WO2014015804A1 - 利用电荷排斥作用制备同二聚体蛋白混合物的方法 - Google Patents

利用电荷排斥作用制备同二聚体蛋白混合物的方法 Download PDF

Info

Publication number
WO2014015804A1
WO2014015804A1 PCT/CN2013/080060 CN2013080060W WO2014015804A1 WO 2014015804 A1 WO2014015804 A1 WO 2014015804A1 CN 2013080060 W CN2013080060 W CN 2013080060W WO 2014015804 A1 WO2014015804 A1 WO 2014015804A1
Authority
WO
WIPO (PCT)
Prior art keywords
lys
amino acid
strand
acid
proteins
Prior art date
Application number
PCT/CN2013/080060
Other languages
English (en)
French (fr)
Inventor
徐霆
须涛
汪皛皛
孙兴鲁
范英
曾燕
Original Assignee
苏州康宁杰瑞生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州康宁杰瑞生物科技有限公司 filed Critical 苏州康宁杰瑞生物科技有限公司
Priority to EP13822582.6A priority Critical patent/EP2889313B1/en
Priority to US14/416,817 priority patent/US9708389B2/en
Priority to DK13822582.6T priority patent/DK2889313T3/en
Priority to ES13822582T priority patent/ES2710936T3/es
Priority to JP2015523402A priority patent/JP6185584B2/ja
Priority to EP18196046.9A priority patent/EP3444280A1/en
Publication of WO2014015804A1 publication Critical patent/WO2014015804A1/zh
Priority to HRP20190272TT priority patent/HRP20190272T1/hr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a process for the preparation of a mixture of homodimeric proteins, and in particular to a process for the preparation of a mixture of homodimeric proteins by charge repulsion.
  • the invention also relates to the use of a homodimeric protein mixture prepared by the method, and the use of the method to prepare a mixture of homodimeric proteins. Background technique
  • Monoclonal antibody drugs have grown rapidly in the last fifteen years and have become the growth point of the pharmaceutical industry. Since 1996, a total of 30 or so monoclonal antibodies have been approved for marketing. Among them, nine monoclonal antibodies have annual sales of more than one billion US dollars. The total sales of monoclonal antibodies in 2010 exceeded $30 billion, and the annual growth rate exceeded 10%. Because of the high target specificity of monoclonal antibodies, only a single target can be inhibited. In many diseases such as tumors and autoimmunity, it is necessary to suppress multiple signaling pathways to avoid compensatory effects. For viral infections, due to the high mutation rate of the virus, it is often necessary to inhibit multiple antigenic sites to prevent escape. Therefore, there are several alternatives that can solve such problems.
  • An alternative is to use a polyclonal antibody, or to obtain a heterodimer such as a silent specific antibody by engineering the Fc portion of the antibody.
  • Yet another approach is to treat with a mixture of antibodies, which may comprise two or more antibodies directed against different epitopes on the same target, or a mixture of antibodies directed against different targets.
  • US7262028 describes a method for producing a bivalent antibody or a mixture of bivalent antibodies by cloning a single host cell by expressing a light chain and different heavy chains, and provides a method for generating an antibody combination, which can be combined Screening is useful in a variety of applications.
  • WO/2010/084197 describes a method for producing a mixture comprising two or more different antibodies from a single host cell clone. In one embodiment, it is a mixture of different monovalent antibodies. In another embodiment, it is a mixture of monovalent and bivalent antibodies, and the method is controlled by the exchange between the arms of the natural Fab of IgG4, and finally changes the hinge region of the phenomenon and the partial acid of CH3, and stabilizes the same Dimer, but the patent does not completely solve the problem of heterodimerization.
  • a method for expressing a polyclonal antibody library has been described in US Pat. No. 5,789,208 and U.S. Patent No. 6,335,163, the disclosure of which is incorporated herein by reference.
  • the selected heavy and light chain variable region gene combinations are transferred in bulk to a eukaryotic expression vector providing a constant region gene in a strand pairing manner to obtain a sub-library of intact polyclonal antibodies.
  • a eukaryotic expression vector providing a constant region gene in a strand pairing manner to obtain a sub-library of intact polyclonal antibodies.
  • stable cloning produces polyclonal antibodies that can be mixed to obtain a mixture of monoclonal antibodies.
  • it is theoretically possible to obtain polyclonal antibodies directly from a recombinant production process by using this method by culturing a mixed population of transfected cells the stability of the mixed cell population and the resulting polyclonal antibodies are thus There may be potential problems with consistency.
  • Sym004 is a novel in vitro antibody mixture that targets the epidermal growth factor receptor (EGFR).
  • Sym004 consists of two antibodies that block ligand binding, receptor activation, and downstream signaling, and is thought to induce EGFR clearance from cancer cells by inducing EGFR invagination and degradation.
  • mCRC metastatic colorectal cancer
  • SCCHN head and neck squamous cell carcinoma
  • Symphogen A/S's antibody mixture technology firstly obtains multiple antibodies against the same target by screening the antibody screening platform, then constructs the molecular structure of each antibody, separately shakes the cells, mixes them, and finally expands the mixture gradually. And carry out purification process optimization to obtain the final product.
  • this method uses multiple recombinant host cells to produce a mixture of multiple homomeric proteins, and there is still an unstable cell growth rate and antibody production rate. The problem. Since this method expresses a separate antibody by a single cell, there is no problem of heterodimer.
  • the inventors of the present invention have surprisingly discovered a method of simultaneously preparing two or more proteins or antibodies in a recombinant cell by a large number of experiments, thereby completing the present invention, and specifically include the following aspects:
  • a first aspect of the invention relates to a method for obtaining a mixture comprising two or more proteins using a recombinant host cell, the protein being in the form of a dimer of a monomeric chain and a monomeric chain, and the two Or two or more proteins comprising the same domain, characterized in that the method comprises replacing a partial amino acid of two monomeric chains in the same domain of one or more proteins with oppositely charged
  • the step of amino acid makes it difficult to form heterodimers due to the rejection of the same charge between the monomer chains of different proteins, and the monomer chains of the same protein are easier due to the attraction of opposite charges. Form a homodimer.
  • the protein is a fusion protein consisting of an antibody or a portion of an antibody.
  • a method according to any one of the first aspects of the invention wherein the at least one protein of the amino acid is not replaced.
  • the amino acid of one of the proteins is not replaced and the amino acid of the other protein is replaced.
  • the acid of both proteins is replaced.
  • the acid exchanged between the different proteins has at least one different position, preferably, the acid substituted between the different proteins.
  • the location is different.
  • a method according to any one of the first aspects of the invention, wherein said same domain means The Fc region of the antibody.
  • said antibody is selected from I g G (e.g. IgGl, IgG2, IgG3), IgA (e.g. IgAl, IgA2), IgE, IgD , IgM (e.g. IgMl, IgM2) .
  • Ig G e.g. IgGl, IgG2, IgG3
  • IgA e.g. IgAl, IgA2
  • IgE IgE
  • IgD IgD
  • IgM e.g. IgMl, IgM2
  • replacing the partial amino acid in the same domain with the oppositely charged amino acid comprises the steps of:
  • one or more pairs for example, two pairs, three pairs, four pairs of
  • the charged acid in the positive and negative charge paired charged amino acids obtained in the step (2) replacing the selected charged amino acid It is an oppositely charged charged amino acid.
  • the charged amino acid is selected from the group consisting of lysine (lys), arginine (Arg), histidine (His), aspartic acid (Asp), glutamic acid (Glu).
  • the same domain refers to the Fc region or CH3 domain of the antibody, and the positively and negatively charged paired charged amino acids are selected from the pairings shown in a)-h) below.
  • Lys at position 392 of one of the proteins was replaced by Asp, Lys at position 409 was replaced with Asp, and Asp at position 399 was replaced with Lys.
  • the positively and negatively charged paired charged amino acid is in the sequence shown in SEQ ID NO: 2 at the position of 8 pairs of tyrosine acids as shown in a) -hi):
  • the position in the sequence shown by SEQ ID NO: 4 is 8 pairs of amino acids as shown by a2)-h2): a2) Glu (E) at position 399 of the first chain and Lys (K1) at position 482 of the second chain B2) the 400th Glu (E) of the first strand and the 413th Lys (K) of the second strand; c2) the 413th Lys (K) of the first strand and the 400th Glu of the second strand (E) ; d2 ) Lys ( K) at position 435 of the first strand and Asp ( D ) at position 442 of the second strand; el) 442th Asp (D) of the first strand and 435 of the second strand Bit Lys (K); f2) The 442th Asp (D) of the first strand and the 452th Lys (K) of the second strand; g2) The 452th Lys (K) of the first strand and the second strand The 442th Asp(D);
  • the method of replacing a partial amino acid in the same domain with an oppositely charged amino acid comprises: obtaining a nucleotide encoding a protein of the amino acid replacement protein Sequence, the coding nucleotide sequence is expressed by a recombinant host cell to obtain a protein after acid substitution.
  • different proteins can be separately cloned into an expression vector, and different expression vectors can be co-transfected into a host cell, a recombinant host cell can be cultured, and a protein can be expressed to obtain a protein mixture; and different proteins can also be operably
  • the ligation is cloned into the same expression vector, transferred to a host cell, and cultured to obtain a protein mixture.
  • a second aspect of the invention relates to a mixture comprising two or more proteins which are present in the form of a dimer of a monomeric chain and a monomeric chain, and wherein the two or more proteins contain the same a domain characterized in that one of the two monomeric chains of one or more proteins in the same domain is replaced by an oppositely charged amino group.
  • the acid makes it difficult to form heterodimers due to the repulsive action of the same charge between the monomer chains of different proteins, and the monomeric chains of the same protein are more likely to form homodimerization due to the attraction of opposite charges. body.
  • the protein is a fusion protein consisting of an antibody or a portion of an antibody.
  • the amino acid of one of the proteins is not replaced and the acid of the other protein is replaced.
  • the acid of both proteins is replaced.
  • the acid exchanged between the different proteins has at least one different position, preferably, the acid substituted between the different proteins.
  • the location is different.
  • the antibody is selected from the group consisting of IgG (e.g., IgG1, IgG2, IgG3), IgA (e.g., IgAl, IgA2), IgE, IgD, IgM (e.g., IgMl, IgM2).
  • IgG e.g., IgG1, IgG2, IgG3
  • IgA e.g., IgAl, IgA2
  • IgE e.g., IgAl, IgA2
  • IgE IgE
  • IgD IgD
  • IgM e.g., IgMl, IgM2
  • the partial amino acid is an interface between the same domains of two monomer chains of the protein, preferably, the interface amino acid is positive Negatively charged paired charged amino acids; more preferably, one or more pairs (e.g., two pairs, three pairs, four pairs) of paired amino acids are replaced with oppositely charged charged amino acids.
  • the charged amino acid is selected from the group consisting of lysine (lys), arginine (Arg), histidine (His), aspartic acid (Asp), glutamic acid (Glu).
  • the same domain refers to the Fc region of an antibody or The CH3 domain
  • the positively and negatively charged paired charged acyl acid at this time is selected from the group consisting of the following aryl acids shown in a)-h):
  • Lys at position 392 of one of the proteins was replaced by Asp, Lys at position 409 was replaced with Asp, and Asp at position 399 was replaced with Lys.
  • the positively and negatively charged paired charged amino acid is in the sequence shown in SEQ ID NO: 2 at the position of 8 pairs of acid as shown in a) -hi):
  • the charged amino acid of the positive and negative charge pairing position in the sequence shown in SEQ ID NO: 4 is 8 pairs of amino acids as shown by a2)-h2): a2) the first strand Glu (E) at position 399 and Lys (K) at position 482 of the second chain; bl) Glu (E) at position 400 of the first chain and Lys (K) at position 413 of the second chain; c2) Lys (K) at position 413 of the first strand and Glu (E) at position 400 of the second strand; dl) Lys (K) at position 435 of the first strand and Asp (D) at position 442 of the second strand; el The 442th Asp (D) of the first strand and the 435th Lys (K) of the second strand; f2) the 442th Asp (D) of the first strand and the 452th Lys (K) of the second strand ; g2 ) Lys
  • a third aspect of the invention relates to a mixture of proteins obtained according to the method of any of the first aspects of the invention.
  • a polypeptide comprising a CH3 region forms an interaction interface due to an interaction force between amino acids and forms a dimer, and the amino acid on the interaction interface of the CH3 region is modified by a charge repulsion effect.
  • the charge-based acid is a charge-based acid that forms a charge-repelling effect.
  • a positively charged amino acid on the contact surface Acid, arginine, histidine is a negatively charged acid (aspartic acid, glutamic acid) or vice versa.
  • the interaction between the charged amino acids in the pair is obtained, and any one or more of the amino acids are selected to analyze the selected acid.
  • the selected amino acids were mutated to charged amino acids, and the effects on the homodimers and heterodimers after mutation were investigated. The mutations were compared with those before the mutations. If the mutation is appropriate, it will produce an effect of enhancing homodimers and weakening the formation of heterodimers. Finally, choose a reasonable amino acid mutation to maximize the enhancement of homodimers and weaken the role of heterodimers.
  • the method described above is defined in the specific method as the amino acid of the mutated CH3 region paired with the charged amino acid on the same chain is an oppositely charged amino acid, and the two-chain Fc is still the opposite charge in the process of forming the homodimer.
  • the charge attraction caused by the acid maintains the interaction ability, while the Fc is in the process of forming the heterodimer, because the charge of the paired amino acid in one of the chains is electrically exchanged, resulting in the same charge repulsion, and cannot be formed.
  • Heterodimer finally obtaining a mixture of Fc antibodies or proteins with only homodimers.
  • the protein is also referred to as a polypeptide, and contains 10 or more amino acids, preferably 50 or more amino acids, and more preferably 100 or more amino acids.
  • the protein is an antibody or comprises a portion of an antibody.
  • the protein is an Fc fragment of IgG1.
  • the protein is a fusion protein of a single chain antibody (SrcFv) with an Fc fragment of IgG1.
  • the host cell is a cell suitable for expressing the protein or antibody, for example Such as prokaryotic cells or eukaryotic cells.
  • the prokaryotic cell is, for example, Escherichia coli; the eukaryotic cell is, for example, a yeast cell or a mammalian cell, such as a human epithelial cell line (such as 293H), a Chinese hamster ovary cell line (CHO) or a myeloma cell. .
  • the different species of proteins contain the same domain.
  • the same domain refers to the CH3 region of an antibody or the Fc region of an antibody.
  • the monomeric chain is also referred to as a single polypeptide, and refers to one of the monomers or a subunit which constitutes a dimeric protein.
  • the two monomeric strands constituting the dimer are symmetrical, i.e. the sequences of the two monomeric strands are identical.
  • the replacement of the amino acid means replacement of the amino acid at the corresponding position of the two monomer strands constituting the dimeric protein.
  • the dimer refers to a combination of two subunits or monomers during formation of a protein or nucleic acid, which may be covalently bonded or non-covalently.
  • the domain refers to a region of a biological macromolecule, particularly a protein, having a specific structure and an independent function.
  • the domain refers to the CH3 region of an antibody or the Fc region of an antibody.
  • the interface amino acid refers to an amino acid in which a domain and a domain are in contact with each other to form a contact interface.
  • the acid at the interface may be composed of two basic acids or may be composed of a plurality of amino acids.
  • a protein or “isoprotein” refers to a protein sequence which is a protein formed by homologous dimer formation.
  • the antibody mixture obtained by the method of the invention may be a protein or antibody mixture of two homodimers, or a protein or antibody mixture of two or more homodimers, preferably two homodimeric proteins or Antibody mixture.
  • the domain comprising CH3 may be a separate CH3 region or a human immunoglobulin Fc region comprising a CH3 region.
  • the CH3 region of the human immunoglobulin Fc region is derived from wild-type human immunoglobulin. Fc region. Wild-type human immunoglobulin Fc refers to the sequence in which it occurs, and of course the Fc sequence will have some subtle differences in the individual.
  • the human immunoglobulin Fc of the present invention also includes a fragment which has an individual change to the amino acid of the wild type human immunoglobulin Fc sequence, for example, a change in some of the local acid in the Fc region, such as including some in glycosylation. Site-mutated amino acids, or other nonsense mutations.
  • the sequence of the CH3 domain may, for example, be the sequence of amino acids 148-252 of SEQ ID NO: 2.
  • the sequence of the Fc region may be, for example, the sequence shown by amino acids 26-252 of SEQ ID NO: 2.
  • the term "human immunoglobulin Fc" refers to the human immunoglobulin chain constant region, particularly the end of or a part of the immunoglobulin heavy chain constant region.
  • the immunoglobulin Fc region can comprise a combination of two or more domains of the heavy chain CH1, CH2, CH3, CH4 and an immunoglobulin hinge region.
  • the Fc region of IgG corresponds to the "lower hinge" -CH2-CH3 domain (for IgG, CH2 and CH3 are also referred to as Cy2 and Cy3 domains).
  • immunoglobulins can be divided into different types, mainly five types of immunoglobulins: IgA, IgD, IgE, IgG and IgM, some of which can be further divided into subclasses (the same species) Type), such as IgG-l, IgG-2, IgG-3, IgG-4, IgA-1 and IgA-2.
  • Similar domains of other IgG subclasses can be determined by aligning the heavy or heavy chain fragments of the IgG subclass with the amino acid sequence of the heavy or heavy chain fragment of human IgGl. Selection of a particular immunoglobulin Fc region from a particular immunoglobulin class and subclass is well within the purview of those skilled in the art. Because the acid interaction interface between human and mouse is very conservative, charge repulsion for the preparation of homodimeric proteins or antibody mixtures is equally applicable to human or murine IgA, IgD, IgE, IgG and IgM. The same method is also applicable to the mutating of non-charged amino acids to charged amino acids in the CH3 region.
  • the numbering of the residues in the Fc region is Kabat et al., Sequences of Proteins of Immunological Interest, 5th Edition Public Health Service, National Institutes of Health, Bethesda, Md. (1991), which is hereby incorporated by reference.
  • the immunoglobulin heavy chain number in the EU index "The EU index in Kabat, which refers to the number of human IgGl EU antibodies. The position of the acid in the column of the Fc region of the antibody, They are all expressed according to the EU index of Kabat et al.
  • the antibody prototype for generating a mixture of homodimeric proteins may be an antibody, an immunoglobulin, an Fc fusion polypeptide, an Fc conjugate (see Fig. 2), and the list is not limitative.
  • the homodimeric protein may be a polypeptide homodimer protein comprising an Fc region.
  • these include, but are not limited to, antibodies, Fc fusion proteins, Fc conjugates, Fc-derived polypeptides, isolated Fc, and fragments thereof.
  • the homodimeric protein can be a naturally occurring polypeptide, a variant of a naturally occurring polypeptide, a modified form of a naturally occurring polypeptide, a synthetic polypeptide or a polypeptide comprising a non-protein fragment.
  • a modified form of a naturally occurring polypeptide is a polypeptide that is not encoded by a naturally occurring gene.
  • the polypeptide of ⁇ U can be a chimeric antibody or a humanized antibody.
  • the homodimeric protein mixture can be purified from the host cells by standard experimental means.
  • the homodimeric protein contains an Fc region, it can be purified with protein A.
  • Purification methods include, but are not limited to, color transfer techniques such as size exclusion, ion exchange, affinity chromatography, and filtration.
  • the method for separating and purifying the homodimer mixture of the present invention also includes a suitable combination of the above various methods.
  • the invention also relates to engineered monomeric chains or individual polypeptides that constitute homodimeric proteins or antibodies.
  • the invention still further relates to nucleic acid sequences encoding engineered constituent homodimeric proteins or antibodies (or monomeric strands or polypeptides alone).
  • the invention further relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an engineered homodimeric protein or antibody (or monomeric strand or polypeptide alone).
  • the invention provides for the preparation of two or a recombinant host cell A method of mixing two or more proteins or antibodies which increase the homodimer content of the protein or antibody while reducing the amount of other undesirable products such as heterodimers.
  • the experimental results show that the protein or antibody mixture component obtained by the invention is pure and reliable.
  • the protein or antibody mixture prepared by the invention can simultaneously act on different epitopes of the same target, and can simultaneously inhibit the action of multiple antigens by combining different antigens, and provides a new method and a pathway for the treatment of diseases such as tumors.
  • Figure 1 is a schematic view showing the structure of the recombinant vector pcMVp-SP-Fc.
  • Figure 2 is a schematic view showing the structure of the recombinant vector pcDNA3.1-zeo-ScFv-Fc.
  • FIG. 3 Sequence alignment of human (a) and murine (b) IgG subtypes.
  • the CH3 of the heavy chain is compared.
  • the star (*) ⁇ acid is an amino acid in the CH3-CH3 interaction region represented by the IgGl human Fc crystal structure, and the square box indicates the preferred acid dimer of the homodimer mixture. It is worth noting that the charge is highly conserved within most IgGs.
  • the asterisk (*) in (1)) and (c) is an amino acid in the CH3-CH3 interaction region expressed by human IgG1.
  • Figure 4 shows a schematic example of the wild-type charge interaction effect and the charge interaction in the mutant to prevent heterodimers and support homodimer formation.
  • charge interactions simultaneously support the formation of heterodimers and homodimers.
  • One of the strands Fc CH3 region D399K and K409D double mutations are unable to form heterodimers due to charge repulsion effects, and at the same time, homodimer mixtures are easily formed due to charge attraction.
  • Figure 5 shows the results of electrophoresis detection of homodimers (ScFv-Fc/ScFv-Fc, Fc/Fc) and heterodimers ((ScFv-Fc/Fc).
  • lane M is the molecular weight standard (the top 3
  • the fragments were 104KD, 78KD, 50KD from top to bottom, and lanes 1-9 were the mutation combinations 0-8 in Table 5, respectively.
  • Figure 6 is a SDS-PAGE diagram of the 31-day accelerated stability test. Wherein Control is wild type, scFv-Fc/Fc-mixl is mutation combination 1, scFv-Fc/Fc-mixl3 is mutation combination 4, and scFv-Fcmixl/Fc-mix2 is mutation combination 6.
  • Figure 7 is a CE-SDS diagram of the 31 day accelerated stability test. Control is wild type, Mixl is mutation combination 1, and Mix2 is mutation combination 6. detailed description
  • a total of 48 human IgGl antibody crystal structures containing the Fc region were obtained from the protein database (PDB, www.pdb.org) by a structural similarity search algorithm (Reference: Yuzhen Ye and Adam Godzik. FATCAT: a web server for flexible structure Nucleic Acids Res., 2004, 32 (Web Server issue): W582-585. ), the Fc fragment of these 48 antibodies was derived from 1DN2 (PDB numbering).
  • the protein contact amino acid recognition software CMA http://ligin.weizmann.ac.il/cma/ was used to screen and identify the antibody (PDB number: 1DN2) in CH3-CH3 according to the distance of the basal acid action.
  • the interface aryl acid refers to some of the amino acids whose distance between the heavy chain of the side chain and the heavy atom of any of the other basic acids of the other chain is less than a threshold.
  • the threshold value of this embodiment is 4.5A or 5.5 (for example, B. Erman, I. Bahar and RL Jernigan. Equilibrium states of rigid bodies with multiple interaction Sites. Application to protein helices. J. Chem. Phys.
  • Table 1 shows 34 interface acids of antibody 1DN2 screened by contact with an aryl acid (i.e., at a distance of less than 4.5 A), wherein chain A and chain B represent the first and second strands of antibody 1DN2, respectively.
  • the following acid sites are named according to the EU index of the KABAT number of the antibody Fc.
  • Table 1. CH3-CH3 interface amino acid list of antibody 1DN2
  • the amino acids of both strands of the antibody are Mutations were obtained, such as the paired amino acid Glu356A- Lys439B.
  • the two types of mutations are: 1) mutating Glu356A to Lys356A or Arg356A, and/or mutating Lys439A to Glu439A or Asp439A;
  • the opposite charge means that the positively charged acid (lysine (Lys, K) or arginine (Arg, R) or the group of acid (His, H) is mutated to negatively charged acid (aspartic acid ( Asp, D) or glutamic acid (Glu, E)) or mutate negatively acidic (aspartic acid or glutamic acid) to a positively charged acid (lysine or arginine).
  • the detailed mutation positions are shown in Tables 3 and 4.
  • Table 3 Mutant amino acids in the A chain
  • the recognition sequence containing Hind ⁇ and EcoR I at both ends and the protective base are synthesized by SEQ ID NO: 1.
  • the human Fc gene full length 780 bp, designated SP-Fc
  • pcMVp the mammalian cell expression vector
  • the vector backbone was ligated to obtain the recombinant vector pcMVp-SP-Fc (the structure is schematically shown in Figure 1), and the recombinant vector pcMVp-Fc was confirmed by sequencing to insert the SEQ ID between the EcoR I and Hind ⁇ sites of the vector pcMVp.
  • amino acid sequence of the Fc protein encoded by nucleotide sequences 16 to 771 in SEQ ID NO: 1 is as follows (as shown in SEQ ID NO: 2):
  • the ScFv-Fc fusion white amino acid sequence encoded by nucleotide sequences 16 to 1488 of SEQ ID NO: 3 is as follows (as shown in SEQ ID NO: 4):
  • the > ⁇ column of the underlined portion of SEQ ID NO: 2 and SEQ ID NO: 4 is the same.
  • NA NA D399K/K409D D204K/K214D indicates wild type without mutation
  • NA indicates no mutation at the paired cyano acid site
  • "/, indicates the relationship between ",” and "356" in "E356K” Indicates the position of the mutant amino acid.
  • E before 356 indicates that the acid before the mutation is E
  • K after 356 indicates that the acid after the mutation is K. Others are the same.
  • the corresponding expression vectors of the 8 mutations in step 3 were transfected into 293H cells (ATCC CRL-1573) in suspension culture with PEI, and the ratio of pcDNA3.1-zeo-ScFv-Fc and pcMVp-SP-Fc plasmid was converted to 1:1, after 3-4 days of culture, collect the supernatant of the cells.
  • Detection principle of protein or antibody mixture composition The fusion protein ScFv-Fc has a larger molecular weight than Fc, then homodimer (ScFv-Fc/ScFv-Fc and Fc/Fc) during the mixing of ScFv-Fc and Fc And the heterodimer (ScFv-Fc/Fc) has different band positions in SDS-PAGE, and the ratio of homodimer to heterodimer can be detected by this principle, and the expression vector of ScFv-Fc and Fc Co-transfection, homodimers (ScFv-Fc/ScFv-Fc, Fc/Fc) and heterodimers (ScFv-Fc/Fc) will eventually occur simultaneously. Table 6. Proportion of homodimers and heterodimers on SDS-PAGE for each mutant
  • the pcDNA3.1-zeo-ScFv-Fc and pcMVp-SP-Fc plasmids were transfected with PEI to 293H cells in suspension culture at a ratio of 4:1, 1:1 and 1:4, respectively, using mutation combination 1 (ATCC CRL- 1573), after 3-4 days of culture, the cell supernatant was collected.
  • the present invention can change the ratio of the homodimer itself to some extent by changing the co-rotation ratio of the different two-stranded plasmids of Fc, but does not significantly change the proportion of the homodimer as a whole, nor can it be significant. Changing the ratio of heterodimers indicates that the ratio of the homodimer as a whole is relatively stable even by changing the ratio of plasmid co-rotation.
  • Mutant Combination 1 and Mutant Combination 6 showed very high stability as well as the wild-type (scFV/scFV homodimeric, control) antibody mixture, starting at 16 days, ScFV - Fc/ScFV-Fc homodimer has partial degradation, while Fc/Fc homodimer maintains superior stability to 31 days.
  • mutation combination 1 mutation combination
  • mutation combination 2 mutation combination
  • mutation combination 4 the antibody produced by mutation combination 4 is mixed.
  • the compound has relatively obvious degradation and precipitates in the solution. It is speculated that this mutation combination has five mutations in the Fc single strand, and there are 10 mutations in the Fc dimer, which have a great influence on the structure, and thus the stability changes.
  • the relevant results are shown in Figure 6.
  • CE-SDS Compared with the traditional SDS-PAGE, CE-SDS has a small sample loading rate, can obtain accurate molecular weight standards, can be on-column detection by ultraviolet light, and can realize quantitative analysis, etc., so that the mixture can be more accurately measured. Degradation of the body. It can be seen from Fig. 7 and Table 6 that Mutant Combination 1 and Mutant Combination 6 also showed sufficient stability with the wild type (control) antibody mixture, and the ScFV-Fc/ScFV-Fc was identical to the first one at 16 days. The polymer degradation peak, the correlation results are consistent with the SDS-PAGE accelerated stability results. Table 6. Accelerated Stability of Antibody Mixtures CE-SDS Results

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开一种利用电荷排斥作用制备同二聚体蛋白混合物的方法,所述方法包括将部分氨基酸替换为带相反电荷的氨基酸,使得不同蛋白或抗体之间由于相同电荷的排斥作用而不容易形成异二聚体,同种蛋白或抗体之间由于相反电荷的吸引作用而更容易形成同二聚体。

Description

利用电荷排斥作用制备同二聚体蛋白混合物的方法 技术领域
本发明涉及制备同二聚体蛋白混合物的方法, 具体涉及利用电荷 排斥作用制备同二聚体蛋白混合物的方法。 本发明还涉及利用所述方 法制备得到的同二聚体蛋白混合物, 以及所述方法制备同二聚体蛋白 '混合物的用途。 背景技术
单克隆抗体药物在近十五年内增长迅速, 成为制药行业的成长点。 自 1996年起, 一共有 30个左右单抗药物被批准上市。 其中有九个单抗 药物年销售超过十亿美元。 2010年单抗药物总销售超过 300亿美元,并 且年增长率超过 10%。 由于单克隆抗体的靶标特异性强,只能抑制单一 靶点。 而在肿瘤、 自体免疫等多种疾病中, 需要抑制多重信号通路来避 免代偿效应。 对于病毒感染疾病, 由于病毒的高突变率, 往往需要抑制 多抗原位点来防止逃逸。因此,有以下几种备选方案可以解决此类问题。 一种备选方案是使用多克隆抗体, 或通过改造抗体 Fc段获得异二聚体 如默特异抗体。 还有一种方案是使用抗体混合物来治疗, 抗体混合物可 包含两种或更多种针对同一靶物上不同表位的抗体, 或针对不同靶物的 抗体的混合物。
US7262028 记载了一种通过表达一种轻链和不同重链从单一宿主 细胞克隆生成二价抗体或者二价抗体混合物的方法, 并提供了一种用于 生成抗体組合的方法, 可以对该抗体組合筛选在多种应用中的有用性。
WO/2010/084197则描述了一种从单一宿主细胞克隆生产包含两 种或者更多种不同抗体混合物的方法。 其中一个实施方案中, 为不同 单价抗体的混合物。 另外一种实施方案中, 则为单价和二价抗体的混 合物,该方法通过 IgG4天然的 Fab两臂之间交换的现象,最终改变引 起该现象的铰链区和 CH3的部分 ^酸, 稳定了同二聚体, 但是该专 利没有 ^^是否完全解决了异二聚 在的问题。 US5789208和 US6335163 曾描述过一种表达多克隆抗体文库的方 法, 用噬菌体展示载体表达抗体 Fab片段的多克隆文库, 然后选择对抗 原的反应性。 所选择的重链和轻链可变区基因組合被以链接配对的方式 大量转移至提供恒定区基因的真核表达载体, 以获得完整多克隆抗体的 子文库。 这一子文库转染入骨髓瘤细胞后, 稳定克隆便可以产生能被混 合以获得单克隆抗体混合物的多克隆抗体。尽管使用这一方法通过培养 转染细胞的混合群在理论上有可能直接从一个重組生产过程中获得多 克隆抗体,但在混合细胞群的稳定性以及因此带来的所产生的多克隆抗 体的一致性方面可能存在潜在的问题。在药学上可接受的大规模(工业) 的方法中对整群不同细胞进行控制是一项艰巨的任务。 例如, 细胞生长 速率和抗体产生速率等特性对非克隆群中所有单个克隆来说应保持稳 定, 才能使多克隆抗体混合物中的抗体比率多少保持恒定。 因此, 尽管 在本领域可能已经认识到混合抗体的需求,但还不存在可接受的解决方 案以用药学可接受的方式经济地制造抗体混合物。
曰前,默克与丹麦的 Symphogen A/S公司签署了 Sym004的独家全 ^M 权协议。 Sym004 是一种靶向作用于表皮生长因子受体 ( EGFR ) 的新型在研抗体混合物。
Sym004 由两种抗体組成, 可阻断配体结合、 受体活化和下游信号 传导, 亦被认为可通过诱导 EGFR内陷和降解而诱导 EGFR从癌细胞 表面清除。在目前对该药开展的 Ι /Π期试验中,研究者针对既往接受标 准化疗和市售抗 EGFR单克隆抗体治疗后疾病发生进展的晚期 KRAS 基因野生型转移性结直肠癌(mCRC )患者进行了评价。 此外, 目前还 有一项针对抗 EGFR治疗失败的头颈部鳞状细胞癌 (SCCHN )患者的 II期试验。
Symphogen A/S公司的抗体混合物技术, 首先通过抗体筛选平台的 筛选获得多个针对同一靶标的抗体, 然后进行各个抗体的分子构建, 分 别细胞摇瓶培养, 并进行混合, 最后进行混合物逐步扩大培养, 并进行 纯化工艺优化获得最终的产品。但该方法是用多个重組宿主细胞生成多 个同二聚体蛋白混合物,仍然存在细胞生长速率和抗体产生速率不稳定 的问题。 由于该方法通过单独的细胞表达单独的抗体, 因此不存在异二 聚体的问题。
如果能在一种重組细胞中生成两种或多种蛋白或抗体, 将是更理想 的生产蛋白或抗体混合物的方法。 发明内容
本发明的发明人通过大量实验, 令人惊奇地发现了在一种重組细 胞中同时制备两种或多种蛋白或抗体的方法, 由此完成了本发明, 具 体包括以下几个方面:
本发明第一方面涉及利用一种重組宿主细胞获得包含两种或两种 以上的蛋白的混合物的方法, 所述蛋白以单体链与单体链聚合的二聚 体形式存在, 并且所述两种或两种以上的蛋白含有相同的结构域, 其 特征在于, 所述方法包括将其中一种或一种以上蛋白相同结构域中两 条单体链的部分氛基酸替换为带相反电荷的氛基酸的步骤, 使得不同 种蛋白的单体链之间由于相同电荷的排斥作用而不容易形成异二聚体, 而同种蛋白的单体链之间由于相反电荷的吸引作用而更容易形成同二 聚体。
在本发明的实施方案中, 所述蛋白为抗体或抗体的一部分組成的 融合蛋白。
根据本发明第一方面任一项的方法, 其中最多有一种蛋白的氛基 酸未被替换。 在本发明的实施方案中, 其中一种蛋白的氛基酸未被替 换, 另一种蛋白的氛基酸被替换。 在本发明的另一个实施方案中, 两 种蛋白的 ^酸均被替换。
当有多种 (两种或两种以上)蛋白的 ^酸被替换时, 不同种蛋 白之间所替换的 ^酸至少有一种位置不同, 优选地, 不同种蛋白之 间所替换的處基酸位置均不同。
根据本发明第一方面任一项的方法, 其中所述的相同结构域是指 抗体的 CH3结构域。
根据本发明第一方面任一项的方法, 其中所述的相同结构域是指 抗体的 Fc区域。
根据本发明第一方面任一项的方法, 其中所述的抗体来源于哺乳 动物, 例如人、 小鼠或大鼠。
根据本发明第一方面任一项的方法,其中所述的抗体选自 IgG(例 如 IgGl、 IgG2、 IgG3) 、 IgA (例如 IgAl、 IgA2 ) 、 IgE、 IgD、 IgM (例如 IgMl、 IgM2) 。
根据本发明第一方面任一项的方法, 其中所述的将相同结构域中 的部分氛基酸替换为带相反电荷的氛基酸, 包括以下步骤:
( 1 )获得所述蛋白的两条单体链的相同结构域之间的界面 基酸; ( 2 )从步骤( 1 )获得的界面 ^酸中挑选正负电荷配对的带电 ^酸;
(3)从步骤(2)获得的正负电荷配对的带电氛基酸中任选一对 或数对(例如两对、 三对、 四对)氛基酸, 将所选带电氛基酸替换为 带相反电荷的带电氨基酸。
在本发明的实施方案中,其中所述的带电氛基酸选自赖氨酸( lys )、 精氨酸( Arg )、 組氨酸( His )、 天冬氨酸( Asp )、 谷氛酸( Glu )。
在本发明的实施方案中, 所述相同结构域是指抗体的 Fc 区域或 CH3 结构域, 此时所述的正负电荷配对的带电氛基酸选自如下 a)-h) 所示的配对氛基酸:
a )第一链的第 356位 Glu ( E )与第二链的第 439位 Lys ( K ); b)第一链的第 357位 Glu (E)与第二链的第 370位 Lys (K) ; c)第一链的第 370位 Lys (K)与第二链的第 357位 Glu (E) ; d)第一链的第 392位 Lys (K)与第二链的第 399位 Asp (D) ; e)第一链的第 399位 Asp (D)与第二链的第 392位 Lys (K) ; f)第一链的第 399位 Asp (D)与第二链的第 409位 Lys (K) ; g)第一链的第 409位 Lys (K)与第二链的第 399位 Asp (D); h)第一链的第 439位 Lys (K)与第二链的第 356位 Glu (E) ; 上述 8对氨基酸的位置是根据抗体 KABAT中 EU索引的编号确定 的。 在本发明的实施方案中, 其中所述的将其中一种或一种以上蛋白 相同结构域中两条单体链的的部分氛基酸替换为带相反电荷的氨基酸 是指以下情况中的一种或将几下情况进行組合:
( 1 )其中一种蛋白的 392位的 Lys替换为 Asp, 409位的 Lys替换 为 Asp, 399位的 Asp替换为 Lys。
( 2 )将其中一种蛋白的 356位的 Glu替换为 Lys, 439位 Lys替换 为 Glu。
( 3 )将其中一种蛋白的 357位 Glu替换为 Lys, 370位 Lys替换为
Glu„
( 4 )将其中一种蛋白的 357位 Glu替换为 Lys, 370位 Lys替换为 Glu, 392位 Lys替换为 Asp, 409位的 Lys替换为 Asp, 399位的 Asp 替换为 L So
( 5 )将其中一种蛋白的 392位 Lys替换为 Asp, 399位的 Asp替 换为 LySo
( 6 )将其中一种蛋白的 399位 Asp替换为 Lys, 409位的 Lys替换 为 Asp。
(7)将其中一种蛋白的 392位的 Lys替换为 Asp, 409位的 Lys 替换为 Asp, 399位的 Asp替换为 Lys,同时将另一种蛋白的 357位 Glu 替换为 Lys, 370位 Lys替换为 Glu。
(8)将其中一种蛋白的 392位的 Lys替换为 Asp, 409位的 Lys 替换为 Asp, 399位的 Asp替换为 Lys, 同时将另一种蛋白的 356位的 Glu替换为 Lys, 439位 Lys替换为 Glu。
在本发明的实施方案中, 所述的正负电荷配对的带电氨基酸在 SEQ ID NO: 2所示的序列中的位置为如 al) -hi)的所示的 8对暴基 酸:
al )第一链的第 161位 Glu ( E )与第二链的第 244位 Lys ( K ) ; bl)第一链的第 162位 Glu (E)与第二链的第 175位 Lys (K) ; cl)第一链的第 175位 Lys (K)与第二链的第 163位 Glu (E) ; dl)第一链的第 197位 Lys (K)与第二链的第 204位 Asp (D) ; el )第一链的第 204位 Asp ( D )与第二链的第 197位 Lys ( K ) ; fl)第一链的第 204位 Asp (D)与第二链的第 214位 Lys (K) ; gl)第一链的第 214位 Lys (K)与第二链的第 204位 Asp (D) ; hi)第一链的第 244位 Lys (K)与第二链的第 161位 Glu (E) 。 在本发明的实施方案中, 所述的正负电荷配对的带电氨基酸在
SEQ ID NO: 4所示的序列中的位置为如 a2 )-h2 )所示的 8对氨基酸: a2)第一链的第 399位 Glu (E)与第二链的第 482位 Lys (K) ; b2)第一链的第 400位 Glu (E)与第二链的第 413位 Lys (K) ; c2)第一链的第 413位 Lys (K)与第二链的第 400位 Glu (E) ; d2 )第一链的第 435位 Lys ( K)与第二链的第 442位 Asp ( D ) ; el)第一链的第 442位 Asp (D)与第二链的第 435位 Lys (K) ; f2 )第一链的第 442位 Asp (D)与第二链的第 452位 Lys ( K) ; g2 )第一链的第 452位 Lys ( K)与第二链的第 442位 Asp ( D ) ; h2)第一链的第 482位 Lys (K)与第二链的第 399位 Glu (E) 。 根据本发明第一方面任一项的方法, 其中所述的将相同结构域中 的部分氛基酸替换为带相反电荷的氨基酸的方法包括: 获得氛基酸替 换后的蛋白的编码核苷酸序列, 用重組宿主细胞表达该编码核苷酸序 列, 得到 ^酸替换后的蛋白。
在本发明中, 可以将不同的蛋白分别克隆入表达载体中, 再将不 同表达载体共转染宿主细胞, 培养重組宿主细胞, 表达蛋白, 得到蛋 白混合物; 也可以将不同的蛋白通过可操作地连接克隆入同一表达载 体中, 再转入宿主细胞, 培养得到蛋白混合物。
在本发明中, 根据替换后的氛基酸序列获得编码的核苷酸序列为 本领域所公知。 本发明第二方面涉及包含两种或两种以上的蛋白的混合物, 所述 蛋白以单体链与单体链聚合的二聚体形式存在, 并且所述两种或两种 以上的蛋白含有相同的结构域, 其特征在于, 其中一种或一种以上蛋 白相同结构域中两条单体链的部分氛基酸被替换为带相反电荷的氛基 酸, 使得不同种蛋白的单体链之间由于相同电荷的排斥作用而不容易 形成异二聚体, 而同种蛋白的单体链之间由于相反电荷的吸引作用而 更容易形成同二聚体。
在本发明的实施方案中, 所述蛋白为抗体或抗体的一部分組成的 融合蛋白。
根据本发明第二方面任一项的混合物, 其中最多有一种蛋白或抗 体的氛基酸未被替换。 在本发明的实施方案中, 其中一种蛋白的氛基 酸未被替换, 另一种蛋白的 ^酸被替换。 在本发明的另一个实施方 案中, 两种蛋白的 ^酸均被替换。
当有多种 (两种或两种以上)蛋白的 ^酸被替换时, 不同种蛋 白之间所替换的 ^酸至少有一种位置不同, 优选地, 不同种蛋白之 间所替换的處基酸位置均不同。
根据本发明第二方面任一项的混合物, 其中所述的相同结构域是 指抗体的 CH3结构域。
根据本发明第二方面任一项的混合物, 其中所述的相同结构域是 指抗体的 Fc区域。
根据本发明第二方面任一项的混合物, 其中所述的抗体来源于哺 乳动物, 例如人、 小鼠或大鼠。
根据本发明第二方面任一项的混合物, 其中所述的抗体选自 IgG (例如 IgGl、 IgG2、 IgG3 )、 IgA (例如 IgAl、 IgA2 )、 IgE、 IgD、 IgM (例如 IgMl、 IgM2 ) 。
根据本发明第二方面任一项的混合物, 其中所述的部分氨基酸为 所述蛋白的两条单体链的相同结构域之间的界面 ^酸, 优选地, 所 述界面氛基酸为正负电荷配对的带电氛基酸; 更优选地, 其中的一对 或数对(例如两对、 三对、 四对) 配对氛基酸被替换为带相反电荷的 带电氛基酸。
在本发明的实施方案中,其中所述的带电氛基酸选自赖氨酸( lys )、 精氨酸( Arg )、 組氨酸( His )、 天冬氨酸 ( Asp )、 谷氛酸( Glu )。
在本发明的实施方案中, 所述相同结构域是指抗体的 Fc区域或 CH3结构域, 此时所述的正负电荷配对的带电氛基酸选自如下 a)-h)所 示的配对氛基酸:
a )第一链的第 356位 Glu ( E )与第二链的第 439位 Lys ( K ); b)第一链的第 357位 Glu (E)与第二链的第 370位 Lys (K) ; c)第一链的第 370位 Lys (K)与第二链的第 357位 Glu (E) ; d)第一链的第 392位 Lys (K)与第二链的第 399位 Asp (D) ; e)第一链的第 399位 Asp (D)与第二链的第 392位 Lys (K) ; f)第一链的笫 399位 Asp (D)与第二链的第 409位 Lys (K) ; g)第一链的第 409位 Lys (K)与第二链的第 399位 Asp (D); h)第一链的第 439位 Lys (K)与第二链的第 356位 Glu (E) ; 上述 8对氨基酸的位置是根据抗体 KABAT中 EU索引的编号确定 的。
在本发明的实施方案中, 其中所述的一种或一种以上蛋白相同结 构域中两条单体链的部分氛基酸被替换为带相反电荷的氛基酸是指以 下情况中的一种或将几下情况进行组合:
( 1 )其中一种蛋白的 392位的 Lys替换为 Asp, 409位的 Lys替换 为 Asp, 399位的 Asp替换为 Lys。
( 2 )将其中一种蛋白的 356位的 Glu替换为 Lys, 439位 Lys替换 为 Glu。
( 3 )将其中一种蛋白的 357位 Glu替换为 Lys, 370位 Lys替换为
( 4 )将其中一种蛋白的 357位 Glu替换为 Lys, 370位 Lys替换为 Glu, 392位 Lys替换为 Asp, 409位的 Lys替换为 Asp, 399位的 Asp 替换为 Lys.
( 5 )将其中一种蛋白的 392位 Lys替换为 Asp, 399位的 Asp替 换为 Lys.
( 6 )将其中一种蛋白的 399位 Asp替换为 Lys, 409位的 Lys替换 为 Asp。
(7)将其中一种蛋白的 392位的 Lys替换为 Asp, 409位的 Lys 替换为 Asp, 399位的 Asp替换为 Lys,同时将另一种蛋白的 357位 Glu 替换为 Lys, 370位 Lys替换为 Glu。
(8)将其中一种蛋白的 392位的 Lys替换为 Asp, 409位的 Lys 替换为 Asp, 399位的 Asp替换为 Lys, 同时将另一种蛋白的 356位的 Glu替换为 Lys, 439位 Lys替换为 Glu。
在本发明的实施方案中, 所述的正负电荷配对的带电氨基酸在 SEQ ID NO: 2所示的序列中的位置为如 al) -hi)的所示的 8对處基 酸:
al)第一链的第 161位 Glu (E)与第二链的第 244位 Lys (K) ; bl)第一链的第 162位 Glu (E)与第二链的第 175位 Lys (K) ; cl)第一链的第 175位 Lys (K)与第二链的第 163位 Glu (E) ; dl)第一链的第 197位 Lys (K)与第二链的第 204位 Asp (D) ; el )第一链的第 204位 Asp ( D )与第二链的第 197位 Lys ( K ) ; fl)第一链的第 204位 Asp (D)与第二链的第 214位 Lys (K) ; gl)第一链的第 214位 Lys (K)与第二链的第 204位 Asp (D) ; hi)第一链的第 244位 Lys (K)与第二链的第 161位 Glu (E) 。 在本发明的实施方案中, 所述的正负电荷配对的带电氨基酸在 SEQ ID NO: 4所示的序列中的位置为如 a2 )-h2 )所示的 8对氨基酸: a2)第一链的第 399位 Glu (E)与第二链的第 482位 Lys (K) ; bl)第一链的第 400位 Glu (E)与第二链的第 413位 Lys (K) ; c2)第一链的第 413位 Lys (K)与第二链的第 400位 Glu (E) ; dl )第一链的第 435位 Lys ( K)与第二链的第 442位 Asp ( D ) ; el)第一链的第 442位 Asp (D)与第二链的第 435位 Lys (K) ; f2 )第一链的第 442位 Asp (D)与第二链的第 452位 Lys ( K) ; g2 )第一链的第 452位 Lys ( K)与第二链的第 442位 Asp ( D ) ; h2)第一链的第 482位 Lys (K)与第二链的第 399位 Glu (E) 。 本发明第三方面涉及根据本发明第一方面任一项所述的方法获得 的蛋白的混合物。 在本发明的实施方案中, 描述了一种包含 CH3 区域的多肽由于氨 基酸之间的相互作用力形成相互作用界面并形成二聚体, 利用电荷排斥 效应修改 CH3区域相互作用界面上的氛基酸减少 CH3区域之间自身结 合的能力 (形成异二聚体), 从而获得同二聚体混合物的方法。 一般来 说, 在 CH3-CH3接触面, 修^ |f关氛基酸为带电荷氛基酸就会形成电 荷排斥效应, 在某些情况下突变接触面上某个带正电氨基酸(赖氨酸, 精氨酸, 組氨酸)为负电 ^酸(天冬氛酸, 谷氨酸)或相反, 就能形 成排斥作用。
在本发明的实施方案中, 通过建立 CH3-CH3作用表面的處基酸相 互作用配对, 获得配对中电荷氨基酸之间的作用情况, 选择任意一个或 者多个氛基酸, 分析所选處基酸对同二聚体及异二聚体的影响情况, 将 所选氨基酸突变为带电氛基酸, 考察突变后对于同二聚体及异二聚体的 影响情况, 将突变后与突变前进行对比, 如果突变合适, 那么将会产生 增强同二聚体及削弱异二聚体形成的作用。最后选择合理的氛基酸突变, 最大化的增强同二聚体及削弱异二聚体的作用。
以上所描述的方法, 在具体的方法中则定义为突变 CH3 区域配对 带电氨基酸在同一链上的氨基酸为相反电荷氨基酸, 则两链 Fc在形成 同二聚体的过程中由于依旧是相反电荷 ^酸所导致的电荷吸引作用 而维持相互作用能力不变, 而 Fc在形成异二聚体过程中, 因为配对氨 基酸在其中一链的电荷电性互换, 导致相同电荷排斥的作用, 而无法形 成异二聚体, 最终获得只具有同二聚体的 Fc抗体或者蛋白的混合物。 在本发明中, 所述蛋白也被称为多肽, 其含有 10个以上氨基酸, 优选含有 50个以上氨基酸, 更优选含有 100个以上氨基酸。 在本发明 的实施方案中, 所述蛋白为抗体或包含抗体的一部分。 在本发明的具体 实施方案中, 所述蛋白为 IgGl的 Fc片段。在本发明的另一个实施方案 中, 所述蛋白为单链抗体 ( ScFv )与 IgGl的 Fc片段的融合蛋白。
在本发明中, 所述宿主细胞是适合表达所述蛋白或抗体的细胞, 例 如为原核细胞或真核细胞。 所述原核细胞例如为大肠杆菌; 所述真核细 胞例如为酵母细胞或哺乳动物细胞, 所述哺乳动物细胞例如为人上皮细 胞系 (如 293H ) 、 中国仓鼠卵巢细胞系 (CHO )或骨髓瘤细胞。
在本发明中, 所述不同种蛋白之间包含有相同的结构域。 在本发明 的实施方案中, 所述相同的结构域是指抗体的 CH3区域或抗体的 Fc区 域。
在本发明中, 所述单体链也称做单独的多肽, 是指組成二聚体蛋白 中的其中一条单体或者一个亚基。 在本发明的实施方案中, 所述組成二 聚体的两条单体链是对称的, 即两条单体链的序列是相同的。
在本发明中, 所述氨基酸的替换是指将組成二聚体蛋白的两条单体 链的相应位置氨基酸均进行替换。
在本发明中, 所述二聚体是指蛋白质或者核酸在形成过程中, 由两 个亚基(subunit )或单体所形成的结合体, 可以由共价键结合, 也可以 由非共价键结合; 所述同二聚体是指二聚体的两个亚 目同; 所述异二 聚体是指二聚体的两个亚基不同。
在本发明中, 所述结构域是指生物大分子中特别是蛋白质所具有特 异结构和独立功能的区域。 在本发明的实施方案中, 所述结构域是指抗 体的 CH3区域或抗体的 Fc区域。
在本发明中, 所述界面氛基酸是指结构域与结构域之间相互接触, 形成接触界面的氨基酸。 界面處基酸可以由两个處基酸組成, 也可以由 多个氨基酸组成。
在本发明中, 所述 "一种蛋白" 或 "同种蛋白" 是指一种核苷酸序 列表达所形成的蛋白, 即同二聚体形成的蛋白。
通 it^发明方法获得的抗体混合物, 可以是两个同二聚体的蛋白或 抗体混合物, 也可以是两个以上同二聚体的蛋白或抗体混合物, 优选 两个同二聚体的蛋白或抗体混合物。
在本发明的实施方案中, 包含 CH3的结构域可以为单独的 CH3区 域, 也可以为包含 CH3区域的人免疫球蛋白 Fc区域。 在一般情况下, 人免疫球蛋白 Fc 区域的 CH3 区域多肽来源于野生型的人免疫球蛋白 Fc区域。 野生型的人免疫球蛋白 Fc指发生在 中的 ^列, 当 然 Fc序列在个体中会有一些细微的差异。本发明中人免疫球蛋白 Fc也 包括对于野生型人免疫球蛋白 Fc序列的氛基酸有个别改变的片段, 比 如, Fc区域局部某些氛基酸的改变,如包括某些在糖基化位点突变的氨 基酸,或者其他无义的突变。 CH3结构域的序列例如可以为 SEQ ID NO: 2中第 148-252位氨基酸所示的序列。 Fc区域的序列例如可以为 SEQ ID NO: 2中第 26-252位氨基酸所示的序列。
在本发明中,术语"人免疫球蛋白 Fc"指的是人免疫球蛋白链恒定区, 特别 疫球蛋白重链恒定区的^^端或其中的一部分。 例如, 免疫球 蛋白 Fc区可包括重链 CH1、 CH2、 CH3、 CH4的两个或更多结构域与 免疫球蛋白铰链区的組合。 在本文中, IgG 的 Fc 区对应于"下铰合 部" -CH2-CH3 结构域(对于 IgG,CH2 和 CH3 也称为 Cy2 和 Cy3 结 构域)。 在人 IgGl 的背景中, 根据 Kabat 中的 EU 索引, 下铰^指 位置 226-236, CH2 结构域指位置 237-340, 而 CH3 结构域指位置 341-447。根据重链恒定区的處基酸序列,免疫球蛋白可以分为不同的种 类, 主要有 5类免疫球蛋白: IgA, IgD, IgE, IgG和 IgM, 其中一些 还可进一步分成亚类(同种型), 如 IgG-l, IgG-2, IgG-3, IgG-4, IgA-1 和 IgA-2。可以从该 IgG亚类的重链或重链片段与人 IgGl 的重链或重 链片段的氛基酸序列比对测定其他 IgG亚类的类似结构域。 从特定的 免疫球蛋白类别和亚类中选择特定的免疫球蛋白 Fc区在本领域技术人 员所掌握的范围之内。 因为人和鼠的 ^酸相互作用界面 ^酸非常保 守, 电荷排斥作用用于制备同二聚体蛋白或者抗体混合物也同样适用于 人或鼠的 IgA, IgD, IgE, IgG和 IgM。 相关方法也同样适用于在 CH3 区域将非电荷氛基酸突变为电荷氨基酸。
在本发明中, Fc 区中残基的编号是根据在此明确引用作为参考的 Kabat等, Sequences of Proteins of Immunological Interest , 第 5版 Public Health Service, National Institutes of Health, Bethesda, Md.(1991) 中的 EU 索引的免疫球蛋白重链编号。 "Kabat 中的 EU 索引,,指人 IgGl EU抗体的 编号。 抗体 Fc区的 列中的 ^酸位置, 都是根据 Kabat等的 EU索引表示的。
在本发明中, 所述的用于生成同二聚体蛋白混合物的抗体原型, 可 以是抗体、 免疫球蛋白、 Fc 融合多肽、 Fc 缀合物(见图 2 ) , 此列表 并非限制性的。
在本发明中, 所述同二聚体蛋白可以是包含 Fc 区的多肽同二聚体 蛋白。 包括但不限于抗体、 Fc 融合蛋白质、 Fc 缀合物、 Fc衍生的多 肽、 分离的 Fc及其片段。 因此, 该同二聚体蛋白可以是天然存在的多 肽、 天然存在的多肽的变体、 天然存在的多肽的改造形式、 合成多肽或 包含非蛋白质片段的多肽。天然存在的多肽的改造形式是并非由天然存 在的基因编码的多肽。例如, ^U 的多肽可以是嵌合抗体或人源化抗体。
在本发明中, 同二聚体蛋白混合物可以用标准的实验手段从宿主细 胞中纯化。 例如, 当同二聚体蛋白包含了 Fc区域, 则可以用蛋白 A来 纯化。 纯化方法包括但不限于色傳技术如体积排阻、 离子交换、 亲和色 谱法^滤法。本发明的同二聚体混合物的分离纯化方法也包括上述各 种方法的适当組合。
本发明还涉及经过改造的組成同二聚体蛋白或抗体的单体链或单 独的多肽。
本发明还进一步涉及编码经过改造的組成同二聚体蛋白或抗体(或 单体链或单独的多肽) 的核酸序列。
本发明更进一步涉及包含经过改造的組成同二聚体蛋白或抗体(或 单体链或单独的多肽) 的药物組合物。 发明的有益效果
由于不同蛋白的相同结构域(例如抗体的 Fc和 Fc )之间的相互作 用, 导致形成同二聚体和异二聚体的形成是一个动态的、 复杂的过程, 其中包括了同二聚体本身由于界面 ^酸的相互作用, 形成稳定的同二 聚体, 也包括了异二聚体本身由于界面氨基酸的相互作用, 形成稳定的 异二聚体, 更包括了由于同二聚体的存在, 导致的异二聚体本身含量动 态变化, 反之亦然。 本发明提供了利用一种重組宿主细胞制备两种或 两种以上蛋白或抗体混合物的方法, 所述方法可以增加蛋白或抗体的 同二聚体含量, 同时降低其它不需要的产物如异二聚体的含量。 实验 结果表明,本发明所获得的蛋白或抗体混合物組分纯净,稳定性可靠。 本发明制备的蛋白或抗体混合物可以同时作用于同一靶标的不同表位, 也可以通过结合不同抗原来同时抑制多个抗原的作用, 为肿瘤等疾病 的治疗提供了新的方法和途径。 附图说明
图 1为重組载体 pcMVp-SP-Fc的结构示意图。
图 2为重組载体 pcDNA3.1-zeo-ScFv-Fc的结构示意图。
图 3人 (a)和鼠 (b)IgG亚型序列比对。此图中对重链的 CH3进行了 比对。其中星型( * ) ^酸是根据 IgGl人 Fc晶体结构表示的 CH3-CH3 相互作用区域内的氛基酸, 方形框表示的是优选的形成同二聚体混合物 的 ^酸突变。 it 值得注意的是在大多数 IgGs 内带电 高度 保守的。 (c)其他抗体亚型 (IgA,IgE,IdD和 IgM)的 CH3序列比较。 星号 ( * )在(1))和 (c)内是根据人 IgGl表示的 CH3-CH3相互作用区域内的氨 基酸。
图 4野生型电荷相互作用效应及突变型中电荷相互作用阻止异二聚 体并支持同二聚体形成示意图例子。 (a )野生型中, 电荷相互作用同 时支持异二聚体和同二聚体形成。 (b)其中一链 Fc CH3区域 D399K和 K409D双突变, 由于电荷排斥效应而无法形成异二聚体, 同时由于电荷 吸引容易形成同二聚体混合物。
图 5 为电泳检测同二聚体 (ScFv-Fc/ScFv-Fc, Fc/Fc)和异二聚体 ((ScFv-Fc/Fc)的结果。其中, 泳道 M为分子量标准(最上面的 3个片段 从上到下依次为 104KD、 78KD、 50KD ), 泳道 1-9分别为表 5中突变 組合 0-8。
图 6为 31天加速稳定性试验的 SDS-PAGE图。 其中 Control为野 生型, scFv-Fc/Fc-mixl为突变组合 1, scFv-Fc/Fc-mixl3为突变组合 4, scFv-Fcmixl/Fc-mix2为突变组合 6。 图 7为 31天加速稳定性试验的 CE-SDS图。 其中 Control为野生 型, Mixl为突变組合 1, Mix2为突变組合 6。 具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述, 但是本领 域技术人员将会理解, 下列实施例仅用于说明本发明, 而不应视为限 定本发明的范围。 实施例中未注明具体条件者, 按照常规条件或制造 商建议的条件进行。 所用试剂或仪器未注明生产厂商者, 均为可以通 过市购获得的常规产品。
下述实施例中所使用的实验方法如无特殊说明, 均为常规方法。 下述实施例中所用的材料、 试剂等, 如无特殊说明, 均可从商业途 径得到。 实施例 1、 抗体 Fc段上 CH3区域突变氛基酸的选择
1、 序列及结构获得
从蛋白质数据库 ( PDB, www.pdb.org )中共获得 48个包含 Fc区域 的人 IgGl抗体晶体结构,通过结构相似性搜索算法(参考文献: Yuzhen Ye and Adam Godzik. FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res., 2004, 32(Web Server issue):W582-585. ),得出这 48 个抗体的 Fc段的来自 1DN2(PDB编号)。
2、 界面 ^酸获取
用 蛋 白 质 接触 氨基 酸识 别 软件 CMA( 网 址 为 : http://ligin.weizmann.ac.il/cma/), 根据處基酸作用的距离筛选并识别抗 体 (PDB编号: 1DN2)中 CH3-CH3之间的 ^酸接触。 根据 ^酸接触 规则,界面氛基酸指侧链重原子与另外一条链的任何一个氛基酸的重原 子之间的距离小于一个阈值的一些氛基酸。本实施例的阈值选择为 4.5A, 也可以选择 5.5 (如文献: B. Erman, I. Bahar and R. L. Jernigan.Equilibrium states of rigid bodies with multiple interaction sites. Application to protein helices. J. Chem. Phys. 1997,107:2046-2059. ) 。 人和鼠 IgG亚型氛基酸接触界面的保守情况可 以通过图 3的序列多重比对得到。 表 1为通过氛基酸接触筛选(即處基 ^巨离小于 4.5A )的抗体 1DN2的 34个界面 ^酸, 其中, 链 A和链 B分别代表抗体 1DN2的第一链和第二链。 以下 ^酸位置是根据抗体 Fc的 KABAT编号的 EU索引所命名的。 表 1.抗体 1DN2的 CH3-CH3界面氨基酸列表
Figure imgf000017_0001
Figure imgf000018_0001
3、 寻找电荷氨基酸配对
在表 1所列出的 CH3-CH3界面處基酸的^ fili上, 根据氩基酸的电 性,寻找电荷氨基酸配对,配对结果见表 2,共有 8对电荷氛基酸配对。 表 2、 抗体 1DN2的电荷氛基酸配对
Figure imgf000018_0002
4、 突变电荷氨基酸
根据表 2的结果, 由于抗体 1DN2的 Fc两链为对称的两链, 突变 任一链的配对氛基酸在同一链上相同位置的氨基酸为相反电荷氛基酸, 则抗体的两条链的氨基酸都得到了 突变, 如配对氨基酸 Glu356A— Lys439B, 突变的两种类型为: 1 )将 Glu356A 突变为 Lys356A或 Arg356A, 和 /或将 Lys439A突 变为 Glu439A或 Asp439A;
2 )将 Glu356B突变为 Lys356B或 Arg356B, 和 /或将 Lys439B突 变为 Glu439B或 Asp439B。
其中,相反电荷是指将正电 ^酸 (赖氨酸( Lys, K )或精氨酸( Arg, R )或組氛酸(His, H ) )突变为负电 ^酸(天冬氛酸(Asp, D )或 谷氛酸( Glu, E ) )或者将负电 ^酸(天冬氛酸或谷氛酸)突变为正 电氛基酸(赖氨酸或精氨酸) 。 详细突变位置如表 3和表 4所示。 表 3. A链中的突变氨基酸
Figure imgf000019_0001
注: +代 ^JE电荷, -代表负电荷。 表 4. B链中的突变 ^酸
Figure imgf000019_0002
注: +代 ^JE电荷, -代表负电荷。 此外, 在更为复杂的情况下, 可以根据本发明的方法, 也可以是根 据上述描述的配对氛基酸的不同突变种类的組合。 4艮据本发明方案对制 备 Fc混合物的 Fc进行改造, 并制备抗体混合物的方法, 并不局限于上 文所述的单链默点配对氛基酸突变或者各种突变的組合。 实施例 2、 改造抗体 Fc段上 CH3区域的 酸获得同二聚体蛋白 混合物
1、 构建表达人 IgGl的 Fc片段的重組载体 pcMVp-SP-Fc
根据基因库中搜索到的人 IgGl的 Fc片段( hing-CH2-CH3 )基因 序列,人工合成获得如 SEQ ID NO: 1所示的两端含有 Hind ΠΙ和 EcoR I 的识别序列及保护碱基的人的 Fc基因 (全长 780bp, 名称为 SP-Fc ) , 用 EcoR I和 /«ί ΠΙ默酶切,与经 EcoR I和 /«ί ΠΙ默酶切的哺乳动物 细胞表达载体 pcMVp ( Invitrogen ) 的载体骨架连接, 获得重組载体 pcMVp-SP-Fc (其结构示意图如图 1所示), 并经测序证实该重組载体 pcMVp-Fc为载体 pcMVp的 EcoR I和 Hind ΠΙ位点间插入了 SEQ ID NO: 1中第 16位至第 771位核苷 ^列所示的 DNA片段。
SEQ ID NO: 1中第 16位至第 771位核苷酸序列编码的 Fc蛋白氨 基酸序列如下(如 SEQ ID NO: 2所示):
METDTLLLWVLLLWVPGSTGGSGGGDKTHTCPPCPAPELL
Figure imgf000020_0001
KSRWQOGNVFSCSVMHEALHNHYTQKSLSLSPGK ( SEQ ID NO: 2 )
2、 构建表达 ScFv-Fc融合蛋白的重組载体 pcDNA3.1-zeo -ScFv-Fc 人工合成获得如 SEQ ID NO: 3所示的两端含有 Hind ΠΙ和 EcoR I 的识别序列及保护 的 ScFv-Fc 融合蛋白编码基因, 用 EcoR 1和 Hind m默酶切, 与经 EcoR I和 Hind ΠΙ默酶切的哺乳动物细胞表达载 体 pcDNA3.1-zeo ( Invitrogen ) 的载体骨架连接, 获得重組载体 pcDNA3.1-zeo-ScFv-Fc (其结构示意图如图 2所示) , 并经测序证实该 重組载体 pcDNA3.1-zeo-ScFv-Fc为载体 pcDNA3.1-zeo 的 I和 Hind m位点间插入了 SEQ ID NO: 3中第 16位至第 1488位核苷酸序 列所示的 DNA片段。
SEQ ID NO: 3中第 16位至第 1488位核苷酸序列编码的 ScFv-Fc 融合 白氨基酸序列如下 (如 SEQ ID NO: 4所示) :
Figure imgf000021_0001
SLSPGK ( SEQ ID NO: 4 )
SEQ ID NO: 2和 SEQ ID NO: 4中划线部分的 > ^列相同。
3、 选择氨基酸的突变位点获得改造的重組载体
根据实施例 1的表 3和表 4中的 ^酸突变位置, 利用重叠 PCR 法对 scFV-Fc及 Fc编码的核苷酸( SEQ ID NO: 1及 SEQ ID NO: 3 ) 进行突变及組合突变, 如表 5中的突变組合 1-8所示, 分别获得 8种经 过改造的重組载体 pcDNA3.1-zeo-ScFv-Fc和 pcMVp_SP-Fc。 表 5. 突变体的具体突变位点及其位置
突变 突变氨基酸在 Fc蛋白上的突变 ^酸 突变 ^酸在 SEQ ID
ScFv-Fc蛋白上
SEQ ID NO: 4 NO: 2中的位置 組合 的突变氛基酸
中的位置
WT WT WT WT
NA NA K392D/K409D/D399K K197D/K214D/D204K
NA NA E356K/K439E E161K/K244E
NA NA E357K/K370E E162K/K175E E357K/K370E/K392D/ E162K/K175E
NA NA
K409D/D399K /K197D/K214D/D204K
E357K/K370E E400K/K413E K392D/K409D/D399K K197D/K214D/D204K
E356K/K439E E399K/K482E K392D/K409D/D399K K197D/K214D/D204K
NA NA K392D/D399K K197D/D204K
NA NA D399K/K409D D204K/K214D 注: WT表示未进行突变的野生型,NA表示在配对赛基酸位点未进行任何突变, "/,, 表示"和,,的关系, "E356K"中 356表示突变氛基酸的位置, 356前的字母 E表示突变前的 ^酸为 E, 356后的字母 K表示突变后的 ^酸为 K, 其它同理。
4、 转染细胞及抗体混合物的检测
将步骤 3的 8种突变組合相应的表达载体分别用 PEI转染至悬浮培 养的 293H 细胞 (ATCC CRL-1573 ) , pcDNA3.1-zeo-ScFv-Fc 和 pcMVp-SP-Fc质粒共转比例为 1:1, 培养 3-4天后, 收集细胞上清。 与 protein A琼脂糖树脂进行免疫沉淀反应,通过非还原条件下 SDS-PAGE 电泳检测同二聚体蛋白或抗体 (ScFv-Fc/ScFv-Fc, Fc/Fc)和异二聚体蛋白 或抗体 ((ScFv-Fc/Fc)的組成情况, 同时用 Media Cybernetics公司推出 的 Gel-Pro 专业图像分析软件进行同二聚体蛋白或抗体 (ScFv-Fc/ScFv-Fc, Fc/Fc)和异二聚体蛋白或抗体 ((ScFv-Fc/Fc)比例的分 析, 电 测结果如图 5 6所示, 当在 ScFv-Fc上引 Λ^ 5相关突 变位点后, ScFv-Fc/ScFv-Fc, Fc/Fc 同二聚体的比例有大幅度的上升, 而异二聚体 (ScFv-Fc/Fc)比例则大幅度下降; 当在 Fc上引入三个突变位 点 K392D/K409D/D399K (突变組合 2 )或突变組合 4,5,6的时候, 表达 后蛋白是以 ScFv-Fc/ ScFv-Fc和 Fc/Fc同二聚体的形式存在 (总体比例 超过 96% ),进一步证明电荷排斥作用对于增强同二聚体和抑制异二聚 体的形成至关重要。 , 这里值得注意的是, 在 ScFv-FC 上更多的突变 (E357K/K370E或 E356K/K439E)并没有显著提升同二聚体地含量, 在 一定程度上反而增加了异二聚体的含量。 此外在 Fc 引入 E357K/K370E/K392D/K409D/D399K (突变組合 4 )的时候, 出现了 Fc 的部分单体(大约有 6% ) , 稳定性有待进一步考察。 蛋白或抗体混合物組成的检测原理: 融合蛋白 ScFv-Fc比 Fc具有 更大的分子量, 那么在 ScFv-Fc 和 Fc 混合过程中, 同二聚体 (ScFv-Fc/ScFv-Fc和 Fc/Fc)和异二聚体 (ScFv-Fc/Fc)在 SDS-PAGE具有 不同的条带位置,通过这个原理就可以检测同二聚体与异二聚体的比例 情况, ScFv-Fc 和 Fc 的表达载体共转染, 最终会同时出现同二聚体 (ScFv-Fc/ ScFv-Fc, Fc/Fc)和异二聚体 (ScFv-Fc/Fc)。 表 6.各突变体在 SDS-PAGE上同二聚体和异二聚体的比例
Figure imgf000023_0001
为了考察 pcDNA3.1-zeo-ScFv-Fc和 pcMVp-SP-Fc质粒共转比例对 于同二聚体和异二聚体比例的影响。 用 突变組合 1 将 pcDNA3.1-zeo-ScFv-Fc和 pcMVp-SP-Fc质粒分别用 4:1,1:1及 1:4的比 例用 PEI转染至悬浮培养的 293H 细胞( ATCC CRL-1573 ), 培养 3-4 天后, 收集细胞上清。 与 protein A琼脂糖树脂进行免疫沉淀反应, 通 过非还原条件下 SDS-PAGE 电泳检测同二聚体蛋白或抗体 (ScFv-Fc/ScFv-Fc, Fc/Fc)和异二聚体蛋白或抗体 ((ScFv-Fc/Fc)的組成情 况。具体结果见表 7。从结果可以看出, ScFV-Fc及 Fc共转比例的改变, 导致了不同同二聚体本身比例的改变,但是对于异二聚体的比例始终保 持在 5%以内, 表明突变組合 1能够稳定排除异二聚体。 表 7. 不同共转比例对于同二聚体和异二聚体的比例的影响
ScFV-Fc及 ScFV-Fc ScFV-Fc/Fc scFV-Fc/Fc
Fc共转比例 同二聚体 异二聚体 异二聚体
4:1 71.0 3.8 25.2
1:1 44.1 4.3 51.6
1:4 23.8 4.1 72.1 本发明通过改变 Fc不同两链质粒的共转比例, 在一定程度上能够 改变同二聚体本身的比例,但是并不能显著改变同二聚体整体的比例, 也不能显著改变异二聚体的比例, 表明即使通过改变质粒共转比例, 同二聚体整体的比例也相对比较稳定。
5、 抗体混合物的加速稳定性检测
在考察步骤 4 中 SDS-PAGE的各种突变組合的结果基础上, 我们 选择了突变組合 1, 4, 6及組合 0 (野生型,这里只有 scFV-Fc野生型进 行了转染)的抗体混合物进行了加速稳定性的实验, 实验周期 31天, 温度 45。C, 于第 0天, 第 4天, 第 8天, 第 16天, 第 21天和第 31天 进行 SDS-PAGE的检测。同样我们选择了突变組合 l(mixl),組合 6(mix2) 及組合 0 (野生型, control )的抗体混合物第 0天, 第 8天, 第 21天和 第 31天进行 CE-SDS (毛细管电泳)的检测。
31天加速稳定性 SDS-PAGE结果表明, 突变組合 1和突变組合 6 同野生型 (scFV/scFV同二聚体, control )抗体混合物一样均表现出非 常高的稳定性, 至 16天开始, ScFV-Fc/ScFV-Fc同二聚体具有部分降 解, 而 Fc/Fc同二聚体至 31天都保持了优越的稳定性,考虑 ScFV本身 的不稳定性, 我们可以认为突变組合 1、 突变組合 6抗体混合物与野生 型的 Fc稳定性无异。 在这里值得注意的是, 突变組合 4产生的抗体混 合物具有比较明显的降解, 且溶液中具有沉淀析出。 推测可能是由于该 突变組合在 Fc单链存在了 5个突变, Fc二聚体则存在了 10个突变, 对结构产生了很大的影响, 因此稳定性发生了变化。 相关结果见图 6。
CE-SDS相比于传统的 SDS-PAGE具有上样量小,能够获得准确的 分子量标准, 可利用紫外等进行柱上检测, 以及可以实现定量分析等, 因此可以更准确的衡量混合物同二聚体的降解情况。从图 7及表 6可以 看出突变組合 1和突变組合 6同野生型( control )抗体混合物同样表现 出足够好的稳定性, 至 16天开始才具有较明显 ScFV-Fc/ScFV-Fc同二 聚体降解峰, 相关结果与 SDS-PAGE加速稳定性结果一致。 表 6.抗体混合物的加速稳定性 CE-SDS结果
Figure imgf000025_0001
尽管本发明的具体实施方式已经得到详细的描述, 本领域技术人 员将会理解。 根据已经公开的所有教导, 可以对那些细节进行各种修 改和替换, 这些改变均在本发明的保护范围之内。 本发明的全部范围 由所附权利要求及其任何等同物给出。

Claims

权 利 要 求
1.利用一种重組宿主细胞获得包含两种或两种以上的蛋白 (例如 抗体) 的混合物的方法, 所述蛋白以单体链与单体链聚合的二聚体形 式存在, 并且所述两种或两种以上的蛋白含有相同的结构域, 其特征 在于, 所述方法包括将其中一种或一种以上蛋白相同结构域中两条单 体链的部分氛基酸替换为带相反电荷的氛基酸的步骤, 使得不同种蛋 白的单体链之间由于相同电荷的排斥作用而不容易形成异二聚体, 而 同种蛋白的单体链之间由于相反电荷的吸引作用而更容易形成同二聚 体。
2. 包含两种或两种以上的蛋白 (例如抗体)的混合物, 所述蛋白 以单体链与单体链聚合的二聚体形式存在, 并且所述两种或两种以上 的蛋白之间含有相同的结构域, 其特征在于, 其中一种或一种以上蛋 白相同结构域中两条单体链的部分氛基酸被替换为带相反电荷的氛基 酸, 使得不同种蛋白的单体链之间由于相同电荷的排斥作用而不容易 形成异二聚体, 而同种蛋白的单体链之间由于相反电荷的吸引作用而 更容易形成同二聚体。
3. 权利要求 1的方法或权利要求 2的混合物,其中最多有一种蛋 白的 ^酸未被替换。
4. 权利要求 1的方法或权利要求 2的混合物,其中所述的相同结 构域是指抗体的 CH3结构域或者抗体的 Fc区域。
5. 权利要求 4的方法或混合物,其中所述的抗体来源于哺乳动物, 例如来源于人、 小鼠或大鼠。
6. 权利要求 4的方法或混合物, 其中所述的抗体选自 IgG (例如 IgGl、 IgG2、 IgG3)、 IgA (例如 IgAl、 IgA2 )、 IgE、 IgD、 IgM (例 如 IgMl、 IgM2) 。
7. 权利要求 1的方法,其中所述的将相同结构域中的部分 ^酸 替换为带相反电荷的氛基酸, 包括以下步骤:
( 1 )获得所述蛋白的两条单体链的相同结构域之间的界面氨基酸;
(2)从步骤(1)获得的界面 ^酸中挑选正负电荷配对的带电 ^酸;
(3)从步骤(2)获得的正负电荷配对的带电氛基酸中任选一对 或数对(例如两对、 三对、 四对)氛基酸, 将所选带电氛基酸替换为 带相反电荷的带电氛基酸。
8. 权利要求 2的混合物,其中所述的部分 ^酸为所述蛋白的两 条单体链的相同结构域之间的界面氨基酸, 优选地, 所述界面氛基酸 为正负电荷配对的带电氛基酸; 更优选地, 其中的一对或数对(例如 两对、 三对、 四对) 配对氛基酸被替换为带相反电荷的带电氛基酸。
9. 权利要求 7的方法或权利要求 8的混合物,其中所述的带电氨 基酸选自赖氨酸(lys) 、 精氨酸(Arg) 、 組氨酸( His )、 天冬氛酸
(Asp) 、 谷氨酸 (Glu) 。
10. 权利要求 7的方法或权利要求 8的混合物, 其中当相同结构域 是指抗体的 Fc区域或 CH3结构域时, 所述的正负电荷配对的带电氛基 酸选自如下 a)-h)所示的配对 ^酸:
a )第一链的第 356位 Glu ( E )与第二链的第 439位 Lys ( K ); b)第一链的第 357位 Glu (E)与第二链的第 370位 Lys (K) ; c)第一链的第 370位 Lys (K)与第二链的第 357位 Glu (E) ; d)第一链的第 392位 Lys (K)与第二链的第 399位 Asp (D) ; e)第一链的第 399位 Asp (D)与第二链的第 392位 Lys (K) ; f)第一链的第 399位 Asp (D)与第二链的第 409位 Lys (K) ; g)第一链的第 409位 Lys (K)与第二链的第 399位 Asp (D); h)第一链的第 439位 Lys (K)与第二链的第 356位 Glu (E) ; 上述 8对氣基酸的位置是根据抗体 KABAT中 EU索引的编号确定 的。
11. 权利要求 10的方法或混合物, 其中所述的相同结构域中两条 单体链的部分氛基酸替换为带相反电荷的氛基酸是指: 将其中一种蛋 白的 392位的 Lys替换为 Asp, 409位的 Lys替换为 Asp, 399位的 Asp替换 为 Lys。
12. 权利要求 1的方法,其中所述的将相同结构域中的部分 ^酸 替换为带相反电荷的氛基酸的方法包括: 获得氨基酸替换后的蛋白的 编码核苷酸序列, 用重組宿主细胞表达该编码核苷酸序列, 得到氨基 酸替换后的蛋白。
13. 根据权利要求 1、 3-7、 9-12任一项所述的方法获得的蛋白的 混合物。
PCT/CN2013/080060 2012-07-25 2013-07-25 利用电荷排斥作用制备同二聚体蛋白混合物的方法 WO2014015804A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13822582.6A EP2889313B1 (en) 2012-07-25 2013-07-25 Method for preparing homodimer protein mixture by using charge repulsion effect
US14/416,817 US9708389B2 (en) 2012-07-25 2013-07-25 Method for preparing homodimer protein mixture by using charge repulsion effect
DK13822582.6T DK2889313T3 (en) 2012-07-25 2013-07-25 Method of preparing homodimer protein mixture using charge repellent effect
ES13822582T ES2710936T3 (es) 2012-07-25 2013-07-25 Método para preparar una mezcla de proteínas homodiméricas usando efecto de repulsión de carga
JP2015523402A JP6185584B2 (ja) 2012-07-25 2013-07-25 電荷の斥力相互作用を使用することによりホモダイマータンパク質の混合物を調製するための方法
EP18196046.9A EP3444280A1 (en) 2012-07-25 2013-07-25 Method for preparing mixture of homodimer proteins by using repulsive interaction of charges
HRP20190272TT HRP20190272T1 (hr) 2012-07-25 2019-02-11 Postupak pripreme mješavine homodimera proteina koristeći učinak odbijanja naboja

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210258592.8 2012-07-25
CN2012102585928A CN102851338A (zh) 2012-07-25 2012-07-25 利用电荷排斥作用制备同二聚体蛋白混合物的方法

Publications (1)

Publication Number Publication Date
WO2014015804A1 true WO2014015804A1 (zh) 2014-01-30

Family

ID=47398314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080060 WO2014015804A1 (zh) 2012-07-25 2013-07-25 利用电荷排斥作用制备同二聚体蛋白混合物的方法

Country Status (9)

Country Link
US (1) US9708389B2 (zh)
EP (2) EP3444280A1 (zh)
JP (1) JP6185584B2 (zh)
CN (2) CN102851338A (zh)
DK (1) DK2889313T3 (zh)
ES (1) ES2710936T3 (zh)
HR (1) HRP20190272T1 (zh)
HU (1) HUE041454T2 (zh)
WO (1) WO2014015804A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130808B2 (en) 2016-05-26 2021-09-28 Qilu Puget Sound Biotherapeutics Corporation Mixtures of antibodies

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851338A (zh) * 2012-07-25 2013-01-02 苏州康宁杰瑞生物科技有限公司 利用电荷排斥作用制备同二聚体蛋白混合物的方法
CN110658340B (zh) * 2015-01-08 2023-10-31 苏州康宁杰瑞生物科技有限公司 具有共同轻链的双特异性抗体或抗体混合物
CN106883297B (zh) 2015-12-16 2019-12-13 苏州康宁杰瑞生物科技有限公司 基于ch3结构域的异二聚体分子、其制备方法及用途
CN110312523B (zh) 2016-11-08 2024-04-26 齐鲁皮吉特湾生物治疗有限公司 抗pd1和抗ctla4抗体
WO2020192648A1 (en) * 2019-03-25 2020-10-01 Dingfu Biotarget Co., Ltd. Proteinaceous heterodimer and use thereof
WO2021000886A1 (zh) 2019-07-01 2021-01-07 苏州康宁杰瑞生物科技有限公司 百日咳毒素结合蛋白
GB202005879D0 (en) * 2020-04-22 2020-06-03 Petmedix Ltd Heterodimeric proteins
WO2022002233A1 (zh) 2020-07-03 2022-01-06 苏州康宁杰瑞生物科技有限公司 凝血因子xi(fxi)结合蛋白
EP4172194A1 (en) 2020-07-31 2023-05-03 CureVac SE Nucleic acid encoded antibody mixtures
CN112977908B (zh) * 2021-03-02 2022-12-02 康宁杰瑞(吉林)生物科技有限公司 灌装加塞机及其灌装的方法
WO2023280092A1 (zh) 2021-07-05 2023-01-12 江苏康宁杰瑞生物制药有限公司 抗体药物偶联物及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789208A (en) 1994-01-31 1998-08-04 The Trustees Of Boston University Polyclonal antibody libraries
US7262028B2 (en) 2002-07-18 2007-08-28 Crucell Holland B.V. Recombinant production of mixtures of antibodies
WO2010084197A1 (en) 2009-01-26 2010-07-29 Genmab A/S Methods for producing mixtures of antibodies
WO2011063348A1 (en) * 2009-11-23 2011-05-26 Amgen Inc. Monomeric antibody fc
CN102558355A (zh) * 2011-12-31 2012-07-11 苏州康宁杰瑞生物科技有限公司 基于电荷网络的异二聚体fc改造方法及异二聚体蛋白的制备方法
CN102851338A (zh) * 2012-07-25 2013-01-02 苏州康宁杰瑞生物科技有限公司 利用电荷排斥作用制备同二聚体蛋白混合物的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671403B (zh) * 2005-03-31 2019-09-11 中外製藥股份有限公司 控制組裝之多肽的製造方法
GB0601513D0 (en) * 2006-01-25 2006-03-08 Univ Erasmus Medical Ct Binding molecules 3
WO2007147901A1 (en) * 2006-06-22 2007-12-27 Novo Nordisk A/S Production of bispecific antibodies
SI2235064T1 (sl) * 2008-01-07 2016-04-29 Amgen Inc. Metoda za izdelavo heterodimernih molekul - protitelesa fc z uporabo elektrostatičnih usmerjevalnih učinkov

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789208A (en) 1994-01-31 1998-08-04 The Trustees Of Boston University Polyclonal antibody libraries
US6335163B1 (en) 1994-01-31 2002-01-01 The Trustees Of Boston University Polyclonal antibody libraries
US7262028B2 (en) 2002-07-18 2007-08-28 Crucell Holland B.V. Recombinant production of mixtures of antibodies
WO2010084197A1 (en) 2009-01-26 2010-07-29 Genmab A/S Methods for producing mixtures of antibodies
WO2011063348A1 (en) * 2009-11-23 2011-05-26 Amgen Inc. Monomeric antibody fc
CN102558355A (zh) * 2011-12-31 2012-07-11 苏州康宁杰瑞生物科技有限公司 基于电荷网络的异二聚体fc改造方法及异二聚体蛋白的制备方法
CN102851338A (zh) * 2012-07-25 2013-01-02 苏州康宁杰瑞生物科技有限公司 利用电荷排斥作用制备同二聚体蛋白混合物的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
B. ERMAN; I. BAHAR; R. L. JERNIGAN: "Equilibrium states of rigid bodies with multiple interaction sites. Application to protein helices", J. CHEM. PHYS., vol. 107, 1997, pages 2046 - 2059
GUNASEKARAN, K. ET AL.: "enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG", THE JOURNAL OF BIOBOGICAL CHEMISTRY, vol. 285, June 2010 (2010-06-01), pages 19637 - 19646, XP055001947 *
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, NATIONAL INSTITUTES OF HEALTH
See also references of EP2889313A4 *
YUZHEN YE; ADAM GODZIK: "FATCAT: a web server for flexible structure comparison and structure similarity searching", NUCLEIC ACIDS RES., vol. 32, 2004, pages W582 - 585

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130808B2 (en) 2016-05-26 2021-09-28 Qilu Puget Sound Biotherapeutics Corporation Mixtures of antibodies

Also Published As

Publication number Publication date
CN102851338A (zh) 2013-01-02
JP2015522295A (ja) 2015-08-06
JP6185584B2 (ja) 2017-08-23
CN103388013B (zh) 2015-03-11
HRP20190272T1 (hr) 2019-04-05
US20150274807A1 (en) 2015-10-01
HUE041454T2 (hu) 2019-05-28
EP3444280A1 (en) 2019-02-20
EP2889313A4 (en) 2016-05-25
ES2710936T3 (es) 2019-04-29
DK2889313T3 (en) 2019-02-18
US9708389B2 (en) 2017-07-18
EP2889313B1 (en) 2018-12-05
EP2889313A1 (en) 2015-07-01
CN103388013A (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
JP7444381B2 (ja) Ch3ドメインに基づくヘテロダイマー分子、その調製方法及び用途
WO2014015804A1 (zh) 利用电荷排斥作用制备同二聚体蛋白混合物的方法
TWI724889B (zh) 細胞傷害誘導治療劑
CN109111524B (zh) 控制了重链与轻链的缔合的抗原结合分子
JP2019507104A (ja) 二重特異性抗体を用いる方法
CN104829727A (zh) 一种双特异性抗体cd19×cd3的构建及应用
TW202128758A (zh) 多專一性融合蛋白及其用途
CN114127112A (zh) 与t细胞结合的多功能分子及其治疗自身免疫性病症的用途
CN104341501A (zh) 抗IL-1β人源化单克隆抗体及其制备方法和应用
WO2021136227A1 (zh) Ch3 结构域改造诱导形成的异源二聚体及其制备方法和应用
US20230212321A1 (en) Methods and means for the production of ig-like molecules
JP2022516622A (ja) 安定性及び生産力価を向上させるためのモノクローナル抗体操作

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013822582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14416817

Country of ref document: US