plurality of mandrel bars used for stretching rolling are equal to each other.
  • the length of the extension part that is a part other than the work part of the mandrel bar and does not come into contact with the hollow shell HS during the drawing and rolling is also changed. Specifically, the shorter the work part, the longer the extension part. Since the material and processing cost of the work part are higher than the extension part, the cost of the mandrel bar can also be suppressed in this case.
  • the mandrel mill according to this embodiment is used in the above-described method for manufacturing a seamless metal pipe.
  • the mandrel mill includes a plurality of stands and a retainer.
  • the plurality of stands are arranged along the pass line and include a plurality of rolls.
  • a retainer is arrange
  • the retainer includes an auxiliary jig, a gripping device, and a driving device.
  • the auxiliary jig includes a grip portion at the front end that can grip the rear end portion of the mandrel bar.
  • the gripping device grips the rear end of the auxiliary jig.
  • the drive device advances the gripping device along the pass line.
  • the mandrel mill according to this embodiment includes an auxiliary jig. Therefore, the total length of the mandrel bar can be shortened. As a result, the cost of the mandrel bar can be reduced.
  • the auxiliary jig according to the present embodiment is used in a retainer including a gripping device that can grip the rear end portion of the mandrel bar and a drive device that advances the gripping device.
  • the auxiliary jig includes a rod-shaped main body, a grip portion, and an attachment portion.
  • the grip portion is disposed at the front end of the main body and grips the rear end portion of the mandrel bar.
  • the mounting portion is disposed at the rear end of the main body and has a shape that can be gripped by the gripping device.
  • the auxiliary jig according to the present embodiment can be disposed between the mandrel bar and the retainer during the drawing and rolling. Therefore, the length of the mandrel bar can be shortened, and the cost of the mandrel bar can be reduced.
  • FIG. 1 is a block diagram for explaining the outline of a seamless metal pipe manufacturing facility according to the present embodiment.
  • the seamless metal pipe manufacturing facility manufactures a seamless metal pipe by a so-called Mannesmann mandrel mill method.
  • the manufacturing facility of the present embodiment includes a heating furnace 1, a drilling machine 2, and a mandrel mill 3. Between the heating furnace 1, the punching machine 2, and the mandrel mill 3, the conveying apparatus 10 is arrange
  • Each conveyance device 10 includes, for example, a plurality of conveyance rollers, and conveys a round billet or a hollow shell.
  • the heating furnace 1 stores a solid round billet that is a material of a seamless metal pipe and heats it.
  • the punching machine 2 includes a pair of inclined rolls 21 and a plug 22.
  • the plug 22 is disposed between the pair of inclined rolls 21 and on the pass line (rolling axis) PL.
  • the piercing machine 2 pushes the round billet BL sandwiched between the two inclined rolls 21 into the plug 22 while rotating it in the circumferential direction, and pierces and rolls the round billet BL to form a hollow shell HS. To manufacture.
  • the mandrel mill 3 inserts a mandrel bar into the hollow shell HS, and stretch-rolls the hollow shell HS into which the mandrel bar is inserted with a rolling mill body.
  • the hollow shell HS stretched and rolled by the mandrel mill 3 is transported to a drawing mill (not shown) after the mandrel bar is pulled out.
  • the drawing mill is, for example, a sizer or a reducer.
  • the drawing mill draws the hollow shell HS to produce a seamless metal tube.
  • FIG. 3 is a block diagram showing the configuration of the mandrel mill 3.
  • the mandrel mill 3 includes a retainer 31, a rolling mill main body 32, and an extractor 33.
  • the retainer 31, the rolling mill main body 32, and the extractor 33 are arranged in a line.
  • the retainer 31 inserts a mandrel bar into the hollow shell HS before the rolling mill body 32 stretches and rolls the hollow shell HS, or pulls out the mandrel bar from the hollow shell HS after stretch rolling.
  • the rolling mill main body 32 stretch-rolls the hollow shell HS.
  • the extractor 33 is used when the mandrel bar is pulled out from the hollow shell HS after the drawing and rolling.
  • each equipment is explained in full detail.
  • FIG. 4 is a side view of the rolling mill main body 32 of the mandrel mill 3.
  • the rolling mill main body 32 includes a plurality of stands ST1 to STm (m is a natural number) arranged in a line along the pass line PL.
  • the total number m of stands is not particularly limited.
  • the total number m of stands is 4 to 8, for example.
  • each of the stands ST1 to STm includes three rolls RO arranged at 120 ° positions around the pass line PL.
  • Each roll RO has a groove GR in which the cross-sectional shape when viewed in a cross section including the central axis thereof is an arcuate shape, and the hole type PA is formed by the grooves GR of the three rolls RO.
  • the three rolls RO are arranged by being shifted by 60 ° around the pass line PL.
  • the three rolls RO of each stand ST1 to STm are rotationally driven by three motors (not shown).
  • the cross-sectional area of the hole-shaped PA formed by the three rolls RO in each stand ST is smaller as that of the rear stage stand than the front stage.
  • the hollow shell HS into which the mandrel bar 40 is inserted is stretched and rolled through the stands ST1 to STm along the pass line PL, and the outer diameter and thickness of the hollow shell HS are increased. Be changed.
  • each stand STi includes three rolls RO.
  • the number of rolls is not limited to only three.
  • Each stand STi may have a plurality of rolls RO.
  • the number of rolls may be two or four.
  • the stand STi includes n rolls (n is a natural number of 2 or more) arranged around the pass line PL, and the n rolls in the rear stage are the stands STi-1 in the front stage.
  • the n rolls included in are arranged to be shifted by 180 ° / n around the pass line.
  • FIG. 8 is a longitudinal sectional view of the retainer 31.
  • the retainer 31 advances the mandrel bar 40 while holding the rear end portion of the mandrel bar 40, and inserts the mandrel bar 40 into the hollow shell HS.
  • the retainer 31 further advances the hollow shell HS into which the mandrel bar 40 is inserted along the pass line PL during the drawing and rolling.
  • the retainer 31 includes a drive source 311 including a motor and a speed reducer, a drive wheel 312, a driven wheel 313, a chain 314, a plurality of support members 315, and a gripping member 316. Prepare.
  • the drive source 311 rotates the drive wheel 312 in the forward direction (clockwise in FIG. 8) and the reverse direction (counterclockwise in FIG. 8).
  • the driven wheel 313 is disposed in front of the driving wheel 312 and away from the driving wheel 312.
  • the chain 314 is spanned across the drive wheel 312 and the driven wheel 313 to form an endless track.
  • the driving source 311, the driving wheel 312, the driven wheel 313, and the chain 314 constitute a driving device that moves the mandrel bar 40 forward or backward by the reference distance Dref.
  • FIG. 9 is a front view of the support member 315.
  • the two-dot chain line in FIG. 9 represents the mandrel bar 40.
  • the support member 315 has an inverted triangular groove 317. The width of the groove 317 gradually decreases from the upper end to the lower end of the support member 315.
  • the plurality of support members 315 support the axis of the mandrel bar 40 so as to continue to coincide with the pass line PL while the retainer 31 moves the mandrel bar 40 forward.
  • 10A and 10B are a plan view and a longitudinal sectional view of the gripping member 316 and the mandrel bar 40, respectively.
  • 10C and 10D are a plan view and a longitudinal sectional view of the gripping member 316 that grips the rear end of the mandrel bar 40.
  • the holding member 316 is fixed to the upper surface of the chain 314.
  • the gripping member 316 moves forward or backward by the reference distance Dref (between the start position Pstart and the end position Pend) as the chain 314 operates (turns) (see FIG. 8).
  • the holding member 316 includes a groove 319 and a hook 318.
  • the groove 319 is formed on the upper surface of the gripping member 316 and extends perpendicular to the axial direction of the mandrel bar 40.
  • the hook 318 is formed in front of the groove 319 and has a convex shape upward.
  • the mandrel bar 40 has a rod shape, and the transverse shape perpendicular to the axis is a circle.
  • the mandrel bar 40 includes a neck 410 and a flange 420 at the rear end.
  • the neck 410 has a rod-like cross section perpendicular to the axis thereof, and the outer diameter thereof is smaller than the outer diameter of the main body portion of the mandrel bar 40.
  • the flange 420 is disposed at the rear end of the neck 410.
  • the flange 420 has a disc shape and has an outer diameter larger than that of the neck 410.
  • the width of the groove 319 is substantially the same as or slightly larger than the width of the flange 420.
  • the bottom surface of the groove 319 is curved in a concave shape in an arc shape.
  • a recess 320 into which the neck 410 is fitted is formed on the upper surface of the hook 318.
  • the flange 420 is fitted into the groove 319 of the gripping member 316.
  • the gripping member 316 grips the mandrel bar 40.
  • the gripping member 316 grips the rear end portion (the neck 410 and the flange 420) of the mandrel bar 40 disposed in the hollow shell HS, and is equivalent to the reference distance Dref shown in FIG. ,Advance.
  • the drive device drive source 311, drive wheel 312, driven wheel 313, and chain 314
  • the retainer 31 moves the gripping member 316 forward by the reference distance Dref.
  • the retainer 31 controls the forward speed of the mandrel bar 40 during the drawing and rolling by the rolling mill main body 32.
  • the retainer 31 further inserts the mandrel bar 40 into the hollow shell HS before drawing and rolling.
  • the retainer 31 further moves the gripping member 316 backward after drawing and rolling, and pulls out the mandrel bar 40 from the drawn and hollow hollow shell HS.
  • the retainer 31 described above causes the gripping member 316 to move forward or backward by a drive device that forms an endless track with the chain 314.
  • the drive device of the retainer 31 may have other configurations.
  • the drive device of the retainer 31 may include a rack and pinion to move the gripping member 316 forward or backward, or may include an electric or hydraulic cylinder, and may be gripped by attaching the gripping member 316 to the tip of the cylinder. Member 316 may be moved forward or backward.
  • the extractor 33 includes a plurality of stands SA1 to SAr (r is a natural number) arranged in a line along the pass line PL.
  • Each stand SA1 to SAr includes a plurality of rolls arranged at equal intervals around the pass line PL.
  • the number of rolls of each stand SA1 to SAn may be 2, 3 or 4.
  • the total number of stands r of the extractor 33 is 2 to 4, for example.
  • the extractor 33 bites the tip of the hollow shell HS and performs a slight rolling on the tip.
  • the retainer 31 reversely rotates the drive wheel 312 to move the gripping member 316 backward. Thereby, the mandrel bar 40 is pulled out backward from the hollow shell HS.
  • the extractor 33 is a facility for pulling out the mandrel bar 40.
  • the extractor 33 is used to pull out the mandrel bar 40.
  • a drawing mill such as a sizer or a reducer may be arranged. Similarly to the extractor 33, these drawing mills also draw the hollow shell. Therefore, similarly to the case where the extractor 33 is used, the mandrel bar 40 can be pulled out from the hollow shell HS.
  • Thickness reduction means that when the hollow shell HS comes into contact with the roll RO in the stand STi and is pressed down, the inner surface of the hollow shell HS is pressed down while being in contact with the outer surface of the mandrel bar 40. Means that. In this case, the hollow shell HS is stretched and rolled between the roll RO and the mandrel bar 40, and the wall thickness varies.
  • total thickness reduction Since the wall thickness reduction is performed in all the stands ST1 to STm, it is suitable for manufacturing a seamless metal tube having a high rolling load and a seamless metal tube having a high stretch ratio. Drawing and rolling shown in FIG. 12 is referred to as “total thickness reduction”.
  • a stand group including a plurality of stands ST1 to STj (j is a natural number, j ⁇ m) arranged continuously from the head (hereinafter referred to as the front stage stand group FST, the outer diameter reduction is performed instead of the thickness reduction, and in the stand group including the stands STj + 1 to STm (hereinafter referred to as the rear stage stand group RST), the thickness reduction is performed.
  • the hollow shell HS produced by the punch 2 can be further reduced in diameter under partial outer diameter pressure. Therefore, for example, a hollow shell that has been conventionally rolled to a predetermined outer diameter by the drilling machine 2 can be reduced to the predetermined outer diameter by reducing the outer diameter by the front stand group FST. . Therefore, the outer diameter of the hollow shell to be finished by the punching machine 2 can be made larger than before. In this case, the frequency for exchanging with the inclined roll 21 of the perforator 2 can be lowered according to the outer diameter of the hollow shell to be manufactured. This is because the size to be reduced in diameter by the punching machine 2 can be replaced by the front stand group FST.
  • the frequency of exchanging rolls can be reduced by carrying out partial outer diameter reduction, and the degree of freedom of the rolling schedule of the drilling machine 2 and the mandrel mill 3 can be increased.
  • the manufacturing process of the seamless metal pipe of the present embodiment can increase the operating rate of the drilling machine 2 and the mandrel mill 3, and as a result, can increase the production efficiency.
  • the outer diameter of the hollow shell HS manufactured by the perforator 2 can be further uniformly adjusted by the front stand group FST. Therefore, the dimensional accuracy of the seamless metal pipe can be further increased.
  • the stands ST1 to STm of the mandrel mill 3 are divided into a front-stage stand group FST and a rear-stage stand group RST as necessary, and “total thickness reduction” or “partial outer diameter reduction”. To implement. The manufacturing process will be described in detail below.
  • FIG. 14 is a flowchart of a method for manufacturing a seamless metal pipe according to the present embodiment.
  • the roll distance Droll of each stand ST1 to STm of the mandrel mill 3 (from the center of the pass line PL to the roll RO The distance to the groove GR is set (step S1).
  • the setting of step S1 determines whether the mandrel mill 3 reduces the entire thickness or partially reduces the outer diameter. Furthermore, the stands ST1 to STj as the front stage stand group FST are also determined by the setting in step S1 when the outer diameter is partially reduced. In short, the total number of stands j included in the preceding-stage stand group FST can be changed by the setting in step S1. The total number j of the stands included in the front stage stand group FST is determined based on, for example, the steel type and / or the size (outer diameter and thickness) of the seamless metal pipe to be manufactured.
  • the roll distance Droll of each stand STi is determined in advance corresponding to the steel type and size (outer diameter and wall thickness) of the seamless metal pipe to be manufactured, for example. These roll distances Droll are recorded in a storage device (HDD or memory) of a computer (not shown) in association with the steel type and size of the seamless metal pipe. By reading the value of the roll distance Droll corresponding to the steel type and size of the manufactured seamless metal pipe from the computer, the roll distance Droll of each of the stands ST1 to STm is adjusted to the value of the roll distance Droll to be set.
  • the mandrel bar to be used is selected according to the size (outer diameter dimension and wall thickness dimension) of the seamless metal pipe to be manufactured (step S2).
  • a plurality of mandrel bars having different outer diameters are prepared in advance according to the size of the seamless metal pipe.
  • a mandrel bar having an appropriate outer diameter is selected from these mandrel bars.
  • the round billet is heated in the heating furnace 1 (step S3).
  • the round billet may be manufactured by continuous casting, or may be manufactured by rolling an ingot or a slab.
  • the heated round billet is pierced and rolled by the piercing machine 2 to manufacture the hollow shell HS (step S4).
  • step S5 the mandrel bar 40 selected in step S2 is inserted into the hollow shell HS (step S5).
  • the retainer 31 inserts the mandrel bar 40 into the hollow shell HS.
  • the hollow shell HS is stretched and rolled by the mandrel mill 3 (step S6).
  • the mandrel mill 3 lowers the hollow shell HS by reducing the full thickness or partially by the outer diameter.
  • the hollow shell HS is drawn and rolled with a sizer or a reducer to produce a seamless metal tube (step S7).
  • the whole wall thickness reduction or partial outer diameter reduction is performed by the mandrel mill 3 according to the steel type and size of the manufactured seamless metal pipe. . Therefore, for a seamless metal pipe of a steel type having a high rolling load and a seamless metal pipe having a high drawing ratio, the entire thickness reduction is performed to enable the mandrel mill 3 to perform rolling. Further, for a seamless metal pipe of a steel type having a low rolling load or a seamless metal pipe having a low drawing ratio, a part of the outer diameter is reduced, and the roll of the rolling mill main body 32 of the drilling machine 2 and the mandrel mill 3 is rolled. The frequency of exchange can be reduced and the degree of freedom of the rolling schedule can be increased. Therefore, the operation rate of the punch 2 and the mandrel mill 3 can be increased, and the production efficiency can be increased.
  • the mandrel mill 3 performs “total thickness reduction” or “partial outer diameter reduction”. Therefore, according to the steel type and size of the hollow shell HS, the number of stands for performing thickness reduction in the rolling mill body 32 of the mandrel mill 3 varies. Therefore, in the present embodiment, the mandrel bar 40 is selected according to the number of stands where the thickness reduction is performed.
  • FIG. 15 is a side view of the mandrel bar 40.
  • the mandrel bar 40 includes a work part 401 and an extension part 402.
  • the work part 401 and the extension part 402 are manufactured from different materials and are coaxially coupled to each other.
  • the rear end of the work part 401 and the front end of the extension part 402 are threaded, and are joined together by fastening them together.
  • the work part 401 and the extension part 402 may be joined by welding instead of being joined by screws, or may be joined by other methods.
  • Work part 401 is arranged at the front part of mandrel bar 40.
  • the work part 401 is in contact with the inner surface of the hollow shell HS during stretching and rolling. That is, the work part 401 is a part of the mandrel bar 40 that is used for thickness reduction. Since the work part 401 is susceptible to heat from the hollow shell HS and is subject to compressive stress in the thickness direction and tensile stress in the axial direction, the work part 401 is likely to be worn and cracked. Therefore, an expensive material excellent in high temperature strength, heat crack resistance and wear resistance, represented by JIS standard alloy tool steel (SKD), is used for the work part 401.
  • JIS standard alloy tool steel JIS standard alloy tool steel
  • the accuracy of the thickness of the seamless metal pipe depends on the shape (outer diameter accuracy) of the workpiece 401, and the cleanliness (smoothness) of the inner surface of the seamless metal pipe is the cleanliness of the outer surface of the workpiece 401.
  • the work part 401 is required to have a material excellent in mechanical characteristics, high outer diameter accuracy, and outer surface cleanliness. Therefore, the manufacturing cost of the work part 401 is high.
  • the extension part 402 is attached to the rear end of the work part 401 coaxially with the work part 401.
  • a neck 410 and a flange 420 are formed at the rear end portion of the extension portion 402.
  • the extension part 402 does not come into contact with the inner surface of the hollow shell HS during stretching and rolling. Therefore, the extension part 402 is not required to have higher mechanical properties (strength, heat crack resistance and wear resistance), outer diameter accuracy and outer surface cleanliness than the work part 401. Therefore, the extension part 402 can suppress the manufacturing cost by using a material cheaper than the work part 401.
  • the outer diameter of the extension part 402 may be smaller than the outer diameter of the work part 401. In this case, the manufacturing cost can be further suppressed.
  • the number of stands j included in the front stand group FST may differ depending on the steel type and size of the seamless metal pipe to be manufactured. That is, in the mandrel mill 3, the total number of the stands ST that perform wall thickness reduction varies depending on the steel type and size of the seamless metal pipe.
  • a plurality of mandrel bars 40 including work portions 401 having different lengths are prepared in accordance with the number of stands on which thickness reduction is performed.
  • a plurality of types of mandrel bars 40 having an outer diameter corresponding to the size of the seamless metal pipe to be manufactured are selected.
  • the number of stands for carrying out thickness reduction is determined by the setting of the roll distance Droll in step S1. Therefore, the mandrel bar 40 including the work portion 401 having a length corresponding to the number of stands for performing the thickness reduction is determined as the mandrel bar 40 to be used among the plurality of types of the selected mandrel bars 40 (step S2). ).
  • the gripping member 316 of the retainer 31 moves forward to the end point position Pend on the chain 314, at least the leading stand ST1 of the rolling mill body 32
  • the mandrel bar 40 including the work part 401 having a length equal to the distance from the entry side position P1in to the exit side position Pmout of the final stand STm is selected.
  • the thickness reduction can be performed by using the work part 401 at each of the stands ST1 to STm.
  • the extension unit 402 may have a length at least equal to the distance from the end point position Pend to the entry side position P1in.
  • the work part 401 is at least equal to the length corresponding to the number of stands ST3 to STm, more specifically, the distance from the entry side position P3in of the stand ST3 to the exit side position Pmout of the final stand STm. It only needs to have a length. And the extension part 402 should just have the length equal to the distance from the end position Pend to the entrance position P3in of 3rd stand ST3 at least.
  • the work part 401 when the partial outer diameter reduction is performed may be shorter than the work part 401 when the full thickness reduction is performed. This is because the number of stands where the thickness reduction is performed under partial outer diameter pressure is smaller than the number of stands where the thickness reduction is performed under full thickness pressure. Furthermore, as can be understood from FIG. 17, the work portion 401 of the mandrel bar 40 can be shortened as the number of stands included in the front-stage stand group FST increases under partial outer diameter pressure.
  • a plurality of mandrel bars 40 including work portions 401 having different lengths are prepared in advance.
  • the length of the work part 401 of each mandrel bar 40 is determined in advance corresponding to the number of stands for performing thickness reduction.
  • step S2 in the manufacturing process shown in FIG. 14 the mandrel bar 40 including the work portion 401 having a length corresponding to the number of stands on which thickness reduction is performed is selected.
  • the length of the work portion 401 of the mandrel bar 40 used for partial outer diameter reduction can be made shorter than that in the case of full thickness reduction. Since the work unit 401 can use a short mandrel bar, the cost of the mandrel bar 40 necessary for inventory can be reduced.
  • a part of the outer diameter is reduced by the front stand group FST. Therefore, although the prepared mandrel bars 40 include the mandrel bars 40 having different lengths of the work parts 401, the total lengths of the plurality of mandrel bars 40 are all equal. This is because, as shown in FIGS. 16 and 17, the final stand STm performs the wall thickness reduction regardless of whether the entire wall thickness is reduced or the outer diameter is partially reduced. Therefore, when the work part 401 is short, the extension part 402 becomes long.
  • the outer diameter reduction is performed by the front stage stand group FST partially under the outer diameter reduction.
  • the outer diameter reduction may be performed by the rear stage stand group RST (STm-1 and STm).
  • the work part 401 of the mandrel bar 40 has at least a length equal to the distance from the entry side position P1in of the leading stand ST1 to the exit side position Pm-2out of the final stand STm-2 of the front stand group FST. That's fine.
  • the extension part 402 of the mandrel bar 40 only needs to have a length at least equal to the distance from the end point position Pend to the entry side position P1in of the leading stand ST1.
  • the total length of the mandrel bar 40 is sufficient to be equal to the distance from the end point position Pend to the exit side position Pm-2out of the stand STm-2. This is because in the rear stage stand group RST (stands STm-1 and STm) in which the outer diameter is reduced, it is not necessary to insert the mandrel bar 40 into the hollow shell HS to be reduced in outer diameter.
  • the final stand (stand STm-2 in FIG. 18) that performs the thickness reduction is the steel type and size of the seamless metal pipe to be manufactured. It changes according to etc.
  • the total length of the mandrel bar 40 also changes depending on the position of the final stand where the thickness reduction is performed. More specifically, the smaller the number of stands on which thickness reduction is performed, the shorter the overall length of the mandrel bar 40. Therefore, when the outer diameter is reduced by the rear stage stand group RST, the mandrel bar 40 necessary for inventory can be further shortened.
  • the outer diameter reduction is performed by the front stage stand group FST
  • the hollow shell HS manufactured by the perforating machine 2 is further reduced in diameter by the front stage stand group FST, and the thickness reduction is performed by the rear stage stand group RST.
  • the frequency for exchanging rolls can be suppressed. Therefore, when the outer diameter reduction is performed in the front stage stand group FST, the operation rate of the production line is increased and the production efficiency is increased.
  • FIG. 19 is a longitudinal sectional view of the mandrel mill 3 according to the present embodiment. If it demonstrates with reference to FIG. 19, the mandrel mill 3 is newly provided with the auxiliary
  • FIG. 20 is a longitudinal sectional view of the auxiliary jig 50 in FIG. 19, FIG. 21 is a sectional view taken along the line CC of FIG. 20, and FIG. 22 is a plan view.
  • the auxiliary jig 50 includes a main body portion 51, a grip portion 52, and an attachment portion 53.
  • the main body 51 has a rod shape, and preferably has a circular cross section.
  • the material of the main body 51 is not particularly limited, but is preferably a metal.
  • the grip portion 52 is disposed at the front end of the main body portion 51.
  • the grip 52 is fitted with the flange 420 and the neck 410 at the rear end of the mandrel bar 40. That is, the auxiliary jig 50 is coaxially attached to the mandrel bar 40 by the grip portion 52.
  • the gripping part 52 includes a groove part 521 and a hook part 522.
  • the hook portion 522 is formed in front of the front end surface 511 of the main body portion 51 with a gap from the front end surface 511.
  • a groove 523 that fits with the neck 410 is formed on the upper surface of the hook portion 522.
  • the groove portion 521 is formed between the hook portion 522 and the front end surface 511 and extends in the transverse direction of the auxiliary jig 50. More specifically, the groove portion 521 extends in an arc shape or an arc shape in the circumferential direction of the auxiliary jig 50.
  • the width of the groove 521 is slightly larger than the width of the flange 420. The groove 521 is fitted with the flange 420.
  • the grip portion 52 grips the rear end portion of the mandrel bar 40 by the groove portion 521 and the hook portion 522.
  • the mounting portion 53 has a shape that can be gripped by the gripping member 316 of the retainer 31.
  • the attachment portion 53 has the same shape as the rear end portion of the mandrel bar 40.
  • the attachment portion 53 includes a neck 531 and a flange 532.
  • the shapes of the neck 531 and the flange 532 are the same as the neck 410 and the flange 420 of the mandrel bar 40.
  • the attachment portion 53 is fitted with the grip member 316 of the retainer 31. Thereby, the auxiliary jig 50 is fixed to the gripping member 316.
  • the grip 52 of the auxiliary jig 50 grips the rear end (neck 410 and flange 420) of the mandrel bar 40 and is detachably fixed to the mandrel bar 40. Further, the attachment portion 53 of the auxiliary jig 50 is fitted to the gripping member 316 and is detachably fixed to the gripping member 316.
  • the auxiliary jig 50 complements the length of the mandrel bar 40.
  • the auxiliary jig 50 plays the same role as the extension part 402 and extends the extension part 402. Thereby, the full length of the mandrel bar 40 prepared beforehand can be shortened.
  • the shapes of the rear end portions are the same.
  • the grip portion 52 of the auxiliary jig 50 can grip the mandrel bar 40 having various sizes (outer diameters). Therefore, the auxiliary jig 50 can be used for a plurality of mandrel bars 40 having different sizes. Therefore, the total length of the plurality of mandrel bars 40 can be shortened.
  • the manufacturing process of the seamless metal pipe of this embodiment is as follows. Referring to FIG. 14, the auxiliary jig 50 is attached to the gripping member 316 of the retainer 31 in step S5. Thereafter, the mandrel bar 40 selected in step S ⁇ b> 2 is attached to the auxiliary jig 50. The auxiliary jig 50 is attached to the rear end portion of the mandrel bar 40 through the above steps. The retainer 31 inserts the mandrel bar 40 to which the auxiliary jig 50 is attached into the hollow shell HS. Other operations are the same as those in the first embodiment. The auxiliary jig 50 may be attached to the gripping member 316 after the auxiliary jig 50 is attached to the mandrel bar 40.
  • auxiliary jig 50 only one type of auxiliary jig 50 may be prepared, or a plurality of types of auxiliary jigs 50 having different outer diameters may be prepared.
  • the optimum mandrel bar 40 and auxiliary jigs 50 are selected in step S2 of FIG.
  • the grip portion 52 has one groove portion 521.
  • the grip portion 52 may have a plurality of groove portions having different sizes.
  • the grip portion 52 has a plurality of groove portions arranged in a line in the axial direction. The closer to the hook portion 522, the smaller the groove portion.
  • the grip part 52 can grip a plurality of mandrel bars 40 having different sizes of the rear end part.
  • the plurality of grooves are formed corresponding to the respective rear end portions of the plurality of mandrel bars having different sizes. Therefore, mandrel bars having different rear end sizes can be gripped by the gripping portion 52.
  • the configuration of the gripping part 52 is not limited to FIGS.
  • the grip portion 52 may include an arm that can be opened and closed, and may grip the mandrel bar 40 by opening and closing the arm and sandwiching the rear end portion of the mandrel bar 40 with the arm.
  • one auxiliary jig 50 can grip a plurality of mandrel bars 40 having different outer diameters.
  • the grip portion 52 may have the same configuration as the grip member 316.
  • the outer diameter of the auxiliary jig 50 and the outer diameter of the mandrel bar 40 may be different. Even in such a case, it is preferable that the film can be appropriately drawn and rolled.
  • the mandrel mill 3 according to the present embodiment further includes a control device 70 as compared with the second embodiment.
  • the control device 70 controls the elevation of the plurality of support rolls SR1 to SRk (k is a natural number).
  • the support rolls SR1 to SRk are arranged along the pass line between the retainer 31 and the rolling mill body 32.
  • the support roll may be a roll having a flat outer peripheral surface, or may be a V roll having a groove having a triangular transverse shape in the circumferential direction of the outer peripheral surface.
  • the support rolls SR1 to SRk are moved up and down by the lifting devices DR1 to DRk.
  • the lifting devices DR1 to DRk are, for example, hydraulic cylinders, electric cylinders and the like.
  • one lifting device DR is disposed on each support roll SR.
  • one lifting device DR may be disposed on the plurality of support rolls SR.
  • the controller 70 controls the lifting devices DR1 to DRk to lift and lower the support rolls SR1 to SRk.
  • the retainer 31 and the rolling mill main body 32 are separated from each other. Therefore, the mandrel bar 40 may be curved downward between the retainer 31 and the rolling mill main body 32. Such bending affects the stable conveyance of the mandrel bar during rolling and the dimensional accuracy of the hollow shell HS after stretch rolling. Therefore, during the stretching and rolling, the support rolls SR1 to SRk are raised according to the position of the mandrel bar 40 to support the mandrel bar 40 on the pass line PL.
  • the outer diameter of the auxiliary jig 50 may be different from the outer diameter of the mandrel bar 40.
  • the lower end position of the mandrel bar 40 during stretching and the lower end position of the auxiliary jig 50 are different. If the height of the support roll SR is maintained in accordance with the height of the lower end position of the mandrel bar 40, a gap is generated between the support roll SR and the auxiliary jig 50, or the auxiliary jig 50 is supported by the support roll SR. Or may collide.
  • the control device 70 adjusts the height of the support roll according to the movement distance (advance distance) of the auxiliary jig 50 during the drawing and rolling. Specifically, when the outer diameter of the auxiliary jig 50 is larger than the outer diameter of the mandrel bar 40, the elevating device DRq before the auxiliary jig 50 passes through the support roll SRq (q is a natural number of 1 to k). Is controlled to lower the support roll SRq. At this time, the control device 70 may determine the amount of descent based on the difference value between the outer diameter of the auxiliary jig 50 and the outer diameter of the mandrel bar 40. In this case, the support roll SRq can be lowered to the extent that the lowered support roll SRq contacts the lower end of the auxiliary jig 50.
  • the elevating device DRq is controlled to raise the support roll SRq.
  • the control device 70 may determine the amount of increase based on the difference value between the outer diameter of the auxiliary jig 50 and the outer diameter of the mandrel bar 40.
  • the support roll SRq can be raised to the extent that the raised support roll SRq contacts the lower end of the auxiliary jig 50.
  • control device 70 adjusts the height of the support roll SRq by moving the support roll SRq up and down according to the moving distance of the auxiliary jig 50. Therefore, it is possible to suppress the auxiliary jig 50 from colliding with the support roll SR.
  • control device 70 further raises and lowers support roll SRq in consideration of the outer diameter difference between auxiliary jig 50 and mandrel bar 40. In this case, the auxiliary jig 50 can be supported by the support roll SRq.
  • steps S1 to S7 in FIG. 14 are also performed in this embodiment.
  • the control device 70 performs the operation shown in FIG. 26 during the drawing and rolling in step S6.
  • the control device 70 first reads and compares the outer diameter of the auxiliary jig 50 and the outer diameter of the mandrel bar 40 (step S601). At this time, the control device 70 obtains a difference value between the outer diameter of the auxiliary jig 50 and the outer diameter of the mandrel bar 40. Subsequently, the height of the support roll SRq when the auxiliary jig 50 passes over the support roll SRq is determined (step S602). For each combination of the mandrel bar 40 and the auxiliary jig 50, the control device 70 may manage the height of the support roll SRq in a table in advance and store it in the memory.
  • the control device 70 recognizes the start of movement of the mandrel bar 40 and the auxiliary jig 50 (step S603). For example, when the retainer 31 starts to advance the gripping member 316 in the drawing and rolling, the retainer 31 notifies the control device 70 to that effect.
  • the control device 70 receives the notification and recognizes the start of movement of the auxiliary jig 50 or the like (step S603).
  • Control device 70 raises support roll SRq every time mandrel bar 40 passes support roll SRq (step S604). At this time, the control device 70 determines the rising amount of the support roll SRq according to the size (outer diameter) of the mandrel bar 40.
  • the mandrel bar 40 during stretching and rolling is supported by the support rolls SR1 to SRk.
  • step S605 the control device 70 reads the examination result of step S601 (step S605).
  • the control device 70 maintains the height of the support roll SRq as it is until the drawing and rolling of one hollow shell HS is completed.
  • the control device 70 performs a support roll lowering process (step S610). Specifically, the control device 70 checks the current amount of movement of the auxiliary jig 50 (step S611). For example, the control device 70 receives a notification of the movement amount of the gripping member 316 from the retainer 31 every predetermined time, and recognizes the movement amount of the auxiliary jig 50 (advance distance from the start position Pstart).
  • the control device 70 Based on the movement amount of the auxiliary jig 50 checked in step S611, when the auxiliary jig 50 comes a predetermined distance before the support roll SR1 (YES in step S612), the control device 70 lowers the support roll SR1. . At this time, the control device 70 may lower the support roll SR1 away from the auxiliary jig 50. The control device 70 may also lower the support roll SR1 so that the support roll SR1 comes into contact with the auxiliary jig 50 based on the outer diameter difference between the auxiliary jig 50 and the mandrel bar 40.
  • step S615 After lowering the support roll SR1, the count q is incremented (step S615), and the process returns to step S611. Then, until the count q exceeds k (YES in step S614), that is, the operations of steps S611 to S613 are executed for each of the support rolls SR1 to SRk.
  • the control device 70 lowers the support roll SRq. Therefore, it is possible to suppress the auxiliary jig 50 from colliding with the support roll SRq.
  • step S620 if the outer diameter of the auxiliary jig 50 is smaller than the outer diameter of the mandrel bar 40, a support roll raising process is performed (step S620).
  • the control device 70 checks the current movement amount (advance distance) of the auxiliary jig 50 every predetermined time (step S621).
  • the control device 70 Based on the movement amount of the auxiliary jig 50 checked in step 621, when the auxiliary jig 50 passes through the support roll SR1 by a predetermined distance (YES in step S622), the control device 70 raises the support roll SR1 by a predetermined amount. . At this time, the control device 70 raises the support roll SR1 by a predetermined amount so that the support roll SR1 comes into contact with the auxiliary jig 50 based on the outer diameter difference between the auxiliary jig 50 and the mandrel bar 40.
  • steps S621 to S623 are performed on the support rolls SR1 to SRk (steps S624 and S625).
  • the control device 70 raises the support roll SRq by a predetermined amount and brings the support roll SRq into contact with the auxiliary jig 50.
  • the auxiliary jig 50 can move forward without bending downward.
  • the control device 70 performs the support roll lowering process S610 and the support roll rising process S620.
  • the control device 70 may perform only the support roll lowering process S610.
  • the control device 70 may lower the support roll SRq by a certain amount regardless of the outer diameter of the auxiliary jig 50. In this case, at least, the auxiliary jig 50 can be prevented from colliding with the support roll SRq, and more appropriate drawing and rolling can be performed.
  • steps S611 to S613 is performed on each of the support rolls SR1 to SRk.
  • the plurality of support rolls SR may be lowered at a time.
  • all the support rolls SR1 to SRk may be lowered at a time.
  • a plurality of support rolls SR1 to SRk are arranged between the retainer 31 and the leading stand ST1 of the rolling mill body 32.
  • one or more support rolls may be disposed.
  • the support rolls SR1 to SRk are arranged. However, in the first and second embodiments, the support rolls SR1 to SRk may not be provided.
  • the mandrel bar 40 is inserted into the hollow shell HS by the retainer 31.
  • the mandrel bar 40 may be inserted into the hollow shell HS by other methods.
  • the mandrel bar 40 may be inserted into the hollow shell HS using an inserter that is a separate device from the retainer 31.
  • the gripping member 316 of the retainer 31 is not limited to the above-described configuration.
  • the gripping member 316 may include a plurality of arms that can be opened and closed.
  • the gripping member 316 may grip the mandrel bar 40 by sandwiching the rear end portion of the mandrel bar 40 with an arm.
  • the rear end portion of the mandrel bar 40 includes the neck 410 and the flange 420.
  • the shape of the rear end portion of the mandrel bar 40 is not limited to this. In short, the shape of the rear end portion of the mandrel bar 40 is not particularly limited as long as the grip member 52 and the grip portion 52 of the auxiliary jig 50 can be gripped.
  • the mandrel mill has a front-stage stand group and a rear-stage stand group that perform outer diameter reduction or thickness reduction, and stretches and rolls the hollow shell, but the outer diameter reduction and wall thickness reduction are performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Extraction Processes (AREA)
  • Forging (AREA)

Abstract

 この継目無金属管の製造方法は、延伸圧延時に中空素管と接触するワーク部の長さが異なる複数のマンドレルバーを準備する工程と;前記複数のマンドレルバーの中から、肉厚圧下に利用されるスタンド数に応じた長さのワーク部を備えるマンドレルバーを選択する工程と;前記中空素管に、前記選択する工程で選択された前記マンドレルバーを挿入する工程と;前記マンドレルバーが挿入された前記中空素管を延伸圧延する工程と;を備える。そして、前記延伸圧延する工程では、前段スタンド群及び後段スタンド群のいずれか一方で外径圧下を実施して他方で肉厚圧下を実施するか、又は、前記前段スタンド群及び前記後段スタンド群のいずれにおいても肉厚圧下を実施する。

Description

継目無金属管の製造方法、マンドレルミル及び補助治具
 本発明は、継目無金属管の製造方法、マンドレルミル及び補助治具に関し、さらに詳しくは、マンドレルミルを用いた継目無金属管の製造方法、マンドレルミル、及び、継目無金属管の製造方法に利用される補助治具に関する。
 本願は、2012年7月24日に、日本に出願された特願2012-163437号に基づき優先権を主張し、その内容をここに援用する。
 マンドレルミルを用いた継目無金属管の製造方法では、初めに、加熱された丸ビレットを穿孔機により穿孔圧延し、中空素管を製造する。製造された中空素管に対して、マンドレルバーを挿入する。マンドレルバーが挿入された中空素管を、マンドレルミルにより延伸圧延する。このとき、マンドレルミルの各スタンドは、中空素管を肉厚圧下する。そのため、中空素管の外径及び肉厚は、延伸圧延により変化する。延伸圧延された中空素管を、必要に応じて加熱し、さらに、サイザ又はレデューサにより絞り圧延する。以上の工程により、継目無金属管が製造される。
 延伸圧延において、マンドレルバーは、特定サイズ(外径及び肉厚)の中空素管を1ロット製造するごとに、複数本(たとえば、10~20本)使用される。そのため、製造される継目無金属管のサイズが複数存在すれば、マンドレルバーの在庫数は非常に多くなる。在庫数が多ければ、それだけマンドレルバーのコストも高くなる。
 特許文献1及び特許文献2は、マンドレルバーのコスト低減を目的とした技術を提案する。
 特許文献1では、使用済のマンドレルバーから、先半部の圧延部を切断し、後半部の支持部を残す。そして、先半部を新たな先半部に取り替える。このとき、先半部と支持部との間に短尺接合材を配置して、摩擦圧接により、先半部、短尺接合材及び支持部を一体化する。これにより、マンドレルバーの再生使用が可能であると、特許文献1では記載されている。
 特許文献2も、特許文献1と同様に、マンドレルバーを、シェルと接触する圧延部と、シェルと接触しない保持部と、に分割する。圧延部は、保持部とネジで結合される。この場合においても、圧延部のみを補修、取り替えできるため、マンドレルバーのコストを抑えることができると、特許文献2では記載されている。
日本国特開平4-344805号公報 日本国特開平10-249411号公報
 しかしながら、特許文献1及び2のいずれにおいても、圧延部の長さは一定であると考えられる。なぜなら、マンドレルミルの各スタンドは、肉厚圧下を実施するため、圧延部は少なくともマンドレルミルの先頭スタンドから末尾スタンドまでの距離に相当する長さが必要となるからである。そのため、保持部(支持部)を再利用することにより保持部の製造コストを低減できても、圧延部の製造コストは依然として掛かる。圧延部には、保持部よりも強度、耐ヒートクラック性及び耐摩耗性に優れた素材が利用され、保持部に利用される素材よりも高価である。つまり、マンドレルバーの製造コストは圧延部に依存する。
 本発明は、延伸圧延に必要なマンドレルバーのコストを抑えることができる、継目無金属管の製造方法、マンドレルミル及び補助治具を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
(1)本発明に係る第1の態様は、パスラインに沿って先頭から配列された複数のスタンドを含む前段スタンド群と、前記前段スタンド群の後ろに配列された複数のスタンドを含む後段スタンド群とを有するマンドレルミルを用いて、中空素管より継目無金属管を製造する方法であって、延伸圧延時に前記中空素管と接触するワーク部の長さが異なる複数のマンドレルバーを準備する工程と;前記複数のマンドレルバーの中から、肉厚圧下に利用されるスタンド数に応じた長さのワーク部を備えるマンドレルバーを選択する工程と;前記中空素管に、前記選択する工程で選択された前記マンドレルバーを挿入する工程と;前記マンドレルバーが挿入された前記中空素管を延伸圧延する工程と;を備える。この継目無金属管の製造方法は、前記延伸圧延する工程では、前記前段スタンド群及び前記後段スタンド群のいずれか一方で外径圧下を実施して他方で肉厚圧下を実施するか、又は、前記前段スタンド群及び前記後段スタンド群のいずれにおいても肉厚圧下を実施する。
(2)上記(1)の態様において、前記マンドレルバーの後端部を把持可能な把持部を先端に備える棒状の補助治具を、前記マンドレルバーの後端に取り付ける工程と;前記補助治具の後端を把持装置により把持しながら、前記把持装置を前進させる工程と;をさらに備えていてもよい。
(3)上記(2)の態様において、前記複数のスタンドと前記把持装置との間に配置された支持ロールを上昇させて、前進中の前記マンドレルバーを前記支持ロールで支持する工程と;前記補助治具の外径が前記マンドレルバーの外径と異なる場合、前記補助治具の前進距離に基づいて前記支持ロールを昇降させて、前記支持ロールの高さを調整する工程と;をさらに備えていてもよい。
(4)上記(3)の態様において、前記調整する工程では、前記補助治具の外径が前記マンドレルバーの外径よりも大きい場合、前記補助治具が前記支持ロールを通過する前に、前記支持ロールを下降させてもよい。
(5)上記(1)または(2)の態様において、前記延伸圧延する工程では、前記前段スタンド群で外径圧下を実施し;前記複数のマンドレルバーの全長は、互いに等しくてもよい。
(6)本発明に係る第2の態様は、パスラインに沿って配列された複数のスタンドと;前記複数のスタンドのうち、先頭のスタンドの入側に配置され、マンドレルバーの後端部を把持可能な把持部を前端に備える棒状の補助治具と、前記補助治具の後端を把持可能な把持装置と、前記把持装置を前記パスラインに沿って前進させる駆動装置とを備えるリテーナと;を備えるマンドレルミルである。
(7)本発明に係る第3の態様は、マンドレルバーの後端を把持可能な把持装置と、前記把持装置を前進させる駆動装置とを備えるリテーナに用いられる補助治具であって、棒状の本体と;前記本体の前端に配置され、前記マンドレルバーの後端を把持可能な把持部と; 前記本体の後端に配置され、前記把持装置が把持可能な形状の取付部と;を含む。
 上記各態様によれば、延伸圧延に必要なマンドレルバーのコストを抑えることができる。
継目無金属管の製造設備を示す機能ブロック図である。 図1中の穿孔機の要部を示す模式図である。 図1中のマンドレルミルを示す機能ブロック図である。 図3中のマンドレルミルの圧延機本体の側面図である。 図4中のスタンドの正面図であって、図4のA-A断面図である。 図5と異なる他のスタンドの正面図であって、図4のB-B断面図である。 マンドレルミルによる中空素管の延伸圧延を示す模式図である。 図3中のリテーナの縦断面図である。 図8中の支持部材の正面図である。 リテーナの把持部材及びマンドレルバーの平面図である。 図10Aに示す把持部材及びマンドレルバーの縦断面図である。 図10Aの把持部材にマンドレルバーが取り付けられた状態を示す平面図である。 図10Cに示す把持部材及びマンドレルバーの縦断面図である。 図3に示す圧延機本体及びエキストラクタの模式図である。 マンドレルミルでの「全肉厚圧下」を説明するための模式図である。 マンドレルミルでの「一部外径圧下」を説明するための模式図である。 本実施形態による継目無金属管の製造工程を示すフロー図である。 マンドレルバーの側面図である。 全肉厚圧下時のマンドレルバーの状態を説明するための模式図である。 一部外径圧下時のマンドレルバーの状態を説明するための模式図である。 マンドレルミルの後段スタンド群で外径圧下を実施した場合のマンドレルバーの状態を説明するための模式図である。 補助治具を用いた場合のマンドレルミルでの延伸圧延を説明するための模式図である。 図19中の補助治具の縦断面図である。 図20の補助治具の正面図であって、図20のC-C断面図である。 図20の補助治具の平面図である。 図20の補助治具の変形例を示す図であって、複数の溝部を有する補助治具の縦断面図である。 同補助治具の平面図である。 補助治具及び支持ロールを用いたマンドレルミルでの延伸圧延を説明するための模式図である。 図25中の制御装置の動作を示すフロー図である。
 以下、図面を参照し、本発明の実施形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
 本実施形態による継目無金属管の製造方法では、パスラインに沿って先頭から配列された複数のスタンドを含む前段スタンド群と、前段スタンド群の後ろに配列された複数のスタンドを含む後段スタンド群とを有するマンドレルミルを用いて、中空素管より継目無金属管を製造する。この継目無金属管の製造方法は、延伸圧延時に中空素管と接触するワーク部の長さが異なる複数のマンドレルバーを準備する工程と;複数のマンドレルバーの中から、肉厚圧下に利用されるスタンド数に応じた長さのワーク部を備えるマンドレルバーを選択する工程と;中空素管に、選択する工程で選択されたマンドレルバーを挿入する工程と;マンドレルバーが挿入された中空素管を延伸圧延する工程と;を備える。そして、延伸圧延する工程では、前段スタンド群及び後段スタンド群のいずれか一方で外径圧下を実施して他方で肉厚圧下を実施するか、又は、前段スタンド群及び後段スタンド群のいずれにおいても肉厚圧下を実施する。
 本実施形態において、マンドレルミルは、全てのスタンドで肉厚圧下を実施するだけでなく、前段スタンド群及び後段スタンド群のいずれか一方で、外径圧下も実施する。ここで、前段スタンド群及び後段スタンド群のいずれか一方で外径圧下し、他方で肉厚圧下する延伸圧延を「一部外径圧下」という。また、前段スタンド群及び後段スタンド群のいずれにおいても肉厚圧下する延伸圧延を「全肉厚圧下」という。
 マンドレルミルが一部外径圧下を実施する場合、外径圧下を実施するスタンドでは、ワーク部は不要である。なぜなら、外径圧下では、中空素管の内面を、ワーク部に接触させる必要はないからである。そのため、一部外径圧下を実施する場合、全肉厚圧下を実施する場合と比較して、外径圧下を実施するスタンド群のスタンド数に相当する長さだけ、ワーク部を短くしてもよい。
 換言すれば、一部外径圧下を実施する場合、ワーク部の長さは、肉厚圧下を実施するスタンド数に相当する長さで足りる。
 そこで、本実施形態では、ワーク部の長さが異なる複数のマンドレルバーを予め準備し、マンドレルミルの複数のスタンドのうち、肉厚圧下に利用されるスタンド数に応じた長さのワーク部を備えたマンドレルバーを使用する。
 以上の製造方法では、従来のように、ワーク部の長さを一定にする必要がなく、従来よりもワーク部の短いマンドレルバーを準備できる。そのため、マンドレルバーのコストを抑えることができる。
 好ましくは、上記の製造方法はさらに、マンドレルバーの後端部を把持可能な把持部を先端に備える棒状の補助治具を、マンドレルバーの後端に取り付ける工程と、補助治具の後端を把持装置により把持しながら、把持装置を前進させる工程と、を備える。
 この場合、補助治具を利用することにより、マンドレルバーの長さを短くすることができる。そのため、マンドレルバーの在庫スペースを抑えることができ、マンドレルバーのコストも抑えることができる。
 好ましくは、上記の製造方法はさらに、複数のスタンドと把持装置との間に配置され昇降可能な支持ロールを上昇させて、前進中のマンドレルバーを支持ロールで支持する工程と、補助治具の外径がマンドレルバーの外径と異なる場合、補助治具の前進距離に基づいて支持ロールを昇降させて、支持ロールの高さを調整する工程と、を備える。
 この場合、補助治具の外径がマンドレルバーの外径と異なっていても、支持ロールを、補助治具にとって適切な高さに調整できる。
 好ましくは、調整する工程では、補助治具の外径がマンドレルバーの外径よりも大きい場合、補助治具が支持ロールを通過する前に、支持ロールを下降させる。
 この場合、補助治具と支持ロールとの衝突を抑制することができる。
 上述の製造方法では、延伸圧延する工程において、前段スタンド群で外径圧下を実施する場合、複数のマンドレルバーの全長は、互いに等しくしてもよい。
 前段スタンド群において外径圧下を実施する場合(つまり、一部外径圧下が実施される場合)、後段スタンド群では肉厚圧下が実施される。この場合、後段スタンド群の最終スタンドは、肉厚圧下を実施するため、延伸圧延に利用される複数のマンドレルバーの全長は互いに等しくなる。この場合、マンドレルバーのうち、ワーク部以外の部分であって、延伸圧延中に中空素管HSと接触しないエクステンション部の長さも変化する。具体的には、ワーク部が短くなれば、その分、エクステンション部が長くなる。ワーク部の素材及び加工費用の方が、エクステンション部よりも高いため、本ケースにおいてもマンドレルバーのコストを抑えることができる。
 本実施形態によるマンドレルミルは、上述の継目無金属管の製造方法に利用される。マンドレルミルは、複数のスタンドと、リテーナとを備える。複数のスタンドは、パスラインに沿って配列され、複数のロールを含む。リテーナは、複数のスタンドのうちの先頭のスタンドの入側に配置され、延伸圧延中にマンドレルバーを前進させる。リテーナは、補助治具と、把持装置と、駆動装置とを備える。補助治具は、マンドレルバーの後端部を把持可能な把持部を前端に備える。把持装置は、補助治具の後端を把持する。駆動装置は、把持装置を、パスラインに沿って前進させる。
 本実施形態によるマンドレルミルは、補助治具を備える。そのため、マンドレルバーの全長を短くすることができる。その結果、マンドレルバーのコストを低減できる。
 本実施形態による補助治具は、マンドレルバーの後端部を把持可能な把持装置と、把持装置を前進させる駆動装置とを備えるリテーナに用いられる。
 補助治具は、棒状の本体と、把持部と、取付部とを含む。把持部は、本体の前端に配置され、マンドレルバーの後端部を把持する。取付部は、本体の後端に配置され、把持装置が把持可能な形状を有する。
 本実施形態による補助治具は、延伸圧延中に、マンドレルバーとリテーナとの間に配置可能である。そのため、マンドレルバーの長さを短くでき、マンドレルバーのコストを低減できる。
 以下、本実施形態を詳述する。
 [継目無金属管の製造設備]
 図1は、本実施形態による継目無金属管の製造設備の概略を説明するためのブロック図である。継目無金属管の製造設備は、いわゆるマンネスマンマンドレルミル方式により継目無金属管を製造する。図1を参照して説明すると、本実施形態の製造設備は、加熱炉1と、穿孔機2と、マンドレルミル3とを備える。加熱炉1と、穿孔機2と、マンドレルミル3との間には、それぞれ、搬送装置10が配置される。各搬送装置10は、たとえば、複数の搬送ローラを備え、丸ビレット又は中空素管を搬送する。
 [加熱炉1及び穿孔機2]
 加熱炉1は、継目無金属管の素材である中実の丸ビレットを収納し、これを加熱する。穿孔機2は、図2に示すとおり、一対の傾斜ロール21とプラグ22とを備える。プラグ22は、一対の傾斜ロール21の間であってかつ、パスライン(圧延軸)PL上に配置される。穿孔機2は、両傾斜ロール21により、これらの間に挟んだ丸ビレットBLをその周方向に回転させながらプラグ22に押し込み、丸ビレットBLを穿孔圧延して中空素管(Hollow Shell)HSを製造する。
 [マンドレルミル3]
 マンドレルミル3は、中空素管HS内にマンドレルバーを挿入し、マンドレルバーが挿入された中空素管HSを圧延機本体で延伸圧延する。マンドレルミル3により延伸圧延された中空素管HSは、マンドレルバーが引き抜かれた後、図示しない絞り圧延機に搬送される。絞り圧延機は、たとえば、サイザやレデューサである。絞り圧延機は、中空素管HSを絞り圧延し、継目無金属管を製造する。
 図3は、マンドレルミル3の構成を示すブロック図である。図3を参照して説明すると、マンドレルミル3は、リテーナ31と、圧延機本体32と、エキストラクタ33とを備える。リテーナ31と、圧延機本体32と、エキストラクタ33とは、一列に配列される。リテーナ31は、圧延機本体32が中空素管HSを延伸圧延する前に中空素管HSにマンドレルバーを挿入したり、延伸圧延後の中空素管HSからマンドレルバーを引き抜いたりする。圧延機本体32は、中空素管HSを延伸圧延する。エキストラクタ33は、延伸圧延後の中空素管HSからマンドレルバーを引き抜くときに利用される。以下、各設備について詳述する。
 [圧延機本体32]
 図4は、マンドレルミル3の圧延機本体32の側面図である。図4を参照して説明すると、圧延機本体32は、パスラインPLに沿って一列に配列される複数のスタンドST1~STm(mは自然数)を備える。スタンド総数mは特に制限されない。スタンド総数mは、たとえば、4~8である。
 図5及び図6は、スタンドSTi(i=2~m)及びスタンドSTi-1の断面図である。図5及び図6を参照して説明すると、本例では、各スタンドST1~STmは、パスラインPL周りに互いに120°の位置に配置される3個のロールROを含む。各ロールROは、その中心軸線を含む断面で見た場合の横断形状が弓状をなす溝GRを有し、3つのロールROの溝GRにより孔型PAを形成する。
 図5及び図6に示すように、パスラインPLに沿って見た場合、後段のスタンドSTi(i=2~m)に含まれる3個のロールROは、前段のスタンドSTi-1に含まれる3個のロールROからパスラインPL周りに60°ずらして配置される。
 各スタンドST1~STmの3個のロールROは、図示しない3つのモータにより回転駆動される。
 各スタンドSTにおいて3個のロールROにより形成される孔型PAの断面積は、前段よりも後段のスタンドのものほど小さくなる。
 図7に示すように、マンドレルバー40が挿入された中空素管HSは、パスラインPLに沿って、スタンドST1からSTmまでを通って延伸圧延され、中空素管HSの外径及び肉厚が変更される。
 図4~図7に示す圧延機本体32では、各スタンドSTiが3つのロールROを備える。しかしながら、ロール数は3つのみに限定されない。各スタンドSTiは複数のロールROを備えていればよい。ロール数は2つであってもよいし、4つであってもよい。より具体的には、スタンドSTiは、パスラインPLの周りに配置されたn個(nは2以上の自然数)のロールを含み、後段におけるn個のロールは、その前段にあるスタンドSTi-1に含まれるn個のロールからパスライン周りに180°/nずらして配置される。
 [リテーナ31]
 図8は、リテーナ31の縦断面図である。リテーナ31は、マンドレルバー40の後端部を把持したまま、マンドレルバー40を前進させて、中空素管HS内にマンドレルバー40を挿入する。リテーナ31はさらに、延伸圧延中、マンドレルバー40が挿入された中空素管HSをパスラインPLに沿って前進させる。
 図8を参照して説明すると、リテーナ31は、モータ及び減速機を含む駆動源311と、駆動ホイル312と、従動ホイル313と、チェーン314と、複数の支持部材315と、把持部材316とを備える。
 駆動源311は、駆動ホイル312を正方向(図8中の時計回り)及び逆方向(図8中の反時計回り)に回転させる。従動ホイル313は、駆動ホイル312の前方に駆動ホイル312から離れて配置される。チェーン314は、駆動ホイル312及び従動ホイル313にわたって架けられ、無限軌道を形成する。駆動源311、駆動ホイル312、従動ホイル313及びチェーン314は、マンドレルバー40を基準距離Dref分、前進又は後進させる駆動装置を構成する。
 複数の支持部材315は、チェーン314の外表面上に一列に配列される。図9は、支持部材315の正面図である。なお、図9の二点鎖線は、マンドレルバー40を表す。支持部材315は、逆三角形状の溝317を有する。溝317の幅は、支持部材315の上端から下端に向かって徐々に小さくなる。複数の支持部材315は、リテーナ31がマンドレルバー40を前進させている間、マンドレルバー40の軸線がパスラインPLと一致し続けるように支持する。
 図10A及び図10Bは、把持部材316及びマンドレルバー40の平面図及び縦断面図である。図10C及び図10Dは、マンドレルバー40の後端を把持した把持部材316の平面図及び縦断面図である。
 図8、図10A及び図10Bを参照して説明すると、把持部材316は、チェーン314の上面に固定される。把持部材316は、チェーン314が稼働する(回る)ことにより、基準距離Dref分(開始位置Pstartから終了位置Pendまでの間)前進又は後進する(図8参照)。
 図10A及び図10Bを参照して説明すると、把持部材316は、溝319とフック318とを備える。溝319は、把持部材316の上面に形成され、マンドレルバー40の軸方向に対して垂直に伸びる。フック318は、溝319よりも前方に形成され、上方に凸の形状を有する。
 マンドレルバー40は棒状であり、その軸線に垂直な横断形状は円である。マンドレルバー40は、その後端部に、ネック410と、フランジ420とを備える。ネック410は、その軸線に垂直な横断面が円の棒状であり、その外径は、マンドレルバー40の本体部分の外径よりも小さい。フランジ420は、ネック410の後端に配置される。フランジ420は円板形状であり、ネック410よりも大きな外径を有する。
 溝319の幅は、フランジ420の幅とほぼ同一、もしくは若干大きい。そして、溝319の底面は、円弧状に凹に湾曲している。また、フック318の上面には、ネック410が嵌め込まれる凹部320が形成されている。
 図10C及び図10Dに示すとおり、把持部材316の溝319には、フランジ420が嵌め込まれる。これにより、把持部材316は、マンドレルバー40を把持する。圧延機本体32による延伸圧延中、把持部材316は、中空素管HS内に配置されたマンドレルバー40の後端部(ネック410及びフランジ420)を把持しながら、図8に示す基準距離Dref分、前進する。このとき、リテーナ31の駆動装置(駆動源311、駆動ホイル312、従動ホイル313及びチェーン314)が把持部材316を基準距離Dref分、前進させる。以上のとおり、リテーナ31は、圧延機本体32による延伸圧延中における、マンドレルバー40の前進速度を制御する。リテーナ31はさらに、延伸圧延前に、中空素管HSにマンドレルバー40を挿入する。リテーナ31はさらに、延伸圧延後、把持部材316を後進させて、マンドレルバー40を延伸圧延された中空素管HSから引き抜く。
 上述のリテーナ31は、チェーン314により無限軌道を形成する駆動装置により、把持部材316を前進又は後進させる。しかしながら、リテーナ31の駆動装置は、他の構成を有してもよい。たとえば、リテーナ31の駆動装置は、ラックアンドピニオンを備えることにより、把持部材316を前進又は後進させてもよいし、電動又は油圧シリンダを含み、シリンダの先端に把持部材316を取り付けることにより、把持部材316を前進又は後進させてもよい。
 [エキストラクタ33]
 図11を参照して説明すると、エキストラクタ33は、パスラインPLに沿って一列に配列される複数のスタンドSA1~SAr(rは自然数)を備える。各スタンドSA1~SArは、パスラインPL周りに等間隔に配置される複数のロールを含む。各スタンドSA1~SAnのロール数は2であってもよいし、3又は4であってもよい。エキストラクタ33のスタンド総数rは、たとえば、2~4である。
 エキストラクタ33は、中空素管HSが圧延機本体32により延伸圧延されているときに、中空素管HSの先端部分を噛み込み、その先端部分に対して若干の絞り圧延を実施する。中空素管HSの先端部分がエキストラクタ33により絞り圧延されているとき、リテーナ31は、駆動ホイール312を逆回転して把持部材316を後進させる。これにより、マンドレルバー40が中空素管HSから後方へ引き抜かれる。要するに、エキストラクタ33は、マンドレルバー40を引き抜くための設備である。
 本実施形態では、マンドレルバー40を引き抜くために、エキストラクタ33を使用する。しかしながら、エキストラクタ33に替えて、サイザ又はレデューサといった絞り圧延機を配置してもよい。これらの絞り圧延機も、エキストラクタ33と同様に、中空素管を絞り圧延する。そのため、エキストラクタ33を利用する場合と同様に、マンドレルバー40を中空素管HSから引き抜くことができる。
 [継目無金属管の製造工程]
 本実施形態による継目無金属管の製造方法では、継目無金属管の鋼種及び延伸比に応じて、マンドレルミル3の圧延機本体32において肉厚圧下に使用するスタンド数を変更する。
 たとえば、高合金等の圧延荷重が高い鋼種からなる中空素管を延伸圧延する場合、又は、継目無金属管の延伸比が高い場合、図12に示すとおり、マンドレルミル3の全てのスタンドST1~STmで肉厚圧下を実施する。ここで、「肉厚圧下」とは、中空素管HSがスタンドSTi内のロールROに接触して圧下されるときに、中空素管HSの内面がマンドレルバー40の外面と接触しながら圧下されることを意味する。この場合、中空素管HSは、ロールRO及びマンドレルバー40に挟まれて延伸圧延され、肉厚が変動する。全てのスタンドST1~STmで肉厚圧下を実施するため、圧延荷重が高い継目無金属管の製造、及び、延伸比の高い継目無金属管の製造に適する。図12に示す延伸圧延を、「全肉厚圧下」と呼ぶ。
 一方、たとえば、普通鋼等の圧延荷重が低い鋼種からなる中空素管を延伸圧延する場合、又は、継目無金属管の延伸比が低い場合、マンドレルミル3のスタンドST1~STmのうち、一部の複数のスタンドSTが肉厚圧下をすれば足りる。そこで、この場合、図13に示すとおり、複数のスタンドST1~STmのうち、先頭から連続して配列された複数のスタンドST1~STj(jは自然数、j<m)を含むスタンド群(以下、前段スタンド群FSTという)において、肉厚圧下に替えて外径圧下を実施し、スタンドSTj+1~STmを含むスタンド群(以下、後段スタンド群RSTという)において、肉厚圧下を実施する。ここで、「外径圧下」とは、中空素管HSがスタンドSTi(i=1~j)内のロールROに接触して圧下されるときに、中空素管HSの内面がマンドレルバー40の外面と接触しないまま圧下されることを意味する。換言すれば、前段スタンド群FSTでは、絞り圧延が実施される。この延伸圧延を「一部外径圧下」と呼ぶ。
 一部外径圧下では、穿孔機2により製造された中空素管HSをさらに縮径することができる。そのため、たとえば、従来であれば穿孔機2で所定の外径にまで圧延しなければならなかった中空素管を、前段スタンド群FSTで外径圧下して、所定の外径にすることができる。したがって、穿孔機2で仕上げるべき中空素管の外径を従来よりも大きくすることができる。この場合、製造すべき中空素管の外径寸法に応じた、穿孔機2の傾斜ロール21に交換するための頻度を下げることができる。穿孔機2で縮径すべきサイズを、前段スタンド群FSTで代替することができるからである。したがって、一部外径圧下を実施することにより、ロールを交換する頻度を減らすことができ、穿孔機2及びマンドレルミル3のローリングスケジュールの自由度を高めることができる。換言すれば、本実施形態の継目無金属管の製造工程は、穿孔機2及びマンドレルミル3の稼働率を高めることができ、その結果、生産効率を高めることができる。
 一部外径圧下を実施する場合、さらに、穿孔機2により製造された中空素管HSの外径を、前段スタンド群FSTでさらに均一に整えることができる。そのため、継目無金属管の寸法精度をさらに高めることができる。
 本実施形態では、マンドレルミル3のスタンドST1~STmを、必要に応じて、前段スタンド群FSTと、後段スタンド群RSTとに区分けして、「全肉厚圧下」又は「一部外径圧下」を実施する。以下に製造工程を詳述する。
 図14は、本実施形態による継目無金属管の製造方法のフロー図である。図14を参照して説明すると、まず初めに、製造予定の継目無金属管の鋼種及びサイズに応じて、マンドレルミル3の各スタンドST1~STmのロール距離Droll(パスラインPLの中心からロールROの溝GRまでの距離)を設定する(ステップS1)。
 ステップS1の設定により、マンドレルミル3が全肉厚圧下をするか、一部外径圧下をするかが決定される。さらに、ステップS1の設定により、一部外径圧下の場合、前段スタンド群FSTとするスタンドST1~STjも決定される。要するに、前段スタンド群FSTに含まれるスタンド総数jを、ステップS1の設定により変更できる。前段スタンド群FSTに含まれるスタンド総数jは、たとえば、鋼種及び/又は製造される継目無金属管のサイズ(外径及び肉厚)に基づいて決定される。
 各スタンドSTiのロール距離Drollは、たとえば、製造される継目無金属管の鋼種及びサイズ(外径及び肉厚)に対応して予め決定されている。そして、これらのロール距離Drollは、継目無金属管の鋼種及びサイズと対応づけて、図示されないコンピュータの記憶装置(HDD又はメモリ)に記録されている。製造される継目無金属管の鋼種及びサイズに応じたロール距離Drollの値をコンピュータから読み出すことにより、各スタンドST1~STmのロール距離Drollは、設定すべきロール距離Drollの値に調整される。
 さらに、製造予定の継目無金属管のサイズ(外径寸法及び肉厚寸法)に応じて、使用するマンドレルバーを選択する(ステップS2)。本実施形態では、継目無金属管のサイズに応じて、外径が異なる複数のマンドレルバーが予め準備されている。ステップS2では、これらのマンドレルバーの中から、適切な外径を持つマンドレルバーを選択する。
 続いて、加熱炉1にて丸ビレットを加熱する(ステップS3)。丸ビレットは、連続鋳造により製造されてもよいし、インゴット又はスラブを圧延して製造されてもよい。加熱された丸ビレットを穿孔機2により穿孔圧延して、中空素管HSを製造する(ステップS4)。
 続いて、中空素管HS内に、ステップS2で選択されたマンドレルバー40を挿入する(ステップS5)。本実施形態では、リテーナ31が中空素管HS内にマンドレルバー40を挿入する。
 続いて、マンドレルミル3により中空素管HSを延伸圧延する(ステップS6)。ステップS1でのロール距離Drollの設定に応じて、マンドレルミル3は、中空素管HSを、全肉厚圧下又は一部外径圧下する。マンドレルミル3での延伸圧延後、サイザ又はレデューサにより中空素管HSを絞り圧延して、継目無金属管を製造する(ステップS7)。
 以上の工程により、本実施形態による継目無金属管の製造方法では、製造される継目無金属管の鋼種及びサイズに応じて、マンドレルミル3により全肉厚圧下又は一部外径圧下を実施する。そのため、圧延荷重の高い鋼種の継目無金属管及び延伸比の高い継目無金属管に対しては、全肉厚圧下を実施して、マンドレルミル3での圧延を可能にする。さらに、圧延荷重の低い鋼種の継目無金属管又は延伸比の低い継目無金属管に対しては、一部外径圧下を実施して、穿孔機2及びマンドレルミル3の圧延機本体32のロール交換の頻度を減らし、ローリングスケジュールの自由度を高めることができる。そのため、穿孔機2及びマンドレルミル3の稼働率を高め、生産効率を高めることができる。
 以上のとおり、マンドレルミル3は「全肉厚圧下」または「一部外径圧下」を実施する。そのため、中空素管HSの鋼種及びサイズに応じて、マンドレルミル3の圧延機本体32において肉厚圧下を実施するスタンド数が変化する。そこで、本実施形態では、肉厚圧下を実施するスタンド数に応じて、マンドレルバー40を選択する。
 図15は、マンドレルバー40の側面図である。図15を参照して説明すると、マンドレルバー40は、ワーク部401とエクステンション部402とを備える。ワーク部401及びエクステンション部402は、別個の素材で製造され、互いに同軸に結合される。たとえば、ワーク部401の後端及びエクステンション部402の前端には、ねじ切りが施されており、これらを締め合わせることにより、互いに結合される。ワーク部401及びエクステンション部402は、ねじによる結合に替えて、溶接により結合されてもよいし、他の方法により結合されてもよい。
 ワーク部401は、マンドレルバー40の前部に配置される。ワーク部401は、延伸圧延時に中空素管HSの内面と接触する。つまり、ワーク部401は、マンドレルバー40のうち、肉厚圧下に利用される部分である。ワーク部401は、中空素管HSから熱を受けやすく、肉厚方向の圧縮応力及び軸方向の引張応力を受けやすいため、ワーク部401には摩耗及びクラックが発生しやすい。そのため、ワーク部401には、JIS規格の合金工具鋼鋼材(SKD)に代表される、高温強度、耐ヒートクラック性及び耐摩耗性に優れた高価な材料が使用される。さらに、継目無金属管の肉厚の精度は、ワーク部401の形状(外径精度)に依存し、継目無金属管の内面の清浄度(平滑さ)は、ワーク部401の外面の清浄度(平滑さ)に依存する。したがって、ワーク部401は、機械特性に優れた材料、高い外径精度及び外面清浄度が要求される。そのため、ワーク部401の製造コストは高い。
 エクステンション部402は、ワーク部401と同軸に、ワーク部401の後端に取り付けられる。エクステンション部402の後端部には、ネック410及びフランジ420が形成される。エクステンション部402は、延伸圧延時に中空素管HSの内面と接触しない。そのため、エクステンション部402は、ワーク部401に比べて、高い機械特性(強度、耐ヒートクラック性及び耐摩耗性)、外径精度及び外面清浄度が要求されない。したがって、エクステンション部402は、ワーク部401よりも安価な材料を用いて、製造コストを抑えることができる。また、エクステンション部402の外径は、ワーク部401の外径より小さくてもよく、この場合、製造コストをさらに抑えることができる。
 上述のとおり、マンドレルミル3では、全肉厚圧下及び一部外径圧下のいずれかが実施される。一部外径圧下の場合は、さらに、製造される継目無金属管の鋼種及びサイズにより、前段スタンド群FSTに含まれるスタンド数jが異なる場合がある。つまり、マンドレルミル3では、肉厚圧下を実施するスタンドSTの総数が、継目無金属管の鋼種及びサイズにより異なる。
 そこで、本実施形態では、肉厚圧下を実施するスタンド数に応じて、異なる長さのワーク部401を備える複数のマンドレルバー40を準備する。上述のとおり、図14のステップS2においてマンドレルバー40を選択する場合、製造される継目無金属管のサイズに応じた外径を有する複数種類のマンドレルバー40を選択する。
 ここで、ステップS1のロール距離Drollの設定により、肉厚圧下を実施するスタンド数は決定されている。そこで、上記選択された複数種類のマンドレルバー40のうち、肉厚圧下を実施するスタンド数に応じた長さのワーク部401を備えるマンドレルバー40を、使用するマンドレルバー40に決定する(ステップS2)。
 たとえば、図16に示すように、全肉厚圧下が実施される場合、リテーナ31の把持部材316がチェーン314上の終点位置Pendまで前進したときに、少なくとも、圧延機本体32の先頭スタンドST1の入側位置P1inから最終スタンドSTmの出側位置Pmoutまでの距離に等しい長さを有するワーク部401を備えるマンドレルバー40を選択する。この場合、各スタンドST1~STmでワーク部401を利用して肉厚圧下が実施可能である。なお、この場合、エクステンション部402は、少なくとも、終点位置Pendから入側位置P1inまでの距離に等しい長さを有すればよい。
 一方、図17に示すように、一部外径圧下が実施され、スタンドST1及びST2が前段スタンド群FSTに相当する場合、肉厚圧下が実施されるのは、スタンドST3~スタンドSTmである。したがって、ワーク部401は、少なくとも、スタンドST3~スタンドSTmのスタンド数に対応する長さ、より具体的には、スタンドST3の入側位置P3inから最終スタンドSTmの出側位置Pmoutまでの距離に等しい長さを有すればよい。そして、エクステンション部402は、少なくとも、終点位置Pendから第3スタンドST3の入側位置P3inまでの距離に等しい長さを有すればよい。
 一部外径圧下を実施する場合のワーク部401は、全肉厚圧下を実施する場合のワーク部401よりも短くてよい。なぜなら、一部外径圧下において肉厚圧下が実施されるスタンド数は、全肉厚圧下において肉厚圧下が実施されるスタンド数よりも少ないからである。さらに、図17からも理解できるように、一部外径圧下において、前段スタンド群FSTに含まれるスタンド数が多いほど、マンドレルバー40のワーク部401を短くすることができる。
 以上のとおり、本実施形態では、互いに異なる長さのワーク部401を備える複数のマンドレルバー40を予め準備する。各マンドレルバー40のワーク部401の長さは、肉厚圧下を実施するスタンド数に対応して予め決められている。そして、図14に示す製造工程中のステップS2において、肉厚圧下が実施されるスタンド数に応じた長さを有するワーク部401を備えるマンドレルバー40を選択する。
 上述のとおり、マンドレルバー40は、継目無金属管を1ロット製造するごとに、複数本使用される。そのため、製造される継目無金属管のサイズが複数存在すれば、延伸圧延に必要なマンドレルバー40の在庫数は非常に多くなる。本実施形態では、一部外径圧下に利用されるマンドレルバー40のワーク部401の長さを、全肉厚圧下の場合よりも短くすることができる。ワーク部401が短いマンドレルバーを利用可能であるため、在庫に必要なマンドレルバー40のコストを抑えることができる。
 本実施形態では、前段スタンド群FSTで一部外径圧下を実施する。したがって、準備される複数のマンドレルバー40には、ワーク部401の長さが異なるマンドレルバー40が含まれるものの、複数のマンドレルバー40の全長はいずれも等しい。図16及び図17に示すとおり、最終スタンドSTmは、全肉厚圧下及び一部外径圧下のいずれであっても、肉厚圧下を実施するからである。したがって、ワーク部401が短い場合、エクステンション部402が長くなる。
 上述の例では、一部外径圧下において、前段スタンド群FSTで外径圧下を実施する。しかしながら、図18に示すように、外径圧下を後段スタンド群RST(STm-1及びSTm)で実施してもよい。この場合、マンドレルバー40のワーク部401は、少なくとも、先頭スタンドST1の入側位置P1inから前段スタンド群FSTの最終スタンドSTm-2の出側位置Pm-2outまでの距離に等しい長さを有すればよい。さらに、マンドレルバー40のエクステンション部402は、少なくとも、終点位置Pendから先頭スタンドST1の入側位置P1inまでの距離に等しい長さを有すればよい。したがって、マンドレルバー40の全長は、終点位置PendからスタンドSTm-2の出側位置Pm-2outまでの距離に等しい長さで足りる。外径圧下が実施される後段スタンド群RST(スタンドSTm-1及びSTm)では、外径圧下させる中空素管HS内にマンドレルバー40が挿入される必要がないからである。
 一部外径圧下において、後段スタンド群RSTで外径圧下を実施する場合、肉厚圧下を実施する最終スタンド(図18におけるスタンドSTm-2)は、製造される継目無金属管の鋼種及びサイズ等に応じて変わる。この場合、マンドレルバー40の全長も、肉厚圧下が実施される最終スタンドの位置に応じて、変化する。より具体的には、肉厚圧下が実施されるスタンド数が少ないほど、マンドレルバー40の全長も短くなる。したがって、後段スタンド群RSTで外径圧下をする場合、在庫に必要なマンドレルバー40をさらに短くすることができる。
 ただし、上述のとおり、前段スタンド群FSTで外径圧下を実施する場合、穿孔機2で製造された中空素管HSを前段スタンド群FSTでさらに縮径し、後段スタンド群RSTで肉厚圧下を実施することができる。そのため、後段スタンド群RSTで外径圧下を実施する場合に比べて、前段スタンド群FSTで外径圧下を実施する場合の方が、穿孔機2及びマンドレルミル3でのローリングスケジュールの自由度が増し、ロール交換をするための頻度を抑制することができる。そのため、前段スタンド群FSTで外径圧下を実施する場合、製造ラインの稼働率が高まり、生産効率が高まる。
 [第2の実施形態]
 上述のとおり、マンドレルミル3による延伸圧延では、多数のマンドレルバー40が準備され、在庫される。マンドレルバー40が長いほど、マンドレルバー40の製造コストが高くなる。さらに、マンドレルバー40が長いほど、広い在庫スペースが必要となる。在庫スペースはなるべく小さくできる方が好ましい。
 図19は、本実施形態によるマンドレルミル3の縦断面図である。図19を参照して説明すると、マンドレルミル3は、第1の実施形態におけるマンドレルミル3と比較して、新たに、補助治具50を備える。
 [補助治具50]
 図20は、図19中の補助治具50の縦断面図であり、図21は図20のC-C線より見た断面図であり、図22は平面図である。図20~図22を参照して説明すると、補助治具50は、本体部51と、把持部52と、取付部53とを備える。
 本体部51は、棒状であり、好ましくは、横断形状が円である。本体部51の素材は特に限定されないが、好ましくは金属である。
 把持部52は、本体部51の前端に配置される。把持部52は、マンドレルバー40の後端のフランジ420及びネック410と嵌合する。つまり、把持部52により、補助治具50はマンドレルバー40に同軸に取り付けられる。
 把持部52は、溝部521とフック部522とを含む。フック部522は、本体部51の前端面511よりも前方に、前端面511と隙間を設けて形成される。本例では、フック部522の上面に、ネック410と嵌合する溝523が形成される。
 溝部521は、フック部522と前端面511との間に形成され、補助治具50の横断方向に延びる。より具体的には、溝部521は、補助治具50の周方向に弓状又は円弧状に延びる。溝部521の幅は、フランジ420の幅よりも若干大きい。溝部521はフランジ420と嵌合する。
 把持部52は、溝部521及びフック部522により、マンドレルバー40の後端部を把持する。
 取付部53は、リテーナ31の把持部材316が把持可能な形状を有する。好ましくは、取付部53は、マンドレルバー40の後端部と同じ形状を有する。取付部53は、ネック531と、フランジ532とを含む。ネック531及びフランジ532の形状は、マンドレルバー40のネック410及びフランジ420と同じ形状である。取付部53は、リテーナ31の把持部材316と嵌合する。これにより、補助治具50は、把持部材316に固定される。
 図19を参照して説明すると、補助治具50の把持部52は、マンドレルバー40の後端部(ネック410及びフランジ420)を把持して、マンドレルバー40に着脱可能に固定される。さらに、補助治具50の取付部53は把持部材316と嵌合して、把持部材316に着脱可能に固定される。
 要するに、補助治具50は、マンドレルバー40の長さを補完する。補助治具50はエクステンション部402と同じ役割を果たし、エクステンション部402を延長する。これにより、予め準備されるマンドレルバー40の全長を短くすることができる。
 好ましくは、互いに外径の異なる複数のマンドレルバー40であっても、後端部(ネック410及びフランジ420)の形状は、いずれも同じである。この場合、補助治具50の把持部52は、種々のサイズ(外径)のマンドレルバー40を把持できる。そのため、補助治具50は、サイズの異なる複数のマンドレルバー40に汎用可能である。したがって、複数のマンドレルバー40の全長を短くすることができる。
 本実施形態の継目無金属管の製造工程は、次のとおりである。図14を参照して説明すると、ステップS5において、リテーナ31の把持部材316に、補助治具50を取り付ける。その後、補助治具50にステップS2で選択されたマンドレルバー40を取り付ける。以上の工程により、マンドレルバー40の後端部に、補助治具50が取り付けられる。リテーナ31は、補助治具50が取り付けられたマンドレルバー40を中空素管HS内に挿入する。その他の動作は、第1の実施形態と同じである。なお、マンドレルバー40に補助治具50を取り付けた後に、補助治具50を把持部材316に取り付けてもよい。
 本実施形態では、補助治具50を1種類のみ準備してもよいし、外径の異なる複数種類の補助治具50を準備してもよい。複数種類の補助治具50を準備する場合、図14のステップS2において、最適なマンドレルバー40及び補助治具50を選択する。
 また、本実施形態では、把持部52は1つの溝部521を有する。しかしながら、図23および図24に示すように、把持部52は、大きさの異なる複数の溝部を有してもよい。この場合たとえば、把持部52は、軸方向に一列に配列された複数の溝部を有する。フック部522に近いほど、溝部は小さい。この場合、把持部52は、後端部のサイズの異なる複数のマンドレルバー40を、把持することができる。複数の溝部は、サイズの異なる複数のマンドレルバーの各後端部に対応して形成されている。そのため、後端部のサイズが異なるマンドレルバーについても、把持部52で把持することができる。
 さらに、把持部52の構成は、図20~図22に限定されない。たとえば、把持部52は、開閉可能なアームを備え、アームを開閉してマンドレルバー40の後端部をアームで挟むことにより、マンドレルバー40を把持してもよい。この場合も、1つの補助治具50が、外径の異なる複数のマンドレルバー40を把持できる。把持部52は把持部材316と同じ構成を有していてもよい。
 [第3の実施形態]
 補助治具50をサイズの異なる複数のマンドレルバー40に適用する場合、補助治具50の外径とマンドレルバー40の外径が異なる場合が生じる。このような場合であっても、適切に延伸圧延できる方が好ましい。
 図25を参照して説明すると、本実施形態によるマンドレルミル3は、第2の実施形態と比較して、さらに制御装置70を備える。
 制御装置70は、複数の支持ロールSR1~SRk(kは自然数)の昇降を制御する。
 支持ロールSR1~SRkは、リテーナ31と圧延機本体32との間に、パスラインに沿って配列される。支持ロールはたとえば、外周面が平坦なロールであってもよいし、横断形状が三角形状の溝を外周面の円周方向に有するVロールであってもよい。
 支持ロールSR1~SRkは、昇降装置DR1~DRkによって上下に昇降する。昇降装置DR1~DRkはたとえば、油圧シリンダ、電動シリンダ等である。図25では、各支持ロールSRに1つの昇降装置DRが配置されている。しかしながら、複数の支持ロールSRに1つの昇降装置DRが配置されてもよい。
 制御装置70は、昇降装置DR1~DRkを制御して、支持ロールSR1~SRkを昇降する。リテーナ31と圧延機本体32とは離れている。そのため、マンドレルバー40がリテーナ31と圧延機本体32との間で下方に湾曲する場合がある。このような湾曲は、圧延中のマンドレルバーの安定した搬送及び延伸圧延後の中空素管HSの寸法精度に影響する。そこで、延伸圧延中、マンドレルバー40の位置に応じて、支持ロールSR1~SRkが上昇し、マンドレルバー40をパスラインPL上に支持する。
 しかしながら、上述のとおり、補助治具50を汎用する場合、補助治具50の外径がマンドレルバー40の外径と異なる場合が生じる。この場合、延伸圧延中のマンドレルバー40の下端位置と、補助治具50の下端位置とは異なる。支持ロールSRの高さを、マンドレルバー40の下端位置の高さに合わせたまま維持すれば、支持ロールSRと補助治具50との間に隙間が生じたり、補助治具50が支持ロールSRに衝突したりする場合が起こり得る。
 そこで、制御装置70は、延伸圧延中の補助治具50の移動距離(前進距離)に応じて、支持ロール高さを調整する。具体的には、補助治具50の外径がマンドレルバー40の外径よりも大きい場合、補助治具50が支持ロールSRq(qは1~kの自然数)を通過する前に、昇降装置DRqを制御して支持ロールSRqを降下させる。このとき、制御装置70は、補助治具50の外径とマンドレルバー40の外径との差分値に基づいて、降下量を決定してもよい。この場合、下降後の支持ロールSRqが補助治具50の下端に接する程度に、支持ロールSRqを下降させることができる。
 一方、補助治具50の外径がマンドレルバー40の外径よりも小さい場合、補助治具50が支持ロールSRqを通過した後、昇降装置DRqを制御して支持ロールSRqを上昇する。このとき、制御装置70は、補助治具50の外径とマンドレルバー40の外径との差分値に基づいて、上昇量を決定してもよい。この場合、上昇後の支持ロールSRqが補助治具50の下端に接する程度に、支持ロールSRqを上昇させることができる。
 以上のとおり、制御装置70は、補助治具50の移動距離に応じて、支持ロールSRqを昇降させて支持ロールSRqの高さを調整する。そのため、補助治具50が支持ロールSRに衝突するのを抑制できる。好ましくは、制御装置70はさらに、補助治具50及びマンドレルバー40の外径差を考慮して、支持ロールSRqを昇降させる。この場合、支持ロールSRqで補助治具50を支持できる。
 本実施形態の製造工程の詳細は次の通りである。
 図14中のステップS1~S7の動作は、本実施形態でも実施される。制御装置70は、ステップS6の延伸圧延中において、図26に示す動作を実行する。
 制御装置70は、最初に、補助治具50の外径及びマンドレルバー40の外径を読み出し、比較する(ステップS601)。制御装置70はこのとき、補助治具50の外径とマンドレルバー40の外径との差分値を求める。続いて、支持ロールSRq上を補助治具50が通過するときの支持ロールSRqの高さを決定する(ステップS602)。制御装置70は、マンドレルバー40及び補助治具50の組み合わせごとに、支持ロールSRqの高さを予めテーブルに管理して、メモリに格納していてもよい。
 制御装置70は、マンドレルバー40及び補助治具50の移動開始を認識する(ステップS603)。たとえば、リテーナ31は、延伸圧延において把持部材316の前進を開始したとき、その旨を制御装置70に通知する。制御装置70は通知を受け、補助治具50等の移動開始を認識する(ステップS603)。
 制御装置70は、マンドレルバー40が支持ロールSRqを通過するごとに、支持ロールSRqを上昇させる(ステップS604)。このとき、制御装置70は、マンドレルバー40のサイズ(外径)に応じて、支持ロールSRqの上昇量を決定する。
 以上の動作により、延伸圧延中のマンドレルバー40は、支持ロールSR1~SRkにより支持される。
 続いて、制御装置70は、ステップS601の検討結果を読み出す(ステップS605)。補助治具50の外径がマンドレルバー40の外径と同じである場合、支持ロールSRqの高さを調整する必要がない。そのため、制御装置70は、1本の中空素管HSの延伸圧延が終了するまで、支持ロールSRqの高さをそのまま維持する。
 一方、補助治具50の外径が、マンドレルバー40の外径よりも大きい場合、制御装置70は、支持ロール下降処理を実施する(ステップS610)。具体的には、制御装置70は、現在の補助治具50の移動量をチェックする(ステップS611)。制御装置70はたとえば、リテーナ31から所定時間ごとに把持部材316の移動量の通知を受け、補助治具50の移動量(開始位置Pstartからの前進距離)を認識する。
 ステップS611でチェックした補助治具50の移動量に基づいて、補助治具50が支持ロールSR1の所定距離手前に来たとき(ステップS612でYES)、制御装置70は、支持ロールSR1を下降させる。このとき、制御装置70は、支持ロールSR1を補助治具50と離れるように下降させてもよい。制御装置70はまた、補助治具50とマンドレルバー40との外径差に基づいて、支持ロールSR1が補助治具50と接触するよう、支持ロールSR1を下降させてもよい。
 支持ロールSR1を下降させた後、カウントqをインクリメントし(ステップS615)、ステップS611に戻る。そして、カウントqがkを超えるまで(ステップS614でYES)、つまり、各支持ロールSR1~SRkに対して、ステップS611~S613の動作を実行する。
 以上の動作により、補助治具50の外径がマンドレルバー40の外径よりも大きい場合、制御装置70は支持ロールSRqを下降する。そのため、補助治具50が支持ロールSRqと衝突することを抑制できる。
 ステップS605に戻って、補助治具50の外径が、マンドレルバー40の外径よりも小さい場合、支持ロール上昇処理を実施する(ステップS620)。制御装置70は、現在の補助治具50の移動量(前進距離)を所定時間ごとにチェックする(ステップS621)。
 ステップ621でチェックした補助治具50の移動量に基づいて、補助治具50が支持ロールSR1を所定距離通過したとき(ステップS622でYES)、制御装置70は、支持ロールSR1を所定量上昇させる。このとき、制御装置70は、補助治具50とマンドレルバー40との外径差に基づいて、支持ロールSR1が補助治具50と接触するよう、支持ロールSR1を所定量上昇させる。
 その後、支持ロール下降処理S610と同様に、各支持ロールSR1~SRkに対して、ステップS621~S623の動作を実施する(ステップS624及びS625)。
 以上の動作により、補助治具50の外径がマンドレルバー40の外径よりも小さい場合、制御装置70は支持ロールSRqを所定量上昇させて、支持ロールSRqを補助治具50に接触させる。補助治具50は下方に湾曲することなく、前進することができる。
 上述の例では、制御装置70が、支持ロール下降処理S610及び支持ロール上昇処理S620を実施する。しかしながら、制御装置70は、支持ロール下降処理S610のみ実施してもよい。制御装置70はさらに、支持ロール下降処理S610において、補助治具50の外径によらず、一定量支持ロールSRqを下降させてもよい。この場合、少なくとも、補助治具50が支持ロールSRqと衝突することを抑制でき、より適切な延伸圧延を実施できる。
 上述の実施形態では、各支持ロールSR1~SRkに対して、ステップS611~S613の処理を実施する。しかしながら、複数の支持ロールSRを一度に下降させてもよい。また、全ての支持ロールSR1~SRkを一度に下降させてもよい。
 上述の実施形態では、リテーナ31と圧延機本体32の先頭スタンドST1との間に複数の支持ロールSR1~SRkを配列する。しかしながら、1以上の支持ロールが配置されればよい。
 以上、本実施形態について説明したが、本実施形態は、上述の実施形態に限定されない。
 第3の実施形態では、支持ロールSR1~SRkを配置したが、第1及び第2の実施形態では、支持ロールSR1~SRkがなくてもよい。
 上述の実施形態では、リテーナ31により、中空素管HS内にマンドレルバー40が挿入される。しかしながら、他の方法により、中空素管HS内にマンドレルバー40を挿入してもよい。たとえば、リテーナ31とは別個の装置であるインサータにより、中空素管HS内にマンドレルバー40を挿入してもよい。
 リテーナ31の把持部材316は、上述の構成に限定されない。把持部材316はたとえば、開閉可能な複数のアームを備えてもよい。この場合、把持部材316は、マンドレルバー40の後端部をアームで挟むことにより、マンドレルバー40を把持してもよい。
 上述の実施形態では、マンドレルバー40の後端部は、ネック410とフランジ420とを備える。しかしながら、マンドレルバー40の後端部の形状はこれに限定されない。要するに、把持部材316及び補助治具50の把持部52が把持可能な形状であれば、マンドレルバー40の後端部の形状は特に限定されない。
 以上、本発明の実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態のみに限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。例えば、上述した実施形態では、マンドレルミルは、外径圧下または肉厚圧下を実施する前段スタンド群および後段スタンド群を有し、中空素管を延伸圧延するが、外径圧下および肉厚圧下のいずれも実施しないスタンドを有していてもよい。すなわち、必要に応じて、マンドレルミルのスタンドから、前段スタンド群および後段スタンド群に用いるスタンドを適宜選択すればよい。
 延伸圧延に必要なマンドレルバーのコストを抑えることができる継目無金属管の製造方法、マンドレルミルおよび補助治具を提供することができる。
2 穿孔機
3 マンドレルミル
31 リテーナ
32 圧延機本体
40 マンドレルバー
50 補助治具
52 把持部
53 取付部
311 駆動源
312 駆動ホイル
313 従動ホイル
314 チェーン
316 把持部材
HS 中空素管
ST1~STm スタンド
FST 前段スタンド群
RST 後段スタンド群
SR1~SRk 支持ロール

Claims (7)

  1.  パスラインに沿って先頭から配列された複数のスタンドを含む前段スタンド群と、前記前段スタンド群の後ろに配列された複数のスタンドを含む後段スタンド群とを有するマンドレルミルを用いて、中空素管より継目無金属管を製造する方法であって、
     延伸圧延時に前記中空素管と接触するワーク部の長さが異なる複数のマンドレルバーを準備する工程と;
     前記複数のマンドレルバーの中から、肉厚圧下に利用されるスタンド数に応じた長さのワーク部を備えるマンドレルバーを選択する工程と;
     前記中空素管に、前記選択する工程で選択された前記マンドレルバーを挿入する工程と;
     前記マンドレルバーが挿入された前記中空素管を延伸圧延する工程と;
    を備え、
     前記延伸圧延する工程では、前記前段スタンド群及び前記後段スタンド群のいずれか一方で外径圧下を実施して他方で肉厚圧下を実施するか、又は、前記前段スタンド群及び前記後段スタンド群のいずれにおいても肉厚圧下を実施する
    ことを特徴とする継目無金属管の製造方法。
  2.  前記マンドレルバーの後端部を把持可能な把持部を先端に備える棒状の補助治具を、前記マンドレルバーの後端に取り付ける工程と;
     前記補助治具の後端を把持装置により把持しながら、前記把持装置を前進させる工程と;
    をさらに備えることを特徴とする請求項1に記載の継目無金属管の製造方法。
  3.  前記複数のスタンドと前記把持装置との間に配置された支持ロールを上昇させて、前進中の前記マンドレルバーを前記支持ロールで支持する工程と;
     前記補助治具の外径が前記マンドレルバーの外径と異なる場合、前記補助治具の前進距離に基づいて前記支持ロールを昇降させて、前記支持ロールの高さを調整する工程と;
    をさらに備えることを特徴とする請求項2に記載の継目無金属管の製造方法。
  4.  前記調整する工程では、前記補助治具の外径が前記マンドレルバーの外径よりも大きい場合、前記補助治具が前記支持ロールを通過する前に、前記支持ロールを下降させることを特徴とする請求項3に記載の継目無金属管の製造方法。
  5.  前記延伸圧延する工程では、前記前段スタンド群で外径圧下を実施し;前記複数のマンドレルバーの全長は、互いに等しいことを特徴とする請求項1または2に記載の継目無金属管の製造方法。
  6.  パスラインに沿って配列された複数のスタンドと; 
     前記複数のスタンドのうち、先頭のスタンドの入側に配置され、マンドレルバーの後端部を把持可能な把持部を前端に備える棒状の補助治具と、前記補助治具の後端を把持可能な把持装置と、前記把持装置を前記パスラインに沿って前進させる駆動装置とを備えるリテーナと;
    を備えることを特徴とするマンドレルミル。
  7.  マンドレルバーの後端を把持可能な把持装置と、前記把持装置を前進させる駆動装置とを備えるリテーナに用いられる補助治具であって、
     棒状の本体と; 
     前記本体の前端に配置され、前記マンドレルバーの後端を把持可能な把持部と; 
     前記本体の後端に配置され、前記把持装置が把持可能な形状の取付部と;
    を含むことを特徴とする補助治具。
PCT/JP2013/069491 2012-07-24 2013-07-18 継目無金属管の製造方法、マンドレルミル及び補助治具 WO2014017372A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112015000206A BR112015000206A2 (pt) 2012-07-24 2013-07-18 método de fabricação de tubulação de metal sem emendas, fresa de mandril e ferramenta auxiliar
MX2015000371A MX352221B (es) 2012-07-24 2013-07-18 Método de fabricación de tubo de metal sin costura, tren de mandril y herramientas auxiliares.
EP13823801.9A EP2878390B1 (en) 2012-07-24 2013-07-18 Seamless metal tube fabrication method
JP2013541098A JP5459455B1 (ja) 2012-07-24 2013-07-18 継目無金属管の製造方法、マンドレルミル及び補助治具
US14/403,241 US9884355B2 (en) 2012-07-24 2013-07-18 Manufacturing method of seamless metal pipe, mandrel mill, and auxiliary tool
RU2015103079/02A RU2599931C2 (ru) 2012-07-24 2013-07-18 Способ изготовления бесшовной металлической трубы, стан для прокатки бесшовных труб на оправке и вспомогательный инструмент
CN201380035895.6A CN104428073B (zh) 2012-07-24 2013-07-18 无缝金属管的制造方法、芯棒式轧管机以及辅助夹具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012163437 2012-07-24
JP2012-163437 2012-07-24

Publications (1)

Publication Number Publication Date
WO2014017372A1 true WO2014017372A1 (ja) 2014-01-30

Family

ID=49997186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069491 WO2014017372A1 (ja) 2012-07-24 2013-07-18 継目無金属管の製造方法、マンドレルミル及び補助治具

Country Status (8)

Country Link
US (1) US9884355B2 (ja)
EP (1) EP2878390B1 (ja)
JP (1) JP5459455B1 (ja)
CN (1) CN104428073B (ja)
BR (1) BR112015000206A2 (ja)
MX (1) MX352221B (ja)
RU (1) RU2599931C2 (ja)
WO (1) WO2014017372A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014110980B4 (de) * 2014-08-01 2017-10-26 Vallourec Deutschland Gmbh Verfahren zur Herstellung von warmgewalzten nahtlosen Rohren mit verdickten Enden
ITUB20155314A1 (it) * 2015-10-23 2017-04-23 Danieli Off Mecc Laminatoio multigabbia per corpi astiformi comprendente gabbie a tre rulli motorizzati
IT201700023064A1 (it) * 2017-03-01 2018-09-01 Danieli Off Mecc Laminatoio per la laminazione di elementi astiformi cavi o comunque concavi
KR102141689B1 (ko) * 2020-01-07 2020-08-06 주식회사 오필 관거 보수보강 튜브 와인딩식 제조를 위한 내측 튜브 자동 적재 유닛과 관거 보수보강 튜브 와인딩식 제조 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128107A (ja) * 1989-10-14 1991-05-31 Sumitomo Metal Ind Ltd 管の傾斜延伸圧延方法
JPH04344805A (ja) 1991-05-23 1992-12-01 Nippon Steel Corp 継目無鋼管製造用マンドレルバーの補修方法
JPH05123730A (ja) * 1991-10-31 1993-05-21 Nkk Corp シエルサイザによるマンドレルミルストマツクの制御 方法
JPH10249411A (ja) 1997-03-12 1998-09-22 Nippon Steel Corp 継目無鋼管製造用マンドレルバー
JP2000176527A (ja) * 1998-12-15 2000-06-27 Sumitomo Metal Ind Ltd マンドレルミルによる素管圧延方法及びマンドレルミル

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143825B2 (ja) * 1973-03-02 1976-11-25
DE2641555A1 (de) * 1976-09-15 1978-03-16 Schevtschenko Verfahren zum kontinuierlichen rohrwalzen und kontinuierliches rohrwalzwerk
IT1115288B (it) * 1977-05-05 1986-02-03 Innocenti Santeustacchio Spa Dispositivo per mandrino in laminatoi continui a mandrino trattenuto
US4289011A (en) * 1978-11-17 1981-09-15 Nippon Steel Corporation Continuous pipe rolling process
SU1715455A1 (ru) * 1989-01-12 1992-02-28 А.К. Зимин Способ винтовой прошивки
SU1733131A1 (ru) * 1989-05-03 1992-05-15 Днепропетровский Центр Научно-Технического Творчества "Импульс" Способ продольной прокатки труб
JPH079014A (ja) * 1993-06-28 1995-01-13 Ishikawajima Harima Heavy Ind Co Ltd マンドレルバー
JP3452039B2 (ja) * 2000-07-27 2003-09-29 住友金属工業株式会社 継目無鋼管の圧延方法
JP4003463B2 (ja) * 2002-01-28 2007-11-07 住友金属工業株式会社 継目無鋼管の製造方法
RU2303497C2 (ru) * 2003-03-26 2007-07-27 Сумитомо Метал Индастриз, Лтд. Способ изготовления бесшовной трубы
RU2357814C1 (ru) * 2005-02-16 2009-06-10 Сумитомо Метал Индастриз, Лтд. Способ изготовления бесшовной стальной трубы
US9597718B2 (en) * 2012-07-24 2017-03-21 Nippon Steel & Sumitomo Metal Corporation Manufacturing method and manufacturing apparatus of seamless metal pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128107A (ja) * 1989-10-14 1991-05-31 Sumitomo Metal Ind Ltd 管の傾斜延伸圧延方法
JPH04344805A (ja) 1991-05-23 1992-12-01 Nippon Steel Corp 継目無鋼管製造用マンドレルバーの補修方法
JPH05123730A (ja) * 1991-10-31 1993-05-21 Nkk Corp シエルサイザによるマンドレルミルストマツクの制御 方法
JPH10249411A (ja) 1997-03-12 1998-09-22 Nippon Steel Corp 継目無鋼管製造用マンドレルバー
JP2000176527A (ja) * 1998-12-15 2000-06-27 Sumitomo Metal Ind Ltd マンドレルミルによる素管圧延方法及びマンドレルミル

Also Published As

Publication number Publication date
US20150121982A1 (en) 2015-05-07
EP2878390A1 (en) 2015-06-03
US9884355B2 (en) 2018-02-06
CN104428073A (zh) 2015-03-18
JP5459455B1 (ja) 2014-04-02
MX2015000371A (es) 2015-11-13
RU2015103079A (ru) 2016-09-10
CN104428073B (zh) 2016-06-01
JPWO2014017372A1 (ja) 2016-07-11
EP2878390B1 (en) 2018-01-31
MX352221B (es) 2017-11-15
RU2599931C2 (ru) 2016-10-20
BR112015000206A2 (pt) 2017-06-27
EP2878390A4 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5459457B1 (ja) 継目無金属管の製造方法及び製造装置
JP5459455B1 (ja) 継目無金属管の製造方法、マンドレルミル及び補助治具
CN102000716B (zh) 大径直缝焊管生产线
CN104384192B (zh) 拉管机和无缝管轧制方法
WO2012071836A1 (zh) 大径直缝焊管生产线
US9616476B2 (en) Device and method for rolling of pipe blanks
MX2014012036A (es) Lingote redondo para tubo metalico costuras y metodo para producir tubo metalico sin costuras.
JP5734284B2 (ja) 管圧延プラント
JP5615938B2 (ja) 管圧延プラント
JP5463694B2 (ja) 溝付トロリ線の製造方法及び製造装置
RU2690621C2 (ru) Способ изготовления металлической трубы, способ эксплуатации установки для изготовления бесшовных труб, реечный стан, а также установка для изготовления бесшовных труб
JPH0890013A (ja) 傾斜圧延装置
JP5998941B2 (ja) 差厚鋼板の製造方法および差厚形成装置
JP2022055384A (ja) 継目無鋼管の製造方法並びに製造設備およびビレット加工用工具
US20160059285A1 (en) Integrated transverse rolling mill for seamless tubes
JP2017024022A (ja) 押出加工方法及び押出加工装置
CN107774715B (zh) 车桥管φ220管坯双倍尺生产工艺
JP2017522192A (ja) 継目無管を圧延するための組み合わせられた装置
KR20190023667A (ko) 압연기 롤 교체시스템 및 그를 이용한 롤 교체방법
PL215894B3 (pl) Sposób i urządzenie do wytwarzania metalowych elementów rurowych o zmiennych przekrojach
JPH10180313A (ja) 傾斜圧延方法及びその装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013541098

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14403241

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013823801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/000371

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015103079

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015000206

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015000206

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150106