WO2014010591A1 - 薄膜サーミスタ素子およびその製造方法 - Google Patents

薄膜サーミスタ素子およびその製造方法 Download PDF

Info

Publication number
WO2014010591A1
WO2014010591A1 PCT/JP2013/068749 JP2013068749W WO2014010591A1 WO 2014010591 A1 WO2014010591 A1 WO 2014010591A1 JP 2013068749 W JP2013068749 W JP 2013068749W WO 2014010591 A1 WO2014010591 A1 WO 2014010591A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
thermistor element
electrode layer
film thermistor
nitrogen
Prior art date
Application number
PCT/JP2013/068749
Other languages
English (en)
French (fr)
Inventor
謙治 伊藤
直 豊田
Original Assignee
Semitec株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semitec株式会社 filed Critical Semitec株式会社
Priority to US14/111,932 priority Critical patent/US9659691B2/en
Priority to DE112013003510.3T priority patent/DE112013003510T5/de
Priority to CN201380001059.6A priority patent/CN103688320B/zh
Priority to KR1020137025978A priority patent/KR101886400B1/ko
Priority to JP2013547042A priority patent/JP5509393B1/ja
Publication of WO2014010591A1 publication Critical patent/WO2014010591A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/075Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/041Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient formed as one or more layers or coatings

Definitions

  • the present invention relates to a thin film thermistor element used for sensors such as a temperature sensor and an infrared sensor, and a method for manufacturing the thin film thermistor element.
  • thin film thermistor elements which are sintered oxide semiconductors having a large negative temperature coefficient, are used as temperature sensors and infrared sensors for information equipment, communication equipment, medical equipment, housing equipment, automobile transmission equipment, etc. It has been.
  • a thermistor thin film is formed after an electrode is formed on a substrate, and heat treatment is performed at a temperature of 1400 ° C. or lower.
  • the film is formed while heating the substrate to 100 ° C. or higher, and the electrode made of platinum or an alloy thereof is made.
  • Pattern formation is performed by vapor phase etching.
  • a substrate heating mechanism is required in the film forming apparatus.
  • gas phase etching does not use corrosive gas
  • a general gas phase etching apparatus uses a resist as a mask to form a pattern. At this time, there is a problem that the adhesive force between the base insulating layer, the thermistor thin film, and the metal such as Pt is weak and is easily peeled.
  • Patent Document 1 JP-A 2000-348906, 2. Japanese Patent Publication No. 3-54841, 3. (JP-A-6-61012, JP-A-48131616, JP-A-2008-294288).
  • the electrodes 3 and 4 having the adhesive layers 3B and 4B and the conductive layers 3A and 4A are formed on the substrate 2 on which the base adhesive layer 2A is arranged by the conventional manufacturing method.
  • heat treatment is performed. Since the conductive layer made of Pt or an alloy thereof is a noble metal, there is a problem in that the adhesive strength between the oxide underlayer and the thermistor thin film is extremely weak and easily peels off.
  • the thermistor thin film 5 formed on the electrodes 3 and 4 is peeled off, which causes an increase in resistance due to peeling of the electrodes.
  • the adhesive force is improved by providing an adhesive layer containing at least one of titanium and chromium.
  • an adhesive layer containing at least one of titanium and chromium is provided, there is a problem that the reaction with the thermistor thin film and the oxidation of titanium and chromium progress and the characteristics deteriorate.
  • the present invention has been made in view of the above circumstances, and there is provided a thin film thermistor element and a thin film thermistor element capable of obtaining sufficient adhesion strength between the thermistor thin film and the electrode while maintaining the adhesion strength between the substrate and the electrode.
  • An object is to provide a manufacturing method.
  • a thin film thermistor element includes a base, a thermistor thin film formed on the base, and a pair of electrodes formed on, under or in the film of the thermistor thin film.
  • a method for manufacturing a thin film thermistor element according to the present invention is a method for manufacturing a thin film thermistor element in which a pair of electrodes are patterned on, under or in a film of a thermistor thin film formed on a substrate, And a first step of forming an electrode layer containing nitrogen, a second step of patterning a pair of electrodes, and a third step of crystallizing the electrode layer by heat treatment.
  • the electrode layer is crystallized by heat treatment after the electrode layer is formed containing oxygen and nitrogen, platinum (Pt) or the heat treatment is also performed in the heat treatment after the pair of electrodes and the thermistor thin film is formed. Variations in oxygen and nitrogen concentrations in the conductive layer made of the alloy or the like can be suppressed. Therefore, the surface state of the electrode layer can be maintained in a suitable state before and after the heat treatment.
  • a phenomenon occurs in which the electrode layer undergoes rapid oxidation and nitridation and undergoes electrode peeling when heat treatment is performed.
  • an adhesive layer containing at least one of titanium and chromium is provided, the characteristics are deteriorated by reacting with the thermistor thin film.
  • the electrode peeling is suppressed and the characteristic deterioration is also suppressed in order to suppress the change in the content of oxygen and nitrogen. It is thought that it is suppressing.
  • the thin film thermistor element according to the present invention is characterized in that the electrode layer is formed to contain at least one of oxygen and nitrogen.
  • the thin film thermistor element manufacturing method according to the present invention is characterized in that the first step forms the electrode layer by adding at least one of oxygen and nitrogen. After forming the electrode layer, a pattern is formed by a second step of forming a pattern of the pair of electrodes by a process such as etching.
  • the electrode layer is granular with a ⁇ 111> orientation by including at least one of oxygen and nitrogen at the time of film formation of the electrode layer and the method in which the third step is crystallized by heat treatment. It can be crystallized.
  • the thin film thermistor element according to the present invention is characterized in that the content of at least one of oxygen and nitrogen in the second electrode layer is 0.01 wt% or more and 4.9 wt% or less.
  • the thin film thermistor element manufacturing method according to the present invention is characterized in that the first step forms the electrode layer by adding at least one of oxygen and nitrogen.
  • the electrode layer is crystallized in a granular state with a ⁇ 111> orientation. And a significant increase in the resistance value due to peeling of the electrode layer or the like can be suppressed.
  • FIG. 2 shows another example in the modification of the thin film thermistor element of one Embodiment which concerns on this invention. It is a graph which shows the resistance value change of the 250 degreeC heat test which shows the effect of this invention. It is a graph which shows B constant change of the 250 degreeC heat test which shows the effect of this invention. It is a graph which shows the resistance value change of a 40 degreeC-250 degreeC temperature cycle test which shows the effect of this invention. It is the electron micrograph after heat processing in the thin film thermistor element which shows the effect of the present invention.
  • Embodiments of a thin film thermistor element and a method for manufacturing a thin film thermistor element according to the present invention will be described with reference to FIGS.
  • the scale of each member is appropriately changed in order to make each member a recognizable size.
  • a thin film thermistor element 1 is, for example, a temperature detection sensor, and as shown in FIGS. 1 and 2, a Si substrate (base body) 2 having a SiO2 layer 2A formed on the surface as an underlayer, A pair of electrodes 3 and 4 patterned on the SiO2 layer 2A, a thermistor thin film 5 formed on the SiO2 layer 2A, the electrode 3 and the electrode 4, and a passivation film 6 covering the thermistor thin film 5 I have.
  • the above thermistor thin film is formed on the pair of electrodes 3 and 4.
  • the electrode 3 and the electrode 4 are provided on the SiO 2 layer 2A, and the pair of the electrode 3 and the electrode 4 are arranged to face each other at a predetermined interval.
  • the pair of electrodes 3 and 4 have an electrode terminal portion 7A and an electrode terminal portion 7B that extend to the outside of the thermistor thin film layer 5, respectively.
  • the pair of electrodes 3 and 4 are formed to contain at least one of oxygen and nitrogen during film formation by a method described later. At this time, the content of at least one of oxygen and nitrogen is 0.01 wt% or more and 4.9 wt% or less by the heat treatment. In addition, in content of at least one of the said oxygen and nitrogen, when both oxygen and nitrogen are included, the total content of both is said.
  • the thermistor thin film 5 is an Mn—Co based composite metal oxide (for example, Mn 3 O 4 —Co 3 O 4 based composite metal oxide) or a composite metal oxide containing at least one of Ni, Fe, and Cu in an Mn—Co based composite metal oxide.
  • the passivation film 6 is made of a SiO2 film.
  • Insulating films such as a silicon nitride film (Si3N4), a silicon monoxide film (SiO), a glass film, a ceramic film, and a heat resistant resin can be used as long as they have an insulating property and can shut off the external atmosphere. It doesn't matter.
  • the method of manufacturing a thin film thermistor element forms a thin film made of platinum (Pt) or an alloy thereof on the SiO 2 layer 2A of the Si substrate 2 (S01).
  • a step of patterning the thermistor thin film (S05), a step of heat treating the thermistor thin film 5 (S06), a step of forming the passivation film 6 (S07), and a step of patterning the passivation film 6 (S08) are provided.
  • a SiO 2 / Si substrate 2 having a SiO 2 layer 2A formed on the upper surface of the Si substrate 2 by thermal oxidation, for example, with a film thickness of 0.5 ⁇ m is prepared.
  • a first step (S01) for forming an electrode layer made of platinum (Pt) or an alloy thereof is provided.
  • S01 a first step
  • a high frequency sputtering device a direct current sputtering device, etc.
  • oxygen gas and nitrogen gas An electrode layer is formed using an atmosphere gas to which one is added.
  • the gas concentration is set to contain at least one of oxygen and nitrogen after film formation.
  • the electrode layer is patterned by general-purpose photolithography and etching to obtain a pair of electrodes 3 and 4.
  • the pair of electrodes 3 and 4 are crystallized by holding the pair of electrodes 3 and 4 in the atmosphere at a heat treatment temperature of 400 ° C. to 1000 ° C. for 1 to 10 hours. Including oxygen and nitrogen, the crystal structure can be crystallized in a ⁇ 111> orientation.
  • the pair of electrodes 3 and 4 are crystallized by holding the pair of electrodes 3 and 4 in the atmosphere at a heat treatment temperature of 400 ° C. to 1000 ° C. for 1 to 10 hours.
  • 4 contains oxygen and nitrogen, and the crystal structure can be crystallized in a columnar shape with ⁇ 111> orientation.
  • the pair of electrodes 3 and 4 are crystallized by holding the pair of electrodes 3 and 4 in an atmosphere at a heat treatment temperature of 400 ° C. to 1000 ° C. for 1 to 10 hours.
  • 4 contains oxygen and nitrogen, and the crystal structure thereof can be crystallized in the ⁇ 111> orientation and columnar.
  • a step (S04) of forming the thermistor thin film 5 on the pair of electrodes 3 and 4 is performed.
  • a composite metal oxide film that is the thermistor thin film 5 is formed by sputtering with a film thickness of 0.5 ⁇ m, for example.
  • the composite metal oxide film is preferably set to a film thickness of 0.3 ⁇ m or more in which the film resistivity dependency of the volume resistivity is reduced.
  • the sputtering film forming conditions are set to, for example, an atmospheric pressure of 100 mPa to 1330 mPa, an argon gas flow rate of 10 sccm to 50 sccm, and an application of sputtering power of 100 W to 2000 W.
  • a method of performing sputtering while heating the SiO 2 / Si substrate 2 on which the thermistor thin film 5 is formed may be used.
  • the substrate temperature at this time is preferably set within a range of 200 to 800 ° C.
  • Step of forming a pattern by etching after sputtering (S05).
  • the heat treatment is performed in an atmosphere of an inert gas such as argon gas or nitrogen gas, and O 2 may be added to these gases, for example, in an amount of 0.1 volume% to 25 volume%.
  • an inert gas such as argon gas or nitrogen gas
  • the process proceeds to the step of forming the passivation film 6 (S07), and the SiO2 passivation film 6 is laminated on the first thermistor thin film 5A and the second thermistor thin film 5B as a protective film, an infrared absorption film, or the like. After the film formation, the passivation film 6 is patterned (S08).
  • the change in the oxygen and nitrogen contents of the pair of electrodes 3 and 4 after the heat treatment is suppressed, the occurrence of peeling can be suppressed and maintained in a suitable state. Even after the heat treatment, the Si substrate 2 The adhesion strength between the pair of electrodes 3 and 4 can be maintained.
  • an adhesive layer containing at least one of titanium and chromium is not provided, the state of oxidation and nitridation is stabilized, contributing to stabilization of the thermistor characteristics.
  • the crystal containing oxygen and nitrogen is preferably crystallized with ⁇ 111> orientation in the conductive layer 3B (or Columnar crystallization or granular and columnar crystallization).
  • the content of at least one of oxygen and nitrogen in the pair of electrodes 3 and 4 is 0.1 wt% or more and 4.9 wt% or less, the pair of electrodes 3 and 4 is sufficient.
  • the crystal containing oxygen and nitrogen can be ⁇ 111> -oriented granular crystallization (or columnar crystallization or granular and columnar crystallization), and the resistance value due to separation of the pair of electrodes 3 and 4 can be reduced. A significant rise can be suppressed.
  • the oxygen content of the crystallized material was 1.3%, and the oxygen content of the crystallized material was 8.3%.
  • the upper limit value of 4.9% by weight corresponds to an almost intermediate value of this data, and the lower limit value is set to 0.01% by weight because oxygen is taken into the film without containing argon oxygen of the sputtering gas.
  • the oxygen or nitrogen element of the pair of electrodes 3 and 4 that have been ⁇ 111> oriented granular crystallization (or column crystallization or granular and column crystallization) is 5% by weight or more, Pt, its alloy, etc.
  • the oxygen and nitrogen amounts of the pair of electrode 3 and electrode 4 are excessive, and the content tends to fluctuate, making it difficult to obtain a sufficient effect of improving the adhesion strength.
  • the resistance value as the electrode material is significantly increased. Therefore, if the content is within the set range, for example, even if a heat resistance test at 250 ° C. and a temperature cycle test at 100,000 cycles are performed, sufficient adhesion strength between the thermistor thin film 5A and the electrode 3 is maintained. Peeling does not occur and electrical characteristics can be suitably maintained.
  • the electrode layer made of platinum (Pt) or its alloy is made amorphous, but its heat resistance is up to 150 ° C.
  • the present invention has an effect of improving the heat resistance performance.
  • the thermistor thin film 5A is formed on the electrode 3, but as another example of the above embodiment, as shown in FIG. 5, a pair of electrodes 3 and The thin film thermistor element 10 on which the electrode 4 is formed may be used.
  • a thermistor thin film 5A is formed on the SiO 2 layer 2A of the Si substrate 2 (S101), and a thin film made of platinum (Pt) or an alloy thereof is formed.
  • the single-crystal silicon Si substrate 2 which is a typical semiconductor
  • other semiconductor materials such as germanium (Ge), gallium arsenide (GaAs), gallium arsenide phosphorus (GaAsP), gallium nitride (GaN), carbonized
  • a semiconductor substrate such as silicon (SiC) or gallium arsenide (GaP) can be used.
  • an insulating ceramic substrate such as an alumina (Al 2 O 3) substrate, silicon nitride (Si 3 N 4), quartz (SiO 2), aluminum nitride (AlN) may be used.
  • a silicon nitride (Si3N4) film, a silicon monoxide film (SiO), or the like may be used instead of the underlying SiO2 layer 2A.
  • the SiO2 layer 2A which is the base layer, may be partially formed or not the entire surface.
  • the thin film thermistor element of this example was produced.
  • the change rate of the electrical resistance value and the B constant could be significantly lower than the conventional one even after the durability test.
  • FIG. 10 shows an electron microscope observation of the platinum film after the heat treatment. It can be seen from the photograph that platinum is granular crystals.
  • the thin film thermistor element and the method for manufacturing the thin film thermistor element of the present invention sufficient adhesion strength between the thermistor thin film and the electrode can be obtained while maintaining the adhesion strength between the substrate and the electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

 Si基板2と、Si基板2上に形成されたサーミスタ薄膜5と、サーミスタ薄膜5の膜上、膜下又は膜中に形成された白金又はその合金等からなる電極3と、を備えた薄膜サーミスタ素子であって、電極3が、酸素及び窒素を含んで成膜された後に熱処理して結晶化されてなることを特徴とする薄膜サーミスタ素子。

Description

薄膜サーミスタ素子およびその製造方法
 本発明は、例えば温度センサ、赤外線センサ等のセンサに用いられる薄膜サーミスタ素
子及び薄膜サーミスタ素子の製造方法に関する。
 例えば、情報機器、通信機器、医療用機器、住宅設備機器、自動車用伝送機器等の温度センサ、赤外線センサとして、大きな負の温度係数を有する酸化物半導体の焼結体である薄膜サーミスタ素子が用いられている。一般にこのような薄膜サーミスタ素子は、基板に電極が形成されてからサーミスタ薄膜が形成され、1400℃以下の温度で熱処理される。
 ここで、基板に設けられた下地層に直接白金(Pt)又はその合金等からなる電極を形成する場合、基板を100℃以上に加熱しながら成膜し、白金又はその合金等からなる電極のパターン形成を気相エッチングにて行う。この場合、成膜装置に基板加熱の機構が必要となる。また、気相エッチングは腐食性のガスを使用しないので、一般的な気相エッチング装置ではレジストをマスクとして使用してパターン形成する。このとき下地絶縁層とサーミスタ薄膜とPt等の金属との間の付着力が弱く、剥離しやすい問題がある。
 そこで、下地層とPt等との間で強力な付着強度を得ようとする場合には、付着強度を得るための金属や合金等からなる接着層と、白金又はその合金等からなる導電層との2層構造を有する電極が形成される(特許文献1、2、3)。
 従来、この種の技術としては、例えば以下に示す文献に記載されたものが知られている(特許文献、1.特開2000-348906号公報、2.特公平3-54841号公報、3.特開平6-61012号公報、4.特許第4811316号公報、5.特開2008-294288号公報)。
 しかしながら、図3、図4に示すように、上記従来の製造方法によって、下地接着層2Aが配された基板2上に、接着層3B、4B及び導電層3A、4Aを有する電極3、4とサーミスタ薄膜5とを形成した後、熱処理を施す。Pt又はその合金等からなる導電層は貴金属であるため酸化物である下地層及サーミスタ薄膜との接着力が極めて弱く剥離しやすい問題がある。
 そのため、電極3、4の上に形成されたサーミスタ薄膜5が剥離し、電極剥離のため抵抗値上昇の原因となってしまう。従来の方法ではチタン、クロムの少なくとも一つを含む接着層を設けることで接着力改善をしていた。但し、チタン、クロムの少なくとも一つを含む接着層を設けるとサーミスタ薄膜との反応やチタン、クロムの酸化が進行して特性劣化する問題があった。
 本発明は上記事情に鑑みて成されたものであり、基板と電極との付着強度を維持しつつ、サーミスタ薄膜と電極との十分な付着強度を得ることができる薄膜サーミスタ素子及び薄膜サーミスタ素子の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明に係る薄膜サーミスタ素子は、基体と、前記基体上に形成されたサーミスタ薄膜と、前記サーミスタ薄膜の膜上、膜下又は膜中に形成された一対の電極と、を備えた薄膜サーミスタ素子であって、電極層が、酸素、窒素を含んで成膜された後に熱処理で結晶化することを特徴とする。
 また、本発明に係る薄膜サーミスタ素子の製造方法は、基体上に形成されたサーミスタ薄膜の膜上、膜下又は膜中に一対の電極をパターン形成する薄膜サーミスタ素子の製造方法であって、酸素、窒素を含んで電極層を成膜する第一工程と、一対の電極をパターン形成する第二工程と前記電極層を熱処理で結晶化する第三工程とを備えていることを特徴とする。
 これらの発明は、電極層が、酸素、窒素を含んで成膜された後に熱処理で結晶化するので、一対の電極とサーミスタ薄膜とが成膜された後の熱処理においても、白金(Pt)又はその合金等からなる導電層の膜中の酸素及び窒素の濃度変動を抑えることができる。従って、熱処理の前後において電極層の表面状態を好適な状態に維持することができる。これは、従来のような酸素、窒素を含まない状態の電極層の場合、熱処理をした際に電極層が急激に酸化及び窒化が進行して電極剥離する現象を生ずる。また、またチタン、クロムの少なくとも一つを含む接着層を設けるとサーミスタ薄膜と反応して特性劣化する。
 本発明の酸素、窒素を含んで成膜された後に熱処理によって結晶化する方法で形成された電極層の場合では、酸素、窒素の含有量の変化を抑制するため電極剥離を抑制し特性劣化も抑制していると考えられる。
 また、本発明に係る薄膜サーミスタ素子は、前記電極層が、酸素及び窒素の少なくとも一方を含んで成膜されていることを特徴とする。
 また、本発明に係る薄膜サーミスタ素子の製造方法は、前記第一工程が、酸素及び窒素の少なくとも一方を加えて前記電極層を成膜することを特徴とする。前記電極層を成膜した後に一対の電極をエッチング等の工程でパターン形成する第二工程によってパターンを形成する。
 これらの発明は、電極層の成膜時に酸素又は窒素の少なくとも一方を含ませること及び、前記第三工程が熱処理によって結晶化する方法により、電極層を好適に結晶状態が<111>配向の粒状結晶化させることができる。
 また、本発明に係る薄膜サーミスタ素子は、前記第二電極層における酸素及び窒素の少なくとも一方の含有量が、0.01重量%以上、かつ4.9重量%以下であることを特徴とする。
 また、本発明に係る薄膜サーミスタ素子の製造方法は、前記第一工程が、酸素及び窒素の少なくとも一方を加えて前記電極層を成膜することを特徴とする。
 これらの発明は、酸素及び窒素の少なくとも一方の含有量を0.01重量%以上、かつ4.9重量%以下に設定することで、電極層の結晶状態が<111>配向の粒状結晶化させることができ、かつ、電極層の剥離等による抵抗値の大幅な上昇を抑えることができる。
本発明に係る一実施形態の薄膜サーミスタ素子を示す断面図及び平面図である。 本発明に係る一実施形態の薄膜サーミスタ素子の製造方法を示すフロー図である。 従来の薄膜サーミスタ素子に係る薄膜サーミスタ素子を示す断面図及び平面図である。 従来の薄膜サーミスタ素子に係る一実施形態の薄膜サーミスタ素子の製造方法を示すフロー図である。 本発明に係る一実施形態の薄膜サーミスタ素子の変形例において他の例を示す、図1に相当する断面図及び平面図である。 本発明に係る一実施形態の薄膜サーミスタ素子の変形例において他の例を示す、図2に相当する発明に係る実施例の製造方法を示すフロー図である。 本発明の効果を示す250℃耐熱試験の抵抗値変化を示すグラフである。 本発明の効果を示す250℃耐熱試験のB定数変化を示すグラフである。 本発明の効果を示す40℃⇔250℃温度サイクル試験の抵抗値変化を示すグラフである。 本発明の効果を示す薄膜サーミスタ素子における、熱処理後の電子顕微鏡写真である。 本発明の効果を示す薄膜サーミスタ素子の導電層における薄膜X線回折法(薄膜XRD:微小角入射X線回折法)によるプロファイルのグラフである。
 本発明に係る薄膜サーミスタ素子及び薄膜サーミスタ素子の製造方法の一実施形態について、図1から図2を参照して説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
 本実施形態に係る薄膜サーミスタ素子1は、例えば温度検出用センサであって、図1及び図2に示すように、表面に下地層としてSiO2層2Aが形成されたSi基板(基体)2と、SiO2層2A上にパターン形成された1対の電極3及び電極4と、SiO2層2A及び電極3及び電極4上に成膜されたサーミスタ薄膜5、これらサーミスタ薄膜5を覆うパッシベーション膜6と、を備えている。
 上記のサーミスタ薄膜は、一対の電極3及び電極4の上に形成される。
 上記電極3及び電極4は、SiO2層2A上に設けられる、一対の電極3及び電極4は、互いに所定間隔を空けて対向状態に配されている。一対の電極3及び電極4は、それぞれサーミスタ薄膜層5の外部に延在された電極端子部7A及び電極端子部7Bを有している。
 一対の電極3及び電極4は、後述する方法によって成膜時に酸素及び窒素の少なくとも一方を含んで成膜されている。この際、熱処理によって酸素及び窒素の少なくとも一方の含有量が、0.01重量%以上、かつ4.9重量%以下となっている。なお、上記酸素及び窒素の少なくとも一方の含有量において、酸素と窒素との両方を含む場合は両方の総含有量をいう。
 サーミスタ薄膜5は、Mn-Co系複合金属酸化物(例えば、Mn3O4-Co3O4系複合金属酸化物)又はMn-Co系複合金属酸化物にNi、Fe、Cuの少なくとも一種類を含む複合金属酸化物(例えば、Mn3O4-Co3O4-Fe2O3系複合金属酸化物)からなる複合金属酸化物膜であって、スピネル型結晶構造を有している。
 パッシベーション膜6は、SiO2膜からなる。なお、絶縁性を有して外部雰囲気を遮断可能であれば、SiO2膜の代わりに窒化ケイ素膜(Si3N4)、一酸化ケイ素膜(SiO)、ガラス膜、セラミックス膜、耐熱樹脂等の絶縁性膜でも構わない。
 次に、本実施形態に係る薄膜サーミスタ素子1の製造方法について説明する。
 本実施形態に係る薄膜サーミスタ素子の製造方法は、図2に示すように、Si基板2のSiO2層2Aに白金(Pt)又はその合金等からなる薄膜を成膜する工程(S01)、成膜後に一対の電極3及び電極4をパターン形成する工程(S02)と、電極3、電極4を熱処理する工程(S03)に電極3及び電極4にサーミスタ薄膜5を成膜する工程(S04)と、サーミスタ薄膜をパターニングする工程(S05)とサーミスタ薄膜5を熱処理する工程(S06)と、パッシベーション膜6を成膜する工程(S07)と、パッシベーション膜6をパターニングする工程(S08)を備えている。
 まず、Si基板2の上面に熱酸化によりSiO2層2Aが、例えば膜厚0.5μmで形成されたSiO2/Si基板2を用意する。
 白金(Pt)やその合金等からなる電極層を成膜する第一工程(S01)を備えている。
 第一工程(S01)、高周波スパッタリング装置、直流スパッタリング装置などを用いて、雰囲気圧力100mPa~1330mPa、アルゴンガス流量10sccm~50sccm、及びスパッタリング電力100W~2000Wの印加に加え、酸素ガス及び窒素ガスの少なくとも一方を添加した雰囲気ガスを用いて、電極層を成膜する。この際、成膜後における酸素及び窒素の少なくとも一方の含有するようなガス濃度とする。
 第二工程(S02)では、上記の電極層の成膜後、電極層を、汎用的なフォトリソグラフィ、エッチングによりパターン形成して一対の電極3及び電極4を得る。
 第三工程(S03)では、一対の電極3及び電極4を熱処理温度400℃~1000℃の大気中にて1~10時間保持することによって結晶化する方法により、一対の電極3及び電極4は酸素及び窒素を含んで、その結晶構造が<111>配向の粒状結晶化させることができる。
 なお、第三工程(S03)では、一対の電極3及び電極4を熱処理温度400℃~1000℃の大気中にて1~10時間保持することによって結晶化する方法により、一対の電極3及び電極4は酸素及び窒素を含んで、その結晶構造が<111>配向の柱状結晶化させることもできる。
 また、第三工程(S03)では、一対の電極3及び電極4を熱処理温度400℃~1000℃の大気中にて1~10時間保持することによって結晶化する方法により、一対の電極3及び電極4は酸素及び窒素を含んで、その結晶構造が<111>配向の粒状及び柱状結晶化させることもできる。
 次に、一対の電極3及び電極4にサーミスタ薄膜5を成膜する工程(S04)を実施する。
 まず、サーミスタ薄膜5なる複合金属酸化物膜を、例えば膜厚0.5μmでスパッタリングにより成膜する。なお、上記複合金属酸化物膜は、体積抵抗率の膜厚依存性が小さくなる膜厚0.3μm以上に設定することが好ましい。
 この際、スパッタ成膜条件は、例えば雰囲気圧力100mPa~1330mPa、アルゴンガス流量10sccm~50sccm、及びスパッタリング電力100W~2000Wの印加に設定する。なお、サーミスタ薄膜5を形成するSiO2/Si基板2を加熱しながらスパッタリングを行う方法でも構わない。この際の基板温度は、200~800℃の範囲内に設定することが好ましい。
 スパッタリング後に、エッチングによりパターン形成する工程(S05)。所定の熱処理を行ってサーミスタ薄膜5を熱処理する工程(S06)。この熱処理は、400℃~1000℃の温度にて大気中で1~24時間行う。
 なお、上記熱処理において、アルゴンガスや窒素ガス等の不活性ガスの雰囲気中で行う他、これらガスにO2を例えば0.1体積%~25体積%添加しても構わない。
 最後に、パッシベーション膜6を成膜する工程(S07)に移行して、第一サーミスタ薄膜5A及び第二サーミスタ薄膜5B上に、保護膜や赤外線吸収膜等としてSiO2パッシベーション膜6を積層する。成膜後パッシベーション膜6をパターニングする(S08)。
 こうして、温度検出センサとしての薄膜サーミスタ素子が作製される。
 この薄膜サーミスタ素子の製造方法によれば、1対の電極3及び電極4が、酸素及び窒素が含まれて成膜された後に熱処理されているので、1対の電極3及び電極4とサーミスタ薄膜5が成膜された後の熱処理においても、酸素、窒素を含んで成膜された後に熱処理によって結晶化する方法で形成された電極の場合では、熱による酸素、窒素の含有量の変化を抑制するためと考えられる。
 従って、熱処理後に1対の電極3及び電極4の酸素、窒素の含有量の変化を抑制するため剥離の発生を抑え、好適な状態に維持することができ、熱処理後であってもSi基板2と1対の電極3及び電極4との付着強度を維持することができる。またチタン、クロムの少なくとも一つを含む接着層を設けていないので酸化及び窒化の状態が安定化しサーミスタ特性の安定化にも寄与する。
 また、1対の電極3及び電極4の成膜時に酸素又は窒素の少なくとも一方を含ませることにより、導電層3Bを好適に酸素及び窒素を含んだ結晶が<111>配向の粒状結晶化(あるいは柱状結晶化あるいは粒状および柱状結晶化)させることができる。特に、1対の電極3及び電極4における酸素及び窒素の少なくとも一方の含有量を、0.1重量%以上、かつ4.9重量%以下としているので、1対の電極3及び電極4を十分に酸素及び窒素を含んだ結晶が<111>配向の粒状結晶化(あるいは柱状結晶化あるいは粒状および柱状結晶化)させることができ、かつ、1対の電極3及び電極4の剥離による抵抗値の大幅な上昇を抑えることができる。
 なお、1対の電極3及び電極4における酸素及び窒素の少なくとも一方の含有量を、0.1重量%以上、かつ4.9重量%以下としている理由について以下に説明する。
 すなわち、図11に示す具体例の場合、結晶化したものの酸素含有量は1.3%であり、結晶化していない状態のものの酸素含有量は8.3%であった。上限値の4.9重量%はこのデータのほぼ中間値に当たり、下限値についてはスパッタガスのアルゴン酸素を含有させなくても膜中に酸素を取り込んでしまうので、0.01重量%としている。
 なお、<111>配向の粒状結晶化(あるいは柱状結晶化あるいは粒状および柱状結晶化)した1対の電極3及び電極4の酸素または窒素元素が5重量%以上の場合では、Ptやその合金等からなる1対の電極3及び電極4の酸素及び窒素量が過多で、含有量の変動を招き易く付着強度向上の十分な効果が得にくい。また、酸素または窒素元素が5重量%より多い場合では、電極材料としての抵抗値が大幅に上昇してしまう。したがって、上記含有量の設定範囲内であれば、例えば、250℃の耐熱試験及び10万サイクルの温度サイクル試験を実施しても、サーミスタ薄膜5Aと電極3との十分な付着強度を維持しつつ剥離も発生が無く、電気特性も好適に維持することができる。
 前記の特許文献4、5では白金(Pt)やその合金等からなる電極層を非晶質とする提案がなされているが、その耐熱性は150℃までである。本発明ではその耐熱性能を向上される効果がある。
 なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記実施形態では、電極3上にサーミスタ薄膜5Aを成膜しているが、上記実施形態の他の例として、図5に示すように、サーミスタ薄膜5Aの膜中に一対の電極3及び電極4が形成された薄膜サーミスタ素子10としても構わない。
 この薄膜サーミスタ素子10を製造する場合、図6に示すように、Si基板2のSiO2層2Aにサーミスタ薄膜5Aを成膜する工程(S101)、白金(Pt)又はその合金等からなる薄膜を成膜する工程(S102)、成膜後に一対の電極3及び電極4をパターン形成する工程(S103)と、電極3、電極4を結晶化するための熱処理する工程(S104)、1対の電極3及び電極4上にサーミスタ薄膜5Bを成膜する工程(S105)と、サーミスタ薄膜5Bをパターン形成する工程(S106)、 サーミスタ薄膜5A及びサーミスタ薄膜5Bを熱処理する工程(S107)と、これら膜上にパッシベーション膜6を成膜する工程(S108)と、パッシベーション膜6のパターニングを行う工程(S109)。
 また、半導体の代表である単結晶シリコンのSi基板2の代わりに他の半導体である材料としてゲルマニウム(Ge)、ヒ化ガリウム (GaAs)、ガリウム砒素リン(GaAsP)、窒化ガリウム (GaN)、炭化珪素 (SiC)や隣化ガリウム(GaP)などの半導体基板が使用できる。
 絶縁性基板の代表としてアルミナ(Al2O3)基板、窒化珪素(Si3N4)、石英(SiO2)、窒化アルミニウム(AlN)等の絶縁性のセラミック基板を用いても良い。
 下地層であるSiO2層2Aの代わりに窒化ケイ素(Si3N4)膜、一酸化ケイ素膜(SiO)などを用いても構わない。
 なお、絶縁性基板の場合、下地層であるSiO2層2Aは全面でなく部分的な成膜、又は無くても良い。
具体例
 次に、本発明に係る薄膜サーミスタ素子を上記実施形態の製法により実際に作製し、評価した結果を、図7から図9を参照して具体的に説明する。
 本実施例の薄膜サーミスタ素子を作製した。
 これら実施例について、250℃の耐熱試験を実施し、電気抵抗値及びB定数を測定した。また、40℃~250℃の温度サイクルを10万サイクル実施後の電気抵抗値を測定し評価した。
 上記評価結果から分かるように、本実施例の薄膜サーミスタ素子では、耐久試験後においても電気抵抗値及びB定数の変化率を従来のものよりも大幅に低く抑えることができた。
 また、本実施例の薄膜サーミスタ素子において、その評価結果を、図7から図9に示す。
 図10に熱処理後の白金膜の電子顕微鏡による観察を示す。写真から白金が粒状結晶と
なっていることがわかる。
 図11に示すように、熱処理後の電極層の方には、結晶化状態を示す鋭いピークが検出されていることからも結晶化していることがわかる。
 この発明は前述の発明の実施の形態に限定されることなく、適宜な変更を行うことにより、その他の態様で実施し得るものである。
 本発明の薄膜サーミスタ素子及び薄膜サーミスタ素子の製造方法によれば、基体と電極との付着強度を維持しつつ、サーミスタ薄膜と電極との十分な付着強度を得ることができる。

Claims (10)

  1.  基体と、
     前記基体上に形成されたサーミスタ薄膜と、
     前記サーミスタ薄膜の膜上、膜下又は膜中に形成された少なくとも一対の電極と、
     を備えた薄膜サーミスタ素子であって、
     前記一対の電極が、白金又はその合金等からなる電極層と、を備え、前記電極層が、結晶であることを特徴とする薄膜サーミスタ素子。
  2.  請求項1に記載の薄膜サーミスタ素子において、
     前記電極層の結晶状態が<111>配向の粒状結晶であって、かつ酸素及び窒素の少なくとも一方を含んでいることを特徴とする薄膜サーミスタ素子。
  3.  請求項1に記載の薄膜サーミスタ素子において、
     前記電極層の結晶状態が<111>配向の柱状結晶であって、かつ酸素及び窒素の少なくとも一方を含んでいることを特徴とする薄膜サーミスタ素子。
  4.  請求項1に記載の薄膜サーミスタ素子において、
     前記電極層の結晶状態が<111>配向の粒状及び柱状結晶であって、かつ酸素及び窒素の少なくとも一方を含んでいることを特徴とする薄膜サーミスタ素子。
  5.  請求項2~4に記載の薄膜サーミスタ素子において、
     前記電極層における酸素及び窒素の少なくとも一方の含有量が、0.01重量%以上、かつ4.9重量%以下であることを特徴とする薄膜サーミスタ素子。
  6.  基体上に形成されたサーミスタ薄膜の膜上、膜下又は膜中に一対の電極をパターン形成する薄膜サーミスタ素子の製造方法であって、
     電極層を成膜する第一工程と、
     少なくとも一対の電極をパター形成する第二工程と、
     前記電極層を熱処理することによって結晶状態とする第三工程と、
    を備えていることを特徴とする薄膜サーミスタ素子の製造方法。
  7.  請求項6に記載の薄膜サーミスタ素子の製造方法において、
     前記第一工程が、酸素、及び窒素の少なくとも一方を加えて前記電極層を成膜し、第三工程の熱処理工程により前記電極層の結晶状態が<111>配向の粒状結晶とすることを特徴とする薄膜サーミスタ素子の製造方法。
  8.  請求項6に記載の薄膜サーミスタ素子の製造方法において、
     前記第一工程が、酸素、及び窒素の少なくとも一方を加えて前記電極層を成膜し、第三工程の熱処理工程により前記電極層の結晶状態が<111>配向の柱状結晶とすることを特徴とする薄膜サーミスタ素子の製造方法。
  9.  請求項6に記載の薄膜サーミスタ素子の製造方法において、
     前記第一工程が、酸素、及び窒素の少なくとも一方を加えて前記電極層を成膜し、第三工程の熱処理工程により前記電極層の結晶状態が<111>配向の粒状及び柱状結晶とすることを特徴とする薄膜サーミスタ素子の製造方法。
  10.  請求項7~9のいずれかに記載の薄膜サーミスタ素子の製造方法において、
     前記電極層における酸素及び窒素の少なくとも一方の含有量が、0.01重量%以上、かつ4.9重量%以下であることを特徴とする薄膜サーミスタ素子の製造方法。
PCT/JP2013/068749 2012-07-13 2013-07-09 薄膜サーミスタ素子およびその製造方法 WO2014010591A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/111,932 US9659691B2 (en) 2012-07-13 2013-07-09 Thin-film thermistor element and method of manufacturing the same
DE112013003510.3T DE112013003510T5 (de) 2012-07-13 2013-07-09 Dünnfilm-Thermistorelement und Verfahren des Herstellens desselben
CN201380001059.6A CN103688320B (zh) 2012-07-13 2013-07-09 薄膜热敏电阻元件及其制造方法
KR1020137025978A KR101886400B1 (ko) 2012-07-13 2013-07-09 박막 서미스터 소자 및 그 제조 방법
JP2013547042A JP5509393B1 (ja) 2012-07-13 2013-07-09 薄膜サーミスタ素子およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-157278 2012-07-13
JP2012157278 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010591A1 true WO2014010591A1 (ja) 2014-01-16

Family

ID=49916043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068749 WO2014010591A1 (ja) 2012-07-13 2013-07-09 薄膜サーミスタ素子およびその製造方法

Country Status (6)

Country Link
US (1) US9659691B2 (ja)
JP (1) JP5509393B1 (ja)
KR (1) KR101886400B1 (ja)
CN (1) CN103688320B (ja)
DE (1) DE112013003510T5 (ja)
WO (1) WO2014010591A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207676A1 (ja) * 2017-05-09 2018-11-15 株式会社Flosfia サーミスタ膜およびその成膜方法
WO2019208616A1 (ja) * 2018-04-27 2019-10-31 株式会社Flosfia サーミスタ膜、サーミスタ膜を有するサーミスタ素子、およびサーミスタ膜の成膜方法
WO2020137681A1 (ja) 2018-12-28 2020-07-02 株式会社村田製作所 複合体ならびにそれを用いた構造体およびサーミスタ
US11289246B2 (en) 2019-05-23 2022-03-29 Seiko Epson Corporation Vibrator device, electronic apparatus, and vehicle
US11292341B2 (en) 2019-04-26 2022-04-05 Seiko Epson Corporation Vibration device, electronic apparatus, and vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409420B (zh) * 2014-10-11 2017-06-06 北京工业大学 一种GaAs功率器件、微波单片电路的片上Pt薄膜热敏电阻的制备工艺
DE102016101246A1 (de) 2015-11-02 2017-05-04 Epcos Ag Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
KR102007446B1 (ko) 2018-05-21 2019-10-21 해성디에스 주식회사 센서 유닛, 이를 포함하는 온도 센서, 센서 유닛의 제조방법 및 이를 이용하여 제조된 온도 센서
WO2020204006A1 (ja) 2019-03-29 2020-10-08 株式会社Flosfia 結晶、結晶性酸化物半導体、結晶性酸化物半導体を含む半導体膜、結晶および/または半導体膜を含む半導体装置および半導体装置を含むシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201521A (ja) * 1993-12-28 1995-08-04 Ricoh Co Ltd Pt薄膜およびその製膜方法
JP2000164404A (ja) * 1998-11-27 2000-06-16 Matsushita Electric Ind Co Ltd 正特性サーミスタの製造方法
JP2003059704A (ja) * 2001-06-04 2003-02-28 Ngk Insulators Ltd 感温性抵抗素子及びこれを用いた熱式流量センサ
JP2008244344A (ja) * 2007-03-28 2008-10-09 Mitsubishi Materials Corp 薄膜サーミスタ素子及び薄膜サーミスタ素子の製造方法
JP2008294288A (ja) * 2007-05-25 2008-12-04 Mitsubishi Materials Corp 薄膜サーミスタ素子及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811316B1 (ja) 1970-09-25 1973-04-12
JPH0354841A (ja) 1989-07-21 1991-03-08 Fujitsu Ltd BiCMOS半導体装置
JP3312752B2 (ja) 1992-08-11 2002-08-12 石塚電子株式会社 薄膜サーミスタ
CN1052299C (zh) * 1995-05-11 2000-05-10 松下电器产业株式会社 温度传感元件和装有它的温度传感器及温度传感元件的制造方法
JP3520403B2 (ja) * 1998-01-23 2004-04-19 セイコーエプソン株式会社 圧電体薄膜素子、アクチュエータ、インクジェット式記録ヘッド、及びインクジェット式記録装置
JP4279401B2 (ja) 1999-06-03 2009-06-17 パナソニック株式会社 薄膜サーミスタ素子
JP5044902B2 (ja) * 2005-08-01 2012-10-10 日立電線株式会社 圧電薄膜素子
JP2007115938A (ja) 2005-10-21 2007-05-10 Ishizuka Electronics Corp 薄膜サーミスタ
JP5525143B2 (ja) * 2008-06-05 2014-06-18 日立金属株式会社 圧電薄膜素子及び圧電薄膜デバイス
WO2011024724A1 (ja) * 2009-08-28 2011-03-03 株式会社村田製作所 サーミスタ及びその製造方法
JP5531635B2 (ja) * 2010-01-18 2014-06-25 日立金属株式会社 圧電薄膜素子及び圧電薄膜デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201521A (ja) * 1993-12-28 1995-08-04 Ricoh Co Ltd Pt薄膜およびその製膜方法
JP2000164404A (ja) * 1998-11-27 2000-06-16 Matsushita Electric Ind Co Ltd 正特性サーミスタの製造方法
JP2003059704A (ja) * 2001-06-04 2003-02-28 Ngk Insulators Ltd 感温性抵抗素子及びこれを用いた熱式流量センサ
JP2008244344A (ja) * 2007-03-28 2008-10-09 Mitsubishi Materials Corp 薄膜サーミスタ素子及び薄膜サーミスタ素子の製造方法
JP2008294288A (ja) * 2007-05-25 2008-12-04 Mitsubishi Materials Corp 薄膜サーミスタ素子及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207676A1 (ja) * 2017-05-09 2018-11-15 株式会社Flosfia サーミスタ膜およびその成膜方法
JPWO2018207676A1 (ja) * 2017-05-09 2020-03-26 株式会社Flosfia サーミスタ膜およびその成膜方法
US10989609B2 (en) 2017-05-09 2021-04-27 Flosfia Inc. Thermistor film and method of depositing the same
JP7358719B2 (ja) 2017-05-09 2023-10-11 株式会社Flosfia サーミスタ膜およびその成膜方法
WO2019208616A1 (ja) * 2018-04-27 2019-10-31 株式会社Flosfia サーミスタ膜、サーミスタ膜を有するサーミスタ素子、およびサーミスタ膜の成膜方法
WO2020137681A1 (ja) 2018-12-28 2020-07-02 株式会社村田製作所 複合体ならびにそれを用いた構造体およびサーミスタ
US11292341B2 (en) 2019-04-26 2022-04-05 Seiko Epson Corporation Vibration device, electronic apparatus, and vehicle
US11289246B2 (en) 2019-05-23 2022-03-29 Seiko Epson Corporation Vibrator device, electronic apparatus, and vehicle

Also Published As

Publication number Publication date
CN103688320A (zh) 2014-03-26
US20150170805A1 (en) 2015-06-18
DE112013003510T5 (de) 2015-04-30
JPWO2014010591A1 (ja) 2016-06-23
KR20150035348A (ko) 2015-04-06
CN103688320B (zh) 2018-04-03
KR101886400B1 (ko) 2018-08-08
US9659691B2 (en) 2017-05-23
JP5509393B1 (ja) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5509393B1 (ja) 薄膜サーミスタ素子およびその製造方法
JP5477670B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6308435B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP5477671B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2015029914A1 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015423B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6120250B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6308436B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP4811316B2 (ja) 薄膜サーミスタ素子及び薄膜サーミスタ素子の製造方法
JP6120251B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015424B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2008084991A (ja) サーミスタ薄膜及び薄膜サーミスタ素子
JP4802013B2 (ja) 温度センサおよびその製造方法
JP6115823B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2015029915A1 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
TW202239981A (zh) 磁性材料、積層體及積層體之製造方法、以及熱電轉換元件及磁性感應器
JP5029885B2 (ja) 薄膜サーミスタ素子及びその製造方法
JP6015425B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016136609A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015220328A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2019096805A (ja) サーミスタ及びその製造方法並びにサーミスタセンサ
JP6601614B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137025978

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013547042

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14111932

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13815948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013003510

Country of ref document: DE

Ref document number: 1120130035103

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13815948

Country of ref document: EP

Kind code of ref document: A1