WO2014017020A1 - 液体処理装置及び液体処理方法 - Google Patents

液体処理装置及び液体処理方法 Download PDF

Info

Publication number
WO2014017020A1
WO2014017020A1 PCT/JP2013/003969 JP2013003969W WO2014017020A1 WO 2014017020 A1 WO2014017020 A1 WO 2014017020A1 JP 2013003969 W JP2013003969 W JP 2013003969W WO 2014017020 A1 WO2014017020 A1 WO 2014017020A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal electrode
processing apparatus
liquid processing
treated
insulator
Prior art date
Application number
PCT/JP2013/003969
Other languages
English (en)
French (fr)
Inventor
今井 伸一
裕典 熊谷
真里 小野寺
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to IN3441CHN2014 priority Critical patent/IN2014CN03441A/en
Priority to JP2013558262A priority patent/JP5796174B2/ja
Priority to CN201380003505.7A priority patent/CN103889903B/zh
Priority to EP13823391.1A priority patent/EP2762453B1/en
Publication of WO2014017020A1 publication Critical patent/WO2014017020A1/ja
Priority to US14/264,748 priority patent/US9688549B2/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/002Washing machines, apparatus, or methods not otherwise provided for using bubbles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/003Washing machines, apparatus, or methods not otherwise provided for using electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46171Cylindrical or tubular shaped
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4619Supplying gas to the electrolyte

Definitions

  • the present disclosure relates to a liquid processing apparatus and a liquid processing method for processing liquid, particularly water, by generating plasma in a liquid to be processed.
  • FIG. 12 is a configuration diagram of a conventional sterilizer described in Patent Document 1. As shown in FIG.
  • the sterilizer 1 shown in FIG. 12 includes a discharge electrode 6 having a pair of a cylindrical high voltage electrode 2 and a plate-like ground electrode 3.
  • the high voltage electrode 2 is covered with an insulator 4 except for the end face of the front end portion 2 a to form a high voltage electrode portion 5.
  • tip part 2a of the high-voltage electrode 2 and the ground electrode 3 are provided facing each other in a state of being immersed in the water 8 to be treated in the treatment tank 7 with a predetermined electrode interval.
  • the high voltage electrode 2 and the ground electrode 3 are connected to a power source 9 that generates a high voltage pulse.
  • a negative high voltage pulse of 2 to 50 kV / cm and 100 Hz to 20 kHz is applied between both electrodes to discharge.
  • Bubbles 10 made of water vapor are generated by evaporation of water due to the energy and vaporization accompanying the shock wave.
  • reactive species such as OH, H, O, O 2 ⁇ , O ⁇ , and H 2 O 2 are generated by plasma generated in the vicinity of the high voltage electrode 2 to sterilize microorganisms and bacteria.
  • Patent Document 2 Another conventional liquid processing apparatus is disclosed in Patent Document 2.
  • an applied voltage can be lowered and power consumption can be reduced by interposing bubbles supplied from outside between electrodes in a liquid.
  • Similar techniques are also disclosed in Patent Literature 3, Patent Literature 4, and Patent Literature 5.
  • the above-described conventional apparatus has a problem that the plasma generation efficiency is low and it takes a long time to process the liquid.
  • an object of the present disclosure is to provide a liquid processing apparatus and a liquid processing method capable of efficiently generating plasma and, as a result, efficiently generating reactive species and processing liquid in a short time. .
  • a liquid processing apparatus includes: A first metal electrode at least a part of which is disposed in a reaction tank containing water to be treated; A second metal electrode disposed in the reaction vessel; An insulator provided to surround the first metal electrode and forming a closed space; An opening provided in the insulator with respect to the water to be treated, which generates bubbles in the water to be treated from the space; and A gas supply device for supplying the space with a gas necessary for generating the bubbles; A power supply for applying a voltage between the first metal electrode and the second metal electrode; Is provided.
  • the above-described general and specific modes may be realized by any combination of a liquid processing apparatus, a liquid processing method, a liquid processing apparatus, and a liquid processing method.
  • plasma can be generated efficiently, and liquid processing can be performed in a short time.
  • Embodiment 1 is an overall configuration diagram of a liquid processing apparatus according to Embodiment 1 of the present disclosure. It is sectional drawing which shows the electrode structure in Embodiment 1 of this indication. It is a figure which shows the measurement result by ESR method of the OH radical in the process water in Embodiment 1 of this indication. It is a figure which shows the result of having measured the decomposition amount of the indigo carmine aqueous solution with respect to the processing time in Embodiment 1 of this indication. It is sectional drawing which shows the electrode structure in Embodiment 2 of this indication. It is a figure which shows the result of having measured the decomposition amount of the indigo carmine aqueous solution with respect to the processing time in Embodiment 2 of this indication.
  • a metal material having high plasma resistance is used for the first metal electrode.
  • these metals are difficult to process, and the first metal electrode is processed when the first metal electrode is processed. The manufacturing cost is high.
  • the present inventors can continuously generate gas from a gas supply device, generate bubbles in the water to be treated, and generate plasma efficiently, thereby generating reactive species efficiently and in a short time.
  • the present disclosure has been made possible.
  • a first metal electrode structure in which the manufacturing cost is low and the characteristics can be stabilized can be found by forming the electrode exposed to the plasma and the electrode not exposed to the plasma with different materials. It was.
  • a liquid processing apparatus includes: A first metal electrode at least a part of which is disposed in a reaction tank containing water to be treated; A second metal electrode disposed in the reaction vessel; An insulator provided to surround the first metal electrode and forming a closed space; An opening provided in the insulator with respect to the water to be treated, which generates bubbles in the water to be treated from the space; and A gas supply device for supplying the space with a gas necessary for generating the bubbles; A power supply for applying a voltage between the first metal electrode and the second metal electrode; Is provided.
  • a liquid processing apparatus is provided.
  • a first metal electrode at least a part of which is disposed in a reaction tank containing water to be treated;
  • a second metal electrode disposed in the reaction vessel;
  • An insulator provided to form a space between the first metal electrode and the outer periphery;
  • An opening provided in the insulator with respect to the water to be treated, which generates bubbles in the water to be treated; and
  • a gas supply device for supplying the space with a gas necessary for generating the bubbles;
  • a power supply for applying a voltage between the first metal electrode and the second metal electrode; Is provided.
  • a liquid processing apparatus includes: A hollow first metal electrode having an open end, at least a part of which is disposed in a reaction tank containing water to be treated; A second metal electrode disposed in the reaction vessel; An insulator provided to surround the first metal electrode; An opening provided in the insulator with respect to the water to be treated, which generates bubbles in the water to be treated; and A gas supply device for supplying a gas necessary for generating the bubbles to a space formed by a hollow portion of the first electrode; A power supply for applying a voltage between the first metal electrode and the second metal electrode; Is provided.
  • the first metal electrode in any one of the first to third aspects may be configured such that the electrode disposed in the reaction vessel is coiled. Good.
  • a plurality of the openings may be provided in the insulator in any one of the first to third aspects.
  • the first metal electrode in any one of the first to third aspects includes a portion on one end side disposed in the reaction tank, and the power source. And at least two portions connected to the other end side connected to each other.
  • the first metal electrode in the sixth aspect is a metal electrode in which the one end side portion and the other end side portion are made of different materials. There may be.
  • a screw portion may be provided in the portion on the other end side of the first metal electrode in any one of the sixth and seventh aspects.
  • the gas supply device, the space, and the space on the other end side of the first metal electrode in any one of the sixth to eighth aspects You may provide the through-hole which connects.
  • the first metal electrode in any one of the first to third aspects is larger than 0 mm and smaller than 7 mm inside the opening of the insulator. You may be in a position retreated.
  • the insulator in any one of the first to third aspects includes, in addition to the first opening that generates the bubbles in the water to be treated. Furthermore, you may provide the 2nd opening part connected with the said gas supply apparatus.
  • the diameter of the first opening of the insulator in the eleventh aspect may be in a range of 0.3 mm to 2 mm.
  • the liquid treatment apparatus may include a reaction tank in which the first metal electrode and the second metal electrode according to any one of the first to third aspects are arranged. .
  • the inner wall of the reaction tank in the thirteenth aspect may be grounded.
  • the liquid treatment apparatus may further include a treatment tank connected to the reaction tank according to any one of the first to third aspects by a circulation pump and piping.
  • the treatment tank in the fifteenth aspect is a water purification device, an air conditioner, a humidifier, a washing machine, an electric razor washer, or a dishwasher. May be.
  • the processing tank in the fifteenth aspect may be grounded.
  • the liquid processing apparatus is the liquid processing apparatus according to any one of the first to third aspects, in which a voltage is applied by the power source, and the first metal electrode and The liquid may be processed by discharging between the second metal electrodes to generate plasma in the bubbles.
  • a liquid treatment method includes: Applying a voltage between a first metal electrode at least part of which is placed in a reaction tank containing water to be treated and a second metal electrode arranged in the reaction tank; Supplying gas to a closed space formed of an insulator surrounding the first metal electrode, and generating bubbles in the water to be treated from an opening provided in the insulator; including.
  • the liquid treatment method according to the twentieth aspect of the present disclosure in the step of applying the voltage according to the nineteenth aspect, the first metal electrode and the second metal electrode are discharged, Plasma is generated in the bubbles to process the liquid.
  • the general and specific aspects described above may be realized in a liquid processing apparatus and a liquid processing method, and may be realized by any combination of a liquid processing apparatus and a liquid processing method.
  • FIG. 1 is an overall configuration diagram of a liquid processing apparatus 100 according to Embodiment 1 of the present disclosure.
  • the liquid treatment apparatus 100 according to Embodiment 1 is disposed in the reaction tank 111 and the first metal electrode 104a at least partially disposed in the reaction tank 111 into which water to be treated (treated water) 110 is placed.
  • An insulator 103 provided so as to form a space 124a between the second metal electrode 102 to be formed and the outer periphery of the first metal electrode 104a; An opening 125 that generates bubbles 106 in the water 110 to be treated, a gas supply device 105 that supplies a gas 114 necessary to generate the bubbles 106 to the space 124a, and a first A power supply 101 for applying a voltage between the metal electrode 104 and the second metal electrode 102.
  • a liquid processing apparatus 100 provided with a processing tank 109 in the above configuration will be described.
  • the treatment tank 109 is not an essential component, and may have the reaction tank 111.
  • the inside of the reaction tank 111 and the inside of the treatment tank 109 are filled with water to be treated 110 and are connected by a pipe 113 equipped with a circulation pump 108.
  • a second metal electrode 102 and a first metal electrode 104a penetrating the wall are arranged on one wall of the reaction tank 111, and one end side of each electrode is located in the reaction tank 111. Yes.
  • the first metal electrode 104 a is cylindrical, and the other end is held by a holding block 112 and connected to the gas supply device 105.
  • the gas supply device 105 has a gas 114 in a space 124a formed between the first metal electrode 104a and the insulator 103 through a through hole 123a provided at the other end of the first metal electrode 104a.
  • the second metal electrode 102 has a cylindrical shape, and is arranged so that one end side thereof contacts the water to be treated 110 in the reaction tank 111.
  • a power source 101 is connected between the second metal electrode 102 and the first metal electrode 104a, and the power source 101 applies a voltage.
  • FIG. 2 is a cross-sectional view showing an electrode configuration in the first embodiment of the present disclosure.
  • the first metal electrode 104a has a metal electrode part 121a arranged in the reaction vessel 111 on one end side, and is connected to the holding block 112 on the other end side and connected to the power source 101.
  • a screw part 122a is provided.
  • An insulator 103 is provided so as to form a space 124a between the metal electrode portion 121a and the insulator 103 is provided with an opening 125 for generating bubbles 106 in the water to be treated 110.
  • the metal screw portion 122a is provided with a screw portion 126 on the outer periphery and a through hole 123a on the inside.
  • the metal electrode part 121a and the metal screw part 122a may be formed of metal electrodes of different sizes and different materials.
  • the metal electrode portion 121a has a diameter of 0.95 mm
  • the material is tungsten
  • the metal screw portion 122a has a diameter of 3 mm
  • the material is iron.
  • the diameter of the metal electrode portion 121a may be any diameter that generates plasma, and may be 2 mm or less in diameter.
  • the material of the metal electrode portion 121a is not limited to tungsten, and other plasma-resistant metal materials may be used, and although durability deteriorates, copper, aluminum, iron, and alloys thereof are used. May be.
  • thermal spraying of yttrium oxide having an electrical resistivity of 1 to 30 ⁇ cm may be performed by adding a conductive substance to a part of the surface of the metal electrode portion 121a.
  • This thermal spraying of yttrium oxide has the effect of extending the electrode life.
  • the diameter of the metal screw part 122a is not limited to 3 mm, and the dimension thereof may be larger than the diameter of the metal electrode part 121a.
  • the material of the metal screw part 122a is a metal material that is easy to process, and may be, for example, copper, zinc, aluminum, tin, brass, etc., which are materials used for general screws.
  • the first metal electrode 104a can be integrally formed by press-fitting the metal electrode portion 121a into the metal screw portion 122a.
  • the characteristics are low and the manufacturing cost is low while stabilizing the characteristics.
  • the metal electrode 104a can be realized.
  • the metal screw part 122a can be provided with a through-hole 123a communicating with the gas supply device 105.
  • the through hole 123a is connected to the space 124a, and the gas 114 from the gas supply device 105 is supplied to the space 124a through the through hole 123a.
  • the metal electrode part 121a is covered with the gas 114 supplied from this through-hole 123a.
  • the through-hole 123a when there is one through-hole 123a, as shown in FIG. 2, when the through-hole 123a is provided in the metal screw portion 122a so that the gas 114 is supplied from the lower side toward the gravitational direction of the metal electrode portion 121a.
  • the metal electrode part 121a is easily covered with the gas 114.
  • the diameter of the through hole 123a is, for example, 0.3 mm.
  • a screw portion 126 may be provided on the outer periphery of the metal screw portion 122a.
  • the screw part 126 on the outer periphery of the metal screw part 122a is a male screw
  • the screw part 126 and 127 are screwed together by providing the holding block 112 with a screw part 127 of the female screw, and the first metal electrode 104a is attached. It can be fixed to the holding block 112.
  • the position of the end surface of the metal electrode portion 121a with respect to the opening portion 125 provided in the insulator 103 can be accurately adjusted.
  • connection with the power source 101 can be fixed by screwing with the screw portion 126, the contact resistance can be stabilized and the characteristics can be stabilized. Furthermore, the connection with the gas supply device 105 can be ensured. Such a device is very useful in terms of waterproofing and safety measures when put to practical use.
  • a gas 114 is supplied from the gas supply device 105 to the space 124 a, and the metal electrode 121 a is covered with the gas 114. Therefore, the outer periphery of the metal electrode portion 121a is not in direct contact with the water to be treated 110 even though the metal of the electrode is exposed.
  • the insulator 103 is provided with an opening 125, and the opening 125 has a function of determining the size of the bubble 106 when the bubble 106 is generated in the water 110 to be treated in the reaction tank 111.
  • magnesia, quartz, or yttrium oxide may be used.
  • the opening portion 125 of the insulator 103 is provided on the end face of the insulator 103, but may be provided on the side surface of the insulator 103.
  • a plurality of openings 125 may be provided in the insulator 103.
  • the diameter of the opening part 125 of Embodiment 1 is 1 mm as an example.
  • the second metal electrode 102 is not particularly limited, but may be formed using a conductive metal material such as copper, aluminum, and iron.
  • gas supply device 105 for example, a pump or the like can be used.
  • air, He, Ar, or O 2 is used as the gas 114 to be supplied.
  • the power source 101 applies a pulse voltage or an AC voltage between the first metal electrode 104a and the second metal electrode 102.
  • the treatment tank 109 for example, a water purification device, an air conditioner, a humidifier, a washing machine, an electric razor washer, or a dish washer can be used.
  • the processing tank 109 may be grounded to prevent electric shock.
  • the reaction tank 111 may be connected to the processing tank 109 by a pipe 113 provided with a circulation pump 108, for example.
  • the volume of the reaction tank 111 and the processing tank 109 is about 600 milliliters (about 600 cm 3 ) in total, for example.
  • the water to be treated 110 is circulated in the reaction tank 111 and the treatment tank 109 by the circulation pump 108.
  • the circulation speed of the water to be treated 110 is set to an appropriate value from the speed of the substance to be decomposed by the plasma 107 and the volume of the reaction tank 111.
  • Bubbles 106 are formed in the water 110 to be treated.
  • the bubble 106 is a columnar bubble having a dimension in which the gas therein covers the opening 125 of the insulator 103. Therefore, in Embodiment 1, the opening 125 provided in the insulator 103 has a function of generating bubbles 106 in the liquid to be processed 110.
  • the metal electrode part 121 a of the first metal electrode 104 a can be covered with the gas 114 by appropriately setting the supply amount of the gas 114 using the gas supply device 105.
  • the metal electrode part (or the surface of the metal electrode part) does not directly contact the liquid (treated water)” means that the surface of the metal electrode part is a liquid as a large mass in the reaction vessel. It means not touching. Therefore, for example, when bubbles are generated in a state where the surface of the metal electrode portion is wet with a liquid, the surface of the metal electrode portion remains wet with the liquid (that is, strictly speaking, the surface of the metal electrode portion is liquid). In this state, the surface of the gas may be covered with the gas in the bubbles. This state is also included in the state that “the metal electrode portion does not directly contact the liquid”.
  • the gas supply device 105 supplies the gas 114 to the space 124a formed between the insulator 103 and the metal electrode portion 121a of the first metal electrode 104a through the through hole 123a of the first metal electrode 104a.
  • the flow rate of the gas 114 is, for example, 0.5 liter / min to 2.0 liter / min.
  • columnar bubbles 106 that cover the metal electrode portion 121a of the first metal electrode 104a are formed as described above.
  • the bubble 106 is a single large bubble that is not interrupted over a certain distance (10 mm or more in the illustrated form) from the opening 125 of the insulator 103. That is, by supplying the gas 114, the gas 114 flows into the space 124a between the metal electrode portion 121a of the first metal electrode 104a and the insulator 103, and the metal electrode portion 121a of the first metal electrode 104a is made of the gas 114. It will be covered.
  • a voltage is applied between the first metal electrode 104 a and the second metal electrode 102 by the power source 101.
  • a pulse voltage having a peak voltage of 4 kV, a pulse width of 1 ⁇ s, and a frequency of 30 kHz is applied to the first metal electrode 104a.
  • plasma 107 is generated in the bubble 106 from the vicinity of the metal electrode portion 121a of the first metal electrode 104a.
  • the plasma 107 is generated widely not only in the bubble 106 at the tip portion of the first metal electrode 104a but also in the internal space. This is a result of the treated water 110 acting as a counter electrode through the insulator 103.
  • the distance between the first metal electrode 104a and the second metal electrode 102 may be arbitrary.
  • the processing tank 109 may be grounded.
  • the second metal electrode 102 is equivalent to being grounded through the treated water 110. That is, since the second metal electrode 102 is in contact with the water to be treated 110, the entire water to be treated 110 has the same potential, and the interface portion between the bubble 106 and the liquid functions as an electrode.
  • the counter electrode is formed in the vicinity of the first metal electrode 104a by introducing the bubble 106.
  • the inner wall of the reaction vessel 111 is grounded. This is because the water 110 to be treated cannot be grounded even if an outer wall is installed when the reaction tank 111 is made of an insulator.
  • the frequency of the pulse voltage is not particularly limited.
  • the plasma 107 can be sufficiently generated by applying a pulse voltage of 1 Hz to 100 kHz. As the frequency increases, the accumulated time during which the plasma 107 is generated becomes longer, and the generation amount of electrons, ions, and radicals generated by the plasma 107 increases. That is, it means that the treatment capacity of the water to be treated 110 using these generated particles is improved.
  • the voltage is determined not only by the power supply capability but also by the balance with the impedance of the load.
  • bipolar pulse voltage has an advantage that the life of the electrode is prolonged.
  • a power supply capable of outputting a voltage of 10 kV without a load is used, and a voltage of 4 kV is actually applied in a state where a load including an electrode is connected as described above. it can.
  • the lifetime of OH radical is extremely short, and it is difficult to observe only by the ESR method.
  • FIG. 3 is a diagram illustrating a measurement result of an OH radical in water treated in the first embodiment of the present disclosure by an ESR method. Although not shown, it is confirmed in advance that OH ions, H ions, O ions, and N 2 ions are generated based on the data of the emission spectral analysis in the plasma. In Embodiment 1, measurement was performed using an ESR (Electron Spin Resonance) method to measure how these ions are in the water to be treated 110. FIG. 3 particularly shows that OH ions exist as OH radicals in the water to be treated 110.
  • a method is used in which the OH radical is bonded to a spin trap agent called DMPO. According to this method, the lifetime of OH trapped in DMPO becomes longer than the ESR measurement time, and OH radicals can be measured quantitatively.
  • Embodiment 1 when the lifetime of the OH radical was measured, it was found that the lifetime of the OH radical was about 10 min. Note that the lifetime of OH radicals in Embodiment 1 was measured while changing the time from the generation of the plasma 107 to the sampling after the generation of the plasma 107 was stopped.
  • two methods for adding DMPO are considered in relation to the lifetime of OH radicals.
  • One is a method in which a required amount of DMPO is directly added to the water to be treated 110, and the water to be treated 110 is treated with the plasma 107 for a predetermined time, and then an amount necessary for ESR measurement is collected to measure OH radicals.
  • This method has a great advantage that OH radicals can be measured when a certain amount of OH radicals are generated because DMPO is present in the water 110 to be treated even if the lifetime of the OH radicals is short.
  • the water 110 to be treated is treated with plasma 107 for a certain period of time, and then an amount necessary for ESR measurement is collected and DMPO is added. In this method, if the lifetime of the OH radical is short, unless a special sampling device is prepared, the OH radical disappears if the sampling time becomes long, and the OH radical cannot be measured. There is.
  • the measurement results shown in FIG. 3 are obtained by adding DMPO to water collected from the water to be treated 110 by the latter method. Since the OH radical can be measured sufficiently even by the latter method, the liquid processing apparatus 100 according to Embodiment 1 can generate a long-lived OH radical, that is, an OH radical having a radical lifetime of about 10 min.
  • the cost becomes high, or a pump having an actually required flow rate does not exist and cannot be realized as a device.
  • V is 10 liters and the radical lifetime is 1 msec or less
  • the flow rate of the circulation pump is 600,000 liters / min or more, and such a circulation pump is very expensive or does not exist.
  • the radical lifetime is about 10 min as in the first embodiment
  • the flow rate of the circulation pump 108 is 1 liter / min, and a feasible flow rate of the circulation pump can be obtained as in the first embodiment.
  • Embodiment 1 indigo carmine (methylene blue) aqueous solution was used as a model of the liquid to be processed in order to measure the decomposition rate of the liquid processing apparatus 100.
  • Indigo carmine is a water-soluble organic substance and is often used as a model for treating polluted water.
  • the concentration of the indigo carmine aqueous solution used in Embodiment 1 was about 10 mg / liter, and the volume of the water to be treated 110 was 600 milliliters.
  • OH radicals are generated in the water 110 to be treated.
  • the OH radical acts on indigo carmine and breaks down the indigo carmine molecule by breaking intramolecular bonds.
  • the oxidation potential of the OH radical is 2.81 eV, which is larger than the oxidation potential of ozone, hydrogen peroxide, and chlorine. Therefore, OH radicals can decompose not only indigo carmine but also many organic substances.
  • the degree of decomposition of the indigo carmine molecule was determined by measuring the absorbance of light having a wavelength of 608.2 nm using an ultraviolet-visible light spectrophotometer.
  • the short lifetime of OH radicals is a major reason why OH radicals cannot be used effectively.
  • FIG. 4 is a diagram illustrating a result of measuring the decomposition amount of the indigo carmine aqueous solution with respect to the processing time in the first embodiment of the present disclosure.
  • the amount of degradation was determined by measuring the relationship between the amount of indigo carmine and the absorbance.
  • the measurement result by the liquid processing apparatus 100 which concerns on Embodiment 1 is shown by a white square
  • the measurement result by the liquid processing apparatus of a comparative example is shown by a black square.
  • the liquid processing apparatus of the comparative example uses a cylindrical tungsten electrode having an outer diameter of 1.95 mm as the first metal electrode.
  • the outer periphery of the first metal electrode is covered with an insulator made of alumina ceramic, and the first metal electrode and the second metal electrode are arranged to face each other. Further, in the liquid processing apparatus of the comparative example, plasma is generated using the instantaneous boiling phenomenon. In the first embodiment and the comparative example, the power supplied to the first metal electrode is 7 W.
  • the indigo carmine aqueous solution was almost completely decomposed in about 25 minutes. This can be achieved by efficiently generating OH radicals.
  • the liquid processing apparatus of the comparative example it took about 400 minutes to decompose the indigo carmine aqueous solution almost completely.
  • the plasma 107 can be generated efficiently and OH radicals with a long lifetime can be generated, so that the liquid can be processed in a short time. It becomes.
  • the decomposition of indigo carmine in the case of the liquid processing apparatus of the comparative example is considered as follows.
  • the diameter of the cylindrical electrode of the comparative example is 1.95 mm, which is larger than that of the first embodiment, and accordingly, the electric field strength is low, so that the plasma stability is poor and the total plasma generation time is shortened.
  • the concentration of OH ions and thus OH radicals was lowered, and the decolorization rate was reduced.
  • the first metal electrode 104a and the second electrode 102 are opposed to each other in the water to be treated 110 without using the gas supply device 105, and plasma is generated using the instantaneous boiling phenomenon. In this case, the decomposition rate of the indigo carmine aqueous solution becomes slow. This is considered to be because long-lived OH radicals are not formed because the gas 114 is not used.
  • the gas 114 is supplied from the gas supply device 105 to the space 124a between the first metal electrode 104a and the insulator 103 through the through-hole 123a of the first metal electrode 104a. We continue to supply at.
  • the metal electrode portion 121a of the first metal electrode 104a is covered with the gas 114, and the metal electrode portion 121a of the first metal electrode 104a does not directly contact the water to be treated 110.
  • stable plasma 107 is generated at the tip of the metal electrode portion 121a of the first metal electrode 104a.
  • a part of the continuous bubbles 106 generated from the opening 125 of the insulator 103 is cut by buoyancy in the water to be treated 110, and the plasma 107 is included in the cut microbubbles. It is considered that the state in which the plasma 107 is included in the microbubbles contributes effectively. That is, the OH ions in the plasma 107 are eluted as OH radicals in the water, but because they are microbubbles, the OH radicals are trapped, and the lifetime of the OH radicals is considered to be greatly extended.
  • the liquid processing apparatus 100 it is possible to efficiently generate the plasma 107 while suppressing the manufacturing cost.
  • long-lived OH radicals can be generated in the water to be treated 110, so that the liquid can be treated in a short time.
  • Embodiment 2 A liquid processing apparatus 100 according to Embodiment 2 of the present disclosure will be described with reference to FIG.
  • the electrode configuration is different from that of the first embodiment.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 5 is a cross-sectional view illustrating an electrode configuration in the second embodiment of the present disclosure.
  • the through hole 123a is connected to the space 124a (for example, a gap of about 0.5 mm) between the first metal electrode 104a and the insulator 103, the diameter of the through hole 123a is reduced. It is necessary to reduce the size (for example, 0.3 mm), and there is a concern that the cost for processing the through hole 123a increases. Therefore, an electrode configuration according to the second embodiment when the through hole can be enlarged will be described.
  • a hollow first metal electrode 104b having an open end is used instead of the metal electrode portion 121a of the first embodiment.
  • the hollow first metal electrode 104b of the second embodiment uses a coiled electrode portion 121b made of tungsten having an outer diameter of 0.99 mm.
  • the hollow first metal electrode 104b in the second embodiment is not limited to a coil shape.
  • a large through-hole 123b having a diameter of 1 mm is provided in the central portion of the shaft of the metal screw portion 122b and connected to a space 124b formed by the hollow portion of the coiled electrode portion 121b.
  • the coiled electrode portion 121b and the metal screw portion 122b can be connected by, for example, screwing with an inner screw portion 128 provided in the through hole 123b.
  • the diameter of the through-hole 123b can be increased in the second embodiment, and an increase in the manufacturing cost of the first metal electrode 104b can be suppressed.
  • the insulator 103 is arranged outside the coiled electrode portion 121b.
  • the insulator 103 is a side surface of the coiled electrode portion 121b. You may arrange
  • the gas 114 When the gas 114 is introduced from the through hole 123b of the metal screw part 122b, the gas 114 is supplied to the space 124b of the hollow part of the coiled electrode part 121b, and the coiled electrode part 121b is covered with the gas 114.
  • the gas 114 generates bubbles 106 from the opening 125 of the insulator 103 into the water to be treated 110.
  • the gas in the bubble 106 covers the end of the coiled electrode part 121b.
  • the size of the bubble 106 is determined by the opening 125 of the insulator 103 as in the first embodiment.
  • FIG. 6 is a diagram illustrating a result of measuring a decomposition amount of an indigo carmine aqueous solution with respect to a processing time in the second embodiment of the present disclosure.
  • the amount of decomposition was determined by measuring the relationship between the amount of indigo carmine and absorbance as in the first embodiment.
  • the measurement result by the liquid processing apparatus 100 which concerns on Embodiment 2 is shown by a white circle, and the measurement result by the liquid processing apparatus of a comparative example is shown by a black square.
  • the configuration of the liquid processing apparatus of the comparative example is the same as that described in the first embodiment.
  • the time for which about 10 mg / L indigo carmine is completely decomposed is about 25 minutes, which is the same as that of the first embodiment.
  • the liquid processing apparatus 100 in the second embodiment the liquid 107 can be processed in a short period of time by efficiently generating the plasma 107 while suppressing the manufacturing cost.
  • FIG. 7 is a diagram illustrating a distance (retraction amount) d in which the first metal electrode 104 in the first and second embodiments of the present disclosure is retracted inward from the end surface of the opening 125 of the insulator 103.
  • symbol 104 in FIG. 7 shows the 1st metal electrodes 104a and 104b of Embodiment 1 and 2.
  • FIG. 8 shows the decomposition rate of the indigo carmine aqueous solution with respect to the distance (retraction amount) d by which the first metal electrode 104 in Embodiments 1 and 2 of the present disclosure is retracted inward from the end face of the opening 125 of the insulator 103.
  • FIG. 8 the measurement result by the liquid processing apparatus 100 which concerns on Embodiment 1 is shown by a white square, and the measurement result by the liquid processing apparatus which concerns on Embodiment 2 is shown by a white circle.
  • the retraction amount d is greater than 0 and less than 7 mm. In the range, the decomposition rate of the indigo carmine aqueous solution increases. Further, when the retraction amount d is in the range of 3 to 5 mm, there is a region where the decomposition rate of the indigo carmine aqueous solution is maximum. Accordingly, the retraction amount d of the first metal electrode 104 is preferably in the range of greater than 0 and less than 7 mm, and more preferably in the range of 3 to 5 mm.
  • the decomposition speed decreases when the retraction amount d is in the range of 3 mm to 5 mm.
  • the curve is asymmetric between the region where the retraction amount d is small (the region where the retraction amount d is 0 to 3 mm) and the large region (the region where the retraction amount d is 5 to 7 mm) with the boundary where the retraction amount d is 3-5 mm It has become. This is considered to mean that the governing mechanism is different between the region where the retraction amount d is small and the region where the retreat amount d is large.
  • the distance between the first metal electrode 104 and the gas-liquid interface corresponds to the distance between the electrodes, and when the retraction amount d increases, the distance between the electrodes increases, and the electric field strength decreases when the voltage is constant. Means that. That is, if the retraction amount d is too large, the dielectric breakdown is difficult to occur, and the discharge is not stable. This is thought to have slowed the decomposition rate of the indigo carmine aqueous solution.
  • the adjustment accuracy of the retraction amount d is increased to at least about 30%, more preferably 10 times that of the region where the retraction amount d is small.
  • Electrode configuration 3 A liquid processing apparatus 100 according to Embodiment 3 of the present disclosure will be described with reference to FIG.
  • the electrode configuration is different from that of the first embodiment.
  • Other configurations are the same as those of the first embodiment.
  • Electrode configuration 3 The electrode configuration of the liquid processing apparatus 100 according to the third embodiment of the present disclosure will be described. From Poisson's equation, it is known that when the diameter of the opening 125 of the insulator 103 that generates the bubble 106 is reduced, the electric field strength increases in inverse proportion to the square of the diameter. Therefore, in order to increase the electric field strength, it is necessary to reduce the diameter of the opening 125 of the insulator 103.
  • the opening 125 is provided on the end face of the insulator 103, when the diameter of the opening 125 is reduced, the metal electrode part 121a or the coil of the first metal electrodes 104a and 104b is adjusted accordingly.
  • the diameter of the electrode portion 121b needs to be reduced at the same time. Reducing the diameters of the metal electrode portion 121a and the coiled electrode portion 121b makes it difficult to manufacture and causes a problem that the discharge is strong at the tip of the metal having a small diameter and the wear of the electrode is increased. Therefore, the liquid processing apparatus 100 according to Embodiment 3 in which the diameter of the opening 125 of the insulator 103 can be independently changed regardless of the diameters of the metal electrode portion 121a and the coiled electrode portion 121b will be described.
  • FIG. 9 is a cross-sectional view illustrating an electrode configuration according to the third embodiment of the present disclosure.
  • an insulator 103 is provided so that a space 124c is formed on the outer periphery of the metal electrode portion 121c of the first metal electrode 104c.
  • a first opening 125a is provided for generating bubbles 106 in the interior.
  • a second opening 125 b connected to the gas supply device 105 is provided on the end surface of the insulator 103. Then, the gas 114 is supplied from the gas supply device 105 to the space 124c in the second opening 125b.
  • a second insulator 129 may be provided inside the second opening 125b.
  • the gas 114 covers the outer periphery of the metal electrode portion 121c of the first metal electrode 104c.
  • the gas 114 generates bubbles 106 from the first opening 125 a into the water to be treated 110.
  • the size of the bubble 106 is determined by the first opening 125a, as in the first and second embodiments.
  • the metal electrode portion 121c of the first metal electrode 104c is made of tungsten and has a diameter of 1.95 mm, the metal screw portion 122c has a diameter of 3 mm, and the material is iron.
  • the insulator 103 is made of alumina ceramic having an inner diameter of 3 mm. Thereby, the space 124c between the first metal electrode 104c and the insulator 103 has a gap of about 0.5 mm, for example.
  • the diameter of the first opening 125a can be determined independently regardless of the diameter of the metal electrode part 121c of the first metal electrode 104c. .
  • the electric field strength can be increased by reducing the diameter of the first opening 125a. Therefore, according to the liquid processing apparatus 100 according to the third embodiment, by reducing the diameter of the first opening 125a and increasing the electric field strength, the first metal electrode 104c is formed in the vicinity of the first opening 125a. A more stable plasma 107 can be generated from the metal electrode portion 121 c into the bubble 106. Thereby, a large amount of OH radicals can be released into the water to be treated 110.
  • the introduction path of the gas 114 can be separated from the first metal electrode 104c, it is not necessary to provide a through hole, and the manufacturing cost can be suppressed.
  • FIG. 10 is a diagram illustrating a result of measuring the decomposition amount of the indigo carmine aqueous solution with respect to the processing time in the third embodiment of the present disclosure.
  • the amount of decomposition was determined by measuring the relationship between the amount of indigo carmine and absorbance as in the first embodiment.
  • the measurement result by the liquid processing apparatus 100 which concerns on Embodiment 3 is shown with a white triangle.
  • the measurement result by the liquid processing apparatus of a comparative example is shown by a black square.
  • the diameter of the first opening 125a of the insulator 103 of Embodiment 3 is set to 0.7 mm as an example.
  • the configuration of the liquid processing apparatus of the comparative example is the same as that used in the measurement of the first embodiment.
  • the time for which about 10 mg / L indigo carmine is completely decomposed is about 17 minutes, and the decomposition rate is faster than in the first and second embodiments. Yes.
  • the diameter of the opening 125 of the first and second embodiments is 1 mm, whereas the diameter of the first opening 125a of the third embodiment is as small as 0.7 mm. That is, the electric field strength in the first opening 125a of the liquid processing apparatus 100 according to Embodiment 3 is about twice as large as that in Embodiments 1 and 2.
  • the plasma 107 becomes more stable, the plasma density is further increased, and the amount of OH radicals is increased. Therefore, in the liquid treatment apparatus 100 according to Embodiment 3, the plasma 107 can be efficiently generated, and long-lived OH radicals can be generated in the water to be treated 110, so that liquid treatment can be performed in a short time. it can.
  • FIG. 11 is a diagram illustrating the dependence of the decomposition rate of the indigo carmine aqueous solution on the diameter of the first opening 125a in the third embodiment of the present disclosure.
  • the measurement result of the decomposition rate with respect to the diameter of the first opening 125a of Embodiment 3 is shown by a black diamond.
  • the decomposition rate of indigo carmine is increased, and indigo is in the range of 0.5 to 0.7 mm. It has a region where the degradation rate of carmine is maximized.
  • the decomposition rate of indigo carmine becomes slower. This is because the volume of the plasma is a factor that determines the decomposition rate. That is, it is considered that when the diameter of the first opening 125a is reduced, the bubble 106 is reduced, and the number density of OH ions generated in the plasma is reduced, so that the decomposition rate of indigo carmine is reduced.
  • the diameter of the first opening diameter 125a of the insulator 103 is preferably in the range of 0.3 to 2 mm, and more preferably in the range of 0.5 mm to 0.7 mm.
  • the plasma 107 can be generated with high efficiency and long-lived OH radicals can be generated.
  • the liquid treatment apparatus according to the present disclosure is useful as a water purification apparatus such as sewage treatment because it can stably generate OH radicals with high efficiency and long life.

Abstract

本開示の液体処理装置は、被処理水を入れる反応槽内に少なくとも一部が配置される第1の金属電極と、前記反応槽内に配置される第2の金属電極と、前記第1の金属電極を囲むように設けられ、閉じた空間を形成する絶縁体と、前記絶縁体に前記被処理水に対して設けられた開口部であって、前記空間から前記被処理水中に気泡を発生させる、開口部と、前記気泡を発生させるのに必要な気体を前記空間に供給する気体供給装置と、前記第1の金属電極と前記第2の金属電極との間に電圧を印加する電源と、を備える。

Description

液体処理装置及び液体処理方法
 本開示は、被処理液中に対してプラズマを生成することで、液体の処理、特に水を処理する液体処理装置及び液体処理方法に関する。
 従来の高電圧パルス放電を用いた液体処理装置としては、例えば、特許文献1に記載のものがある。図12は、特許文献1に記載された従来の殺菌装置の構成図である。
 図12に示す殺菌装置1は、円柱状の高電圧電極2と板状の接地電極3とを対とする放電電極6で構成されている。高電圧電極2は、先端部2aの端面を除いて絶縁体4で被覆されて、高電圧電極部5を形成している。また、高電圧電極2の先端部2aと接地電極3とは、所定の電極間隔を設けて、処理槽7内で被処理水8に浸漬された状態で対向配置されている。高電圧電極2と接地電極3とは、高電圧パルスを発生する電源9に接続されている。両方の電極間に2~50kV/cm、100Hz~20kHzの負極性の高電圧パルスを印加し放電を行う。そのエネルギーによる水の蒸発、および衝撃波に伴う気化により、水蒸気からなる気泡10が発生する。また、高電圧電極2付近で生成されるプラズマによりOH、H、O、O -、O-、Hといった反応種を発生させ、微生物や細菌を殺菌する。
 また、従来の別の液体処理装置としては、特許文献2に記載のものがある。特許文献2に記載の液体処理装置では、液体中の電極間に、外部より供給した気泡を介在させることにより、印加電圧を低くすることができ、消費電力量を低減できることが開示されている。同様の技術は、特許文献3、特許文献4、特許文献5にも開示されている。
特開2009-255027号公報 特開2000-93967号公報 特開2003-62579号公報 特表2010-523326号公報 特許3983282号公報
 しかしながら、上記した従来の構成の装置においては、プラズマの発生効率が低く、液体の処理に長い時間がかかるという問題があった。
 したがって、本開示の目的は、プラズマを効率よく発生させ、その結果反応種を効率よく発生させて短時間で液体の処理をすることが可能な液体処理装置及び液体処理方法を提供することである。
 本開示に係る液体処理装置は、
 被処理水を入れる反応槽内に少なくとも一部が配置される第1の金属電極と、
 前記反応槽内に配置される第2の金属電極と、
 前記第1の金属電極を囲むように設けられ、閉じた空間を形成する絶縁体と、
 前記絶縁体に前記被処理水に対して設けられた開口部であって、前記空間から前記被処理水中に気泡を発生させる、開口部と、
 前記気泡を発生させるのに必要な気体を前記空間に供給する気体供給装置と、
 前記第1の金属電極と前記第2の金属電極との間に電圧を印加する電源と、
を備える。
 上記の概括的かつ特定の態様は、液体処理装置、液体処理方法並びに液体処理装置及び液体処理方法の任意の組み合わせにより実現してもよい。
 本開示に係る液体処理装置及び液体処理方法によれば、プラズマを効率よく発生することができ、短時間で液体の処理をすることが可能となる。
本開示の実施の形態1に係る液体処理装置の全体構成図である。 本開示の実施の形態1における電極構成を示す断面図である。 本開示の実施の形態1における処理した水中のOHラジカルのESR法による測定結果を示す図である。 本開示の実施の形態1における処理時間に対するインディゴカーミン水溶液の分解量を測定した結果を示す図である。 本開示の実施の形態2における電極構成を示す断面図である。 本開示の実施の形態2における処理時間に対するインディゴカーミン水溶液の分解量を測定した結果を示す図である。 本開示の実施の形態1及び2における第1の金属電極を絶縁体の開口部の端面から内側に後退させた距離を示す図である。 本開示の実施の形態1及び2における第1の金属電極を絶縁体の開口部の端面から内側に後退させた距離に対するインディゴカーミン水溶液の分解速度を示す図である。 本開示の実施の形態3における電極構成を示す断面図である。 本開示の実施の形態3における処理時間に対するインディゴカーミン水溶液の分解量を測定した結果を示す図である。 本開示の実施の形態3における第1の開口部の直径に対するインディゴカーミン水溶液の分解速度の依存性を示す図である。 従来の高電圧パルス放電を用いた排水処理装置の構成図である。
(本開示に係る一形態を得るに至った経緯)
 前述の「背景技術」の欄で説明したように、特許文献1に示す従来の殺菌装置においては、瞬間沸騰現象を用いて瞬間的に液体を気化し、互いに対向させて配置した円柱状の電極と板状の接地電極との間で放電させることによって、プラズマを発生させていた。しかし、瞬間沸騰現象を起こすためには、液体を気化させるエネルギーを加える必要があるため、効率よくプラズマを発生させることができず、液体の処理に長い時間がかかるという課題を有していた。
 また、従来の液体処理装置において、第1の金属電極はプラズマ耐性の高い金属材料等が使用されているが、これらの金属は加工し難い材質であり、第1の金属電極を加工する場合に、製造コストが高くなるという課題を有していた。
 そこで、本発明者らは、気体供給装置から気体を連続して供給し、被処理水中に気泡を発生させ、効率よくプラズマを発生させることで、効率よく反応種を生成でき、短時間で液体の処理ができることを見出し、本開示に至った。また、第1の金属電極において、プラズマに曝される部分とプラズマに曝されない部分の電極を異なる材料で形成することにより、製造コストが低く、特性が安定化できる第1の金属電極構造を見出した。
 本開示の第1の態様に係る液体処理装置は、
 被処理水を入れる反応槽内に少なくとも一部が配置される第1の金属電極と、
 前記反応槽内に配置される第2の金属電極と、
 前記第1の金属電極を囲むように設けられ、閉じた空間を形成する絶縁体と、
 前記絶縁体に前記被処理水に対して設けられた開口部であって、前記空間から前記被処理水中に気泡を発生させる、開口部と、
 前記気泡を発生させるのに必要な気体を前記空間に供給する気体供給装置と、
 前記第1の金属電極と前記第2の金属電極との間に電圧を印加する電源と、
を備える。
 本開示の第2の態様に係る液体処理装置は、
 被処理水を入れる反応槽内に少なくとも一部が配置される第1の金属電極と、
 前記反応槽内に配置される第2の金属電極と、
 前記第1の金属電極の外周との間に空間を形成するように設けられた絶縁体と、
 前記絶縁体に前記被処理水に対して設けられた開口部であって、前記被処理水中に気泡を発生させる、開口部と、
 前記気泡を発生させるのに必要な気体を前記空間に供給する気体供給装置と、
 前記第1の金属電極と前記第2の金属電極との間に電圧を印加する電源と、
を備える。
 本開示の第3の態様に係る液体処理装置は、
 被処理水を入れる反応槽内に少なくとも一部が配置される、開口端を有する中空状の第1の金属電極と、
 前記反応槽内に配置される第2の金属電極と、
 前記第1の金属電極を囲うように設けられた絶縁体と、
 前記絶縁体に前記被処理水に対して設けられた開口部であって、前記被処理水中に気泡を発生させる、開口部と、
 前記気泡を発生させるのに必要な気体を、前記第1の電極の中空部で形成される空間に供給する気体供給装置と、
 前記第1の金属電極と前記第2の金属電極との間に電圧を印加する電源と、
を備える。
 本開示の第4の態様に係る液体処理装置においては、前記第1~3のいずれかの態様における前記第1の金属電極は、前記反応槽内に配置される電極がコイル状であってもよい。
 本開示の第5の態様に係る液体処理装置においては、前記第1~3のいずれかの態様における前記絶縁体に複数の前記開口部を設けてもよい。
 本開示の第6の態様に係る液体処理装置においては、前記第1~3のいずれかの態様における前記第1の金属電極は、前記反応槽内に配置される一端側の部分と、前記電源と接続する他端側の部分と、の少なくとも2つの部分が接続されて構成されている。
 本開示の第7の態様に係る液体処理装置においては、前記第6の態様における前記第1の金属電極は、前記一端側の部分と前記他端側の部分が、異なる材料からなる金属電極であってもよい。
 本開示の第8の態様に係る液体処理装置においては、前記第6又は7のいずれかの態様における前記第1の金属電極の前記他端側の部分にネジ部を設けてもよい。
 本開示の第9の態様に係る液体処理装置においては、前記第6~8のいずれかの態様における前記第1の金属電極の前記他端側の部分に前記気体供給装置と、前記空間と、を連結する貫通孔を設けてもよい。
 本開示の第10の態様に係る液体処理装置においては、前記第1~3のいずれかの態様における前記第1の金属電極が前記絶縁体の前記開口部より内側に、0mmより大きく、7mm未満で後退した位置にあってもよい。
 本開示の第11の態様に係る液体処理装置においては、前記第1~3のいずれかの態様における前記絶縁体は、前記被処理水に前記気泡を発生させる第1の開口部に加えて、さらに前記気体供給装置と接続される第2の開口部を備えてもよい。
 本開示の第12の態様に係る液体処理装置においては、前記第11の態様における前記絶縁体の前記第1の開口部の直径が0.3mm~2mmの範囲であってもよい。
 本開示の第13の態様に係る液体処理装置においては、前記第1~3のいずれかの態様における前記第1の金属電極と前記第2の金属電極を配置する、反応槽を備えてもよい。
 本開示の第14の態様に係る液体処理装置においては、前記第13の態様における前記反応槽の内壁は、接地されてもよい。
 本開示の第15の態様に係る液体処理装置においては、前記第1~3のいずれかの態様における前記反応槽と循環ポンプ及び配管で接続される処理槽をさらに備えてもよい。
 本開示の第16の態様に係る液体処理装置においては、前記第15の態様における前記処理槽は、水浄化装置、空調機、加湿器、洗濯機、電機剃刀洗浄器、または食器洗浄器であってもよい。
 本開示の第17の態様に係る液体処理装置においては、前記第15の態様における前記処理槽は、接地されてもよい。
 本開示の第18の態様に係る液体処理装置においては、前記第1~3のいずれかの態様に係る液体処理装置であって、前記電源によって電圧を印加して、前記第1の金属電極と前記第2の金属電極との間で放電させて、前記気泡内にプラズマを発生させ、液体を処理してもよい。
 本開示の第19の態様に係る液体処理方法は、
 被処理水を入れる反応槽内に少なくとも一部が配置される第1の金属電極と、前記反応槽内に配置される第2の金属電極との間に、電圧を印加する工程と、
 前記第1の金属電極を囲む絶縁体で形成される閉じた空間に気体を供給し、前記絶縁体に設けられた開口部から前記被処理水中に気泡を発生させる工程と、
を含む。
 本開示の第20の態様に係る液体処理方法においては、前記第19の態様に係る前記電圧を印加する工程において、前記第1の金属電極と前記第2の金属電極間で放電させて、前記気泡内にプラズマを発生させ、液体を処理する。
 上記の概括的かつ特定の態様は、液体処理装置、及び液体処理方法において実現してもよく、並びに液体処理装置及び液体処理方法の任意の組み合わせにより実現してもよい。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下の全ての図において、同一又は相当部分には、同一の符号を付し、重複する説明は省略する。
(実施の形態1)
[全体構成]
 図1は、本開示の実施の形態1に係る液体処理装置100の全体構成図である。
 実施の形態1に係る液体処理装置100は、処理される水(被処理水)110を入れる反応槽111内に少なくとも一部が配置される第1の金属電極104aと、反応槽111内に配置される第2の金属電極102と、第1の金属電極104aの外周との間に空間124aを形成するように設けられた絶縁体103と、絶縁体103に被処理水110に対して設けられた開口部であって、被処理水110中に気泡106を発生させる、開口部125と、気泡106を発生させるのに必要な気体114を空間124aに供給する気体供給装置105と、第1の金属電極104と第2の金属電極102との間に電圧を印加する電源101と、を備える。実施の形態1では、図1に示すように、上記構成に更に処理槽109を備えた液体処理装置100を説明する。なお、実施の形態1では、処理槽109は必須の構成ではなく、反応槽111を有していればよい。
 図1に示すように、反応槽111内と処理槽109内は、被処理水110で満たされており、循環ポンプ108を備えた配管113で接続されている。反応槽111の1つの壁には、当該壁を貫通する第2の金属電極102及び第1の金属電極104aが配置されており、それぞれの電極の一端側は、反応槽111内に位置している。第1の金属電極104aは、円柱状であり、他端側は保持ブロック112で保持され、気体供給装置105と接続される。気体供給装置105は、例えば、第1の金属電極104aの他端に設けられた貫通孔123aを介して、第1の金属電極104aと絶縁体103との間で形成される空間124aに気体114を供給する。第2の金属電極102は、円柱状であり、一端側が反応槽111内の被処理水110に接触するように配置されている。第2の金属電極102と第1の金属電極104aとの間には電源101が接続されており、電源101は電圧を印加する。
[電極構成]
 次に、本開示の実施の形態1に係る液体処理装置100の電極構成について説明する。
 図2は、本開示の実施の形態1における電極構成を示す断面図である。図2に示すように、第1の金属電極104aは、一端側に反応槽111内に配置される金属電極部121aを、他端側に保持ブロック112に接続固定すると共に電源101と接続する金属ネジ部122aを備える。また、金属電極部121aとの間に空間124aを形成するように絶縁体103が設けられており、絶縁体103には被処理水110中に気泡106を発生させる開口部125が設けられている。さらに、金属ネジ部122aは、外周にネジ部126、内部に貫通孔123aが設けられている。
 第1の金属電極104aにおいて、金属電極部121aと金属ネジ部122aは、異なるサイズで、異なる材料の金属電極から形成されていてもよい。実施の形態1においては、一例として、金属電極部121aは直径0.95mmで、材料はタングステンを用い、金属ネジ部122aは直径3mmで、材料は鉄を用いている。ここで、金属電極部121aの直径は、プラズマが発生する直径であればよく、直径2mm以下にしてもよい。また、金属電極部121aの材料は、タングステンに限られるものではなく、他の耐プラズマ性の金属材料を用いてもよく、耐久性は悪化するが、銅、アルミニウム、鉄及びそれらの合金を用いてもよい。さらに、金属電極部121aの表面の一部に、導電性物質を添加することによって1~30Ωcmの電気抵抗率を有する酸化イットリウムの溶射を行ってもよい。この酸化イットリウムの溶射により、電極寿命が長くなるという効果が得られる。一方、金属ネジ部122aの直径は3mmに限られるものではなく、その寸法は金属電極部121aの直径よりも大きいものであればよい。金属ネジ部122aの材料は、加工のし易い金属材料であって、例えば、一般的なネジに用いられている材料である、銅、亜鉛、アルミニウム、錫及び真鍮等であってもよい。第1の金属電極104aは、例えば、金属電極部121aを金属ネジ部122aに圧入することによって一体化させて形成することができる。このように、金属電極部121aの部分にプラズマ耐性の高い金属材料を用い、金属ネジ部122aに加工し易い金属材料を用いることにより、プラズマ耐性を有しながら製造コストの低い、特性を安定化した金属電極104aを実現できる。
 金属ネジ部122aには、気体供給装置105に通じる貫通孔123aを設けることができる。貫通孔123aは空間124aと繋がっており、気体供給装置105からの気体114が貫通孔123aを介して空間124aに供給される。そして、この貫通孔123aから供給された気体114によって、金属電極部121aが覆われる。ここで、貫通孔123aが1個の場合、図2に示すように金属電極部121aの重力方向に向かって下側から気体114が供給されるように金属ネジ部122aに貫通孔123aを設けると、金属電極部121aが気体114で覆われ易くなる。さらに、貫通孔123aの数は2個以上あると、貫通孔123aでの圧損を抑制するのに有益である。なお、実施の形態1において、貫通孔123aの直径は、例えば0.3mmである。
 金属ネジ部122aの外周には、ネジ部126を設けてもよい。例えば、金属ネジ部122aの外周のネジ部126が雄ネジとすると、保持ブロック112に雌ネジのネジ部127を設けることで、ネジ部126、127を螺合して第1の金属電極104aを保持ブロック112に固定することができる。また、金属ネジ部122aを回転させることで、絶縁体103に設けられた開口部125に対する金属電極部121aの端面の位置を正確に調整することができる。さらに、電源101との接続固定もネジ部126で螺合して固定できることより、接触抵抗の安定化をもたらし、特性を安定化させることができる。またさらに、気体供給装置105との接続も確実にできる。このような工夫は実用化するにあたって防水対策や安全対策上、非常に有益である。
 金属電極部121aの周囲には、例えば内径1mmの絶縁体103が配置されており、金属電極部121aと絶縁体103との間には空間124aが形成されている。空間124aには、気体供給装置105から気体114が供給され、この気体114によって金属電極部121aが覆われる。したがって、金属電極部121aの外周は、電極の金属が露出しているにもかかわらず、被処理水110に直接接触しないようになっている。さらに、絶縁体103には開口部125が設けられており、開口部125は反応槽内111の被処理水110中に気泡106を発生させるときに、気泡106の大きさを決定する機能を有する。なお、実施の形態1では、絶縁体103にアルミナセラミックを用いたが、マグネシア、石英又は酸化イットリウムを用いてもよい。
 絶縁体103の開口部125は、図2で示すように、絶縁体103の端面に設けられているが、絶縁体103の側面に設けてもよい。また、開口部125は絶縁体103に複数設けてもよい。なお、実施の形態1の開口部125の直径は、一例として、1mmである。
 第2の金属電極102は、特に制限はないが、導電性の金属材料である、例えば、銅、アルミニウム及び鉄等を用いて形成してもよい。
 気体供給装置105としては、例えば、ポンプ等を用いることができる。供給する気体114は、例えば、空気、He、Ar、またはO等が用いられる。
 電源101は、第1の金属電極104aと第2の金属電極102との間でパルス電圧又は交流電圧を印加する。
 処理槽109としては、例えば、水浄化装置、空調機、加湿器、洗濯機、電機剃刀洗浄器、または食器洗浄器等を用いることができる。なお、処理槽109は、感電を防止するために接地されていてもよい。
 反応槽111は、例えば、循環ポンプ108を備えた配管113で処理槽109と接続されていてもよい。反応槽111と処理槽109の容積は、例えば、合算で約600ミリリットル(約600cm)である。被処理水110は、循環ポンプ108によって反応槽111内と処理槽109内を循環する。被処理水110の循環速度は、プラズマ107による被分解物の速度と反応槽111の容積から適切な値に設定される。
 上記構成によれば、第1の金属電極104aの貫通孔123aから、絶縁体103と第1の金属電極104aの金属電極部121aで形成される空間124aに、気体114を供給し続けた場合、被処理水110中に気泡106が形成される。気泡106は、その中の気体が絶縁体103の開口部125を覆う寸法の柱状の気泡となる。よって、実施の形態1において、絶縁体103に設けられた開口部125は、被処理液110中に気泡106を発生させる機能を有する。また、気体供給装置105を用いて気体114の供給量を適切に設定することにより、第1の金属電極104aの金属電極部121aは、気体114で覆われた状態にできる。
 なお、本明細書において、「金属電極部(または金属電極部の表面)が液体(被処理水)に直接接触しない」とは、金属電極部の表面が、反応槽内の大きな塊としての液体と接触しないことをいう。したがって、例えば、金属電極部の表面が液体で濡らされている状態で、気泡を発生させたときには、金属電極部の表面が液体に濡れたまま(即ち、厳密には金属電極部の表面が液体と接触した状態で)、その表面を気泡内の気体が覆う状態が生じることがあるが、その状態も「金属電極部が液体に直接接触しない」状態に含まれるものとする。
[動作]
 次に、本開示の実施の形態1における液体処理装置100の動作について説明する。
 気体供給装置105により、第1の金属電極104aの貫通孔123aを介して、絶縁体103と第1の金属電極104aの金属電極部121aとの間で形成される空間124aに、気体114を供給する。気体114の流量は、例えば、0.5リットル/min~2.0リットル/minである。被処理水110中には、前述したように第1の金属電極104aの金属電極部121aを覆う柱状の気泡106が形成される。気泡106は、絶縁体103の開口部125から一定距離(図示した形態では10mm以上)にわたって途切れることのない、単一の大きな気泡となる。即ち、気体114の供給により第1の金属電極104aの金属電極部121aと絶縁体103との間の空間124aに気体114が流れ、第1の金属電極104aの金属電極部121aは、気体114で覆われた状態となる。
 電源101により、第1の金属電極104aと第2の金属電極102との間に電圧を印加する。第1の金属電極104aに、例えば、ピーク電圧が4kV、パルス幅が1μs、周波数が30kHzのパルス電圧を印加する。第1の金属電極104aと第2の金属電極102との間に電圧を印加することにより、第1の金属電極104aの金属電極部121a近傍から気泡106内にプラズマ107を発生させる。プラズマ107は、第1の金属電極104aの先端部分の気泡106のみならず内部の空間に渡って広く生成される。これは、絶縁体103を介して被処理水110が対向電極として働いた結果である。この部分の効果もあって多量のイオンが発生し、被処理水110中でのラジカルの多量の生成に繋がる。つまり、本開示のように第1の金属電極104aが被処理水110の内部に位置しているために生じる大きな効果である。
 なお、第1の金属電極104aと第2の金属電極102との間の距離は任意でよい。例えば特許文献1に記載のように、電極間距離を1~50mmに規定する必要はなく、50mmより離れていてもプラズマ107を生成することが可能となる。
 さらに、特許文献1に記載のように第1の金属電極104aと第2の金属電極102を対向させる必要もない。反応槽111内において、第2の金属電極102の少なくとも一部が被処理水110と接触する位置であれば、第2の金属電極102を配置する位置に制約はない。図1に示すように、処理槽109は、接地されていてもよい。処理槽109が接地されていると、第2の金属電極102は、被処理水110を通じて接地されたことと同等となる。即ち、第2の金属電極102が被処理水110と接触していることにより、被処理水110全体が同電位となり、気泡106と液体の界面部分が電極として機能する。その結果、気泡106を導入することによって対向電極を第1の金属電極104a近傍に形成したことになる。そして、気泡106の容積が大きいほど被処理水110の液中で大きな面積の対向電極を形成したことに等しくなり、気泡106の大きさに応じてプラズマ107も大きくなる。なお、反応槽111のみを使用する場合、反応槽111の内壁を接地する。これは反応槽111が絶縁体でできている場合に外壁を設置しても被処理水110を接地できないためである。
 また、パルス電圧の周波数についても特に制約はなく、例えば1Hz~100kHzのパルス電圧の印加により、プラズマ107を十分に生成できる。周波数が大きいほどプラズマ107を生成している累積時間が長くなり、プラズマ107によって生成される電子、イオン及びラジカルの生成量が増える。つまり、これらの生成粒子を用いた被処理水110の処理能力が向上することを意味している。一方、電圧については電源の能力だけで決まらず、負荷のインピーダンスとの兼ね合いによって決まることは言うまでもない。また、パルス電圧を印加する際に正のパルス電圧と負のパルス電圧を交互に印加する、いわゆるバイポーラーパルス電圧を印加すれば電極の寿命が長くなるという利点もある。実施の形態1では、例えば負荷のない状態で10kVの電圧を出力できる能力のある電源を用い、前述したように電極を含めた負荷を接続した状態において、実際に4kVの電圧を印加することができる。OHラジカルはその寿命が極めて短く、ESR法だけでは観測することが難しい。
[効果(OHラジカル発生)]
 次に、本開示の実施の形態1における液体処理装置100の効果(OHラジカル発生)について説明する。
 図3は、本開示の実施の形態1で処理した水中のOHラジカルのESR法による測定結果を示す図である。図示していないが、プラズマ中の発光分光解析のデータによって、OHイオン、Hイオン、Oイオン、Nイオンが生成されていることを事前に確認している。実施の形態1において、これらのイオンが被処理水110中でどのようなものになっているかを測定するのにESR(Electron Spin Resonance)法を用いて測定を行った。図3は、特にOHイオンが被処理水110中でOHラジカルとして存在することを示している。
 OHラジカルをESR法によって測定する場合に、OHラジカルをDMPOと呼ばれるスピントラップ剤に結合させて測定する方法を用いている。この方法によればDMPOにトラップされたOHの寿命はESR測定時間以上に長くなり、OHラジカルを定量的に測定することができる。
 図3に示すように、超微細構造によって別れた分裂幅を示す超微細結合定数a(N)とa(H)が共に1.49mTで、1:2:2:1の4本のESRスペクトルが観測されている。ここで、超微細結合定数とは、ESR法で測定できるパラメータの1つであり、測定されたESRスペクトルと超微細結合定数からラジカルの存在を知ることができる。図3に示す観測されたESRスペクトルから、DMPOとOHラジカルがスピントラップ反応をして生成される物質であるDMPO-OHアダクトが存在することがわかる。これは、プラズマ107中で生成したOHイオンが気泡106と被処理水110の界面で電子と再結合してOHラジカルになり、被処理水110中に拡散し、水中でOHラジカルが存在することを明確に示している。ここで、OHラジカルの寿命について述べる。OHラジカルは非常に短寿命であることが知られており、1μsec~1msecで消滅すると言われている。しかしながら、図3において被処理水110中でOHラジカルが存在していることを示す結果が得られていることは、本開示に係る液体処理装置100では従来言われている寿命より長寿命のOHラジカルが発生していることを示している。実施の形態1において、OHラジカルの寿命を測定したところ、OHラジカルの寿命が10min程度であることがわかった。なお、実施の形態1におけるOHラジカルの寿命は、プラズマ107を発生させた後、プラズマ107の発生を止めてからサンプリングするまでの時間を変更しながら測定した。
 また、OHラジカルの寿命との関わりで、DMPOを添加する方法に二つの方法が考えられる。
 一つは被処理水110に直接DMPOを必要量添加し、プラズマ107によって被処理水110を一定時間処理した後にESR測定に必要な量を採取してOHラジカルを測る方法である。この方法は、OHラジカルの寿命が短くてもDMPOが被処理水110中にあるので、ある一定量OHラジカルが生成されると、OHラジカルを測定できる大きな利点がある。しかし、実施の形態1のような場合、DMPO自体がプラズマ107で分解されるため正確なOHラジカル量を測定することができないことと、被処理水110の量を増やすとそれに応じてDMPOの添加量も増やさなければならないという欠点がある。
 もう一つの方法は、プラズマ107によって被処理水110を一定時間処理した後にESR測定に必要な量を採取してDMPOを添加する方法である。この方法では、OHラジカルの寿命が短い場合には、特別なサンプリング装置を用意しない限り、採取している時間が長くなればOHラジカルが消滅してしまい、OHラジカルが測定できないという致命的な欠点がある。ただし、DMPO自体の分解や添加量の問題については、懸念する必要がないことが利点である。
 図3に示す測定結果は、後者の方法で、被処理水110から採取した水にDMPOを添加して測定したものである。後者の方法でも充分にOHラジカルの測定ができることから、実施の形態1に係る液体処理装置100によって、長寿命のOHラジカル、即ちラジカル寿命が10min程度のOHラジカルが生成できる。
 OHラジカルの寿命が長くなることは、液体処理装置100の設計において非常に大きな効果を有する。被処理水110の容積をV、水圧をP、被処理水110を循環させる循環ポンプ108の流量をQとすると、容積Vの被処理水110を処理するのに必要とされるラジカルの滞在時間tは、t=PV/Qのように書ける。ここでラジカルの滞在時間tは、ラジカルの寿命で制約を受けるため、その上限値はラジカル寿命となる。したがって、上記式から、従来の液体処理装置において、被処理水中に含まれる菌や有機物を分解するために被処理水全体にラジカルを分散させるためには、大流量の循環ポンプが必要であることを意味している。その結果、コストが高くなるか、若しくは実際に必要な流量のポンプが存在せず装置として実現できない。例えば、Vを10リットル、ラジカル寿命を1msec以下とすれば、循環ポンプの流量は600,000リットル/min以上になり、このような循環ポンプは非常に高価であるか、存在しない。一方、実施の形態1のようにラジカル寿命が10min程度になれば、循環ポンプ108の流量は1リットル/minになり、実施の形態1のごとく実現可能な循環ポンプの流量を得ることができる。
[効果(分解速度)]
 次に、本開示の実施の形態1に係る液体処理装置100の分解速度について説明する。
 実施の形態1において、液体処理装置100の分解速度を測定するため、被処理液体のモデルとして、インディゴカーミン(メチレンブルー)水溶液を用いた。インディゴカーミンは水溶性の有機物であり、汚濁水処理のモデルとして、しばしば用いられている。実施の形態1で用いたインディゴカーミン水溶液の濃度は、約10mg/リットルであり、被処理水110の体積は600ミリリットルとした。
 前述したように実施の形態1では、被処理水110中でOHラジカルが生成されている。OHラジカルは、インディゴカーミンに作用し、分子内の結合を切ることによってインディゴカーミン分子を分解する。OHラジカルの酸化ポテンシャルは、一般的に知られているように、2.81eVであり、オゾン、過酸化水素及び塩素の酸化ポテンシャルよりも大きい。よって、OHラジカルは、インディゴカーミンに限らず多くの有機物を分解することができる。
 インディゴカーミン分子の分解程度は、水溶液の吸光度により評価できる。インディゴカーミン分子が分解すると、インディゴカーミン水溶液の青色が消色し、完全に分解すると透明になることが一般的に知られている。これは、インディゴカーミン分子中に存在する炭素の二重結合(C=C)による吸収波長が608.2nmであり、インディゴカーミン分子が分解することによってC=Cの結合が開裂し、608.2nmの光の吸収がなくなるためである。よって、インディゴカーミン分子の分解の程度は、紫外可視光分光光度計を用いて608.2nmの波長の光の吸光度を測定することにより行った。しかし、OHラジカルの寿命が短いことが、OHラジカルを効果的に活用できなかった大きな理由である。
 図4は、本開示の実施の形態1における処理時間に対するインディゴカーミン水溶液の分解量を測定した結果を示す図である。分解量はインディゴカーミンの量と吸光度の関係を測定して求めたものである。図4において、実施の形態1に係る液体処理装置100による測定結果を白四角で示し、比較例の液体処理装置による測定結果を黒四角で示す。ここで、比較例の液体処理装置の構成について述べる。比較例の液体処理装置は、第1の金属電極に外径1.95mmの円筒状のタングステン製の電極を用いる。第1の金属電極の外周はアルミナセラミックからなる絶縁体で覆われており、第1の金属電極と第2の金属電極は対向して配置されている。また、比較例の液体処理装置においては、瞬間沸騰現象を用いてプラズマを生成する。なお、実施の形態1及び比較例において、第1の金属電極へ供給される電力は共に7Wである。
 図4に示すように、実施の形態1に係る液体処理装置100では、25分程度でインディゴカーミン水溶液をほぼ完全に分解することができた。これは、OHラジカルを効率よく生成することにより成し得たものである。一方、比較例の液体処理装置においては、インディゴカーミン水溶液をほぼ完全に分解するのに400分程度の時間がかかった。このように、実施の形態1に係る液体処理装置100によれば、効率よくプラズマ107を発生させることができ、長寿命のOHラジカルを生成できるので、短時間で液体の処理をすることが可能となる。
 なお、比較例の液体処理装置の場合におけるインディゴカーミンの分解については、以下のように考えられる。比較例の円筒電極の直径は1.95mmと実施の形態1に比べて大きく、それに伴って電界強度が低いためにプラズマの安定性が悪く、トータルのプラズマ生成時間が短くなる。その結果、OHイオンひいてはOHラジカルの濃度が低くなり、脱色速度が遅くなったものと考えられる。
 また、図示していないが、気体供給装置105を用いずに、第1の金属電極104aと第2の電極102を対向させて被処理水110に浸し、瞬間沸騰現象を用いてプラズマを生成する場合、インディゴカーミン水溶液の分解速度は遅くなる。これは気体114を用いないために、長寿命のOHラジカルができていないことに起因すると考えられる。
 実施の形態1では、気体供給装置105から第1の金属電極104aの貫通孔123aを介して、第1の金属電極104aと絶縁体103との間の空間124aに、気体114を比較的大きな流量で供給し続けている。多量の気体114の供給により、第1の金属電極104aの金属電極部121aが気体114で覆われて、第1の金属電極104aの金属電極部121aが被処理水110に直接接触しなくなる。その結果、第1の金属電極104aの金属電極部121aの先端部分で安定したプラズマ107が生成される。また、絶縁体103の開口部125から発生する連続した気泡106の一部が被処理水110中で浮力により切断されるが、この切断された微小気泡にプラズマ107が内包された状態となる。この微小気泡にプラズマ107が内包された状態が有効に寄与していると考えられる。即ち、プラズマ107中のOHイオンは水中にOHラジカルとして溶出するが、微小気泡であるためOHラジカルをトラップした状態になり、OHラジカルの寿命が大幅に延命化されたものと考えられる。
 このように、実施の形態1に係る液体処理装置100によれば、製造コストを抑制しつつ、効率よくプラズマ107を発生させることができる。その結果、被処理水110中には長寿命のOHラジカルを生成することができることにより、短時間で液体の処理ができる。
(実施の形態2)
 本開示の実施の形態2に係る液体処理装置100について、図5を用いて説明する。実施の形態2では、電極構成が実施の形態1と異なる。その他の構成は、実施の形態1と同じである。
[電極構成2]
 本開示の実施の形態2に係る液体処理装置100の電極構成について説明する。
 図5は、本開示の実施の形態2における電極構成を示す断面図である。実施の形態1における電極構造では、貫通孔123aは第1の金属電極104aと絶縁体103との間の空間124a(例えば、0.5mm程度の隙間)に連結するため、貫通孔123aの直径を小さくする(例えば、0.3mm)必要があり、貫通孔123aを加工するのにコストが高くなる懸念がある。そこで、貫通孔を大きくすることができる場合の実施の形態2に係る電極構成について説明する。
 実施の形態2では、貫通孔123bを大きくするために、実施の形態1の金属電極部121aの代わりに、開口端を有する中空状の第1の金属電極104bを用いる。実施の形態2の中空状の第1の金属電極104bは、一例として、外径0.99mmのタングステン製のコイル状電極部121bを用いている。なお、実施の形態2における中空状の第1の金属電極104bとしては、コイル状に限られない。図5に示すように、実施の形態2では、例えば直径1mmの大きな貫通孔123bが金属ネジ部122bの軸中心部分に設けられ、コイル状電極部121bの中空部で形成される空間124bに連結する。また、コイル状電極部121bと金属ネジ部122bとの接続は、例えば、貫通孔123bに設けられた内側ネジ部128で螺合させて接続することができる。
 上記構成により、実施の形態2では貫通孔123bの直径を大きくすることができ、第1の金属電極104bの製造コストが高くなるのを抑えることができる。
 また、図5に示すように、実施の形態2においてもコイル状電極部121bの外側に絶縁体103が配置されているが、実施の形態2では絶縁体103は、コイル状電極部121bの側面部と接触するように配置してもよい。
 金属ネジ部122bの貫通孔123bから気体114を導入すると、気体114はコイル状電極部121bの中空部の空間124bに供給され、コイル状電極部121bが気体114で覆われる。そして、この気体114によって、絶縁体103の開口部125から被処理水110中へ気泡106を発生させる。また、この気泡106の中の気体がコイル状電極部121bの端部を覆う。ここでも気泡106の大きさは、絶縁体103の開口部125で決まることは実施の形態1と同様である。
[効果(分解速度)2]
 次に、本開示の実施の形態2に係る液体処理装置100の効果(分解速度)について説明する。
 図6は、本開示の実施の形態2における処理時間に対するインディゴカーミン水溶液の分解量を測定した結果を示す図である。分解量は実施の形態1と同様にインディゴカーミンの量と吸光度の関係を測定して求めたものである。図6において、実施の形態2に係る液体処理装置100による測定結果を白丸で示し、比較例の液体処理装置による測定結果を黒四角で示す。なお、比較例の液体処理装置の構成は、実施の形態1で述べたものと同じである。実施の形態2によれば、約10mg/Lのインディゴカーミンが完全に分解する時間は、約25分程度であり、実施の形態1と同程度である。このように、実施の形態2における液体処理装置100によれば、製造コストを抑制しつつ、効率よくプラズマ107を発生させることにより、短期間で液体の処理ができる。
 次に、実施の形態1及び2の第1の金属電極104a、104bを絶縁体103の開口部125の端面から内側に後退させた距離dに対するインディゴカーミン水溶液の分解速度について説明する。
 図7は、本開示の実施の形態1及び2における第1の金属電極104を絶縁体103の開口部125の端面から内側に後退させた距離(後退量)dを示す図である。なお、図7中の符号104は、実施の形態1及び2の第1の金属電極104a、104bを示す。図7では、実施の形態1の後退量dを定義しているが、実施の形態2の後退量dも同様の定義である。図8は、本開示の実施の形態1及び2における第1の金属電極104を絶縁体103の開口部125の端面から内側に後退させた距離(後退量)dに対するインディゴカーミン水溶液の分解速度を示す図である。図8において、実施の形態1に係る液体処理装置100による測定結果を白四角で示し、実施の形態2に係る液体処理装置による測定結果を白丸で示す。
 図8に示すように、実施の形態1及び2ともに第1の金属電極104を絶縁体103の開口部125の端面から内側に後退させていくと、後退量dが0より大きく、7mm未満の範囲でインディゴカーミン水溶液の分解速度が速くなる。また、後退量dが3~5mmの範囲では、インンディゴカーミン水溶液の分解速度が最大となる領域を持つ。したがって、第1の金属電極104の後退量dは、0より大きく、7mm未満の範囲が好ましく、より好ましくは3~5mmの範囲である。
 また、図8に示すように、後退量dが3mm~5mmの範囲を境に分解速度が小さくなる。つまり、後退量dが3~5mmの範囲を境に後退量dが小さい領域(後退量dが0~3mmの領域)と大きい領域(後退量dが5~7mmの領域)で曲線が非対称になっている。これは、後退量dが小さい領域と大きい領域では、支配しているメカニズムが異なることを意味すると考えられる。後退量dが小さい領域では、後退量dを大きくすると、第1の金属電極104が被処理水110に接触し難くなり、電圧のロスが小さくなることで、放電が安定する。その結果、インディゴカーミン水溶液の分解速度は速くなる。一方、後退量dが大きい領域では、後退量dを大きくすると、第1の金属電極104と気液界面との距離が大きくなり、放電が開始しにくくなり安定しなくなる。その結果、最終的にプラズマ107が生成されなくなる。ここで、第1の金属電極104と気液界面との距離は、電極間距離に相当し、後退量dが大きくなると、電極間距離が長くなり、電圧が一定の場合に電界強度が小さくなることを意味する。つまり、後退量dが大きくなりすぎると、絶縁破壊がし難くなるために放電が安定しないことになる。このことによって、インディゴカーミン水溶液の分解速度が遅くなったと考えられる。
 また、後退量dが小さい領域では、水濡れによる電圧ロスに起因するインディゴカーミンの分解速度の変化は、後退量dに対して緩やかである。これに対し、後退量dが大きい領域では、パッシェンの法則に従う電界強度の低下に起因するインディゴカーミンの分解速度の変化は比較的、急峻である。したがって、後退量dが大きい領域に第1の金属電極104を設定する場合では、後退量dの調整精度を後退量dが小さい領域に設定する場合の精度よりも高くする必要がある。この精度が低いと、インディゴカーミンの分解速度のバラつきが大きくなる可能性がある。例えば、後退量dが大きい領域の調整精度は、好ましくは後退量dの小さい領域の調整精度よりも少なくとも30%程度、より好ましくは10倍の精度まで上げておくことが好ましい。
(実施の形態3)
 本開示の実施の形態3に係る液体処理装置100について、図9を用いて説明する。実施の形態3では、電極構成が実施の形態1と異なる。その他の構成は、実施の形態1と同じである。
[電極構成3]
 本開示の実施の形態3に係る液体処理装置100の電極構成について説明する。
 ポアソンの式より、気泡106を発生させる絶縁体103の開口部125の直径を小さくすると、電界強度が直径の2乗に反比例して強くなることがわかっている。よって、電界強度を大きくするには、絶縁体103の開口部125の直径を小さくする必要がある。実施の形態1及び2では、開口部125を絶縁体103の端面に設けているため、開口部125の直径を小さくすると、それに合わせて第1の金属電極104a、104bの金属電極部121a又はコイル状電極部121bの直径も同時に小さくする必要がある。金属電極部121a及びコイル状電極部121bの直径を小さくすることは、製作が困難になるとともに小さい直径の金属の先端部で放電が強くなり、電極の磨耗が大きくなるという問題が発生する。そこで、金属電極部121a及びコイル状電極部121bの直径にかかわらず、絶縁体103の開口部125の直径を独立して変更することができる実施の形態3に係る液体処理装置100について説明する。
 図9は、本開示の実施の形態3における電極構成を示す断面図である。図9に示すように、第1の金属電極104cの金属電極部121cの外周に空間124cが形成されるように絶縁体103が設けられており、絶縁体103の側面には、被処理水110中に対して気泡106を発生させる、第1の開口部125aが設けられている。さらに、絶縁体103の端面には、気体供給装置105と接続される第2の開口部125bが設けられている。そして、第2の開口部125bにおいて、気体供給装置105から空間124cに気体114を供給する。ここで、第2の開口部125bと気体供給装置105を接続するのに、第2の開口部125bの内側に第2の絶縁体129を設けてもよい。気体供給装置105から気体114を空間124cに供給し続けることで、気体114が第1の金属電極104cの金属電極部121cの外周を覆う。そして、この気体114により第1の開口部125aから被処理水110中へ気泡106を発生させる。気泡106の大きさは、第1の開口部125aで決まることは、実施の形態1及び2と同様である。なお、本実施の形態3では、一例として、第1の金属電極104cの金属電極部121cはタングステン製で直径1.95mmのものを用い、金属ネジ部122cは直径3mmで材料は鉄のものを用いている。また、一例として、絶縁体103は、内径が3mmのアルミナセラミックのものを用いている。これによって、第1の金属電極104cと絶縁体103との間の空間124cは、例えば、0.5mm程度の隙間を有する。
 上記構成により、実施の形態3に係る液体処理装置100では、第1の金属電極104cの金属電極部121cの直径に関わらず、独立して第1の開口部125aの直径を決定することができる。その結果、第1の開口部125aの直径を小さくして、電界強度を大きくすることができる。したがって、実施の形態3に係る液体処理装置100によれば、第1の開口部125aの直径を小さくして電界強度を上げることで、第1の開口部125a付近で第1の金属電極104cの金属電極部121cから気泡106内へ、より安定したプラズマ107を発生させることができる。これによって、大量のOHラジカルを被処理水110中に放出することができる。また、実施の形態3では、気体114の導入経路を第1の金属電極104cから分離させることができるので、貫通孔を設ける必要がなく、製造コストを抑えることができる。
[効果(分解速度)3]
 図10は、本開示の実施の形態3における処理時間に対するインディゴカーミン水溶液の分解量を測定した結果を示す図である。分解量は実施の形態1と同様にインディゴカーミンの量と吸光度の関係を測定して求めたものである。図10において、実施の形態3に係る液体処理装置100による測定結果を白三角で示す。また、比較例の液体処理装置による測定結果を黒四角で示す。なお、本実施の形態3の絶縁体103の第1の開口部125aの直径は、一例として0.7mmとした。比較例の液体処理装置の構成は、実施の形態1の測定で用いたものと同じである。実施の形態3に係る液体処理装置100によれば、約10mg/Lのインディゴカーミンが完全に分解する時間は約17分程度であり、実施の形態1及び2と比べ、分解速度が速くなっている。これは実施の形態1及び2の開口部125の直径が1mmに対し、実施の形態3の第1の開口部125aの直径が0.7mmと小さくなっているのに起因する。つまり、実施の形態3に係る液体処理装置100の第1の開口部125aにおける電界強度が、実施の形態1及び2よりも2倍程度大きくなる。これによって、プラズマ107がより安定し、さらにプラズマ密度が大きくなり、OHラジカルの量が増えると考えられる。よって、実施の形態3における液体処理装置100では、効率よくプラズマ107を発生させることができ、長寿命のOHラジカルを被処理水110中に生成することができるので、短期間に液体の処理ができる。
 図11は、本開示の実施の形態3における第1の開口部125aの直径に対するインディゴカーミン水溶液の分解速度の依存性を示す図である。図11において、実施の形態3の第1の開口部125aの直径に対する分解速度の測定結果を黒菱形で示す。図11に示すように、絶縁体103の第1の開口部125aの直径が0.3~2mmの範囲であるとインディゴカーミンの分解速度が速くなり、0.5mm~0.7mmの範囲でインディゴカーミンの分解速度が最大となる領域を有する。これは、第1の開口部125aの直径が小さくなると直径の2乗に反比例して電界強度は大きくなるので、プラズマ生成が安定化し、インディゴカーミンの分解速度が速くなる。しかし、分解速度の最大値(0.5~0.7mmの範囲)を境にさらに直径を小さくすると、インディゴカーミンの分解速度が遅くなる。これは、プラズマの体積が分解速度を決定する因子になるからである。つまり、第1の開口部125aの直径が小さくなると気泡106が小さくなり、プラズマ中で生成されるOHイオンの数密度が小さくなるためにインディゴカーミンの分解速度が遅くなると考えられる。気泡の体積は、開口径の3乗に比例して小さくなるので、最大値を境に急峻にインディゴカーミンの分解速度が遅くなる。以上のことから、絶縁体103の第1の開口径125aの直径は、0.3~2mmの範囲であるのが好ましく、より好ましくは0.5mm~0.7mmの範囲である。実施の形態3に係る液体処理装置100において、第1の開口部125aの直径が上記範囲内であれば、高効率にプラズマ107を発生させ、長寿命のOHラジカルを生成することができる。
 なお、本開示においては、前述した様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることを含むものであり、それぞれの実施の形態が有する効果を奏することができる。
 本開示に係る液体処理装置は、安定して高効率に長寿命のOHラジカルを生成することができるため、汚水処理等の水浄化装置等として有用である。
  100 液体処理装置
  101 パルス電源
  102 第2の金属電極
  103 絶縁体
  104、104a、104b、104c 第1の金属電極
  105 気体供給装置
  106 気泡
  107 プラズマ
  108 循環ポンプ
  109 処理槽
  110 被処理水
  111 反応槽
  112 保持ブロック
  113 配管
  114 気体
  121a、121c 金属電極部
  121b コイル状電極部
  122a、122b、122c 金属ネジ部
  123a、123b 貫通孔
  124a、124b、124c 空間
  125 開口部
  125a 第1の開口部
  125b 第2の開口部
  126、127 ネジ部
  128 内側ネジ部
  129 第2の絶縁体

Claims (20)

  1.  被処理水を入れる反応槽内に少なくとも一部が配置される第1の金属電極と、
     前記反応槽内に配置される第2の金属電極と、
     前記第1の金属電極を囲むように設けられ、閉じた空間を形成する絶縁体と、
     前記絶縁体に前記被処理水に対して設けられた開口部であって、前記空間から前記被処理水中に気泡を発生させる、開口部と、
     前記気泡を発生させるのに必要な気体を前記空間に供給する気体供給装置と、
     前記第1の金属電極と前記第2の金属電極との間に電圧を印加する電源と、
    を備える、液体処理装置。
  2.  被処理水を入れる反応槽内に少なくとも一部が配置される第1の金属電極と、
     前記反応槽内に配置される第2の金属電極と、
     前記第1の金属電極の外周との間に空間を形成するように設けられた絶縁体と、
     前記絶縁体に前記被処理水に対して設けられた開口部であって、前記被処理水中に気泡を発生させる、開口部と、
     前記気泡を発生させるのに必要な気体を前記空間に供給する気体供給装置と、
     前記第1の金属電極と前記第2の金属電極との間に電圧を印加する電源と、
    を備える、液体処理装置。
  3.  被処理水を入れる反応槽内に少なくとも一部が配置される、開口端を有する中空状の第1の金属電極と、
     前記反応槽内に配置される第2の金属電極と、
     前記第1の金属電極の外周を囲うように設けられた絶縁体と、
     前記絶縁体に前記被処理水に対して設けられた開口部であって、前記被処理水中に気泡を発生させる、開口部と、
     前記気泡を発生させるのに必要な気体を、前記第1の電極の中空部で形成される空間に供給する気体供給装置と、
     前記第1の金属電極と前記第2の金属電極との間に電圧を印加する電源と、
    を備える、液体処理装置。
  4.  前記第1の金属電極は、前記反応槽内に配置される電極がコイル状である、請求項1~3のいずれか一項に記載の液体処理装置。
  5.  前記絶縁体に複数の前記開口部が設けられている、請求項1~3のいずれか一項に記載の液体処理装置。
  6.  前記第1の金属電極は、前記反応槽内に配置される一端側の部分と、前記電源と接続する他端側の部分と、の少なくとも2つの部分が接続されて構成される、請求項1~3のいずれか一項に記載の液体処理装置。
  7.  前記第1の金属電極は、前記一端側の部分と前記他端側の部分が、異なる材料からなる金属電極である、請求項6に記載の液体処理装置。
  8.  前記第1の金属電極の前記他端側の部分にネジ部が設けられている、請求項6又は7のいずれか一項に記載の液体処理装置。
  9.  前記第1の金属電極の前記他端側の部分に前記気体供給装置と、前記空間と、を連結する貫通孔を設けている、請求項6~8のいずれか一項に記載の液体処理装置。
  10.  前記第1の金属電極が前記絶縁体の前記開口部より内側に、0mmより大きく、7mm未満で後退した位置にある、請求項1~3のいずれか一項に記載の液体処理装置。
  11.  前記絶縁体は、前記被処理水に前記気泡を発生させる第1の開口部に加えて、さらに前記気体供給装置と接続される第2の開口部を備えた、請求項1~3のいずれか一項に記載の液体処理装置。
  12.  前記絶縁体の前記第1の開口部の直径が0.3mm~2mmの範囲である、請求項11に記載の液体処理装置。
  13.  前記第1の金属電極と前記第2の金属電極を配置する、反応槽をさらに備える請求項1~3のいずれか一項に記載の液体処理装置。
  14.  前記反応槽の内壁は、接地されている、請求項13に記載の液体処理装置。
  15.  前記反応槽と循環ポンプ及び配管で接続される処理層をさらに備える請求項1~3のいずれか一項に記載の液体処理装置。
  16.  前記処理槽は、水浄化装置、空調機、加湿器、洗濯機、電機剃刀洗浄器、または食器洗浄器である請求項15に記載の液体処理装置。
  17.  前記処理槽は、接地されている、請求項15に記載の液体処理装置。
  18.  請求項1~3のいずれか一項に記載の液体処理装置であって、
     前記電源によって電圧を印加して、前記第1の金属電極と前記第2の金属電極との間で放電させて、前記気泡内にプラズマを発生させ、液体を処理する、液体処理装置。
  19.  被処理水を入れる反応槽内に少なくとも一部が配置される第1の金属電極と、前記反応槽内に配置される第2の金属電極との間に、電圧を印加する工程と、
     前記第1の金属電極を囲む絶縁体で形成される閉じた空間に気体を供給し、前記絶縁体に設けられた開口部から前記被処理水中に気泡を発生させる工程と、
    を含む、液体処理方法。
  20.  前記第1の金属電極と前記第2の金属電極間で放電させて、前記気泡内にプラズマを発生させ、液体を処理する、請求項19に記載の液体処理方法。
PCT/JP2013/003969 2012-07-24 2013-06-25 液体処理装置及び液体処理方法 WO2014017020A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN3441CHN2014 IN2014CN03441A (ja) 2012-07-24 2013-06-25
JP2013558262A JP5796174B2 (ja) 2012-07-24 2013-06-25 液体処理装置及び液体処理方法
CN201380003505.7A CN103889903B (zh) 2012-07-24 2013-06-25 液体处理装置以及液体处理方法
EP13823391.1A EP2762453B1 (en) 2012-07-24 2013-06-25 Liquid treatment device and liquid treatment method
US14/264,748 US9688549B2 (en) 2012-07-24 2014-04-29 Liquid treatment device and liquid treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-163785 2012-07-24
JP2012163785 2012-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/264,748 Continuation US9688549B2 (en) 2012-07-24 2014-04-29 Liquid treatment device and liquid treatment method

Publications (1)

Publication Number Publication Date
WO2014017020A1 true WO2014017020A1 (ja) 2014-01-30

Family

ID=49996848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003969 WO2014017020A1 (ja) 2012-07-24 2013-06-25 液体処理装置及び液体処理方法

Country Status (6)

Country Link
US (1) US9688549B2 (ja)
EP (1) EP2762453B1 (ja)
JP (2) JP5796174B2 (ja)
CN (1) CN103889903B (ja)
IN (1) IN2014CN03441A (ja)
WO (1) WO2014017020A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010797A (ja) * 2014-06-06 2016-01-21 パナソニックIpマネジメント株式会社 処理液生成装置および処理液生成方法
JP2016029919A (ja) * 2014-07-29 2016-03-07 一般財団法人電力中央研究所 水耕栽培用培養液の殺菌方法及び殺菌装置
US10542615B2 (en) 2016-11-28 2020-01-21 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus including first electrode, second electrode, and first and second insulators surrounding lateral surface of first electrode

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002364A1 (ja) * 2012-06-28 2014-01-03 パナソニック株式会社 液体中の元素分析装置
JP5884065B2 (ja) 2013-11-18 2016-03-15 パナソニックIpマネジメント株式会社 液体処理ユニット、洗浄便座、洗濯機および液体処理装置
CN104270882A (zh) * 2014-09-30 2015-01-07 赵岳虎 常压常温高频水体低温等离子体发生器
JP6653475B2 (ja) * 2016-02-17 2020-02-26 パナソニックIpマネジメント株式会社 液体処理装置
US10703653B2 (en) 2016-02-17 2020-07-07 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment device utilizing plasma
CN105883979B (zh) * 2016-06-03 2018-08-10 成都科衡环保技术有限公司 一种气液混合式低温等离子体发生器及集成装置
US10562797B2 (en) 2017-03-08 2020-02-18 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus including flow channel, first and second electrodes, insulator surrounding lateral surface of first electrode, gas supply device, and power supply source
US10446375B2 (en) 2017-03-14 2019-10-15 Panasonic Intellectual Property Management Co., Ltd. Liquid processing apparatus including container, first and second electrodes, insulator surrounding at least part of side face of the first electrode, gas supply device, metallic member surrounding part of side face of the first electrode, and power source
BR112019027696A2 (pt) * 2017-06-22 2020-09-15 Kenneth Stephen Bailey a separação de hidrogênio e oxigênio de água não potável e a recombinação de ditos hidrogênio e oxigênio para conduzir uma turbina ou motor a pistão
JP6587159B2 (ja) * 2017-06-26 2019-10-09 パナソニックIpマネジメント株式会社 液体処理装置
WO2019083329A2 (en) * 2017-10-27 2019-05-02 Samsung Electronics Co., Ltd. PLASMA GENERATOR AND ELECTRICAL APPLIANCE COMPRISING THE SAME
JP7113213B2 (ja) * 2018-09-13 2022-08-05 パナソニックIpマネジメント株式会社 洗濯機
CN109600902A (zh) * 2018-12-10 2019-04-09 杨春俊 低温等离子体活化液激发装置及其使用方法
US20220026061A1 (en) * 2020-07-27 2022-01-27 Archer Laboratories, LLC Methods and systems for radiofrequency plasma plume generation
CN113293099B (zh) * 2021-06-01 2023-12-22 中国科学院重庆绿色智能技术研究院 研究微纳米气泡与细胞相互作用的方法
CN113925431B (zh) * 2021-11-12 2024-03-12 珠海格力电器股份有限公司 一种消毒水发生装置和洗碗机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507428A (ja) * 1994-01-11 1997-07-29 サイエンティフィック ユーティリゼイション,インコーポレイテッド ガス注入と電気放電を用いた液体汚染物除去装置
JP2000093967A (ja) 1998-09-25 2000-04-04 Masayuki Sato 液体処理方法及び液体処理装置
JP2003062579A (ja) 2001-08-27 2003-03-04 Kobe Steel Ltd 液体の処理方法及びその装置
JP2005058887A (ja) * 2003-08-11 2005-03-10 Mitsubishi Heavy Ind Ltd 高電圧パルスを利用した廃水処理装置
JP2005296909A (ja) * 2004-03-16 2005-10-27 Toshiba Corp 水処理システム
WO2006059808A1 (ja) * 2004-12-03 2006-06-08 Kabushiki Kaisha Toyota Jidoshokki 液中プラズマ用電極、液中プラズマ発生装置および液中プラズマ発生方法
JP2007207540A (ja) * 2006-02-01 2007-08-16 Kurita Seisakusho:Kk 液中プラズマ発生方法、液中プラズマ発生装置、被処理液浄化装置及びイオン液体供給装置
JP2008178870A (ja) * 2006-12-28 2008-08-07 Sharp Corp プラズマ発生装置、ラジカル生成方法および洗浄浄化装置
JP2009255027A (ja) 2007-12-20 2009-11-05 Mitsubishi Electric Corp 殺菌方法並びに殺菌装置とその装置を用いた空調機、手乾燥機及び加湿器
JP2010523326A (ja) 2007-04-10 2010-07-15 トゥエンティーワンシー シップビルディング カンパニー リミテッド 水中パルスプラズマ処理装置及びそれを用いた船舶バラスト水処理システム及びその方法
WO2012011332A1 (ja) * 2010-07-21 2012-01-26 パナソニック株式会社 プラズマ発生装置とラジカル生成方法、それらを用いた洗浄浄化装置および小型電器機器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE467742B (sv) 1991-09-06 1992-09-07 Sonerud John Teodor Anordning foer snabbkoppling av ett redskap till en graevmaskin med samtidig anslutning till ett drivsystem
JP2759169B2 (ja) * 1996-05-09 1998-05-28 渡辺 紀夫 水の電気処理用電極ユニット
IT241781Y1 (it) * 1996-07-18 2001-05-17 Trafimet Spa Torcia per taglio al plasma con accensione senza alta frequenza condispositivi ad aria di raffreddamento dell'elettrodo migliorati.
JP2000005766A (ja) * 1998-06-22 2000-01-11 Masaaki Takarada 物質状態の変化法
JP3068363U (ja) * 1999-09-07 2000-05-12 日本イオン株式会社 金属イオン及び塩素による液体の殺菌殺藻装置
AUPS220302A0 (en) * 2002-05-08 2002-06-06 Chang, Chak Man Thomas A plasma formed within bubbles in an aqueous medium and uses therefore
JP4515034B2 (ja) * 2003-02-28 2010-07-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2005021811A (ja) * 2003-07-02 2005-01-27 Hoshizaki Electric Co Ltd 金属イオン含有水生成装置
US20050189278A1 (en) * 2004-02-03 2005-09-01 Takanori Iijima Apparatus for decomposing organic matter with radical treatment method using electric discharge
JP2006110092A (ja) * 2004-10-14 2006-04-27 Sanyo Electric Co Ltd 洗濯機
JP5204061B2 (ja) * 2009-09-11 2013-06-05 国立大学法人東京工業大学 気液2相流プラズマ処理装置
JP2012075966A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd プール用循環システム
JP2012075981A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd 水中放電装置
JP2012164558A (ja) 2011-02-08 2012-08-30 Panasonic Corp プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器
JP2012164556A (ja) 2011-02-08 2012-08-30 Panasonic Corp プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器
JP2012164560A (ja) 2011-02-08 2012-08-30 Panasonic Corp プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器
JP2012164557A (ja) 2011-02-08 2012-08-30 Panasonic Corp プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器
JP5793661B2 (ja) 2011-02-08 2015-10-14 パナソニックIpマネジメント株式会社 プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および電器機器
JP2012204248A (ja) 2011-03-28 2012-10-22 Panasonic Corp プラズマ発生装置及びこれを用いた洗浄浄化装置
JP2012204249A (ja) 2011-03-28 2012-10-22 Panasonic Corp プラズマ発生装置及びこれを用いた洗浄浄化装置
WO2012157034A1 (ja) * 2011-05-17 2012-11-22 パナソニック株式会社 液体処理装置および液体処理方法
JP5362934B2 (ja) 2011-05-17 2013-12-11 パナソニック株式会社 プラズマ発生装置およびプラズマ発生方法
JP2013022475A (ja) 2011-07-15 2013-02-04 Panasonic Corp 洗浄装置
JP2013022476A (ja) 2011-07-15 2013-02-04 Panasonic Corp プラズマ発生装置及びこれを用いた洗浄浄化装置
CN202255488U (zh) * 2011-09-16 2012-05-30 开封威利流量仪表有限公司 电磁流量计用组合电极
JP2013111312A (ja) 2011-11-30 2013-06-10 Panasonic Corp 洗浄装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507428A (ja) * 1994-01-11 1997-07-29 サイエンティフィック ユーティリゼイション,インコーポレイテッド ガス注入と電気放電を用いた液体汚染物除去装置
JP3983282B2 (ja) 1994-01-11 2007-09-26 サイエンティフィック ユーティリゼイション,インコーポレイテッド ガス注入と電気放電を用いた液体汚染物除去装置
JP2000093967A (ja) 1998-09-25 2000-04-04 Masayuki Sato 液体処理方法及び液体処理装置
JP2003062579A (ja) 2001-08-27 2003-03-04 Kobe Steel Ltd 液体の処理方法及びその装置
JP2005058887A (ja) * 2003-08-11 2005-03-10 Mitsubishi Heavy Ind Ltd 高電圧パルスを利用した廃水処理装置
JP2005296909A (ja) * 2004-03-16 2005-10-27 Toshiba Corp 水処理システム
WO2006059808A1 (ja) * 2004-12-03 2006-06-08 Kabushiki Kaisha Toyota Jidoshokki 液中プラズマ用電極、液中プラズマ発生装置および液中プラズマ発生方法
JP2007207540A (ja) * 2006-02-01 2007-08-16 Kurita Seisakusho:Kk 液中プラズマ発生方法、液中プラズマ発生装置、被処理液浄化装置及びイオン液体供給装置
JP2008178870A (ja) * 2006-12-28 2008-08-07 Sharp Corp プラズマ発生装置、ラジカル生成方法および洗浄浄化装置
JP2010523326A (ja) 2007-04-10 2010-07-15 トゥエンティーワンシー シップビルディング カンパニー リミテッド 水中パルスプラズマ処理装置及びそれを用いた船舶バラスト水処理システム及びその方法
JP2009255027A (ja) 2007-12-20 2009-11-05 Mitsubishi Electric Corp 殺菌方法並びに殺菌装置とその装置を用いた空調機、手乾燥機及び加湿器
WO2012011332A1 (ja) * 2010-07-21 2012-01-26 パナソニック株式会社 プラズマ発生装置とラジカル生成方法、それらを用いた洗浄浄化装置および小型電器機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762453A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010797A (ja) * 2014-06-06 2016-01-21 パナソニックIpマネジメント株式会社 処理液生成装置および処理液生成方法
US10105673B2 (en) 2014-06-06 2018-10-23 Panasonic Intellectual Property Management Co., Ltd. Treatment liquid production device and treatment liquid production method
JP2016029919A (ja) * 2014-07-29 2016-03-07 一般財団法人電力中央研究所 水耕栽培用培養液の殺菌方法及び殺菌装置
US10542615B2 (en) 2016-11-28 2020-01-21 Panasonic Intellectual Property Management Co., Ltd. Liquid treatment apparatus including first electrode, second electrode, and first and second insulators surrounding lateral surface of first electrode

Also Published As

Publication number Publication date
CN103889903B (zh) 2017-08-08
EP2762453B1 (en) 2017-03-01
EP2762453A4 (en) 2014-11-26
JP2015033694A (ja) 2015-02-19
IN2014CN03441A (ja) 2015-10-09
US9688549B2 (en) 2017-06-27
JP6156801B2 (ja) 2017-07-05
JPWO2014017020A1 (ja) 2016-07-07
JP5796174B2 (ja) 2015-10-21
US20140231329A1 (en) 2014-08-21
EP2762453A1 (en) 2014-08-06
CN103889903A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
JP6156801B2 (ja) 液体処理装置及び液体処理方法
JP2015136644A (ja) 液体処理装置及び液体処理方法、ならびにプラズマ処理液
JP5821020B2 (ja) 液体処理装置及び液体処理方法
WO2012157034A1 (ja) 液体処理装置および液体処理方法
JP5906444B2 (ja) 液体処理装置、液体処理方法及びプラズマ処理液
JP6097942B2 (ja) 液体処理装置及び液体処理方法
BRPI0706289A2 (pt) métodos e aparelhos para tornar lìquidos mais reativos
JP5899455B2 (ja) 液体処理装置及び液体処理方法
US10105673B2 (en) Treatment liquid production device and treatment liquid production method
CN104649378A (zh) 液体处理装置及液体处理方法
EP3647276B1 (en) Liquid treatment device
JP2013049015A (ja) 水処理装置
JP2015223528A (ja) 液体処理装置および液体処理方法
JP2016004637A (ja) プラズマ生成装置
Lin et al. Degradation of alizarin red by hybrid gas-liquid dielectric barrier discharge
Matra et al. Decolorization of Methylene Blue in an Ar Non-Thermal Plasma Reactor.
US20150009496A1 (en) Elemental analysis device in liquid
JP2012176347A (ja) 活性種の生成方法及び生成装置
Nomura et al. 3D Integrated Micro-solution Plasma for The Treatment of Water-Effects of Discharge Gases
JP2015116558A (ja) 液体処理装置
JP2020184439A (ja) 液体処理方法及び液体処理装置
Wang et al. Degradation of aqueous safranine T solution by DC glow discharge plasma at atmospheric pressure air

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013558262

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823391

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013823391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013823391

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE