WO2014017280A1 - 固定相 - Google Patents

固定相 Download PDF

Info

Publication number
WO2014017280A1
WO2014017280A1 PCT/JP2013/068603 JP2013068603W WO2014017280A1 WO 2014017280 A1 WO2014017280 A1 WO 2014017280A1 JP 2013068603 W JP2013068603 W JP 2013068603W WO 2014017280 A1 WO2014017280 A1 WO 2014017280A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
stationary phase
silica gel
surface area
specific surface
Prior art date
Application number
PCT/JP2013/068603
Other languages
English (en)
French (fr)
Inventor
徹 柴田
聡 新蔵
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to EP13822750.9A priority Critical patent/EP2876439B1/en
Priority to JP2014526843A priority patent/JP6342328B2/ja
Priority to CN201380039050.4A priority patent/CN104471387B/zh
Priority to US14/416,381 priority patent/US9327269B2/en
Publication of WO2014017280A1 publication Critical patent/WO2014017280A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/40Selective adsorption, e.g. chromatography characterised by the separation mechanism using supercritical fluid as mobile phase or eluent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography

Definitions

  • the present invention relates to a chromatography technique. More particularly, it relates to a stationary phase used in chromatography.
  • Chromatography is the most effective means for analyzing the components of the mixture and their contents, and for separating and purifying them. This is also understood as a distribution ratio (adsorption equilibrium) inherent to a substance between a porous solid (stationary phase) spatially fixed in a tube called a column or capillary and a fluid (mobile phase) moving through the gap. ) To separate different substances. Typical examples are gas chromatography and liquid chromatography. The former uses gas as the mobile phase.
  • liquid chromatography uses a liquid as a mobile phase, and can be applied to most substances if an appropriate mobile phase is selected.
  • viscosity of the liquid is generally high, there is a limit due to an increase in the viscous resistance even if it is attempted to ensure good separation with a long column or capillary.
  • Supercritical fluid chromatography was invented as a technology that can overcome both disadvantages. This utilizes the characteristics that a fluid in a supercritical or subcritical state dissolves other compounds far better than a gas, and has a lower viscosity and a higher diffusion rate than a liquid. SFC using carbon dioxide as a supercritical fluid is generally adopted for safety and equipment reasons, and its use is gradually expanding. In addition to this, there are chromatography using electric attractive force, so-called thin-layer chromatography (modified liquid chromatography) in which paper or powder is consolidated into a thin layer, but the application range is not so wide. .
  • thin-layer chromatography modified liquid chromatography
  • SFC supercritical fluid chromatography
  • stationary phase also referred to as a column filler
  • HPLC liquid chromatography
  • Modification groups include saturated alkyl chains of various chain lengths, or one or two benzene rings or condensed polycyclic aromatic hydrocarbon groups connected by alkyl chains or alkyl chains including amide bonds or ether bonds. , Characterized by halogen-substituted benzene rings, linked by halogenated alkyl groups, linked by polar groups such as 2,3-dihydroxypropyl group, CN group, NH 2 group, crosslinked polystyrene as polymer modifying group , Polyvinyl alcohol, polyethylene glycol and the like. Carbon with a graphite structure is also a characteristic stationary phase.
  • a compound often used in SFC is a basic compound called (2-ethylpyridine) having a (2-pyridyl) ethyl group bonded and tailing in a normal stationary phase to give a broad peak. Is also preferred because it elutes as a sharp peak.
  • Non-Patent Document 2 the retention tendency for various compounds is similar, and there are not a few stationary phases with no difference in characteristics. Under these circumstances, the present inventors have earnestly developed a stationary phase for SFC based on the recognition that it is one of the required requirements to be able to identify molecules having similar structures. .
  • polysaccharide-based stationary phases for chiral separation are also applied to SFC and are practically used in chiral separation (for example, Non-Patent Document 3).
  • polysaccharide derivatives have the ability to discern excellent molecular structures, but they may be difficult to use because they are too selective and entangled with the separation of optical isomers.
  • Non-patent Document 4 Non-patent Document 4 and documents cited herein.
  • Patent Document 1 describes that a so-called vinyl polymer such as divinylbenzene / styrene copolymer is used as a filler.
  • Patent Document 2 discloses polystyrene beads for polynucleotide separation by liquid chromatography, and polyester is also exemplified therein.
  • a non-porous sphere as disclosed in Patent Document 2 is used as a chromatographic stationary phase
  • a normal polymer having a relatively high polarity such as a polynucleotide to be separated by the present invention is used. It is hardly retained by low molecular weight compounds, and even if retained, tailing is severe and it is not a practical analytical method.
  • This is also true for the above-mentioned fiber polymer, but retention of a low molecular compound by a polymer occurs when the molecule diffuses inside the polymer, but diffusion of the molecule within the polymer does not.
  • the present invention solves the above problems, and an object of the present invention is to provide a stationary phase having an improved number of column stages and a good molecular discrimination ability.
  • the inventors of the present invention have, as a repeating unit of the main chain, an aromatic ring forming a part of the main chain, a bipolar atomic group forming a part of the main chain, and
  • the present invention is completed by finding that a stationary phase containing a polymer having a specific surface area of 5 to 1000 m 2 / g improves the number of column stages and expresses good molecular discrimination ability. It came to.
  • the present invention is as follows.
  • the stationary phase according to (1), wherein the polymer is polyester, polysulfone, polyethersulfone, or polycarbonate.
  • the stationary phase according to (2), wherein the polymer is polyester.
  • the polyester is polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene isophthalate, poly (2,2-dimethylpropane-1,3-diyl terephthalate), or poly-4-oxymethylbenzoyl.
  • the stationary phase according to (3) which is characterized in that it exists.
  • the stationary phase according to any one of (1) to (5) which is in the form of particles.
  • the stationary phase according to (6), wherein the average particle size is 0.1 ⁇ m to 1000 ⁇ m.
  • the stationary phase according to any one of (1) to (5) which is monolithic.
  • FIG. 3 is a diagram showing separation of terphenyl isomers and triphenylene by HPLC using poly (4-oxymethylbenzoyl) -bonded silica gel as a stationary phase.
  • 2 is a chromatogram using the stationary phase of Example 2.
  • the upper row shows the results of HPLC performed under conditions of hexane / 2-propanol (100: 1 v / v) 1 mL / min 25 ° C.
  • the lower part shows the result of SFC performed under the condition of CO 2 / methanol (97: 3 v / v).
  • 10 is a chromatogram using the stationary phase of Example 8.
  • the upper row shows the results of HPLC performed under conditions of hexane / 2-propanol (100: 1 v / v) 1 mL / min 25 ° C.
  • the lower part shows the result of SFC performed under the condition of CO 2 / methanol (97: 3 v / v).
  • the chromatogram obtained using the stationary phase of Example 9.
  • the chromatogram obtained using the stationary phase of Example 10.
  • the present invention is a stationary phase comprising a polymer having, in a repeating unit of a main chain, an aromatic ring forming a part of the main chain and a dipolar atomic group forming a part of the main chain, the specific surface area of which is 5 to 1000 m 2 / g.
  • the stationary phase refers to a material that is fixed inside an analytical tool (column or capillary) in a chromatography method, distributes the substance to be separated between the fluid that moves while in contact with the material, and leads the separation.
  • an analytical tool column or capillary
  • the separation distributes the substance to be separated between the fluid that moves while in contact with the material, and leads the separation.
  • this when this is a particle, it may refer to an aggregate formed by filling the particle, or may refer to its individual particles.
  • the stationary phase of the present invention includes a polymer having an aromatic ring forming a part of the main chain and a dipolar atomic group forming a part of the main chain in a repeating unit of the main chain.
  • aromatic ring forming a part of the main chain means that the aromatic ring is a constituent of the main chain of the polymer.
  • the aromatic ring has at least two substituents, one of which leads to one end of the polymer and the other leads to the other end of the polymer.
  • the aromatic ring mentioned here is a condensed ring aromatic hydrocarbon such as benzene, naphthalene, phenanthrene, or pyrene; a heterocyclic aromatic hydrocarbon such as thiophene or pyrrole; a plurality of rings such as biphenyl are single-bonded Including those selected from connected.
  • the positions of the two substituents are not limited, but in the case of benzene, 1,2-position, 1,3-position, 1,4-position, and in the case of naphthalene, 1,4-position, 1,5-position, , 5-position, 2,6-position, 2,7-position, and biphenyl are exemplified by substitution patterns such as 4,4′-position and 3,3′-position.
  • benzene, naphthalene, and biphenyl are preferable.
  • the aromatic ring may have a different substituent from the polymer main chain.
  • substituents include alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, cyano, halogen, hydroxy
  • a substitution with a methyl group or a halogen atom is preferable because the direct interaction of the substituent itself is small and affects the molecular identification of the polymer.
  • the polymer used in the present invention contains a dipolar atomic group forming a part of the main chain.
  • the dipolar atomic group forming a part of the main chain mentioned here has, for example, the following structure.
  • the dipolar atomic group forming a part of the main chain refers to any of the two valences of X whose bond is not specified in the above formula (I) or (II). Means a component. In other words, tracing one of them leads to one end of the polymer, and tracing the other means reaching the other end of the polymer.
  • Y is oxygen (carbonyl group), sulfur (thiocarbonyl group), nitrogen having one substituent (including oxime and hydrazone), and when X is sulfur, Y is Y. Is oxygen (sulfoxide, sulfone) or nitrogen having one substituent (sulfilimine, sulfoxyimine), or when X is phosphorus having one substituent, X is oxygen or one substituent With nitrogen.
  • dipolar atomic groups a carbonyl group, a sulfoxide, and a sulfone are preferable.
  • the repeating unit constituting the polymer means one unit of the monomer as long as it is a polymer obtained by polymerizing one kind of monomer.
  • a polymer obtained by polymerizing two or more kinds of monomers for example, polyethylene
  • terephthalate it means a dimer of terephthalic acid and ethylene glycol.
  • the content of the repeating unit containing an aromatic ring and a dipolar atomic group among the repeating units constituting the polymer is usually 70 to 100 mol%, and 90 to 100 mol% (the terminal is It is preferable not to consider.
  • polymers include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene isophthalate, poly (2,2-dimethylpropane-1,3-diyl terephthalate), polyarylate, poly- Examples thereof include polyester such as 4-oxymethylbenzoyl, polysulfone (PS), polyethersulfone (PES), polycarbonate (PC), and polyetheretherketone (PEEK).
  • PS polysulfone
  • PES polyethersulfone
  • PC polycarbonate
  • PEEK polyetheretherketone
  • the polymer used in the present invention is polyester, it can be synthesized by dehydration condensation of carboxylic acid and alcohol or phenol, transesterification with ester, reaction with acid halide, or the like.
  • Monomers used for synthesis include dicarboxylic acids such as terephthalic acid, phthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and methyl groups and halogen atoms substituted on these aromatic rings.
  • diol components such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethylpropane-1, 3-diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol and the like can be used.
  • an aromatic compound having a carboxylic acid or a residue thereof and an alcohol or phenol in the molecule, such as 4-hydroxymethylbenzoic acid or an ester thereof can also be used.
  • the “polyester” described in Japanese Patent No. 3858509 is a vinyl polymer having an ester side chain, and is not a polyester according to the present invention and a general term.
  • the aromatic ring forming a part of the main chain is preferably 1,4-benzene, 1,3-benzene, 1,6-naphthalene, 1,7-naphthalene, 1,5-thiophene. . If this ring is too large, the peaks generally tend to be broadened in chromatography.
  • those having a partial structure such as —CH 2 —CH 2 — having a high mobility in the repeating unit are preferable in order to provide a good number of column stages as a column packing material.
  • condensation polymers using terephthalic acid or isophthalic acid as the carboxylic acid and ethylene glycol, propylene glycol, butylene glycol or 2,2-dimethylpropane-1,3-diol as the dihydric alcohol It is easy to obtain poly-4-oxymethylbenzoyl by condensation of -hydroxymethylbenzoic acid or methyl 4-hydroxymethylbenzoate.
  • PET which is a condensation polymer of terephthalic acid and ethylene glycol
  • PBT which is a condensation polymer of butylene glycol
  • Such a polyester has a weight average molecular weight of 1,000 to 5,000,000, preferably 5,000 to 1,000,000. From the viewpoints of solubility of the polymer in the solvent, prevention of particle aggregation when the polymer is supported on the support, suppression of dissolution in the mobile phase solvent, maintenance of the amount of binding when chemically bound to the support, the above range. Is preferred. The optimal point depends on the type of polymer.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • the synthesis method may be an interfacial method in which bisphenols and phosgene are directly reacted, a transesterification method in which bisphenols and diphenyl carbonate are reacted in a solvent-free condition, or the like.
  • Such a polycarbonate has a weight average molecular weight of 1,000 to 5,000,000, preferably 5,000 to 1,000,000.
  • polyethersulfone a polymer of 4-chloro-4'-hydroxydiphenylsulfone can be cited as a representative example.
  • the weight average molecular weight of the polyethersulfone is 1000 to 5000000, preferably 5000 to 100,000.
  • the weight average molecular weight is 1,000 to 5,000,000, preferably 5,000 to 100,000.
  • These polymers may have a strong polar group such as a carboxyl group at the end depending on the production conditions, but such a group often reduces chromatographic efficiency by strong adsorption called non-specific adsorption. . Therefore, it is preferable to inactivate by some chemical treatment.
  • a carboxyl group can be converted to an ester.
  • diazomethane or trimethylsilyldiazomethane is often used.
  • a so-called condensing agent such as DCC can be allowed to act on the amine.
  • a good chromatogram can be obtained by adding a small amount of ionic additives such as amines, acids, or mixtures thereof in the mobile phase. it can.
  • polymers may be partly or wholly dissolved when a solvent that can originally dissolve them or a mixed solvent containing the same is used as a developing solvent, thereby impairing the function as a column.
  • the polymer according to the present invention is preferably insolubilized. If the polymer is insolubilized, the choice of applicable developing solvent is expanded.
  • any method of insolubilization may be used.
  • a method in which a polymer is chemically bonded to the surface of the carrier and insolubilized can be mentioned.
  • a reactive atomic group bonded to the surface of a carrier such as silica gel using a spacer such as a silane coupling agent can be bonded to the polymer and insolubilized.
  • a silica gel bonded with an amino group is reacted with a polyester by aminopropylsilane treatment, any carbonyl group of the polyester forms an amide, and as a result, the polymer is bonded to the surface of the silica gel, so that insolubilization is possible.
  • Silica gel bonded with an epoxy group can be expected to react with the carboxylic acid terminal of the polyester to bond the polymer.
  • polyethersulfone having a chlorine atom at the end can be insolubilized by binding to a carrier such as silica gel by replacing chlorine with an amino group.
  • the polyester can also be bonded to silica gel bonded with hydroxyl groups in the presence of a suitable acid catalyst such as sulfonic acids.
  • some polyethersulfones have a phenolic hydroxyl group at the end, which is converted to phenolate with a suitable base such as an alkoxide, and then reacted with silica gel bonded with a halomethylphenyl group or an epoxy group.
  • the polymer when a polymer is formed by polymerizing monomers on silica gel, the polymer can be bonded onto the silica gel by previously bonding an atomic group capable of participating in the polymerization to the surface of the silica gel.
  • the polymer itself can be insolubilized instead of making a chemical bond with a carrier such as silica gel.
  • a carrier such as silica gel.
  • PET or the like can be insolubilized by crystallization simply by heat treatment.
  • an insoluble cross-linked polymer can be obtained by adding an appropriate amount of a monomer having a polyfunctional polymerizable group (for example, a vinyl group or a silyl group).
  • a monomer having a polyfunctional polymerizable group for example, a vinyl group or a silyl group.
  • the reaction for forming the polymer main chain and the crosslinking reaction may be different.
  • the polymer of the present invention includes a polymer having a vinyl group, and the vinyl group is radically polymerized after the polymer is formed.
  • the average degree of polymerization of the polymer used in the present invention is 5 or more, preferably 100 or more, from the viewpoint of solubility.
  • the upper limit is not particularly limited because there is no inconvenience due to the high degree of polymerization, but it is usually 10,000,000 or less.
  • the average degree of polymerization can be measured by GPC.
  • the average degree of polymerization of the polymer before treatment is applicable.
  • the polymerization degree of the polymer cannot be applied as in the case of polymerizing the monomer on the carrier, the average polymerization degree is estimated.
  • the basic methodology assumes that both the chemically bonded polymer and the polymerized but not chemically bonded polymer have the same degree of polymerization, and after the polymerization reaction on the support, only low molecular weight substances are first removed. After washing with a solvent to be dissolved, the polymer is washed with a solvent that dissolves the polymer, and GPC is performed on the extracted polymer.
  • a reagent that dissolves the carrier under mild conditions if the carrier is silica gel, for example, methanol solution of ammonium hydrogen fluoride, etc.) eliminates the atomic groups that bind the carrier surface to the surface. And the obtained eluate is treated with hexamethyldisilazane or the like and then subjected to GPC analysis to measure the average degree of polymerization.
  • the terminal is a carboxylic acid
  • methods such as acid-base titration and analysis of the amount of cations bound after ion exchange are possible.
  • the terminal is an alcohol
  • an atomic group containing an element serving as an index may be introduced by esterification or carbamoylation, and the amount of the element introduced may be analyzed, but the surface of the silica gel is modified with an amino group
  • it is necessary to inactivate it beforehand by chemical treatment selective for amino groups.
  • the molecular weight degree of polymerization
  • the polymer can be supported on a particulate or monolithic carrier to form a porous stationary phase.
  • the polymer itself can be made into porous spherical or amorphous particles, can be made into a so-called monolith that is a porous monolith with continuous pores, or can be used as a porous membrane shape.
  • the porous and porous in the present invention the specific surface area of the surface measured by BET method using nitrogen adsorption 5 ⁇ 1000m 2 / g, those preferably 10 ⁇ 500m 2 / g Say. If the specific surface area of the stationary phase is in the above range, it is advantageous for the separation of low molecular weight compounds, and it is preferable from the viewpoint of preventing tailing.
  • the specific surface area of the stationary phase corresponds to the specific surface area of the support to be used. That's fine.
  • the carrier is, for example, silica gel, it can be prepared by selecting an appropriate product.
  • the specific surface area does not change more than an error before and after the loading, and therefore the specific surface area of the stationary phase can be regarded as the same as the specific surface area of the carrier used.
  • the polymer when the polymer is in the form of particles or monolith, as a method for adjusting the specific surface area of the stationary phase, for example, in suspension polymerization, it dissolves in a mixture of monomers but is inactive in the polymerization reaction.
  • the specific surface area can be increased by adding, as a diluent, an organic solvent that does not dissolve the produced polymer.
  • examples of the carrier when the polymer is supported on a carrier, examples of the carrier include a porous organic carrier and a porous inorganic carrier, and a porous inorganic carrier is preferable.
  • Suitable as the porous organic carrier is a polymer substance selected from polystyrene, poly (meth) acrylamide, poly (meth) acrylate, etc.
  • suitable as the porous inorganic carrier is silica gel, alumina, zirconia, Examples include titania, magnesia, glass, kaolin, titanium oxide, silicate, and hydroxyapatite.
  • Preferred carriers are silica gel, alumina, or glass.
  • the average particle size of such a carrier is usually from 0.1 to 100 ⁇ m, preferably from 1 to 50 ⁇ m, and the average pore size is usually from 10 to 10000 mm, preferably from 50 to 1000 mm.
  • the specific surface area of the carrier is usually 5 to 1000 m 2 / g, preferably 10 to 500 m 2 / g. In general, when a polymer is supported on a carrier, the specific surface area does not change more than an error before and after the loading, so the average particle size of the stationary phase can be regarded as the same as the average particle size of the carrier used. it can.
  • the carrier may be used as it is, but by subjecting the surface to chemical treatment, excessive adsorption of the substance to be separated onto the carrier itself can be suppressed, and chemical bonding of the polymer can be facilitated.
  • chemical treatment include silane coupling agents and aminopropylsilane treatment as described in the insolubilization method.
  • the average thickness of the supported the polymer to the carrier is usually 2/10 5 ⁇ 2/10 7 ( ⁇ m), preferably from 4/10 5 to 5/10 7. If it is the said range, there exists a tendency for a peak to become sharp, and it is preferable.
  • the polymer As a method of supporting the polymer on a particulate or monolithic carrier, the polymer is dissolved in a solvent, applied to the carrier, sprayed, immersed, etc., and then the solvent is removed by passing under reduced pressure or air current, and the polymer is removed.
  • carrier surface is mentioned.
  • the solvent an appropriate solvent that can dissolve the polymer to be used may be selected.
  • 1,1,1,3,3,3-hexafluoro-2-propanol may be used, and a polyether may be used.
  • the sulfone include dichloromethane.
  • a polymer precursor is impregnated on a carrier together with an appropriate catalyst if necessary, and polymerized.
  • Examples of the method of supporting the polymer on a particulate or monolithic carrier include a method of supporting the polymer on a carrier by chemical bonding.
  • the method of supporting the carrier by chemical bonding is the same as the above-described method for insolubilizing the polymer.
  • the ratio (%) of the mass part of the polymer contained in 100 parts by mass of the stationary phase is preferably 1 to 50%, more preferably 10 to 30%.
  • a suspension polymerization method is an example of a method in which the polymer itself is used as a stationary phase of porous spherical or amorphous particles.
  • a ready-made polymer solution is suspended in a liquid immiscible with the solution, the solvent is gradually diffused and removed, the polymer is precipitated using a precipitating agent, and the solution is gelled by temperature change, etc.
  • a method is mentioned.
  • an appropriate amount of a substance that is not compatible with the polymer but dissolves in the solvent in which the polymer is dissolved is added, and the particles are solidified and then washed and extracted. It is effective. It can also be made porous by causing spinodal decomposition during polymerization or gelation due to temperature changes.
  • the average particle size of the stationary phase is usually 0.1 ⁇ m to 1000 ⁇ m, preferably 1 ⁇ m to 100 ⁇ m.
  • the average particle size of the stationary phase is usually 0.1 ⁇ m to 1000 ⁇ m, preferably 5 ⁇ m to 500 ⁇ m, more preferably 10 ⁇ m to 200 ⁇ m. The above range is preferable in terms of the balance between good column efficiency and liquid permeability of the packed bed.
  • the average particle diameter refers to the diameter of a sphere, and in the case of an amorphous particle, the average particle diameter is represented by the diameter of a sphere that is equal to the particle volume.
  • the average particle diameter can be measured by a device that uses a microscope image, for example, Mastersizer 2000E manufactured by Malvern.
  • the monolith which is an integral porous structure having many through-holes (continuous pores) instead of particles as a stationary phase
  • the monolith is also expanding its application.
  • the conditions described as the method for forming the porous particles are applied not in a suspended state but in a suitable container or the like, it can be made into a porous monolith by a phase separation process.
  • the polymer can be supported on an existing monolithic carrier.
  • the material for the monolith carrier the same materials as those used for the carrier described above can be used. It is important that the monolith does not create a gap or a consolidated part with the container (analysis column), and an existing methodology can be used for this purpose.
  • an integrated inorganic porous material is formed by a sol-gel method in which a metal alkoxide is used as a starting material, and an appropriate coexisting substance is added to the material to form a structure having a solvent-rich phase that becomes a large pore. It is described that can be manufactured.
  • the aspect ratio is 2 or less, preferably 1.5 or less. Since the closer to the true sphere, the better, the lower limit is not particularly limited to 1.
  • the aspect ratio is measured as follows. Arbitrary observation of 10 or more independent primary particles (not in contact with or overlapping with any other particles) by directly observing the sample with an electron microscope or optical microscope while being randomly distributed on the observation table In this screen, for each individual primary particle in the screen, the major axis and the minor axis (the length of the longest part perpendicular to the major axis) are obtained, and the ratio of both is taken as the aspect ratio of the individual particles.
  • the aspect ratio in the present invention is an arithmetic average of the aspect ratios of all the independent primary particles in the screen.
  • the primary particles are particles that can clearly observe the interface between the particles. Usually, observation is carried out by appropriately dispersing so as to avoid the overlap of primary particles on the sample stage, but accidental overlap is unavoidable, and there are also bulk particles in which multiple primary particles are aggregated. Is removed from the observation.
  • the stationary phase of the present invention can be used for supercritical fluid chromatography (SFC) and liquid chromatography such as HPLC.
  • silica gel treatment with aminopropylsilane Three types of silica gel having an average particle size of 5 ⁇ m and pore sizes of 120, 300, and 700 mm, respectively, were aminopropylated by the following procedure. After 14 g of silica gel was vacuum-dried at 100 ° C., it was dispersed in 150 mL of toluene, and a part of toluene (about 30 mL) was removed by distillation until the condensate was not turbid.
  • silica gel was collected by a glass filter, which was washed once with 70 mL of toluene and twice with 70 mL of dichloromethane, and then vacuum-dried.
  • a micrograph of the obtained silica gel (with a pore size of 120 mm) is shown in FIG.
  • the average aspect ratio of 22 shots on an arbitrary screen was approximately 1.0.
  • the specific surface area of three types of silica gel (average pore diameter 120, 300, 700 mm) was measured by the BET method, they were 320 m 2 / g, 98 m 2 / g, and 35 m 2 / g, respectively.
  • Example 1 3.53 g of aminopropylsilane-treated silica gel (average particle size 5 ⁇ m, average pore size 300 mm) obtained in Preparation Example 1 was placed in a flask, and 1.85 g of methyl 4-hydroxymethylbenzoate, toluenesulfonic acid monohydrate A solution obtained by dissolving 126 mg of the Japanese product in 1 mL of methanol and 7 mL of dichloromethane was absorbed, and the solvent was removed under reduced pressure. Finally, while reducing the pressure to 1 Torr, the flask was heated in an oil bath, the temperature was gradually raised from 100 ° C., and finally maintained at 150 ° C. for 5 hours.
  • the obtained powder was dispersed in 30 mL of methanol to which a solution of 63 mg of ammonium hydrogen carbonate in water was added, filtered and collected with a glass filter, and then washed with 50 mL of methanol four times.
  • the dried product was further washed three times with 50 mL of NMP, dispersed in a mixed solution of 15 mL of methanol and 10 mL of toluene, added with 0.5 mL of a 10% hexane solution of trimethylsilyldiazomethane, and left overnight. Thereafter, it was washed with an appropriate amount of methanol and vacuum-dried.
  • the carbon content of the obtained silica gel was 9.28% by mass and that of the raw silica gel was 1.3% by mass, about 11.4% by mass of poly (4-oxymethylbenzoyl) was bonded. It was estimated that The resulting poly (4-oxymethylbenzoyl) -bonded silica gel had a specific surface area of 98 m 2 / g and an average particle size of 5 ⁇ m.
  • FIG. 2 shows the separation of terphenyl isomers and triphenylene by HPLC with polyoxymethylbenzoyl as stationary phase. In the order of the peaks, ortho, meta, para, and triphenylene.
  • the column size is 2.1 mm ⁇ ⁇ 150 mm, and the mobile phase is hexane / 2-propanol 9: 1 v / v 0.21 mL / min.
  • Preparation Example 2 In the same manner as in Preparation Example 1, silica gel having a pore size of 300 mm was treated with glycidoxypropyltriethoxysilane instead of aminopropyltriethoxysilane. However, at this time, after adding the silane treating agent, the temperature was maintained at 93 ° C., and toluene was not distilled off. The carbon content of the obtained silica gel was 1.21% by mass.
  • Example 2 0.80 g of 4-hydroxymethylbenzoic acid and 48.6 mg of p-chlorobenzenesulfonic acid were dissolved in 6.1 mL of THF, and 2.4 g of silica gel obtained in Preparation Example 2 was mixed therein, and the solvent was distilled off under reduced pressure. . While continuing to reduce pressure (5 Torr), the temperature was gradually increased from 100 ° C. to 148 ° C. in 3 hours, and this was maintained for 2.5 hours. After cooling, 20 mL of methanol containing 200 mg of pyridine was poured to disperse the silica gel and collected by filtration with a glass filter.
  • the silica gel was further washed 5 times with a total of 200 mL of methanol. Further, the dispersion and filtration were repeated three times with 40 mL of NMP, followed by sequential washing with 40 mL of acetone, 40 mL of methanol, 40 mL of a hexane / acetone equivalent volume mixture, and vacuum drying.
  • the resulting silica gel had a carbon content of 6.76% by mass. Since the carbon content of the silica gel before the supporting treatment was 1.21% by mass, the polymer content of the product was calculated to be 7.9% by mass.
  • the resulting stationary phase had a specific surface area of 98 m 2 / g and an average particle size of 5 ⁇ m.
  • FIG. 3 shows an example in which the stationary phase is packed in a column (4.6 mm ⁇ ⁇ 150 mm) by the slurry method, and aromatic hydrocarbons are analyzed by HPLC and SFC.
  • the upper part of FIG. 3 is HPLC of hexane / 2-propanol (100: 1 v / v) 1 mL / min 25 ° C. From the left, the peaks are o-terphenyl, m- and p-terphenyl (overlapping), and triphenylene. Detection was performed at UV 254 nm. 3 lower row, CO 2 / methanol: an SFC by (97 3 v / v).
  • Example 3 (PES chemical coating) Dissolve 1.0 g of PES (Sumica Excel 4800P, weight average molecular weight 42000) with chlorine at the end in a mixed solution of 7.2 mL of dichloromethane and 0.8 mL of methanol. Silica gel (average particle size 5 ⁇ m, pore size 700 mm, specific surface area 35 m) 2 / g, aminopropylsilane treatment) and 4.0 g. The solvent was removed under reduced pressure, and a powdery stationary phase that was visually different from that before the supporting treatment was obtained.
  • PES Sudica Excel 4800P, weight average molecular weight 42000
  • the resulting stationary phase had a specific surface area of 35 m 2 / g and an average particle size of 5 ⁇ m.
  • Example 4 A spherical silica gel 4 having an average particle diameter of 5 ⁇ m, a pore diameter of 120 ⁇ m, and a specific surface area of 320 m 2 / g, obtained by dissolving 1.0 g of the same PES as in Example 3 in a mixed solution of 7.2 mL of dichloromethane and 0.8 mL of methanol. Mixed with 0.0 g. After removing the solvent in the same manner, the container was depressurized (5 mmHg) and kept at 194 ° C. for 3 hours.
  • the obtained powder was dispersed, filtered, and washed in three portions by a total of about 100 mL of a mixed solution of dichloromethane and methanol (9: 1 v / v).
  • the obtained stationary phase had a carbon content of 11.65% in elemental analysis. Since the carbon content of the silica gel before the supporting treatment was 3.7% by mass, the PES content of the product was calculated to be 12.4% by mass.
  • the obtained stationary phase had a specific surface area of 320 m 2 / g and an average particle size of 5 ⁇ m.
  • silica gel average particle size 5 ⁇ m, pore size 300 mm, specific surface area 98 m 2 / g
  • Example 5 PES 5.0 g (Sumika Excel 5003PS, weight average molecular weight 45500) whose end is phenol was dissolved in 40 mL of dehydrated DMSO under a nitrogen atmosphere, and 56 mg of potassium tertiary oxide was added. To 15 g of this solution, 40 mg of tetrabutylammonium iodide and 2.3 g of silica gel of Preparation Example 3 were added and kept at 100 ° C. for 9 hours with stirring.
  • the silica gel was filtered off from the dispersion with a glass filter, washed 5 times with 30 mL DMSO, 3 times with 30 mL dichloromethane-methanol (9: 1 v / v), and finally 5 times with 30 mL methanol and vacuum dried. Since the carbon content of the obtained stationary phase was 2.56% by mass and the carbon content of the silica gel treated with chloromethylphenylethylsilane was 1.85% by mass, the PES content of the product was 1.18% by mass. calculated. Moreover, the specific surface area of the obtained stationary phase was 98 m ⁇ 2 > / g, and the average particle diameter was considered to be 5 micrometers.
  • Example 6 Polysulfone (UDEL P1700 NT11, weight average molecular weight Mw 47000) 0.258 g was dissolved in 5.0 mL of THF, and this solution was silica gel (particle size 5 ⁇ m, pore size 700 mm, specific surface area 35 m 2 / g, aminopropylsilane treatment) 2 .3 g was absorbed twice and the solvent was distilled off under reduced pressure to obtain a stationary phase that was not visually different from that before the treatment. Since elution of the polymer into the washing solvent and separation of the silica gel and the polymer were not observed, it is considered that almost the entire amount of the polymer was supported on the silica gel. The resulting stationary phase had a specific surface area of 35 m 2 / g and an average particle size of 5 ⁇ m.
  • Example 7 1. Dissolve 0.5185 g of polycarbonate (L1225Y manufactured by Teijin Chemicals Ltd.) in 10 mL of dichloromethane, and divide this solution into two portions to obtain silica gel (particle size 5 ⁇ m, pore size 700 mm, specific surface area 35 m 2 / g, aminopropylsilane treatment) After absorbing to 0 g, the solvent was repeatedly distilled off under reduced pressure. Finally, a powder stationary phase containing some agglomerates was obtained. Since elution of the polymer into the washing solvent and separation of the silica gel and the polymer were not observed, it is considered that almost the entire amount of the polymer was supported on the silica gel. The resulting stationary phase had a specific surface area of 35 m 2 / g and an average particle size of 5 ⁇ m.
  • Example 8 1.25 g of PBT (Duranex 300FP) was dissolved in 7 mL of hexafluoro-2-propanol.
  • silica gel average particle size of about 5 [mu] m, respectively pore diameter respectively 120,300,700A (specific surface area, which was 320m 2 / g, 98m 2 / g, aminopropyl silanized of 35m 2 / g), and the average
  • the solvent was distilled off under reduced pressure.
  • the silica gel became powdery, and there was no visible difference from before coating with PBT, and the specific surface area and average particle diameter were considered to be equivalent. Since elution of the polymer into the washing solvent and separation of the silica gel and the polymer were not observed, it is considered that almost the entire amount of the polymer was supported on the silica gel.
  • FIG. 4 shows an example of separation by HPLC and SFC of a stationary phase prepared using aminopropylsilane treatment and silica gel having a pore size of 700 mm.
  • the upper part of FIG. 4 is HPLC of hexane / 2-propanol (100: 1 v / v) 1 mL / min 25 ° C. From the left, the peaks are o-terphenyl, m-terphenyl, p-terphenyl, and triphenylene. Detection was performed at UV 254 nm.
  • Example 9 In the same manner as in Example 8, 1.02 g of PBT was dissolved in 7.0 mL of hexafluoro-2-propanol and supported on 3 g of silica gel (particle size 5 ⁇ m, pore size 300 mm, treated with aminopropylsilane). The obtained powder was gradually heated in a flask under a reduced pressure of 5 Torr and kept at 198 ° C. for 3 hours. Thereafter, cooling, dispersing in 30 mL of hexafluoro-2-propanol for 30 minutes, and filtration were repeated 4 times. Furthermore, after washing 3 times with 30 mL of methanol, it was vacuum-dried.
  • the resulting stationary phase had a specific surface area of 98 m 2 / g and an average particle size of 5 ⁇ m.
  • FIG. 5 shows a chromatogram obtained by column-packing the obtained stationary phase in the same manner as in Example 2.
  • FIG. 5 is an SFC with CO 2 / methanol (97: 3 v / v). Flow rate: 4 mL / min, temperature: 40 ° C., back pressure: 150 bar. From the left, the peaks are o-terphenyl, m-terphenyl, p-terphenyl, and triphenylene. Detection was performed at UV 254 nm.
  • Example 10 Dissolve 0.5 g of PET (TR8550FF manufactured by Teijin Chemicals Ltd.) in 8 mL of hexafluoro-2-propanol, and divide the resulting solution into two portions of 2.06 g of silica gel (particle size 5 ⁇ m, pore size 700 mm, treated with aminopropylsilane) ) In the same manner as in Example 8. Since elution of the polymer into the washing solvent and separation of the silica gel and the polymer were not observed, it is considered that almost the entire amount of the polymer was supported on the silica gel. The resulting stationary phase had a specific surface area of 35 m 2 / g and an average particle size of 5 ⁇ m.
  • FIG. 6 is an SFC with CO 2 / methanol (97: 3 v / v). Flow rate: 4 mL / min, temperature: 40 ° C., back pressure: 150 bar. From the left, the peaks are o-terphenyl, m-terphenyl, p-terphenyl, and triphenylene. Detection was performed at UV 254 nm.
  • FIG. 7 shows an example of comparison of separation between the 2-ethylpyridine separating agent generalized in SFC and the stationary phase of the present invention.
  • the upper row is Waters, Viridis Silica 2-Ethylpyridine 5 ⁇ m
  • the lower row is a column packed with the stationary phase of Example 10 (each 0.46 mm ⁇ ⁇ 15 cm), and the separation of the acetyl substitution product of anthracene and phenanthrene was evaluated by SFC.
  • Mobile phase CO 2 -methanol (9: 1 v / v), flow rate: 4.0 mL / min, temperature: 40 ° C., back pressure: 150 bar.
  • the initial number indicates the position of the substituent
  • Ac indicates acetyl
  • Phe indicates phenanthrene
  • Anth indicates anthracene.
  • the stationary phase of the present invention clearly shows better resolution than 2-ethylpyridine for substitutional position isomers that are similar in structure. Since polymers with an aromatic ring or dipolar atomic group are regularly arranged to some extent, it is considered that an adsorption field sensitive to the shape of the molecule is formed.
  • Example 11 The product obtained in Preparation Example 4 was dissolved in hexafluoro-2-propanol in the same manner as in Example 8, and supported on silica gel treated with trimethylsilane and having a pore size of 120 mm.
  • the resulting stationary phase had a specific surface area of 320 m 2 / g and an average particle size of 5 ⁇ m.
  • the obtained stationary phase was packed in a column having an inner diameter of 4.6 mm and a length of 150 mm, and subjected to SFC (conditions are the same as in Example 10).
  • Example 12 The product obtained in Preparation Example 5 was supported on silica gel having a pore size of 120 mm treated with trimethylsilane using dichloromethane in the same manner as in Example 11.
  • the resulting stationary phase had a specific surface area of 320 m 2 / g and an average particle size of 5 ⁇ m.
  • the obtained stationary phase was packed in a column having an inner diameter of 4.6 mm and a length of 150 mm, and anthracene and phenanthrene under HPLC conditions (hexane / 2-propanol 90:10 (v / v), 1.0 mL / min, 25 ° C.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本発明は、カラム段数が向上し、良好な分子識別能を有する固定相を提供することを課題とする。主鎖の繰り返し単位に、主鎖の一部をなす芳香族環と、主鎖の一部をなす双極性原子団とを有するポリマーを含む固定相であって、その比表面積を5~1000m/gとすることで、カラム段数が向上し、良好な分子識別能が発現されることを見出した。

Description

固定相
 本発明は、クロマトグラフィー技術に関する。より詳しくはクロマトグラフィーに用いられる固定相に関する。
 混合物の成分およびその含量を分析し、また分離精製するための方法として、クロマトグラフィーはもっとも有効な手段である。これは、カラムあるいはキャピラリーと呼ばれる管の中で空間的に固定された多孔質固体(固定相)と、その隙間を移動する流体(移動相)に対する物質固有の分配比(吸着平衡とも理解される)を利用して、異なる物質を分離するものである。その代表的なものとしてガスクロマトグラフィーと液体クロマトグラフィーがある。前者は移動相として気体を用いるものである。
 しかし、分離対象が気相に混じって移動するためには、一定以上の蒸気圧がなければならず、そのため分子量が低く、また電荷を持たない比較的限られた分析対象にしか応用できない。一方、液体クロマトグラフィーは移動相として液体を用いるものであり、適切な移動相を選べば、大抵の物質に適用できる。その半面、液体の粘度は一般に高いために、長いカラムやキャピラリーによって良好な分離を確保しようとしても、粘性抵抗の増加による限界がある。
 この両者の欠点を克服できる技術として発明されたものが超臨界流体クロマトグラフィー(SFC)である。これは、超臨界、あるいは亜臨界状態にある流体が、気体に比べてはるかに他の化合物をよく溶解し、液体に比べて低い粘度、高い拡散速度を有するという特徴を利用したものである。超臨界流体として二酸化炭素を用いるSFCが安全性や装置上の理由から一般的に採用されており、徐々に利用が拡がりつつある。この他にも電気的な引力を利用するクロマトグラフィー、紙や粉体を薄い層に固結した、いわゆる薄層クロマトグラフィー(液体クロマトグラフィーの変法)などがあるが、応用範囲はあまり広くない。
 液体クロマトグラフィーにおいては、極性の高い固定相と低い固定相の組み合わせを用いる順相クロマトグラフィー、この逆の極性である逆相クロマトグラフィーが代表的なモードである。最近はさらに両相とも極性であるHILICといったものも注目されている。その他、金属イオンと配位子の相互作用を利用する配位子交換クロマトグラフィー、生化学的相互作用を利用するアフィニティークロマトグラフィーなど、特異的な相互作用にもとづくものも知られている。概してその分離のメカニズムおよび特徴が明らかになっており、技術の進歩は分離の効率をよくするための粒子形状の改良が主になっている。
 これに対して、超臨界流体クロマトグラフィー(SFC)は、その特徴が順相クロマトグラフィーに似ているといわれている。しかし、その特徴、メカニズムは未だよく解っていない点が多い。
 このSFCにおける固定相(カラム充填剤とも呼ばれる。)としては、一般に従来液体クロマトグラフィー(HPLC)で用いられてきたものが転用されてきた。それらは、例えば非特許文献1に紹介されるように、シリカゲルあるいはその表面を様々な原子団で修飾したものである。
 修飾基としては、様々な鎖長の飽和アルキル鎖を含むもの、ひとつあるいは二つのベンゼン環、縮合多環芳香族炭化水素基をアルキル鎖又は、アミド結合、エーテル結合を含むアルキル鎖でつないだもの、ハロゲン置換ベンゼン環を特徴とするもの、ハロゲン化アルキル基をつないだもの、2,3-ジヒドロキシプロピル基、CN基、NH基などの極性基をつないだもの、高分子修飾基として架橋ポリスチレン、ポリビニルアルコール、ポリエチレングリコールなどがある。また、グラファイト構造を持った炭素も特徴ある固定相である。これらの中で、特にSFCにおいてよく用いられるものは、2-エチルピリジンと呼ばれる、(2-ピリジル)エチル基を結合したものであり、普通の固定相ではテーリングして幅広いピークを与える塩基性化合物もシャープなピークとなって溶出するため、好んで用いられる。
 しかしながら、やはり非特許文献2に指摘されるように、様々な化合物に対する保持の傾向が相似的であり、特徴の差がない固定相も少なくない。こうした中にあって、本発明者らは、構造のよく似た分子を識別できることが、求められている要件のひとつであるとの認識に立ち、鋭意、SFC用固定相の開発を進めてきた。
 一方、多糖系のキラル分離用固定相は、SFCにも応用され、キラル分離において実用的に利用されている(例えば、非特許文献3)。多糖誘導体は、キラル分離以外にも優れた分子構造を見分ける能力を備えているが、余りにも選択性の幅が大きいことと、光学異性体の分離が交絡するために、使いにくい場合もある。
 本発明者らは、高分子は未解明の特異な分子識別能を持っているのではないかと考え、鋭意研究を進めてきた。このような構造を備えた高分子、例えばポリエステルに関しては、繊維をカラム内に詰めてHPLCを行う試みがあり、PP,PET,Nylon-6、Kevlar(商標) (polyamide), セルロース等の繊維が吸着剤として開示されている(非特許文献4およびここに引用された文献)。しかし、これらは興味がもたれるものではあるが、実際のクロマトグラフィーは、非特許文献5の25ページに見られるように、ピークは幅広で、実用的に使えるものとはなっていない。また、特許文献1には、ジビニルベンゼン/スチレン共重合体等のいわゆるビニルポリマーを充填剤とすることが記載されている。
 また、特許文献2は、液体クロマトグラフィーによるポリヌクレオチド分離のためのポリスチレンビーズを開示しており、その中でポリエステルも例示している。しかしながら、特許文献2に開示されたような非多孔質の球状体をクロマトグラフィー固定相にする場合、該発明が分離対象とするポリヌクレオチドのような比較的極性の強い高分子ではともかく、通常の低分子化合物では殆ど保持されなかったり、保持されても甚だしくテーリングしたりして、実用的な分析法にはならない。これは、上記の繊維高分子についてもいえることであるが、低分子化合物の高分子による保持は、その分子が高分子の内部に拡散して起きるが、高分子内の分子の拡散は該して遅いため、厚みのある非多孔質高分子においては、分離対象が固相(吸着剤としてのポリマー)と液相(移動相)の間で吸着平衡に達するまでに時間を必要とすることによる。
特許第3858509号公報 特表2002-506426号公報
C. West 他、J. Chromatogr. A, 1203(2008) 105 C. West 他、J. Chromatogr. A, 1191(2008) 21 Y. Kaida 他、Bull. Chem. Soc. Jpn., 65, 2286(1992) R. K. Marcus, J. Separation Science, 31, 1923(2008) R. K. Marcus 他、J. Chromatogr. A, 986, 17(2003)
 本発明は、上記のような問題を解決するものであり、カラム段数が向上し、良好な分子識別能を有する固定相を提供することを課題とする。
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、主鎖の繰り返し単位に、主鎖の一部をなす芳香族環と、主鎖の一部をなす双極性原子団とを有するポリマーを含む固定相であって、その比表面積を5~1000m/gとすることで、カラム段数が向上し、良好な分子識別能が発現されることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
(1)主鎖の繰り返し単位に、主鎖の一部をなす芳香族環と、主鎖の一部をなす双極性原子団とを有するポリマーを含む固定相であって、その比表面積が5~1000m/gであることを特徴とする固定相。
(2)前記ポリマーが、ポリエステル、ポリスルホン、ポリエーテルスルホン、またはポリカーボネートであることを特徴とする、(1)に記載の固定相。
(3)前記ポリマーがポリエステルであることを特徴とする、(2)に記載の固定相。
(4)前記ポリエステルが、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンイソフタレート、ポリ(2,2-ジメチルプロパン-1,3-ジイルテレフタレート)、またはポリ-4-オキシメチルベンゾイルであることを特徴とする(3)に記載の固定相。
(5)前記ポリマーが、比表面積が5~1000m/gの担体に担持して成ることを特徴とする(1)~(4)のいずれかに記載の固定相。
(6)粒子状であることを特徴とする、(1)~(5)のいずれかに記載の固定相。
(7)平均粒径が0.1μm~1000μmであることを特徴とする、(6)に記載の固定相。
(8)モノリス状であることを特徴とする、(1)~(5)のいずれかに記載の固定相。
(9)超臨界流体クロマトグラフィー用であることを特徴とする、(1)~(8)のいずれかに記載の固定相。
 本発明によれば、カラム段数が向上し、良好な分子識別能を有する固定相を提供することができる。
アミノプロピルシラン処理を行ったシリカゲル(細孔径120Å)の顕微鏡写真(図面代用写真)。 ポリ(4-オキシメチルベンゾイル)結合シリカゲルを固定相とするHPLCによるテルフェニル異性体およびトリフェニレンの分離を示す図である。 実施例2の固定相を用いたクロマトグラムである。上段はヘキサン/2-プロパノール(100:1 v/v) 1mL/min 25℃の条件で行ったHPLCの結果を示す。下段は、CO/メタノール(97:3 v/v)の条件で行ったSFCの結果を示す。 実施例8の固定相を用いたクロマトグラムである。上段はヘキサン/2-プロパノール(100:1 v/v) 1mL/min 25℃の条件で行ったHPLCの結果を示す。下段は、CO/メタノール(97:3 v/v)の条件で行ったSFCの結果を示す。 実施例9の固定相を用いて得られたクロマトグラム。 実施例10の固定相を用いて得られたクロマトグラム。 2-エチルピリジン分離剤と本発明の固定相とで分離の対比を示す図。
 本発明は、主鎖の繰り返し単位に、主鎖の一部をなす芳香族環と、主鎖の一部をなす双極性原子団とを有するポリマーを含む固定相であって、その比表面積が5~1000m/gであることを特徴とする。
 ここで、固定相とは、クロマトグラフィー法において、分析用具(カラムまたはキャピラリー)の内部に固定され、これと接触しながら移動する流体との間で分離対象物質を分配し、分離に導く材料を意味するが、これが粒子である場合には、該粒子が充填されることによって形成された集合体を指すこともあり、またその個別の粒子を指すこともある。
 <ポリマー>
 本発明の固定相は、主鎖の繰り返し単位に、主鎖の一部をなす芳香族環と、主鎖の一部をなす双極性原子団とを有するポリマーを含む。
 ここで、「主鎖の一部をなす芳香族環」とは、該芳香族環が該ポリマーの主鎖の構成要素になっていることを意味する。別な表現をするなら、該芳香族環は少なくとも二つの置換基を有し、その一方を辿ればポリマーの一方の末端に至り、他方を辿ればポリマーの他方の末端に至ることを意味する。
 ここに言う芳香族環とは、ベンゼンや、ナフタレン、フェナントレン、ピレンなど、縮合環芳香族炭化水素の他;チオフェン、ピロールなどの複素環芳香族炭化水素;ビフェニルのように複数の環を単結合でつないだものから選択されるものを含む。二つの置換基の位置は限定されないが、ベンゼンの場合、1,2-位、1,3-位、1,4-位、ナフタレンの場合、1,4-位、1,5-位、2,5-位、2,6-位、2,7-位、ビフェニルの場合4,4’-位、3,3’-位等の置換パターンが例示される。芳香族環としては、ベンゼン、ナフタレン、ビフェニルが好ましい。
 当該芳香族環は高分子主鎖とは別の置換基を持ってもよく、このような置換基としては、炭素数1~12のアルキル、炭素数1~12のアルコキシ、シアノ、ハロゲン、ヒドロキシ、アミノ、ニトロ等が挙げられ、メチル基やハロゲン原子(F、Cl、Br、I)による置換は、置換基そのものの直接的相互作用が少なく、該ポリマーの分子識別に影響を与えるため好ましい。
 本発明に用いるポリマーは、主鎖の一部をなす双極性原子団を含む。ここに言う主鎖の一部をなす双極性原子団とは、例えば下式の構造を有する。
Figure JPOXMLDOC01-appb-C000001
 主鎖の一部をなす双極性原子団とは、上記の式(I)又は(II)において結合の相方が特定されていないXの二つの原子価のいずれもが、該ポリマーの主鎖の構成要素であることを意味する。別な言い方をするなら、その一方を辿ればポリマーの一方の末端に至り、他方を辿ればポリマーの他方の末端に至ることを意味する。
 具体的にはXが炭素の場合、Yは酸素(カルボニル基)、イオウ(チオカルボニル基)、1個の置換基を有する窒素(オキシム、ヒドラゾンを含む)であり、Xがイオウの場合、Yは酸素(スルホキシド、スルホン)あるいは1個の置換基を有する窒素(スルフィルイミン、スルホキシイミン)であり、あるいはXが1個の置換基を有するリンである場合、Xは酸素あるいは1個の置換基を有する窒素である。このような双極性原子団のうち、カルボニル基、スルホキシド、スルホンが好ましい。
 双極性原子団の含有量としては、ポリマーを構成する繰り返し単位1単位に、双極性原子団を通常1~3個、好ましくは1~2個含む。ポリマーを構成する繰り返し単位とは、1種類のモノマーを重合して得られるポリマーであれば、当該モノマー一単位を意味し、2種類以上のモノマーを重合して得られるポリマーの場合、例えば、ポリエチレンテレフタレートであれば、テレフタル酸とエチレングリコールとのダイマーを意味する。
 また、本発明では、上記のポリマーを構成する繰り返し単位のうち芳香族環および双極性原子団を含む繰り返し単位の含有量は、通常70~100モル%であり、90~100モル%(末端は考慮しない)であることが好ましい。
 このような、ポリマーの具体例としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンイソフタレート、ポリ(2,2-ジメチルプロパン-1,3-ジイルテレフタレート)、ポリアリレート、ポリ-4-オキシメチルベンゾイルなどのポリエステルや、ポリスルホン(PS)、ポリエーテルスルホン(PES)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)等が挙げられる。なお、カラム充填剤として良好なカラム段数を与えるためには、一般に分子主鎖内に運動性の高い―CH―CH―のような部分構造を持つものが好ましい。
 本発明に用いるポリマーがポリエステルの場合、カルボン酸とアルコールあるいはフェノールの脱水縮合、エステルとのエステル交換、酸ハライドとの反応等により合成することができる。合成に用いるモノマーとしては、ジカルボン酸として、テレフタル酸、フタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、またこれらの芳香環上にメチル基やハロゲン原子を置換したもの、あるいはそのエステル、ハライド等を用いることができ、ジオール成分として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、2,2-ジメチルプロパン-1,3-ジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール等を用いることができる。また、単独のモノマーとして、分子内にカルボン酸あるいはその残基とアルコールまたはフェノールとを有する芳香族化合物、たとえば4-ヒドロキシメチル安息香酸やそのエステル、等を用いることもできる。ただし、日本国特許3858509に記載される「ポリエステル」は、エステル側鎖を有するビニルポリマーであって、本発明および一般にいうところのポリエステルではない。
 ポリエステルとしては、主鎖の一部をなす芳香族環が1,4-ベンゼン、1,3-ベンゼン、1,6-ナフタレン、1,7-ナフタレン、1,5-チオフェンであることが、好ましい。この環が大きすぎると、一般にクロマトグラフィーにおいてピークが幅広くなる傾向がある。また、ポリエステルとしては、主鎖の一部をなす双極性原子団がC=O(カルボニル)、S=O(スルホキシド)、S(=O)(スルホン)であることが化学的安定性と適度な双極性において好ましく、ポリマーを構成する繰り返し単位1単位に、当該双極性原子団を1~2個含むことが、合成の容易さの観点から好ましい。また、ポリエステルとしては、繰り返し単位に運動性の高い―CH―CH―等の部分構造を持つものが、カラム充填剤として良好なカラム段数を与えるために好ましい。
 上記の中では、カルボン酸としてテレフタル酸又はイソフタル酸を用い、二価アルコールとしてエチレングリコール、プロピレングリコール、ブチレングリコール又は、2,2-ジメチルプロパン-1,3-ジオールを用いた縮合ポリマーや、4-ヒドロキシメチル安息香酸あるいは4-ヒドロキシメチル安息香酸メチル等の縮合によるポリ-4-オキシメチルベンゾイルなどが得易くこのましい。特にテレフタル酸とエチレングリコールの縮合ポリマーであるPET、ブチレングリコールとの縮合ポリマーであるPBTは工業的に製造されているため、入手しやすい利点がある。
 このようなポリエステルの重量平均分子量は、1000~5000000、好ましくは5000~1000000である。ポリマーの溶媒への溶解性、ポリマーを担体に担持させる場合の粒子の凝集の防止、移動相溶媒への溶解の抑制、担体に化学結合する場合の結合量の維持、等の観点から、上記範囲が好ましい。最適点はポリマーの種類によって異なる。重量平均分子量はポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィー法(GPC)により測定できる。
 本発明に用いるポリマーがポリカーボネートの場合、合成方法としては、ビスフェノール類とホスゲンとを直接反応させる界面法、ビスフェノール類とジフェニルカーボネートとを無溶媒条件下で反応させるエステル交換法等を用いることができる。
 ビスフェノール類としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,4-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、4,4´-ジヒドロキシジフェニルエーテル、4,4´-ジチオフェノール、4,4´-ジヒドロキシ-3,3´-ジクロロジフェニルエーテル、4,4´-ジヒドロキシ-2,5-ジヒドロキシジフェニルエーテル等が挙げられる。
 このようなポリカーボネートの重量平均分子量は、1000~5000000、好ましくは5000~1000000である。
 本発明に用いるポリマーがポリエーテルスルホンである場合、4-クロロ-4’-ヒドロキシジフェニルスルホンの重合体が代表的なものとして挙げられる。ポリエーテルスルホンの重量平均分子量は、1000~5000000、好ましくは5000~100000である。
 本発明に用いるポリマーがポリスルホンである場合、重量平均分子量は、1000~5000000、好ましくは5000~100000である。
 これらのポリマーは、製造の条件によって末端にカルボキシル基などの極性の強い原子団を有する場合があるが、このような原子団はしばしば非特異吸着と呼ばれる強い吸着によって、クロマトグラフィーの効率を低下させる。したがって、なんらかの化学処理によって不活性化することが好ましい。例えばカルボキシル基は、エステルに変換することが可能であり、そのためには例えばジアゾメタンやトリメチルシリルジアゾメタンがよく用いられる。またDCCなどのいわゆる縮合剤とアミンを作用させることも出来る。また、末端に極性の強い原子団を残したままでも、移動相の中に少量のイオン性添加物、例えばアミン類、酸、あるいはそれらの混合物を加えることにより、良好なクロマトグラムを得ることができる。
 これらポリマーは、本来これを溶かしうる溶媒あるいはそれを含む混合溶媒を展開溶媒にすると、一部あるいは全部が溶解し、カラムとしての機能を損ねる場合がある。このため、本発明に係るポリマーは不溶化されたものであることが好ましい。該ポリマーを不溶化すれば、適用できる展開溶媒の選択肢が拡がる。
 不溶化する方法は、いかなるものであっても良い。例えば、担体の表面にポリマーを化学結合させ、不溶化する方法が挙げられる。
 シリカゲル等の担体の表面にシランカップリング剤等のスペーサーを用いて結合した反応性原子団をポリマーに結合させ、不溶化することができる。例えば、アミノプロピルシラン処理によってアミノ基を結合したシリカゲルとポリエステルとを反応させると、ポリエステルのいずれかのカルボニル基がアミドを形成し、結果的にシリカゲル表面にポリマーを結合することで不溶化が可能である。またエポキシ基を結合したシリカゲルは、ポリエステルのカルボン酸末端と反応してポリマーを結合することが期待できる。
 また、担体および/又はポリマーに、互いに結合可能な置換基を導入する方法も挙げられる。例えば、末端に塩素原子を持つポリエーテルスルホンは、塩素がアミノ基と置き換わることにより、シリカゲル等の担体に結合させ、不溶化することが出来る。また、ポリエステルはたとえばスルホン酸類のような適当な酸触媒存在下にヒドロキシル基を結合したシリカゲルに結合させることができる。一方、ポリエーテルスルホンには、末端にフェノール性水酸基をもつものもあり、これは、例えばアルコキシドのような適切な塩基でフェノラートに変換した後、ハロメチルフェニル基やエポキシ基を結合したシリカゲルと反応させ、置換反応によりシリカゲルに結合させ、不溶化することが出来る。また、シリカゲル上でモノマーを重合させてポリマーを形成させる場合には、あらかじめシリカゲル表面に重合に参加できる原子団を結合しておくことによりシリカゲル上にポリマーを結合することが出来る。
 また、シリカゲル等の担体との化学結合を作るのではなく、ポリマー自体を不溶化することも出来る。例えば、ポリマーの種類によって例えばPET等は、単に熱処理を施すだけで、結晶化により不溶化することができる。また、紫外線やγ-線などの高エネルギー電磁波、電子線のような粒子線を照射することによって不特定構造の分子間架橋を形成し、不溶化することが可能である。
 また、モノマーの中に、多官能の重合性基(例えば、ビニル基やシリル基等)を持つものを適量加えることにより、不溶性の架橋ポリマーとすることもできる。ポリマー主鎖を形成する反応と、架橋反応とは異なっていても良い。例えば、本発明のポリマーの中にビニル基を持つものを含ませ、ポリマー形成後にビニル基をラジカル重合させることも考えられる。
 本発明に用いるポリマーの平均重合度は、溶解性の観点から、5以上、好ましくは100以上である。一方、上限については、重合度が高いことによる不都合はないことから特に限定されないが、通常は10,000,000以下である。平均重合度は、GPCにより測定できる。
 前述のように、ポリマーを化学結合する場合や、あるいは熱処理結晶化により不溶化する場合には、該ポリマーの処理前の平均重合度が該当する。
 一方、担体上でモノマーを重合させるような場合等のように、ポリマーの重合度を当てはめられない場合には、平均重合度を推定する。その基本的な方法論は、化学結合したポリマーも、ポリマー化はしたものの化学結合していないポリマーも、同じ重合度であると仮定し、担体上での重合反応の後に、まず低分子量物質のみを溶かす溶媒で洗浄した後、該ポリマーを溶解する溶媒で洗浄し、抽出されたポリマーについてGPCを行う。
 こうした推定も困難な場合には、担体を温和な条件で溶解する試薬、(担体がシリカゲルであれば、例えばフッ化水素アンモニウムのメタノール溶液等)で、担体表面を表面に結合した原子団がなくなるまで溶解し、得られた溶出物をヘキサメチルジシラザン等で処理した後にGPC分析し、平均重合度を測定する方法が挙げられる。
 上記のような方法を採用できない場合、ポリマーの末端の構造如何によっては末端基分析も可能である。例えば、末端がカルボン酸であるような場合には、酸塩基滴定、イオン交換後に結合した陽イオンの量を分析するなどの方法が可能である。末端がアルコールである場合はエステル化あるいはカルバモイル化などによって指標となる元素を含んだ原子団を導入し、該元素の導入量を分析すればよいが、シリカゲルの表面がアミノ基で修飾されているような場合には、事前にアミノ基選択的な化学処理によってこれを不活性化する必要がある。このように、結合するポリマーやその担体がすでに結合している原子団などにより、適切な分析の方法を検討する必要がある。末端基の定量値が得られたら、推定結合量を末端基数で割れば分子量(重合度)を求めることが出来る。
 <固定相>
 上記ポリマーを粒子状又はモノリス状の担体に担持させて多孔質の固定相とすることができる。ポリマー自体を多孔質の球状または不定形の粒子としたり、連続孔を持った多孔質の一体であるいわゆるモノリスとしたり、または多孔質の膜形状として利用することが出来る。ここで、本発明でいう多孔質および多孔性とは、窒素吸着を用いるBET法により測定されるその表面の比表面積が5~1000m/g、好ましくは10~500m/gであるものをいう。固定相の比表面積が上記範囲であれば、低分子化合物の分離に有利であり、また、テーリングを防ぐという観点から好ましい。
 固定相の比表面積を増大および減少させる方法としては、ポリマーを担体に担持させる場合であれば、固定相の比表面積は用いる担体の比表面積に相当するため、所望の比表面積の担体を選択すればよい。担体が、例えばシリカゲルである場合、適当な製品を選ぶことで調製することができる。一般的に、ポリマーを担体に担持させる場合であれば、担持の前後で比表面積に誤差以上の変化はないため、固定相の比表面積は、用いる担体の比表面積と同一とみなすことができる。
 一方、ポリマーを粒子状やモノリス状にする場合、固定相の比表面積を調整する方法としては、例えば、懸濁重合の際に、モノマーの混合物に溶解するが重合反応には不活性で、さらに生成した重合体を溶解しない性質の有機溶媒を希釈剤として加えることで、比表面積を大きくすることができる。
 本発明において、ポリマーを担体に担持させる場合、担体としては、多孔質有機担体又は多孔質無機担体が挙げられ、好ましくは多孔質無機担体である。多孔質有機担体として適当なものは、ポリスチレン、ポリ(メタ)アクリルアミド、ポリ(メタ)アクリレート等から選択される高分子物質であり、多孔質無機担体として適当なものは、シリカゲル、アルミナ、ジルコニア、チタニア、マグネシア、ガラス、カオリン、酸化チタン、ケイ酸塩、ヒドロキシアパタイトなどである。好ましい担体はシリカゲル、アルミナ、又はガラスである。
 このような担体の平均粒径は、通常0.1~100μm、好ましくは1~50μmであり、平均孔径は、通常10~10000Å、好ましくは50~1000Åである。また、担体の比表面積は、通常5~1000m/g、好ましくは10~500m/gである。一般的に、ポリマーを担体に担持させる場合であれば、担持の前後で比表面積に誤差以上の変化はないため、固定相の平均粒径は、用いる担体の平均粒径と同一とみなすことができる。
 担体はそのままでも良いが、表面を化学処理することによって、担体自体への分離対象物質の過剰な吸着を抑制でき、また、ポリマーの化学結合を容易にすることができる。化学処理としては、不溶化の方法で述べたような、シランカップリング剤、アミノプロピルシラン処理等が挙げられる。
 担体に担持された該ポリマーの平均厚み(担体g当たり担持量/担体比表面積)は通常2/10~2/10(μm)であり、4/10~5/10が好ましい。上記範囲であれば、ピークがシャープになる傾向があり好ましい。
 上記ポリマーを粒子状又はモノリス状の担体に担持させる方法としては、ポリマーを溶媒に溶解させ、担体に塗布、噴霧、浸漬等させた後に減圧あるいは気流を通すことによって溶媒の除去を行い、ポリマーを担体表面に残す方法が挙げられる。溶媒としては、用いるポリマーを溶解可能な適切なものを選択すればよく、例えば、PETであれば、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールが挙げられ、ポリエーテルスルホンであれば、ジクロロメタン等が挙げられる。
 また、ポリマーの先駆体を必要なら適切な触媒と共に担体に含浸させ、重合させる方法が挙げられる。
 ポリマーを粒子状又はモノリス状の担体に担持させる方法としては、化学結合により担体に担持させる方法も挙げられる。化学結合により担体に担持させる方法については、上記の、ポリマーを不溶化する方法として述べた方法と同様である。
 このように、ポリマーが担体上に担持された固定相において、固定相100質量部中に含まれるポリマーの質量部の割合(%)は、好ましくは1~50%であり、さらに好ましくは10~30%である。このような割合とすることで、ポリマーの吸着能力を適切に発現させながら、徒に保持を強くすることやピークを幅広にすることを避けることができ、好ましい。
 ポリマー自体を多孔質の球状または不定形の粒子の固定相とする方法としては、懸濁重合法が挙げられる。また、既製のポリマーの溶液を、該溶液と混和しない液体の中に懸濁させ、溶媒を徐々に拡散除去する、沈殿剤を用いてポリマーを析出させる、温度変化によって溶液をゲル化させるなどの方法が挙げられる。ポリマーを多孔質にするためには、該ポリマーと相容性がないが、該ポリマーを溶かしている溶媒には溶けるような物質を適当量添加しておき、粒子が固化してから洗浄抽出することが有効である。重合の際、あるいは温度変化によりゲル化する際に、スピノーダル分解を起こさせることで多孔質にすることもできる。
 本発明の固定相を粒子状にする場合においては、ポリマーを担体に担持させる場合、固定相の平均粒径は、通常0.1μm~1000μm、好ましくは1μm~100μmである。
 一方、ポリマーを多孔質の粒子とする場合には、固定相の平均粒径は、通常0.1μm~1000μm、好ましくは5μm~500μm、より好ましくは10μm~200μmである。上記範囲であることが、良好なカラム効率と、充填層の液透過性のバランスにおいて好ましい。
 平均粒径は、球形であればその直径を指し、不定形粒子の場合には、該粒子体積と等しくなる球の直径で表される。平均粒径は顕微鏡画像用いて測定する装置、例えばMalvern社製Mastersizer 2000Eにより測定することができる。
 さらに、固定相が粒子ではなく、多くの貫通孔(連続孔)を有する一体の多孔質構造体であるモノリスも応用が拡がりつつある。本発明においても、多孔質粒子を形成する方法として述べた条件を、懸濁状態ではなく、適切な容器の中などで適用すれば、相分離プロセスによって多孔質モノリス状にすることもできる。また既存のモノリス状の担体に該ポリマーを担持することも出来る。モノリス担体の材料としては、前述した担体に用いる物質と同様の物を用いることができる。モノリスは、その容器(分析カラム)との間に、隙間や、圧密化した部分を作らないことが重要であり、このためには既存の方法論を用いることが出来る。既存のモノリスについては、例えば、特開平7-041374に記載されている。当該文献には、金属アルコキシドを出発原料とし、適当な共存物質を原料に添加して、巨大空孔となる溶媒リッチ相を持つ構造を生じせしめる、ゾル-ゲル法により一体型の無機多孔質体を製造できることが記載されている。
 本発明の固定相を粒子として用いる場合には、アスペクト比が2以下、好ましくは1.5以下である。真球に近ければ近いほど好ましいので、下限は、1まで特に制限されない。
 アスペクト比は以下のとおりに測定する。試料を観察台上に無作為に散布した状態で真上から電子顕微鏡あるいは光学顕微鏡によって観察し、独立した(他のどの粒子とも接触あるいは重複していない)一次粒子が10個以上観察される任意の画面において、画面内の個々の独立した一次粒子に対し、長軸および短軸(長軸に垂直で最も長い部分の長さ)を求め、両者の比を個別粒子のアスペクト比とする。画面内のすべての独立した一次粒子に対するアスペクト比を相加平均したものを、本発明におけるアスペクト比とする。一次粒子とは、粒子間の界面が明瞭に観察することができる粒子のことである。通常、観察は試料台上での一次粒子の重なりを避けるように適度に分散させて行うが、偶発的重なりは避けがたく、また、複数の一次粒子が凝集したバルク状粒子もあるが、これらは観察対象から除かれる。
 本発明の固定相は、超臨界流体クロマトグラフィー(SFC)や、HPLC等の液体クロマトグラフィーに用いることができる。
 以下、実施例を参照して本発明を具体的に説明する。ただし、本発明は以下の実施例の態様に制限されない。
 <調製例1>
(シリカゲルのアミノプロピルシラン処理)
 平均粒径5μm、それぞれ120、300、700Åの細孔径を持った3種のシリカゲルを、以下の手順でアミノプロピル化した。シリカゲル14gを100℃にて真空乾燥した後、トルエン150mLに分散し、トルエンの一部(約30mL)を、凝縮液に濁りがなくなるまで蒸留で除いた。シリカゲルを分散した液にアミノプロピルトリエトキシシラン7mLを添加し、8時間に亘り適量ずつ約200mLのトルエンを追加しながら約200mLを留去した。液を冷却後、グラスフィルターによりシリカゲルを捕集し、これをトルエン70mLで1回、ジクロロメタン70mLで2回洗浄した後、真空乾燥した。
 得られたシリカゲル(細孔径120Åのもの)の顕微鏡写真を図1に示す。任意の画面上に撮影された22個において、アスペクト比の平均はほぼ1.0であった。
 また、3種のシリカゲル(平均細孔径120、300、700Å)の比表面積をBET法で測定したところ、それぞれ、320m/g、98m/g、35m/gであった。
 <実施例1>
 調製例1で得たアミノプロピルシラン処理シリカゲル(平均粒子径5μm、平均細孔径300Å)3.53gをフラスコに採り、これに対し、4-ヒドロキシメチル安息香酸メチル1.85g、トルエンスルホン酸一水和物126mgをメタノール1mL、ジクロロメタン7mLに溶かした液を吸収させ、減圧により溶媒を除いた。最後に1Torrに減圧しながら、フラスコをオイルバスで加温、温度を100℃から徐々に上げ、最終的に5時間、150℃に保った。熱処理終了後、得られた粉末を炭酸水素アンモニウム63mgを水に溶かした液を加えたメタノール30mLに分散、グラスフィルターによるろ過回収の後、50mLのメタノールで4回洗浄した。乾燥後の生成物をさらにNMP 50mLにより3回洗浄後、メタノール15mL、トルエン10mLの混合液に分散、トリメチルシリルジアゾメタンの10%ヘキサン溶液0.5mLを加え、1夜放置した。その後、メタノール適量で洗浄し、真空乾燥した。
 得られたシリカゲルの炭素含量は9.28質量%であり、原料シリカゲルのそれは1.3質量%であったことから、約11.4質量%のポリ(4-オキシメチルベンゾイル)が結合しているものと推定された。
 得られたポリ(4-オキシメチルベンゾイル)結合シリカゲルの比表面積は98m/gであり、平均粒径は5μmとみなされた。
 得られたポリ(4-オキシメチルベンゾイル)結合シリカゲルを固定相として2.1mmφ×150mmカラムにスラリー充填し、液体クロマトグラフィー条件でターフェニル異性体とトリフェニレンを分離した。図2は、ポリオキシメチルベンゾイルを固定相とするHPLCによるテルフェニル異性体およびトリフェニレンの分離を示す。ピークの順に、オルト体、メタ体、パラ体、トリフェニレン。カラムサイズは2.1mmφ×150mm, 移動相はヘキサン/2-プロパノール 9:1v/v 0.21mL/min。
 なお、NMP洗浄を行った際の洗浄液は、水で希釈すると白色沈殿を分離し、この分子量は0.5%LiClを含むNMPを移動相とするGPC(TOSOH TSKgel GMH)により、約14000のMw(PS換算)と求められた。得られたポリ(4-オキシメチルベンゾイル)結合シリカゲルにも、同等の分子量のポリ(4-オキシメチルベンゾイル)が結合していると推定できる。
 <調製例2>
 調製例1と同様にして、アミノプロピルトリエトキシシランに代えて、グリシドキシプロピルトリエトキシシランにより、細孔径300Åのシリカゲルを処理した。ただし、この時にはシラン処理剤を加えて以降は温度を93℃に維持し、トルエンの留去は行わなかった。得られたシリカゲルの炭素含量は1.21質量%であった。
 <実施例2>
 4-ヒドロキシメチル安息香酸0.80gとp-クロロベンゼンスルホン酸48.6mgを、THF 6.1mLに溶かし、ここに調製例2で得たシリカゲル2.4gを混ぜ、減圧下に溶媒を留去した。減圧(5Torr)を継続しながら100℃から徐々に温度を上げ、3時間で148℃にし、これを2.5時間維持した。冷却後、ピリジン200mgを含むメタノール20mLを注ぎ、シリカゲルを分散させ、グラスフィルターでろ集した。シリカゲルをさらに5回、計200mLのメタノールで洗浄した。さらにNMP 40mLで3回分散、ろ集を繰り返した後、アセトン40mL、メタノール40mL、ヘキサン/アセトン等容混合液40mLで逐次洗浄、真空乾燥した。得られたシリカゲルの炭素含量は6.76質量%であった。担持処理前のシリカゲルの炭素含量が1.21質量%であったことから、生成物のポリマー含量は7.9質量%と計算された。得られた固定相の比表面積は98m/gであり、平均粒径は5μmとみなされた。
 本固定相をスラリー法でカラム(4.6mmφ×150mm)に充填し、HPLCおよびSFCによって芳香族炭化水素を分析した例を図3に示す。
 図3上段はヘキサン/2-プロパノール(100:1 v/v) 1mL/min 25℃のHPLCである。ピークは左からo-テルフェニル、m-およびp-テルフェニル(重なっている)、トリフェニレンである。検出はUV 254nmで行った。
 図3下段は、CO/メタノール(97:3 v/v)によるSFCである。流速:4ml/min、温度:40℃、背圧:150barで行った。ピークは左からo-テルフェニル、m-テルフェニル、p-テルフェニル、トリフェニレンである。検出はUV 254nmで行った。
 <実施例3>
(PES化学コーティング)
 末端が塩素であるPES(スミカエクセル 4800P、重量平均分子量42000)1.0gをジクロロメタン7.2mL、メタノール0.8mLの混合液に溶解し、シリカゲル(平均粒径5μm、細孔径700Å、比表面積35m/g、アミノプロピルシラン処理)4.0gと混合した。減圧により溶媒を除去し、可視的には担持処理前と差のない粉状の固定相を得た。洗浄溶媒へのポリマーの溶出やシリカゲルとポリマーの分離は認められなかったため、ポリマーほぼ全量がシリカゲル上に担持されたと考えられる。得られた固定相の比表面積は35m/gであり、平均粒径は5μmとみなされた。
 <実施例4>
 実施例3と同じPES1.0gをジクロロメタン7.2mL、メタノール0.8mLの混合液に溶解し、アミノプロピルシラン処理した平均粒径5μm、細孔径120Å、比表面積320m/g、の球状シリカゲル4.0gと混合した。同様にして溶媒を除去した後、容器を減圧し(5mmHg)、194℃に3時間保持した。得られた粉末を、ジクロロメタンとメタノールの混合液(9:1 v/v)計約100mLにより、3回に分けて分散、ろ過、洗浄した。得られた固定相は、元素分析における炭素含量は11.65%であった。担持処理前のシリカゲルの炭素含量が3.7質量%であったことから、生成物のPES含量は12.4質量%と計算された。また、得られた固定相の比表面積は320m/gであり、平均粒径は5μmとみなされた。
 <調製例3>
 シリカゲル(平均粒径5μm、細孔径300Å、比表面積98m/g)7.0gをトルエン200mLに分散し、精留管を取り付け、撹拌しながら該トルエンの内、約100mLを蒸留除去した。シリカゲルの分散液を室温近くまで冷却した後、クロロメチルフェニルエチルトリメトキシシラン6.18gおよび酢酸0.33gを添加、バス温125℃でトルエン30mLをゆっくり留去した。反応液を冷却した後、シリカゲルをグラスフィルターに濾し取り、30mLのトルエンで4回、40mLのメタノールで3回洗浄し、真空乾燥した。
 <実施例5>
 末端がフェノールであるPES5.0g(スミカエクセル 5003PS。重量平均分子量45500)を窒素雰囲気下に脱水DMSO 40mLに溶解し、カリウムターシャリブトキシド56mgを加えた。この溶液15gに、ヨウ化テトラブチルアンモニウム40mg、調製例3のシリカゲル2.3gを加え、撹拌しながら9時間、100℃に保った。冷却後、分散液からグラスフィルターでシリカゲルを濾し取り、30mLのDMSOで5回、ジクロロメタン-メタノール(9:1v/v)30mLで3回、最後にメタノール30mLで5回洗浄し、真空乾燥した。得られた固定相の炭素含量は2.56質量%、クロロメチルフェニルエチルシラン処理したシリカゲルの炭素含量が1.85質量%であったことから、生成物のPES含量は1.18質量%と計算された。また、得られた固定相の比表面積は98m/gであり、平均粒径は5μmとみなされた。
 <実施例6>
 ポリスルホン(UDEL P1700 NT11, 重量平均分子量Mw 47000)0.258gをTHF 5.0mLに溶解し、この溶液をシリカゲル(粒径5μm、細孔径700Å、比表面積35m/g、アミノプロピルシラン処理)2.3gに対し、2回に分けて吸収および減圧による溶媒留去を行い、可視的には処理前と違いのない固定相を得た。洗浄溶媒へのポリマーの溶出やシリカゲルとポリマーの分離は認められなかったため、ポリマーほぼ全量がシリカゲル上に担持されたと考えられる。得られた固定相の比表面積は35m/gであり、平均粒径は5μmとみなされた。
 <実施例7>
 ポリカーボネート(帝人化成社製L1225Y)0.5185gをジクロロメタン10mLに溶解し、この溶液を2回に分けてシリカゲル(粒径5μm、細孔径700Å、比表面積35m/g、アミノプロピルシラン処理)2.0gに吸収させては、溶媒を減圧留去することを繰り返した。最後に、多少の凝集物を含む粉体の固定相を得た。洗浄溶媒へのポリマーの溶出やシリカゲルとポリマーの分離は認められなかったため、ポリマーほぼ全量がシリカゲル上に担持されたと考えられる。得られた固定相の比表面積は35m/gであり、平均粒径は5μmとみなされた。
 <実施例8>
 PBT(Duranex300FP) 1.25gをヘキサフルオロ-2-プロパノール7mLに溶解した。ここにシリカゲル(平均粒子径約5μm、細孔径それぞれ120、300、700Å(比表面積はそれぞれ、320m/g、98m/g、35m/g)のアミノプロピルシラン処理をしたもの、および平均粒子径約5μm、細孔径300Å、比表面積98m/g、トリメチルシラン処理のもの(計4種類))2.3gを加え、混和した後、減圧で溶媒を留去した。いずれの場合もシリカゲルは粉状となり、PBTをコーティングする前と可視的な違いはなく、比表面積、平均粒径も同等とみなされた。洗浄溶媒へのポリマーの溶出やシリカゲルとポリマーの分離は認められなかったため、ポリマーほぼ全量がシリカゲル上に担持されたと考えられる。
 それぞれ、エタノールに分散し、長さ150mm、内径4.6mmのステンレス製カラムに充填した。アミノプロピルシラン処理、細孔径700Åのシリカゲルを用いて調製した固定相のHPLCおよびSFCによる分離例を図4に示す。
 図4上段はヘキサン/2-プロパノール(100:1 v/v) 1mL/min 25℃のHPLCである。ピークは左からo-テルフェニル、m-テルフェニル、p-テルフェニル、トリフェニレンである。検出はUV 254nmで行った。
 図4下段は、CO/メタノール(97:3 v/v)によるSFCである。流速:4mL/min、温度:40℃、背圧:150barで行った。ピークは左からo-テルフェニル、m-テルフェニル、p-テルフェニル、トリフェニレンである。検出はUV 254nmで行った。
 <実施例9>
 実施例8と同じ要領で、PBT1.02gをヘキサフルオロ-2-プロパノール7.0mLに溶解し、シリカゲル(粒径5μm、細孔径300Å、アミノプロピルシラン処理)3gに担持した。得られた粉末をフラスコ中、5Torrの減圧下に、徐々に加温し、3時間、198℃に保った。この後冷却し、30mLのヘキサフルオロ-2-プロパノールに30分間分散、ろ別する操作を4回繰り返した。さらにメタノール30mLで3回洗浄した後、真空乾燥した。得られた粉末の炭素含量は17.27質量%であり、アミノプロピルシラン処理シリカゲルのそれが1.3質量%であったことから、生成物のPBT含量は24.9質量%と計算された。得られた固定相の比表面積は98m/gであり、平均粒径は5μmとみなされた。
 得られた固定相を実施例2と同様にカラム充填して得られたクロマトグラムを図5に示す。
 図5はCO/メタノール(97:3 v/v)によるSFCである。流速:4mL/min、温度:40℃、背圧:150barで行った。ピークは左からo-テルフェニル、m-テルフェニル、p-テルフェニル、トリフェニレンである。検出はUV 254nmで行った。
 <実施例10>
 PET(帝人化成社製TR8550FF)0.5gをヘキサフルオロ-2-プロパノール8mLに溶かし、得られた溶液を2回に分けて2.06gのシリカゲル(粒径5μm、細孔径700Å、アミノプロピルシラン処理)に実施例8と同様にして担持した。洗浄溶媒へのポリマーの溶出やシリカゲルとポリマーの分離は認められなかったため、ポリマーほぼ全量がシリカゲル上に担持されたと考えられる。得られた固定相の比表面積は35m/gであり、平均粒径は5μmとみなされた。
 得られた固定相をカラムに充填して、SFCを行った例を図6に示す。
 図6はCO/メタノール(97:3 v/v)によるSFCである。流速:4mL/min、温度:40℃、背圧:150barで行った。ピークは左からo-テルフェニル、m-テルフェニル、p-テルフェニル、トリフェニレンである。検出はUV 254nmで行った。
 <参考例>
 図7は、SFCにおいて一般化している2-エチルピリジン分離剤と本発明の固定相とで分離の比較を行った例を示したものである。上段は、Waters, Viridis Silica 2-Ethylpyridine 5μm 下段は実施例10の固定相を充填したカラム(それぞれ0.46mmΦx15cm)でアントラセンとフェナントレンのアセチル置換体の分離をSFCによって評価したものである。移動相:CO-メタノール(9:1 v/v)、流速:4.0mL/min、温度:40℃、背圧:150barで行った。帰属を示す略記は、冒頭数字は置換基の位置、Acはアセチル、Pheはフェナントレン、Anthはアントラセンを示す。
 本発明の固定相は、明らかに、構造のよく似た置換位置異性体に対し、2-エチルピリジンよりもよい分離能を示している。芳香族環や双極性原子団を配した高分子が、ある程度規則的に配列することから、分子の形に対して敏感な吸着場が形成されているものと考えられる。
<調製例4>
(ポリエチレンイソフタレート)
 三口フラスコにイソフタロイルクロリド3.320g、トシルクロリド0.152g、乾燥ピリジン20mLを加えた後、空間に窒素を通気した。これを撹拌しながら、エチレングリコール1.240gと乾燥ピリジン10mLの混合液を滴下ロートから30分の時間をかけて滴下した。1時間放置した後、30分間60℃に加温した。反応液を冷却した後、撹拌しながら200mLの水の中に流し込んだ。生成した白色沈殿をグラスフィルターによって濾し採り、さらに200mLの水に分散、ろ別した。これをメタノール各100mLにより3回洗浄し、真空乾燥することにより、2.8gの白色粉状の生成物を得た。
<実施例11>
 調製例4で得た生成物を実施例8と同様にヘキサフルオロ-2-プロパノールに溶解し、トリメチルシラン処理した細孔径120Åのシリカゲルに担持した。得られた固定相の比表面積は320m/gであり、平均粒径は5μmとみなされた。
 得られた固定相を内径4.6mm、長さ150mmのカラムに充填し、SFCをおこなったところ(条件は実施例10と同じ)o-テルフェニル、m-テルフェニル、p-テルフェニル、トリフェニレンは、それぞれ1.15分、1.83分、1.95分、7.61分に溶出し、m-およびp-テルフェニル異性体を除けば良好な分離が得られた。
<調製例5>
 (ポリ(2,2-ジメチルプロパン-1,3-ジイルテレフタレート))
 2,2-ジメチルプロパン-1,3-ジオール 1.258g、テレフタロイルクロリド2.452g、トシルクロリド33mgをナス型フラスコに入れ、空間を乾燥窒素で置換した後、脱水ピリジン25mLを加え、撹拌しながら60℃、80℃、100℃にそれぞれ2時間保った。反応液を冷却後、砕氷約300g上に注ぐと、白色沈殿を形成した。これをグラスフィルター上でそれぞれ水100mLにより3回、さらにメタノールそれぞれ80mLにより3回洗浄し、真空乾燥することにより、2.72gの白色粉末を得た。全量をジクロロメタン15mLに溶解し、2-プロパノール100mL中に加えて再沈殿したところ、チューインガム状の沈殿を生じ、これは次第に固化し、もろい塊となった。真空乾燥により、2.21gの粉末を与えた。
<実施例12>
 調製例5で得た生成物を実施例11と同様に、ジクロロメタンを用いてトリメチルシラン処理した細孔径120Åのシリカゲルに担持した。得られた固定相の比表面積は320m/gであり、平均粒径は5μmとみなされた。
 得られた固定相を内径4.6mm、長さ150mmのカラムに充填し、HPLC条件(ヘキサン/2-プロパノール 90:10(v/v)、1.0mL/min、25℃)でアントラセン及びフェナントレンのモノアセチル置換体の分析を行ったところ、9-アセチルアントラセンが4.5分、9-アセチルフェナントレンが5.8分、3-アセチルフェナントレンが6.4分、2-アセチルアントラセンと2-アセチルフェナントレンが重なって8.3分に溶出した。
9AcAnth  9-アセチルアントラセン
9AcPhe   9-アセチルフェナントレン
3AcPhe   3-アセチルフェナントレン
2AcPhe   2-アセチルフェナントレン
2AcAnth  2-アセチルアントラセン

Claims (9)

  1.  主鎖の繰り返し単位に、主鎖の一部をなす芳香族環と、主鎖の一部をなす双極性原子団とを有するポリマーを含む固定相であって、その比表面積が5~1000m/gであることを特徴とする固定相。
  2.  前記ポリマーが、ポリエステル、ポリスルホン、ポリエーテルスルホン、またはポリカーボネートであることを特徴とする、請求項1に記載の固定相。
  3.  前記ポリマーがポリエステルであることを特徴とする、請求項2に記載の固定相。
  4.  前記ポリエステルが、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンイソフタレート、ポリ(2,2-ジメチルプロパン-1,3-ジイルテレフタレート)、またはポリ-4-オキシメチルベンゾイルであることを特徴とする請求項3に記載の固定相。
  5.  前記ポリマーが、比表面積が5~1000m/gの担体に担持して成ることを特徴とする請求項1~4のいずれかに記載の固定相。
  6.  粒子状であることを特徴とする、請求項1~5のいずれかに記載の固定相。
  7. 平均粒径が0.1μm~1000μmであることを特徴とする、請求項6に記載の固定相。
  8.  モノリス状であることを特徴とする、請求項1~5のいずれかに記載の固定相。
  9.  超臨界流体クロマトグラフィー用であることを特徴とする、請求項1~8のいずれかに記載の固定相。
PCT/JP2013/068603 2012-07-23 2013-07-08 固定相 WO2014017280A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13822750.9A EP2876439B1 (en) 2012-07-23 2013-07-08 Stationary phase
JP2014526843A JP6342328B2 (ja) 2012-07-23 2013-07-08 固定相
CN201380039050.4A CN104471387B (zh) 2012-07-23 2013-07-08 固定相
US14/416,381 US9327269B2 (en) 2012-07-23 2013-07-08 Stationary phase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012162518 2012-07-23
JP2012-162518 2012-07-23

Publications (1)

Publication Number Publication Date
WO2014017280A1 true WO2014017280A1 (ja) 2014-01-30

Family

ID=49997096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068603 WO2014017280A1 (ja) 2012-07-23 2013-07-08 固定相

Country Status (5)

Country Link
US (1) US9327269B2 (ja)
EP (1) EP2876439B1 (ja)
JP (1) JP6342328B2 (ja)
CN (1) CN104471387B (ja)
WO (1) WO2014017280A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152996A1 (ja) * 2015-03-24 2016-09-29 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
WO2017022695A1 (ja) * 2015-07-31 2017-02-09 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
JP2018189441A (ja) * 2017-04-28 2018-11-29 日立化成テクノサービス株式会社 超臨界流体クロマトグラフィー用カラム充填剤、超臨界流体クロマトグラフィー用カラム及びそれらの製造方法
JP2018189449A (ja) * 2017-04-28 2018-11-29 株式会社島津製作所 分離方法および分析方法
US11040330B2 (en) 2016-03-23 2021-06-22 Daicel Corporation Chromatography stationary phase
US11731106B2 (en) 2019-10-02 2023-08-22 Shimadzu Corporation Column packing material for supercritical fluid chromatography, column for supercritical fluid chromatography and preparation method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026424A1 (ja) * 2015-08-10 2017-02-16 国立大学法人京都大学 多孔性粒子、多孔性粒子の製造方法およびブロックコポリマー
US10858491B2 (en) * 2015-08-10 2020-12-08 Kyoto University Porous particle made of organic polymer, method for producing porous particle made of organic polymer, and block copolymer
JP7046489B2 (ja) 2017-01-06 2022-04-04 住友化学株式会社 樹脂微粒子の製造方法、樹脂粒子
JP7144176B2 (ja) * 2018-04-13 2022-09-29 株式会社島津製作所 抽出物の回収方法および分析方法
CN112138638B (zh) * 2020-09-18 2021-08-13 北京理工大学 一种脂肪族聚碳酸酯的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741374A (ja) 1993-07-30 1995-02-10 Naohiro Soga 無機系多孔質体の製造方法
JP2002506426A (ja) 1997-04-25 2002-02-26 トランスジエノミツク・インコーポレーテツド 非多孔質ポリマービーズ上でのポリヌクレオチド分離
JP3858509B2 (ja) 1999-02-26 2006-12-13 昭和電工株式会社 改質された充填剤、その改質方法及びそれを用いたクロマトグラフィー用カラム
JP2008081647A (ja) * 2006-09-28 2008-04-10 Jsr Corp 有機ポリマー粒子およびその製造方法
JP2010137207A (ja) * 2008-12-15 2010-06-24 Hitachi High-Technologies Corp ミックスモード型吸着剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591291B2 (ja) * 1975-03-19 1984-01-11 株式会社クラレ ポリエステルタコウシツキユウジヨウリユウシ オヨビ ソノセイゾウホウホウ
JPS52107346A (en) * 1976-03-04 1977-09-08 Shimadzu Corp Traverse drum
US4822492A (en) * 1984-09-28 1989-04-18 Uop Latex polymer bonded crystalline molecular sieves
US6066258A (en) * 1997-12-05 2000-05-23 Transgenomic, Inc. Polynucleotide separations on polymeric separation media
US20020187557A1 (en) * 2001-06-07 2002-12-12 Hobbs Steven E. Systems and methods for introducing samples into microfluidic devices
JPWO2005085835A1 (ja) * 2004-03-04 2008-01-24 ダイセル化学工業株式会社 光学異性体用分離剤
CA2580922C (en) * 2004-09-23 2013-06-04 Tripath Imaging, Inc. Polycationic polymer coatings for immobilizing biological samples
JP5624324B2 (ja) * 2008-01-25 2014-11-12 株式会社カネカ ポリアルキレンオキシドの製造方法
JP6154807B2 (ja) * 2012-05-23 2017-06-28 株式会社ダイセル 分離剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741374A (ja) 1993-07-30 1995-02-10 Naohiro Soga 無機系多孔質体の製造方法
JP2002506426A (ja) 1997-04-25 2002-02-26 トランスジエノミツク・インコーポレーテツド 非多孔質ポリマービーズ上でのポリヌクレオチド分離
JP3858509B2 (ja) 1999-02-26 2006-12-13 昭和電工株式会社 改質された充填剤、その改質方法及びそれを用いたクロマトグラフィー用カラム
JP2008081647A (ja) * 2006-09-28 2008-04-10 Jsr Corp 有機ポリマー粒子およびその製造方法
JP2010137207A (ja) * 2008-12-15 2010-06-24 Hitachi High-Technologies Corp ミックスモード型吸着剤

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C. WEST ET AL., J. CHROMATOGR. A, vol. 1191, 2008, pages 21
C. WEST ET AL., J. CHROMATOGR. A, vol. 1203, 2008, pages 105
R. K. MARCUS ET AL., J. CHROMATOGR. A, vol. 986, 2003, pages 17
R. K. MARCUS, J. SEPARATION SCIENCE, vol. 31, 2008, pages 1923
See also references of EP2876439A4 *
Y. KAIDA ET AL., BULL. CHEM. SOC. JPN., vol. 65, 1992, pages 2286

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021015129A (ja) * 2015-03-24 2021-02-12 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
EP4063849A1 (en) 2015-03-24 2022-09-28 Daicel Corporation Stationary phase for supercritical fluid chromatography
CN107430100A (zh) * 2015-03-24 2017-12-01 株式会社大赛璐 超临界流体色谱用的固定相
JPWO2016152996A1 (ja) * 2015-03-24 2018-01-18 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
US20180050282A1 (en) * 2015-03-24 2018-02-22 Daicel Corporation Stationary phase for supercritical fluid chromatography
JP7061172B2 (ja) 2015-03-24 2022-04-27 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
US11065558B2 (en) 2015-03-24 2021-07-20 Daicel Corporation Stationary phase for supercritical fluid chromatography
WO2016152996A1 (ja) * 2015-03-24 2016-09-29 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
US11014019B2 (en) 2015-07-31 2021-05-25 Daicel Corporation Stationary phase for supercritical fluid chromatography
JPWO2017022695A1 (ja) * 2015-07-31 2018-05-24 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
WO2017022695A1 (ja) * 2015-07-31 2017-02-09 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
US11040330B2 (en) 2016-03-23 2021-06-22 Daicel Corporation Chromatography stationary phase
JP2018189449A (ja) * 2017-04-28 2018-11-29 株式会社島津製作所 分離方法および分析方法
JP2018189441A (ja) * 2017-04-28 2018-11-29 日立化成テクノサービス株式会社 超臨界流体クロマトグラフィー用カラム充填剤、超臨界流体クロマトグラフィー用カラム及びそれらの製造方法
US11731106B2 (en) 2019-10-02 2023-08-22 Shimadzu Corporation Column packing material for supercritical fluid chromatography, column for supercritical fluid chromatography and preparation method therefor

Also Published As

Publication number Publication date
JP6342328B2 (ja) 2018-06-13
US9327269B2 (en) 2016-05-03
CN104471387B (zh) 2016-08-24
EP2876439B1 (en) 2021-06-09
EP2876439A4 (en) 2015-07-08
JPWO2014017280A1 (ja) 2016-07-07
EP2876439A1 (en) 2015-05-27
CN104471387A (zh) 2015-03-25
US20150182943A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6342328B2 (ja) 固定相
Liu et al. Effective coating of crosslinked polyethyleneimine on elastic spongy monolith for highly efficient batch and continuous flow adsorption of Pb (II) and acidic red 18
Kempe et al. Development and evaluation of spherical molecularly imprinted polymer beads
CN101912770B (zh) 吸附树脂及其制备方法
JP6791844B2 (ja) 超臨界流体クロマトグラフィー用の固定相
JP6276786B2 (ja) 固相担体、該固相担体の製造方法、アフィニティ精製用担体、充填剤、クロマトグラフィーカラム及び精製方法
Joshi et al. Novel separation strategies based on molecularly imprinted adsorbents
Srivastava et al. Hydrolytically stable ZIF-8@ PDMS core–shell microspheres for gas–solid chromatographic separation
JP5532359B2 (ja) 媒体に含有されるハロゲン化芳香族化合物の選択固着剤及び選択固着方法
Takaomi Hollow-fiber membrane absorbents embedded molecularly imprinted polymeric spheres for bisphenol A target
Bai et al. Chiral separation of racemic mandelic acids by use of an ionic liquid-mediated imprinted monolith with a metal ion as self-assembly pivot
Sun et al. Interconnectivity of macroporous molecularly imprinted polymers fabricated by hydroxyapatite-stabilized Pickering high internal phase emulsions-hydrogels for the selective recognition of protein
Wang et al. 4-Vinylpyridine-modified post-cross-linked resins and their adsorption of phenol and Rhodamine B
Gutiérrez‐Climente et al. Iniferter‐mediated grafting of molecularly imprinted polymers on porous silica beads for the enantiomeric resolution of drugs
Mirzaei et al. Preparation and utilization of microporous molecularly imprinted polymer for sustained release of tetracycline
Wang et al. Facile fabrication of mesoporous poly (ethylene-co-vinyl alcohol)/chitosan blend monoliths
Li et al. Synthesis of novel photoresponsive molecularly imprinted polymer microspheres with special binding properties
Díaz‐Álvarez et al. Recent advances and future trends in molecularly imprinted polymers‐based sample preparation
JP6810039B2 (ja) 超臨界流体クロマトグラフィー用の固定相
US20080314835A1 (en) Chiral separating agents with active support
JP6813247B2 (ja) クロマトグラフィー用の固定相
Zhuang et al. In situ synthesis of molecularly imprinted polymers on glass microspheres in a column
JP4315337B2 (ja) 光学分割能を有する非粒子状有機多孔質体及びその製造方法
Zhao et al. Fabricating hypercrosslinked aromatic-rich starch urethane polymer with enhanced adsorption performance for separation of acetophenone and 1-phenylethanol
Maciejewska et al. Synthesis and characterization of porous copolymers of 2‐hydroxyethyl methacrylate with ethylene glycol dimethacrylate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526843

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416381

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013822750

Country of ref document: EP