WO2014010571A1 - 光学素子及び集光型太陽光発電装置 - Google Patents

光学素子及び集光型太陽光発電装置 Download PDF

Info

Publication number
WO2014010571A1
WO2014010571A1 PCT/JP2013/068695 JP2013068695W WO2014010571A1 WO 2014010571 A1 WO2014010571 A1 WO 2014010571A1 JP 2013068695 W JP2013068695 W JP 2013068695W WO 2014010571 A1 WO2014010571 A1 WO 2014010571A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
sheet
molded body
less
bonded
Prior art date
Application number
PCT/JP2013/068695
Other languages
English (en)
French (fr)
Inventor
安部 浩司
慎二 平松
勝洋 藤田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020157002990A priority Critical patent/KR101750726B1/ko
Priority to MX2015000260A priority patent/MX345871B/es
Priority to JP2014524807A priority patent/JP6414745B2/ja
Priority to US14/413,617 priority patent/US9553227B2/en
Priority to CN201380036860.4A priority patent/CN104487874B/zh
Priority to EP13816373.8A priority patent/EP2871499B1/en
Priority to AU2013287727A priority patent/AU2013287727B2/en
Publication of WO2014010571A1 publication Critical patent/WO2014010571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0076Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to an optical element having an optical functional pattern formed on the surface and a concentrating solar power generation device.
  • the concentrating solar power generation device can reduce the size of the expensive solar cell element by concentrating sunlight with a condensing lens and receiving the light to the solar cell element, thereby reducing the cost of the entire power generation device. be able to. For this reason, the concentrating solar power generation apparatus is spreading as a power supply application in a vast area where the sunshine duration is long and the condensing surface can be installed even when the condensing surface is enlarged.
  • a transparent glass substrate is bonded to the surface on the sunlight incident surface side of the sheet-like condensing lens made of PMMA resin in consideration of environmental resistance and the like. Yes.
  • the temperature difference causes thermal expansion and contraction of the condenser lens.
  • the temperature difference is about 40 degrees
  • thermal expansion and contraction of about several millimeters occurs with respect to a condensing lens made of 1 m 2 size PMMA resin.
  • the edge of the condensing lens is warped due to the rigidity of the glass substrate to which the condensing lens is bonded, and a part of the light collected thereby is reflected by the sun. Since it deviates from the light receiving region of the battery element, the power generation efficiency decreases.
  • the linear expansion coefficient is glass (0.09 ⁇ 10 ⁇ 5 / C) and silicone resin (25-30 ⁇ 10 ⁇ 5 / ° C.) are greatly different. Silicone resins have low hardness.
  • the present invention provides an optical element and concentrating sunlight that can prevent warpage and deformation due to stress on an optical functional pattern (such as a Fresnel lens) formed on the surface even in an environment with a large temperature difference.
  • An object is to provide a power generator.
  • the invention described in claim 1 includes a translucent substrate and an organic resin having an optical function pattern on one surface and the other surface bonded to the translucent substrate.
  • An optical element provided with a sheet-shaped molded body, wherein the sheet-shaped molded body has a tensile modulus of 1500 MPa or less, a linear expansion coefficient of 7.0 ⁇ 10 ⁇ 5 / ° C. or less, and a thickness of 400 ⁇ m.
  • the average transmittance of at least visible light wavelength band is 85% or more and haze value is 1.0% or less
  • a metal halide lamp is used to irradiate light including ultraviolet rays at an illuminance of 1 kW / m 2 for 600 hours
  • the reduction in average light transmittance in the wavelength band of at least 350 nm to 600 nm is characterized by being 2% or less.
  • the linear expansion coefficient is a value measured at 30 ° C. according to JIS K7197
  • the tensile modulus is a value measured according to JIS K7127.
  • the invention according to claim 2 is characterized in that the translucent substrate is made of a glass substrate.
  • the sheet-like molded body is formed using a thermoplastic polymer composition containing an acrylic block copolymer (A) and an acrylic resin (B), and the thermoplastic polymer.
  • the acrylic block copolymer (A) has polymer blocks (a2) mainly composed of methacrylic acid ester units at both ends of the polymer block (a1) mainly composed of acrylate units.
  • An acrylic block copolymer (A2) having an amount of 10% by mass or more and less than 40% by mass;
  • the acrylic resin (B) is mainly composed of methacrylate units;
  • the mass ratio [(A) / (B)] of the acrylic block copolymer (A) and the acrylic resin (B) is 97/3 to 10/90.
  • the invention according to claim 4 is characterized in that an ultraviolet absorber is included in the sheet-like molded body.
  • the invention described in claim 5 is characterized in that the light-transmitting substrate contains an ultraviolet absorber.
  • the invention described in claim 6 is characterized in that an ultraviolet absorbing layer is formed on the surface of the translucent substrate opposite to the surface to which the sheet-like molded body is bonded.
  • the invention according to claim 7 is characterized in that an antifouling treatment is performed on the surface of the translucent substrate opposite to the surface to which the sheet-like molded body is bonded.
  • the invention according to claim 8 is characterized in that an antireflection treatment is performed on the surface of the translucent substrate opposite to the surface to which the sheet-like molded body is bonded.
  • the invention according to claim 9 is characterized in that a peel adhesion strength to the sheet-like molded body adhered to the translucent substrate is 25 N / 25 mm or more.
  • the peel adhesion strength described in the present invention is a value measured by a method for measuring the 180 degree peel adhesion strength defined in JISK685-2.
  • the adhesive surface of the sheet-shaped molded body with the light-transmitting substrate is subjected to any one of plasma treatment, excimer treatment, and corona treatment, and then the transparent surface is subjected to the transparent surface. It is characterized in that the optical substrate is bonded.
  • the invention according to claim 11 is characterized in that the optical function pattern formed on the sheet-like molded body is a Fresnel lens pattern.
  • the invention according to claim 12 is a concentrating solar power generation device including an optical element that condenses sunlight and a solar cell element that receives and photoelectrically converts sunlight condensed by the optical element.
  • the optical element is an optical element according to claim 11.
  • the sheet-like molded body made of an organic resin bonded to a translucent substrate has a tensile modulus of 1500 MPa or less and a linear expansion coefficient of 7.0 ⁇ 10 ⁇ 5 / ° C. or less.
  • the average transmittance at least in the visible light wavelength band is 85% or more and the haze value is 1.0% or less.
  • this sheet-like molded article has good light transmittance, and since the tensile elastic modulus is as small as 1500 MPa or less, the amount of warpage is small even in an environment where the temperature change is large, and the linear expansion coefficient is 7.0 ⁇ . Since it is 10 ⁇ 5 / ° C. or less and smaller than the silicone resin, deformation of the optical function pattern formed on the surface can be suppressed even under an environment where the temperature change is large.
  • the thickness of the translucent substrate with respect to the area is 5 mm or less with respect to the area of 1 m 2
  • the sheet-like molded body is 1 of the thickness of the translucent substrate. / 15 or more thick, preferably using an SUV-W151E device manufactured by Iwasaki Electric Co., Ltd. and using a water-cooled metal halide lamp (M04-L21WBX / SUV) with a rated power of 4 kW.
  • the decrease of the average light transmittance in the wavelength band of at least 350 to 600 nm is 2% or less.
  • this sheet-like molded product can maintain a good light transmittance over a long period of time.
  • the optical element according to the present invention is arranged as a condensing lens, so that sunlight is received even in an environment where the temperature change is large. It is possible to concentrate light well for a long time and maintain high power generation efficiency.
  • FIG. 4 is a diagram illustrating a measurement result of light transmittance in the optical element of Example 1. The figure which shows the measurement result of the transmittance
  • FIG. 1 is a schematic cross-sectional view schematically showing a schematic configuration of a concentrating solar power generation apparatus including an optical element according to an embodiment of the present invention.
  • a concentrating solar power generation device 1 includes a solar cell element (solar cell) 2 that photoelectrically converts received sunlight, and the solar cell element 2.
  • a solar cell substrate 3 and an optical element 4 that is arranged so as to face the front side (sunlight incident side) of the solar cell element 2 and condense sunlight are provided as main constituent members.
  • L ⁇ b> 1 indicates sunlight incident on the optical element 4
  • L ⁇ b> 2 indicates sunlight condensed by the optical element 4.
  • the optical element 4 has a light-transmitting substrate bonded on the sunlight incident side, in particular, a glass substrate 5 and a light-transmitting property adhered to the surface of the glass substrate 5 on the emission side (side facing the solar cell element 2). And a sheet-like molded body 6 made of an organic resin (details of the sheet-like molded body 6 which is a feature of the present invention will be described later).
  • a Fresnel lens pattern 6 a that condenses incident sunlight on the light receiving region of the solar cell element 2 is concentrically formed on the surface of the sheet-like molded body 6 opposite to the glass substrate 5 (side facing the solar cell element 2). It is formed in a shape.
  • the sheet-like molded body 6 on which the Fresnel lens pattern 6a is formed functions as a condenser lens.
  • the concentrating solar power generation device 1 has a plurality of solar cell elements 2 mounted on a solar cell substrate at regular intervals, and is opposed to a light receiving region of each solar cell element 2.
  • the plurality of optical elements 4 are integrally provided on the same plane.
  • the glass substrate 5 and the sheet-like molded body 6 can be bonded by a known method such as thermocompression bonding or adhesive, but thermocompression bonding is preferable in terms of thickness accuracy.
  • the glass substrate 5 and the sheet-like molded body 6 are bonded together by thermocompression bonding.
  • attached on the glass substrate 5 may be 25 N / 25mm or more, and it is more preferable to make it 50 N / 25mm or more. . If the peel adhesion strength is 25 N / 25 mm or more, it is possible to reliably prevent the sheet-like molded body 6 from being peeled from the glass substrate 5 over a long period of time.
  • the glass substrate 5 and the sheet-shaped molded body 6 it is preferable to perform plasma treatment on the bonding surface of the sheet-shaped molded body 6 with the glass substrate 5 and then bond the glass substrate 5 to the glass substrate 5. Adhesiveness when adhering to the glass substrate 5 can be further improved by plasma-treating the adhesive surface of the sheet-like molded body 6 with the glass substrate 5 to perform surface modification. In addition to plasma treatment, surface modification can also be performed by excimer treatment or corona treatment.
  • examples of a method for producing the optical element 4 having a configuration in which the sheet-like molded body 6 is bonded to the glass substrate 5 include a known hot press molding method and a vacuum laminate molding method.
  • the pressure is applied while heating. Is a method for producing a molded body by uniformly applying from the vertical direction and transferring the shape of the mold to a sheet.
  • a sheet-like film before being formed into glass is bonded by thermocompression bonding, and then a shaping die such as a nickel stamper is placed on the film to apply pressure.
  • a shaping die such as a nickel stamper is placed on the film to apply pressure.
  • an adhesive can be used in addition to the above-described thermocompression bonding.
  • an acrylic resin-based adhesive containing methyl methacrylate and an acrylic monomer, which are excellent in translucency and weather resistance, a silicone resin adhesive, and the like are preferable.
  • the coating thickness is preferably as thin as possible.
  • Each solar cell element 2 and each optical element 4 are accurately positioned and arranged, and the side surface periphery between the solar cell substrate 3 and the optical element 4 is between the solar cell substrate 3 and the optical element 4. It is sealed so that moisture (moisture), dust and the like do not enter the space between them. Note that the number and size of the solar cell elements 2 and the optical elements 4 that are opposed to each other are arbitrarily set depending on the size, installation location, and the like of the concentrating solar power generation device 1.
  • the sheet-like molded body 6 of the present invention is excellent in transparency, weather resistance, flexibility and the like, and is a thermoplastic polymer containing the following acrylic block copolymer (A) and acrylic resin (B). It is formed using the composition.
  • the acrylic block copolymer (A) is a heavy polymer mainly composed of methacrylic ester units at both ends of the polymer block (a1) composed mainly of acrylate units.
  • An acrylic block copolymer (A2) having an amount of 10% by mass or more and less than 40% by mass;
  • the acrylic resin (B) is mainly composed of methacrylate units;
  • the mass ratio [(A) / (B)] of the acrylic block copolymer (A) and the acrylic resin (B) is 97/3 to 10/90.
  • the polymer block (a2) mainly composed of methacrylic ester units was bonded to both terminals of the polymer block (a1) mainly composed of acrylate units.
  • the acrylic resin (B) is an acrylic resin mainly composed of methacrylic acid ester units. From the viewpoint of improving the transparency, molding processability, etc. of the sheet-like molded article comprising the thermoplastic polymer composition, it is a methacrylic acid ester homopolymer or a copolymer mainly composed of a methacrylic acid ester unit. Is preferred.
  • thermoplastic polymer composition in the present embodiment are described in International Publication No. WO2010 / 055598.
  • sheet-like molded object molded object before a Fresnel lens pattern is formed in the surface
  • this thermoplastic polymer composition can be manufactured by the well-known T-die method, an inflation method, etc., for example.
  • a method of forming the Fresnel lens pattern 6a on the surface of the sheet-like molded body 6 made of this thermoplastic polymer composition for example, a well-known press molding method, injection molding method, 2P (using ultraviolet curable resin) Photo (Polymerization) molding method.
  • thermoplastic polymer composition The physical properties of the sheet-like molded body 6 formed of the above-described thermoplastic polymer composition are as follows.
  • the sheet-like molded body 6 has a tensile elastic modulus of 1500 MPa or less, a linear expansion coefficient of 7.0 ⁇ 10 ⁇ 5 / ° C. or less, and an average transmittance of 85% or more in a wavelength band of 350 to 1850 nm at a thickness of 400 ⁇ m.
  • the haze value is 1.0% or less.
  • the thickness with respect to the area of the glass substrate 5 is 5 mm or less with respect to the area of 1 m 2 , and the sheet-like molded body 6 is formed with a thickness of 1/15 or more of the thickness of the glass substrate 5. Sometimes the effect is significant.
  • the decrease in average light transmittance in the wavelength band of 350 to 600 nm is 2% or less.
  • the sheet-like molded body 6 of the present embodiment is formed using a thermoplastic polymer composition containing the acrylic block copolymer (A) and the acrylic resin (B), the tensile elastic modulus is The coefficient of linear expansion is lower than that of PMMA resin and smaller than that of silicone resin.
  • the optical element 4 in which the sheet-shaped molded body 6 is bonded to the glass substrate 5 has a small amount of warpage of the sheet-shaped molded body 6 even in an environment with a large temperature difference, and the Fresnel of the sheet-shaped molded body 6.
  • the deformation amount of the lens pattern 6a is also small.
  • the above-described sheet-like molded body 6 and / or the glass substrate 5 may be configured to contain an ultraviolet absorber.
  • the ultraviolet absorbing layer 7 may be formed by applying an ultraviolet absorbent to the surface of the glass substrate 5 on the sunlight incident side.
  • an antifouling coating layer 8 may be formed by applying an antifouling coating agent to the surface of the glass substrate 5 on the sunlight incident side.
  • an antifouling coating agent By applying antifouling treatment in this way and suppressing adhesion of sand, dust, etc. to the surface of the glass substrate 5 on the sunlight incident side, a decrease in light transmittance can be suppressed, and thereby good power generation efficiency over a long period of time. Can be maintained.
  • an antireflection coating layer 9 may be formed by applying an antireflection coating agent to the surface of the glass substrate 5 on the sunlight incident side.
  • Example 1 In Example 1, the linear expansion coefficient is 6.6 ⁇ 10 ⁇ 5 / ° C., the tensile elastic modulus in the MD direction (length direction) is 300 MPa, and the tensile elastic modulus in the TD direction (width direction) is 200 MPa.
  • a 400 ⁇ m thick resin sheet (corresponding to the Fresnel lens pattern described above) made of a mixture of a block copolymer of methyl acrylate (MMA) and butyl acrylate (BA) and a methacrylic resin (corresponding to the above-mentioned thermoplastic polymer composition).
  • Parapet H1000B manufactured by Kuraray Co., Ltd.
  • the said thermoplastic resin composition was obtained as a mixture of the ratio of 50 mass% of B-1, 20 mass% of B-2, and 30 mass% of methacrylic resins.
  • the plasma treatment was performed as follows. Using an atmospheric pressure plasma apparatus APG-500 manufactured by Kasuga Electric Co., Ltd., irradiation was performed under the conditions of a supply air flow rate of 190 NL / min, a rated output power of 450 to 500 W, and an irradiation distance of 10 mm. The area irradiated with the atmospheric plasma was about 3 cm 2 , and the head was moved under the condition that the plasma was irradiated to the same place for about 1 second, and the entire resin sheet was irradiated with the plasma.
  • APG-500 manufactured by Kasuga Electric Co., Ltd.
  • 4A is a measurement result of light transmittance in Example 1, where a is a transmittance characteristic after irradiation for 600 hours, and b is a transmittance characteristic before starting irradiation (irradiation time 0).
  • the optical element of Example 1 described above has good transmittance without substantially changing before and after irradiation with a metal halide lamp for 600 hours.
  • the optical element irradiated for 600 hours slightly improved the transmittance in the wavelength band of 350 to 400 nm.
  • Example 2 the optical element produced under the same conditions as in Example 1 was cut into a 50 cm square size, the optical element was placed on a flat measurement table, and the resin sheet when the temperature was changed The amount of warpage (corresponding to a sheet-like molded body in the previous stage where the Fresnel lens pattern described above was formed) was measured.
  • the amount of warpage at the periphery and the center of the resin sheet at room temperature was 0 mm. And when temperature was raised over a predetermined time from room temperature to 65 degreeC, the curvature amount in the peripheral part of this resin sheet was as small as 0.5 mm. The amount of warpage at the center was about 0 mm.
  • Example 3 In Example 3, the same resin sheet as in Example 1 was used, and a condensing lens on which a 20 cm square Fresnel lens pattern was formed was bonded to a transparent glass substrate by a known vacuum laminate molding method. An element was produced.
  • a 10 mm square light receiving sensor is arranged at the focal position of the Fresnel lens pattern, and the entire surface of the Fresnel lens pattern surface is scanned from the glass substrate side (wavelength 532 nm, spot). The diameter of the light received by the light receiving sensor was measured. Then, laser light (wavelength: 532 nm, spot diameter: 5 mm ⁇ ) was incident in the same manner with this optical element removed, and the amount of light received by the light receiving sensor when there was no Fresnel lens pattern was measured.
  • the ratio of the amount of light received by the light receiving sensor through the Fresnel lens pattern surface of the optical element and the amount of light received by the light receiving sensor through the Fresnel lens pattern of the optical element to the amount of light received by the light receiving sensor when there is no Fresnel lens pattern was evaluated.
  • the lens condensing efficiency by the Fresnel lens pattern of the optical element in this example was 90.07%.
  • Example 4 the lens condensing efficiency was evaluated in the same manner as in Example 3 in a state where the temperature of the optical element having the same configuration as in Example 3 was increased from room temperature to 50 ° C. over a predetermined time. As a result, the lens condensing efficiency by the Fresnel lens pattern of the optical element in the present example was 89.96%. From this result, it was found that the lens condensing efficiency hardly changed at room temperature of 25 ° C. and 50 ° C.
  • the temperature is 15 ° C. and 50 ° C. Observed in the case of ° C. As a result, even when the temperature was 15 ° C. and 50 ° C., the spread of the spot shape of the laser light was small.
  • Comparative Example 1 a metal halide lamp was used in the same manner as in Example 1 using a commercially available acrylic resin sheet having a thickness of 3 mm (made by Kuraray Co., Ltd .: trade name [Parapet GH-SN]) instead of the optical element of Example 1. Changes in light transmittance before and after irradiation for 600 hours at an illuminance of 1 kW / mm 2 at a wavelength band of 290 to 450 nm (ultraviolet wavelength band) were measured.
  • 4B is a measurement result of light transmittance in Comparative Example 1, where a is a transmittance characteristic after irradiation for 600 hours, and b is a transmittance characteristic before irradiation is started (irradiation time 0).
  • the acrylic resin sheet having a thickness of 3 mm described above significantly decreased the light transmittance in the wavelength band of 350 to 600 nm after being irradiated with a metal halide lamp for 600 hours.
  • the decrease on the short wavelength region side was remarkable. That is, it can be seen that the molded article composed of the acrylic resin sheet alone is inferior in light resistance.
  • Comparative Example 2 An optical element was produced in the same manner as in Example 1, except that a PMMA sheet having a thickness of 400 ⁇ m having a tensile elastic modulus of 3300 MPa was used instead of the resin sheet used in the optical element in Example 1, Under the same conditions as in Example 2, the amount of warpage of the optical element when the temperature was changed was measured.
  • the amount of warpage at the periphery and the center of the optical element at room temperature was 0.0 mm.
  • the amount of warpage at the periphery of this optical element was 2.1 mm.
  • the warpage amount was larger than that in Example 2.
  • Comparative Example 3 a silicone resin sheet was used in place of the resin sheet used in Example 1, and a 20 cm square Fresnel lens pattern was formed by a well-known vacuum laminate molding method in the same manner as in Example 3. An optical element having a configuration in which a lens was bonded to a transparent glass substrate was produced.
  • a 10 mm square light receiving sensor is arranged at the focal position of the Fresnel lens pattern for this fixed optical element, and the entire surface of the Fresnel lens pattern surface is scanned from the glass substrate side.
  • Laser light (wavelength 532 nm, spot diameter 5 mm ⁇ ) is incident, the amount of light received by the light receiving sensor is measured, and laser light (wavelength 532 nm, spot diameter 5 mm ⁇ ) is incident in the same manner with this optical element removed. Then, the amount of light received by the light receiving sensor when there was no Fresnel lens pattern was measured.
  • Comparative Example 4 an optical element having the same configuration as Comparative Example 3 (an optical element having a structure in which a silicone resin sheet on which a Fresnel lens pattern is formed is bonded to a glass substrate) is heated from room temperature to 50 ° C. over a predetermined time. In the raised state, the lens condensing efficiency was evaluated in the same manner as in Example 3 (Comparative Example 3). As a result, the lens condensing efficiency by the Fresnel lens pattern surface of the optical element in Comparative Example 4 was 80.8%, which was lower than that in Example 4. Moreover, compared with the case where the heat
  • the temperature is 15 ° C. and 50 ° C. Observed in the case of ° C. As a result, when the temperature was 15 ° C., the spread of the spot shape of the laser beam was small, but when the temperature was 50 ° C., the spread of the spot shape of the laser beam became large.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 温度差が大きい環境下においても、反りの発生や表面に形成された光学機能パターンに応力による変形を防止することができる光学素子及び集光型太陽光発電装置を提供する。 集光型太陽光発電装置(1)の太陽光を集光する光学素子(4)は、ガラス基板(5)と、一方の面にフレネルレンズパターン(6a)を有し他方の面がガラス基板(5)上に接着された有機性樹脂からなるシート状成形体(6)を有し、シート状成形体(6)は、引張弾性率が1500MPa以下で、線膨張係数が7.0×10-5/℃以下であり、厚み400μmにおける波長帯域350~1850nmの平均透過率が85%以上で、ヘイズ値が1.0%以下である。

Description

光学素子及び集光型太陽光発電装置
 本発明は、表面に光学機能パターンが形成された光学素子及び集光型太陽光発電装置に関する。
 近年、自然エネルギーの利用が注目されており、そのひとつに太陽光のエネルギーを太陽電池によって電力に変換する太陽光発電がある。このような太陽光発電として、発電効率(光電変換効率)を高めて大電力を得るために、同一平面上に複数配置された太陽電池素子の前方側に、太陽光を各太陽電池素子に集光させるための集光レンズ(光学素子)を配設した構成の集光型太陽光発電装置が知られている(例えば、特許文献1参照)。
 集光型太陽光発電装置は、集光レンズで太陽光を集光して太陽電池素子に受光させる構成により、高価な太陽電池素子のサイズを小さくできるので、発電装置全体の低コスト化を図ることができる。このため、集光型太陽光発電装置は、日照時間が長く、集光面を大面積化しても設置可能な広大な地域などで、電力供給用途として普及しつつある。
特開2006-343435号公報
 前記特許文献1の集光型太陽光発電装置では、PMMA樹脂からなるシート状の集光レンズの太陽光入射面側の表面には耐環境性などを考慮して透明なガラス基板が接着されている。
 ところで、集光型太陽光発電装置による発電に適した地域(日照時間が長く、集光面を大面積化しても設置可能な広大な地域)として、例えば、米国の南西部(ネバダ州など)、ヨーロッパの地中海沿岸、中東などが挙げられるが、これらの地域では、昼と夜の温度差、及び夏季と冬季の気温差が非常に大きい。
 このため、集光型太陽光発電装置の集光レンズを形成する樹脂材として上記のようなPMMA樹脂を用いている場合、上記のような温度差(気温差)が大きい地域では、この温度差によって集光レンズに熱膨張収縮が生じる。例えば、温度差が40度程度ある環境下では、1m2サイズのPMMA樹脂からなる集光レンズに対して、数mm程度の熱膨張収縮が生じる。集光レンズに数mm程度の熱膨張収縮が生じると、接着されているガラス基板の剛直性によって集光レンズの縁部側に反りが発生し、これにより集光された光の一部が太陽電池素子の受光領域からずれるため、発電効率が低下する。
 また、集光型太陽光発電装置の集光レンズをシリコーン樹脂で形成して、この集光レンズにガラス基板を接着している構成では、線膨張係数がガラス(0.09×10-5/℃)とシリコーン樹脂(25~30×10-5/℃)とでは大きく異なる。また、シリコーン樹脂は、硬度が低い。
 このため、集光型太陽光発電装置の集光レンズを形成する樹脂材としてシリコーン樹脂を用いている場合、接着されているガラスとシリコーン樹脂の線膨張係数が大きく異なり、かつシリコーン樹脂の硬度が低いので、上記のような温度差(気温差)が大きい地域では、シリコーン樹脂からなる集光レンズの微細な凹凸形状のフレネルレンズ部分に応力がかかって変形が生じるおそれがある。このように、集光レンズのフレネルレンズ部分に変形が生じると、集光された光の一部が太陽電池素子の受光領域からずれるため、発電効率が低下する。
 そこで、本発明は、温度差が大きい環境下においても、反りの発生や表面に形成された光学機能パターン(フレネルレンズなど)に応力による変形を防止することができる光学素子及び集光型太陽光発電装置を提供することを目的とする。
 前記目的を達成するために請求項1に記載の発明は、透光性基板と、一方の面に光学機能パターンを有し他方の面が前記透光性基板上に接着された有機性樹脂からなるシート状成形体を備えた光学素子であって、前記シート状成形体は、引張弾性率が1500MPa以下で、線膨張係数が7.0×10-5/℃以下であり、厚み400μmのときの少なくとも可視光波長帯域の平均透過率が85%以上で、ヘイズ値が1.0%以下であり、メタルハライドランプを用いて、紫外線を含む光線を1kW/mの照度で600時間照射した場合に、少なくとも350nm~600nmの波長帯域での平均光透過率の低下が2%以下であることを特徴としている。なお、本発明において、線膨張係数はJIS K7197に従い30℃において測定した値であり、引張弾性率はJIS K7127にしたがって測定した値である。
 請求項2に記載の発明は、前記透光性基板がガラス基材よりなることを特徴としている。
 請求項3に記載の発明は、前記シート状成形体はアクリル系ブロック共重合体(A)とアクリル樹脂(B)とを含む熱可塑性重合体組成物を用いて形成され、前記熱可塑性重合体組成物は、前記アクリル系ブロック共重合体(A)が、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両末端にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造を分子内に少なくとも1つ有するアクリル系ブロック共重合体であり、重量平均分子量が10,000~100,000であって;
 前記アクリル系ブロック共重合体(A)が、重合体ブロック(a2)の含有量が40質量%以上80質量%以下であるアクリル系ブロック共重合体(A1)と重合体ブロック(a2)の含有量が10質量%以上40質量%未満であるアクリル系ブロック共重合体(A2)を含み;
 前記アクリル樹脂(B)が、主としてメタクリル酸エステル単位から構成され;
 アクリル系ブロック共重合体(A)とアクリル樹脂(B)との質量比〔(A)/(B)〕が97/3~10/90であることを特徴としている。
 請求項4に記載の発明は、前記シート状成形体の中に紫外線吸収剤を含んでいることを特徴としている。
 請求項5に記載の発明は、前記透光性基板の中に紫外線吸収剤を含んでいることを特徴としている。
 請求項6に記載の発明は、前記透光性基板の前記シート状成形体が接着されている面と反対側の面に、紫外線吸収層が形成されていることを特徴としている。
 請求項7に記載の発明は、前記透光性基板の前記シート状成形体が接着されている面と反対側の面に、防汚処理が施されていることを特徴としている。
 請求項8に記載の発明は、前記透光性基板の前記シート状成形体が接着されている面と反対側の面に、反射防止処理が施されていることを特徴としている。
 請求項9に記載の発明は、前記透光性基板に接着された前記シート状成形体に対する剥離接着強さは25N/25mm以上であることを特徴としている。なお、本発明に記載している剥離接着強さは、JISK685-2で規定されている180度剥離接着強さを測定する手法で測定した値である。
 請求項10に記載の発明は、前記シート状成形体の前記透光性基板との接着面をプラズマ処理、エキシマ処理、コロナ処理のいずれかの処理を施した上で、該接着面に前記透光性基板が接着されていることを特徴としている。
 請求項11に記載の発明は、前記シート状成形体に形成された前記光学機能パターンはフレネルレンズパターンであることを特徴としている。
 請求項12に記載の発明は、太陽光を集光する光学素子と、前記光学素子により集光された太陽光を受光して光電変換する太陽電池素子を備えた集光型太陽光発電装置において、前記光学素子は請求項11に記載の光学素子であることを特徴としている。
 本発明に係る光学素子によれば、透光性基板に接着された有機性樹脂からなるシート状成形体は、引張弾性率が1500MPa以下、線膨張係数が7.0×10-5/℃以下であり、厚み400μmのときの少なくとも可視光波長帯域の平均透過率が85%以上、ヘイズ値が1.0%以下である。
 よって、このシート状成形体は、光透過率が良好であり、また、引張弾性率が1500MPa以下と小さいので温度変化が大きな環境下でも反り量が小さく、更に、線膨張係数が7.0×10-5/℃以下とシリコーン樹脂よりも小さいので温度変化が大きな環境下でも、表面に形成された光学機能パターンの変形を小さく抑えることができる。
 更に、本発明に係る光学素子によれば、透光性基板の面積に対する厚みが、面積1m2に対して厚さが5mm以下であって、シート状成形体が透光性基板の厚みの1/15以上の厚みで形成されているのが好ましく、岩崎電気株式会社製のSUV-W151E装置を用い、定格電力4kWの水冷メタルハライドランプ(M04-L21WBX/SUV)1灯を用いて紫外線を含む光線を、290~450nmの波長範囲において1kW/m2の紫外線放射照度の条件下で600時間照射した場合に、少なくとも350~600nmの波長帯域での平均光透過率の低下が2%以下である。
 よって、このシート状成形体は、長期にわたって良好な光透過率を維持することができる。
 また、本発明に係る集光型太陽光発電装置によれば、本発明に係る光学素子を集光レンズとして配置しているので、温度変化が大きな環境下でも太陽光を太陽電池素子の受光領域に長期にわたって良好に集光して、高い発電効率を維持することが可能となる。
本発明の実施形態に係る光学素子を備えた集光型太陽光発電装置の概略構成を示す断面図。 本発明の実施形態に係る集光型太陽光発電装置の太陽光入射側から見た概要を示す平面図。 光学素子表面に紫外線吸収層を設けた集光型太陽光発電装置の概略構成を示す断面図。 光学素子表面に防汚コート層を設けた集光型太陽光発電装置の概略構成を示す断面図。 光学素子表面に反射防止コート層を設けた集光型太陽光発電装置の概略構成を示す断面図。 実施例1の光学素子における光の透過率の測定結果を示す図。 比較例1の光学素子における光の透過率の測定結果を示す図。
 以下、本発明を図示の実施形態に基づいて説明する。図1は、本発明の実施形態に係る光学素子を備えた集光型太陽光発電装置の概略構成を模式的に示す概略断面図である。
〈集光型太陽光発電装置の全体構成〉
 図1に示すように、本実施形態に係る集光型太陽光発電装置1は、受光した太陽光を光電変換する太陽電池素子(太陽電池セル)2と、該太陽電池素子2が実装された太陽電池基板3と、太陽電池素子2の前方側(太陽光入射側)に対向するようにして配置され、太陽光を集光する光学素子4とを主要構成部材として備えている。なお、図1において、L1は光学素子4に入射する太陽光、L2は光学素子4で集光された太陽光を示している。
 光学素子4は、太陽光入射側に設けた透光性基板、特にガラス基板5と、該ガラス基板5の出射側(太陽電池素子2と対向する側)の面に接着された透光性を有する有機性樹脂からなるシート状成形体6とで構成されている(本発明の特徴であるシート状成形体6の詳細については後述する)。シート状成形体6のガラス基板5と反対側(太陽電池素子2と対向する側)の面には、入射された太陽光を太陽電池素子2の受光領域に集光させるフレネルレンズパターン6aが同心円状に形成されている。このように、このフレネルレンズパターン6aが形成されたシート状成形体6は、集光レンズとして機能する。
 この集光型太陽光発電装置1は、図2に示すように、太陽電池基板上に一定間隔で複数の太陽電池素子2が実装され、また各太陽電池素子2の受光領域とそれぞれ対向するようにして複数の光学素子4が同一平面上に一体的に設けられている。
 ガラス基板5とシート状成形体6とは、熱圧着や接着剤等の周知の方法で接着可能であるが、熱圧着が厚み精度などの点で好ましい。本実施形態では、ガラス基板5とシート状成形体6を熱圧着させることによって、両者を接着している。
 なお、ガラス基板5に接着されたシート状成形体6に対する剥離接着強さが、25N/25mm以上となるように強固に接着することが好ましく、50N/25mm以上となるようにすることがより好ましい。剥離接着強さが25N/25mm以上であれば、ガラス基板5からシート状成形体6が剥がれることを長期にわたって確実に防止することができる。
 なお、ガラス基板5とシート状成形体6とを接着する前に、シート状成形体6のガラス基板5との接着面をプラズマ処理して、その後にガラス基板5に接着することが好ましい。シート状成形体6のガラス基板5との接着面をプラズマ処理して表面改質することで、ガラス基板5に接着する際の密着性をより高めることができる。なお、プラズマ処理以外にも、エキシマ処理やコロナ処理を施しても表面改質することができる。
 また、ガラス基板5にシート状成形体6が接着された構成の光学素子4を作製する方法として、例えば、周知の熱プレス成形法や真空ラミネート成形法が挙げられる。
 本発明の実施形態に記載している真空ラミネート法は、成形されるシートと型を室温に近い温度状態において圧力を低下させることによってシートと型の間の気泡を除去した後、加熱しながら圧力を上下方向から均等に付与して型の形をシートに転写することで成形体を作製する手法である。
 熱プレス成形法、真空ラミネート成形法どちらにおいても、ガラスに成形される前のシート状のフィルムを熱圧着して密着させた後、フィルムの上にニッケルスタンパ等の賦形型を配置して圧力を付与しながらシート状成形体6を形成する方法、又はガラス/フィルム/スタンパで同時に加熱しながら圧力を付与してシート状成形体6を作製する方法が挙げられる。
 なお、ガラス基板5とシート状成形体6の接着には、上記した熱圧着以外にも、接着剤を用いることもできる。接着剤としては、透光性や耐候性などに優れているメタクリル酸メチルとアクリルモノーマ等を含むアクリル樹脂系の接着剤や、シリコーン樹脂接着剤などが好ましい。特にシート状成形体6と同種の樹脂からなる接着剤を用いるのが好ましい。また、塗布厚みは極力薄いことが好ましい。
 各太陽電池素子2と各光学素子4は、精度よく位置決めされて配置されており、また太陽電池基板3と光学素子4との間の側面周囲等は、太陽電池基板3と光学素子4との間の空間内部に湿気(水分)や塵等が侵入しないように封止されている。なお、対向配置される太陽電池素子2と光学素子4の数や大きさは、集光型太陽光発電装置1のサイズや設置場所等によって任意に設定される。
〈シート状成形体6の詳細〉
 本発明のシート状成形体6は、透明性、耐候性、柔軟性等に優れている、以下のようなアクリル系ブロック共重合体(A)とアクリル樹脂(B)とを含む熱可塑性重合体組成物を用いて形成されている。
 上記の熱可塑性重合体組成物は、前記アクリル系ブロック共重合体(A)が、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両末端にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造を分子内に少なくとも1つ有するアクリル系ブロック共重合体であり、重量平均分子量が10,000~100,000であって;
 前記アクリル系ブロック共重合体(A)が、重合体ブロック(a2)の含有量が40質量%以上80質量%以下であるアクリル系ブロック共重合体(A1)と重合体ブロック(a2)の含有量が10質量%以上40質量%未満であるアクリル系ブロック共重合体(A2)を含み;
 前記アクリル樹脂(B)が、主としてメタクリル酸エステル単位から構成され;
 アクリル系ブロック共重合体(A)とアクリル樹脂(B)との質量比〔(A)/(B)〕が97/3~10/90である。
 なお、前記アクリル系ブロック共重合体(A)は、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両端末にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造、即ち、(a2)-(a1)-(a2)の構造(この構造中「-」は、化学結合を示す)を分子内に少なくとも1つ有するアクリル系ブロック共重合体である。
 また、前記アクリル樹脂(B)は、主として、メタクリル酸エステル単位から構成されるアクリル樹脂である。上記の熱可塑性重合体組成物からなるシート状成形体の透明性、成形加工性等を向上させる観点から、メタクリル酸エステルの単独重合体又はメタクリル酸エステル単位を主体とする共重合体であることが好ましい。
 本実施形態における上記の熱可塑性重合体組成物の詳細については、国際公開公報 WO2010/055798に記載されている。そして、この熱可塑性重合体組成物からなるシート状成形体(表面にフレネルレンズパターンが形成される前の成形体)は、例えば、周知のTダイ法やインフレーション法などによって製造することができる。
 また、この熱可塑性重合体組成物からなるシート状成形体6の表面にフレネルレンズパターン6aを形成する方法として、例えば、周知のプレス成形法、射出成形法、紫外線硬化性樹脂を用いた2P(Photo Polymerization)成形法などが挙げられる。
 上記した熱可塑性重合体組成物で形成されたシート状成形体6の物性は、以下のとおりである。
 即ち、シート状成形体6は、引張弾性率が1500MPa以下で、線膨張係数が7.0×10-5/℃以下であり、厚み400μmにおける波長帯域350~1850nmの平均透過率が85%以上で、ヘイズ値が1.0%以下である。また、ガラス基板5の面積に対する厚みが、面積1m2に対して厚さが5mm以下であって、前記シート状成形体6がガラス基板5の厚みの1/15以上の厚みで形成されているときにより効果が顕著である。更に、メタルハライドランプを用いて、紫外線波長帯域の光線を1kW/m2の照度で600時間照射した場合に、350~600nmの波長帯域での平均光透過率の低下が2%以下である。
 本実施形態のシート状成形体6は、上記したアクリル系ブロック共重合体(A)とアクリル樹脂(B)とを含む熱可塑性重合体組成物を用いて形成されているので、引張弾性率はPMMA樹脂よりも低く、線膨張係数はシリコーン樹脂よりも小さい。
 よって、このシート状成形体6がガラス基板5に接着されている光学素子4は、温度差が大きい環境下においても、シート状成形体6の反り量が小さく、かつシート状成形体6のフレネルレンズパターン6aの変形量も小さい。これにより、温度差が大きい環境下においても、この光学素子4で集光された光は太陽電池素子2の受光領域に良好に受光され、かつ光透過率の低下も抑えられるので、長期にわたって安定して良好な発電効率を維持することができる。
 また、上記したシート状成形体6又は/及びガラス基板5の中に紫外線吸収剤を含むように構成してもよい。更に、図3Aに示すように、ガラス基板5の太陽光入射側の表面に紫外線吸収剤を塗布して、紫外線吸収層7を形成してもよい。これらの構成によって、光学素子4に入射する太陽光の紫外線が吸収されるので、紫外線によるシート状成形体6の着色や物性の変化を抑制し、長期にわたって良好な発電効率を維持することができる。
 また、図3Bに示すように、ガラス基板5の太陽光入射側の表面に防汚コート剤を塗布して、防汚コート層8を形成してもよい。このように防汚処理を施して、ガラス基板5の太陽光入射側の表面への砂や埃などの付着を抑えることで、光透過率の低下が抑えられ、これにより長期にわたって良好な発電効率を維持することができる。
 更に、図3Cに示すように、ガラス基板5の太陽光入射側の表面に反射防止コート剤を塗布して、反射防止コート層9を形成してもよい。このように反射防止処理を施すことで、太陽光の透過率がより向上し、発電効率をより高めることができる。
 次に、前記した本発明の光学素子4による効果を評価するために、以下に示す本発明の実施例1~4と比較用の比較例1~4の構成を有する各光学素子で評価を行った。
〈実施例1〉
 実施例1では、線膨張係数が6.6×10-5/℃で、MD方向(長さ方向)の引張弾性率が300MPa、TD方向(幅方向)の引張弾性率が200MPaである、メタアクリル酸メチル(MMA)とアクリル酸ブチル(BA)のブロック共重合体とメタアクリル樹脂の混合物(上記した熱可塑性重合体組成物に相当)からなる厚み400μmの樹脂シート(前記したフレネルレンズパターンが形成される前のシート状成形体に相当)に、密着性を高めるために下記のプラズマ処理を行った後、175℃の温度をかけながら厚み2mmの透明なガラス基板に圧着して貼り合わせた構成の光学素子を作製した。
 前記ブロック共重合体としては、MMA/BA=50/50のB-1と、MMA/BA=30/70のB-2を用いた。メタアクリル樹脂としてパラペットH1000B(株式会社クラレ製)を用いた。そして、B-1を50質量%、B-2を20質量%、メタアクリル樹脂を30質量%の割合の混合物として、前記熱可塑性樹脂組成物を得た。
 プラズマ処理は、次のように行った。春日電機株式会社製の大気圧プラズマ装置APG-500型を用いて、供給エアー流量190NL/min、定格出力電力を450~500W、照射距離を10mmの条件で照射した。大気プラズマが照射される面積は約3cm2であり、同一場所に約1秒間プラズマが照射される条件でヘッドを動かし、樹脂シート全体にプラズマを照射した。
 そして、この光学素子のガラス基板側から、メタルハライドランプ(波長帯域290~450nm(紫外線波長帯域)で1kW/mm2の照度)で600時間照射する前後での光の透過率の変化を測定した。図4Aは、実施例1における光の透過率の測定結果であり、aが600時間照射後の透過率特性、bが照射開始前(照射時間0)の透過率特性である。
 図4Aの測定結果から明らかなように、上記した実施例1の光学素子は、メタルハライドランプで600時間照射する前後でも略変化することなく良好な透過率を有している。なお、600時間照射した光学素子の方が、波長帯域350~400nmでの透過率が若干向上した。
〈実施例2〉
 実施例2では、実施例1と同様の条件で作製された光学素子を50cm角サイズにカットし、この光学素子を平坦な測定台に載置して、温度を変化させたときの前記樹脂シート(前記したフレネルレンズパターンが形成される前段階のシート状成形体に相当)の反り量を測定した。
 この反り量測定では、室温時におけるこの樹脂シートの周辺部と中央部での反り量は0mmであった。そして、室温から65℃まで所定時間をかけて温度を上昇させた場合に、この樹脂シートの周辺部での反り量は0.5mmと小さいものであった。なお、中央部での反り量は略0mmであった。
〈実施例3〉
 実施例3では、実施例1と同様の樹脂シートを用い、周知の真空ラミネート成形法によって、20cm角サイズのフレネルレンズパターンが形成された集光レンズを透明なガラス基板に貼り合わせた構成の光学素子を作製した。
 そして、固定したこの光学素子に対して、フレネルレンズパターンの焦点位置に10mm角の受光センサを配置し、ガラス基板側からフレネルレンズパターン面の全面を走査するようにしてレーザ光(波長532nm、スポット径5mmφ)を入射して、受光センサでの受光量を測定した。そして、この光学素子を取外した状態で同様にレーザ光(波長532nm、スポット径5mmφ)を入射して、フレネルレンズパターンが無い場合の受光センサでの受光量を測定した。
 そして、前記光学素子のフレネルレンズパターン面を通して受光センサで受光した受光量と、フレネルレンズパターンが無い場合の受光センサでの受光量に対する光学素子のフレネルレンズパターンを通して受光センサで受光した受光量の比率(レンズ集光効率)を評価した。その結果、本実施例における光学素子のフレネルレンズパターンによるレンズ集光効率は90.07%であった。
〈実施例4〉
 実施例4では、実施例3と同様の構成の光学素子を室温から50℃まで所定時間をかけて温度を上昇させた状況で、実施例3と同様にレンズ集光効率を評価した。その結果、本実施例における光学素子のフレネルレンズパターンによるレンズ集光効率は89.96%であった。この結果から室温の25℃と50℃でほぼレンズ集光効率が変化しないことがわかった。
 また、本実施例における光学素子のガラス基板側から、フレネルレンズパターン面の中心から75mm離れた位置にレーザ光を入射させたときの焦点位置におけるスポット形状の広がり状態を、温度が15℃と50℃の場合において観察した。その結果、温度が15℃と50℃の場合においても、レーザ光のスポット形状の広がりは小さかった。
〈比較例1〉
 比較例1では、実施例1の光学素子の替わりとして市販されている厚み3mmのアクリル樹脂シート(クラレ社製:商品名[パラペットGH-SN])を用いて、実施例1と同様にメタルハライドランプ(波長帯域290~450nm(紫外線波長帯域)で1kW/mm2の照度)で600時間照射する前後での光透過率の変化を測定した。図4Bは、比較例1における光透過率の測定結果であり、aが600時間照射後の透過率特性、bが照射開始前(照射時間0)の透過率特性である。
 図4Bの測定結果から明らかなように、上記した厚み3mmのアクリル樹脂シートは、メタルハライドランプで600時間照射した後では、波長帯域350~600nmでの光透過率が大幅に低下した。特に短波長領域側での低下が顕著であった。即ち、アクリル樹脂シート単独の成形体では、耐光性に劣ることが分かる。
〈比較例2〉
 比較例2では、実施例1において光学素子に用いた樹脂シートの替わりに引張弾性率が3300MPaである、厚み400μmのPMMAシートを用いた他は実施例1と同様にして光学素子を作製し、実施例2と同様の条件で、温度を変化させたときの光学素子の反り量を測定した。
 この反り量測定では、室温時におけるこの光学素子の周辺部と中央部での反り量は0.0mmであった。そして、室温から65℃まで所定時間をかけて温度を上昇させた場合に、この光学素子の周辺部での反り量は2.1mmであった。このように、実施例2と比較して反り量が大きい結果となった。
〈比較例3〉
 比較例3では、実施例1において用いた樹脂シートの替わりにシリコーン樹脂シートを用い、実施例3と同様にして周知の真空ラミネート成形法によって、20cm角サイズのフレネルレンズパターンが形成された集光レンズを透明なガラス基板に貼り合わせた構成の光学素子を作製した。
 そして、実施例3と同様に、固定したこの光学素子に対して、フレネルレンズパターンの焦点位置に10mm角の受光センサを配置し、ガラス基板側からフレネルレンズパターン面の全面を走査するようにしてレーザ光(波長532nm、スポット径5mmφ)を入射して、受光センサでの受光量を測定し、更に、この光学素子を取外した状態で同様にレーザ光(波長532nm、スポット径5mmφ)を入射して、フレネルレンズパターンが無い場合の受光センサでの受光量を測定した。
 そして、前記光学素子のフレネルレンズパターン面を通して受光センサで受光した受光量と、フレネルレンズパターンが無い場合の受光センサでの受光量に対する光学素子のフレネルレンズパターン面を通して受光センサで受光した受光量の比率(レンズ集光効率)を評価した。その結果、比較例3における光学素子のフレネルレンズパターン面によるレンズ集光効率は87.9%であり、実施例3の場合よりも低下した。
〈比較例4〉
 比較例4では、比較例3と同様の構成の光学素子(フレネルレンズパターンを形成したシリコーン樹脂シートをガラス基板に貼り合わせた構成の光学素子)を室温から50℃まで所定時間をかけて温度を上昇させた状況で、実施例3(比較例3)と同様にレンズ集光効率を評価した。その結果、比較例4における光学素子のフレネルレンズパターン面によるレンズ集光効率は80.8%であり、実施例4の場合よりも低下した。また、比較例3と比較して熱を付与していないときと比較すると、大幅に集光効率が低下した。
 また、比較例4における光学素子のガラス基板側から、フレネルレンズパターン面の中心から75mm離れた位置にレーザ光を入射させたときの焦点位置におけるスポット形状の広がり状態を、温度が15℃と50℃の場合において観察した。その結果、温度が15℃の場合ではレーザ光のスポット形状の広がりは小さかったが、50℃の場合ではレーザ光のスポット形状の広がりが大きなものとなった。
関連出願の相互参照
 本願は、2012年7月9日に日本国特許庁に出願された特願2012-153534号に基づく優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。
 1    集光型太陽光発電装置
 2    太陽電池素子
 4    光学素子
 5    ガラス基板(透光性基板)
 6    シート状成形体
 6a   フレネルレンズパターン(光学機能パターン)
 

Claims (12)

  1.  透光性基板と、一方の面に光学機能パターンを有し他方の面が前記透光性基板上に接着された有機性樹脂からなるシート状成形体を備えた光学素子であって、
     前記シート状成形体は、引張弾性率が1500MPa以下で、線膨張係数が7.0×10-5/℃以下であり、厚み400μmのときの少なくとも可視光波長帯域の平均透過率が85%以上で、ヘイズ値が1.0%以下であり、
     メタルハライドランプを用いて、紫外線を含む光線を1kW/m2の照度で600時間照射した場合に、少なくとも350nm~600nmの波長帯域での平均光透過率の低下が2%以下であることを特徴とする光学素子。
  2.  前記透光性基板が、ガラス基材よりなることを特徴とする請求項1に記載の光学素子。
  3.  前記シート状成形体は、アクリル系ブロック共重合体(A)とアクリル樹脂(B)とを含む熱可塑性重合体組成物を用いて形成され、
     前記熱可塑性重合体組成物は、前記アクリル系ブロック共重合体(A)が、アクリル酸エステル単位を主体とする重合体ブロック(a1)の両末端にそれぞれメタクリル酸エステル単位を主体とする重合体ブロック(a2)が結合した構造を分子内に少なくとも1つ有するアクリル系ブロック共重合体であり、重量平均分子量が10,000~100,000であって;
     前記アクリル系ブロック共重合体(A)が、重合体ブロック(a2)の含有量が40質量%以上80質量%以下であるアクリル系ブロック共重合体(A1)と重合体ブロック(a2)の含有量が10質量%以上40質量%未満であるアクリル系ブロック共重合体(A2)を含み;
     前記アクリル樹脂(B)が、主としてメタクリル酸エステル単位から構成され;
     アクリル系ブロック共重合体(A)とアクリル樹脂(B)との質量比〔(A)/(B)〕が97/3~10/90であることを特徴とする請求項1又は2に記載の光学素子。
  4.  前記シート状成形体の中に紫外線吸収剤を含んでいることを特徴とする請求項1乃至3のいずれか一項に記載の光学素子。
  5.  前記透光性基板の中に紫外線吸収剤を含んでいることを特徴とする請求項1乃至4のいずれか一項に記載の光学素子。
  6.  前記透光性基板の前記シート状成形体が接着されている面と反対側の面に、紫外線吸収層が形成されていることを特徴とする請求項1乃至5のいずれか一項に記載の光学素子。
  7.  前記透光性基板の前記シート状成形体が接着されている面と反対側の面に、防汚処理が施されていることを特徴とする請求項1乃至6のいずれか一項に記載の光学素子。
  8.  前記透光性基板の前記シート状成形体が接着されている面と反対側の面に、反射防止処理が施されていることを特徴とする請求項1乃至7のいずれか一項に記載の光学素子。
  9.  前記透光性基板に接着された前記シート状成形体に対する剥離接着強さは25N/25mm以上であることを特徴とする請求項1乃至8のいずれか一項に記載の光学素子。
  10.  前記シート状成形体の前記透光性基板との接着面を、プラズマ処理、エキシマ処理、コロナ処理のいずれかの処理を施した上で、該接着面に前記透光性基板が接着されていることを特徴とする請求項1乃至9のいずれか一項に記載の光学素子。
  11.  前記シート状成形体に形成された前記光学機能パターンは、フレネルレンズパターンであることを特徴とする請求項1乃至10のいずれか一項に記載の光学素子。
  12.  太陽光を集光する光学素子と、前記光学素子により集光された太陽光を受光して光電変換する太陽電池素子を備えた集光型太陽光発電装置において、
     前記光学素子は、請求項11に記載の光学素子であることを特徴とする集光型太陽光発電装置。
     
PCT/JP2013/068695 2012-07-09 2013-07-09 光学素子及び集光型太陽光発電装置 WO2014010571A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157002990A KR101750726B1 (ko) 2012-07-09 2013-07-09 광학 소자 및 집광형 태양광 발전 장치
MX2015000260A MX345871B (es) 2012-07-09 2013-07-09 Elemento óptico y dispositivo fotovoltaico concentrador.
JP2014524807A JP6414745B2 (ja) 2012-07-09 2013-07-09 光学素子及び集光型太陽光発電装置
US14/413,617 US9553227B2 (en) 2012-07-09 2013-07-09 Optical element and concentrating photovoltaic device
CN201380036860.4A CN104487874B (zh) 2012-07-09 2013-07-09 光学元件以及聚光型太阳光发电装置
EP13816373.8A EP2871499B1 (en) 2012-07-09 2013-07-09 Optical element and concentrating photovoltaic device
AU2013287727A AU2013287727B2 (en) 2012-07-09 2013-07-09 Optical element and concentrating photovoltaic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012153534 2012-07-09
JP2012-153534 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010571A1 true WO2014010571A1 (ja) 2014-01-16

Family

ID=49916023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068695 WO2014010571A1 (ja) 2012-07-09 2013-07-09 光学素子及び集光型太陽光発電装置

Country Status (9)

Country Link
US (1) US9553227B2 (ja)
EP (1) EP2871499B1 (ja)
JP (1) JP6414745B2 (ja)
KR (1) KR101750726B1 (ja)
CN (1) CN104487874B (ja)
AU (1) AU2013287727B2 (ja)
MX (1) MX345871B (ja)
TW (1) TWI621881B (ja)
WO (1) WO2014010571A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333315A (zh) * 2014-09-03 2015-02-04 四川钟顺太阳能开发有限公司 太阳能组件中菲涅尔透镜与次级光学元件的安装方法
WO2015102093A1 (ja) * 2014-01-06 2015-07-09 株式会社クラレ ガラス基材積層体の製造方法、光学素子の製造方法、光学素子及び集光型太陽光発電装置
WO2015102100A1 (ja) * 2014-01-06 2015-07-09 株式会社クラレ 光学素子、光学素子の製造方法及び集光型太陽光発電装置
KR20180023216A (ko) * 2016-08-25 2018-03-07 씨이티홀딩스 주식회사 가이드렌즈를 구비하는 태양광발전모듈
JP2018180535A (ja) * 2017-04-14 2018-11-15 キヤノン株式会社 レンズ鏡筒、撮像装置、および、レンズ鏡筒の製造方法
JP2018203911A (ja) * 2017-06-06 2018-12-27 旭化成株式会社 集光型太陽電池レンズ用メタクリル系樹脂組成物
WO2020092876A1 (en) * 2018-11-02 2020-05-07 Arizona Board Of Regents On Behalf Of The University Of Arizona Systems for radiative power concentration
US11202805B2 (en) 2016-12-23 2021-12-21 Exopharm Limited Methods and compositions for purification or isolation of microvesicles and exosomes

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3015068C (en) 2013-05-10 2019-07-16 Abl Ip Holding Llc Silicone optics
JP6288995B2 (ja) * 2013-09-06 2018-03-07 キヤノン株式会社 光走査装置及び画像形成装置
US10705340B2 (en) 2017-02-14 2020-07-07 Facebook Technologies, Llc Lens assembly including a silicone fresnel lens
US10598935B2 (en) * 2017-02-14 2020-03-24 Facebook Technologies, Llc Hybrid lens with a silicone fresnel surface
US10473923B2 (en) * 2017-09-27 2019-11-12 Apple Inc. Focal region optical elements for high-performance optical scanners
GB201820275D0 (en) 2018-12-12 2019-01-30 Heliac Aps Improved coatings for glass
US20210066525A1 (en) * 2019-09-03 2021-03-04 Leo Volfson Optical assembly with photovoltaic layer
US11923392B2 (en) 2021-01-04 2024-03-05 Taiwan Semiconductor Manufacturing Company, Ltd. Enhanced design for image sensing technology

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158349A (ja) * 1996-11-28 1998-06-16 Dainippon Printing Co Ltd 光学シート用電離放射線硬化型樹脂組成物、光学シート及びその製造方法
JP2000233945A (ja) * 1999-02-15 2000-08-29 Olympus Optical Co Ltd 複合型光学部品
JP2006091847A (ja) * 2004-08-23 2006-04-06 Sumitomo Chemical Co Ltd レンズ基材用アクリルフィルム並びにこれを用いてなるレンズフィルム及びレンズシート
JP2006332535A (ja) * 2005-05-30 2006-12-07 Sharp Corp 集光型太陽電池モジュール
JP2006343435A (ja) 2005-06-07 2006-12-21 Sharp Corp 集光レンズ、集光レンズ構造体、集光型太陽光発電装置、および集光レンズ構造体の製造方法
WO2009125722A1 (ja) * 2008-04-08 2009-10-15 シャープ株式会社 集光用光学部材および集光型太陽光発電モジュール
WO2010055798A1 (ja) 2008-11-11 2010-05-20 株式会社クラレ 熱可塑性重合体組成物およびそれからなるシート状成形体
JP2010224377A (ja) * 2009-03-25 2010-10-07 Sumitomo Chemical Co Ltd 複合偏光板及び液晶表示装置
JP2010248339A (ja) * 2009-04-14 2010-11-04 Jsr Corp 樹脂組成物およびその成形体
WO2010137695A1 (ja) * 2009-05-29 2010-12-02 株式会社クラレ 太陽光集光用フレネルレンズシートおよびその設計方法
WO2011021694A1 (ja) * 2009-08-20 2011-02-24 旭硝子株式会社 フレネルレンズ構造体、集光装置、カバーガラス付き太陽電池用フレネルレンズ、および、カバーガラス付き太陽電池用フレネルレンズの製造方法
JP2011056701A (ja) * 2009-09-08 2011-03-24 Mitsubishi Plastics Inc 太陽電池用シート及び太陽電池モジュール

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075108A (ja) * 1998-08-28 2000-03-14 Nippon Zeon Co Ltd 集光体および太陽光発電システム
JP2003340843A (ja) * 2002-03-18 2003-12-02 Canon Inc 複合型素子の製造方法
US20050081908A1 (en) * 2003-03-19 2005-04-21 Stewart Roger G. Method and apparatus for generation of electrical power from solar energy
US8237044B2 (en) 2005-06-07 2012-08-07 Sharp Kabushiki Kaisha Concentrating solar power generation unit, concentrating solar power generation apparatus, concetrating lens, concentrating lens structure, and method of manufacturing concentrating lens structure
JP5331325B2 (ja) * 2007-09-28 2013-10-30 旭ファイバーグラス株式会社 太陽電池モジュール
DE102008035575B4 (de) * 2008-07-30 2016-08-11 Soitec Solar Gmbh Photovoltaik-Vorrichtung zur direkten Umwandlung von Sonnenenergie in elektrische Energie enthaltend eine zweistufige aus mehreren Elementen bestehende Konzentratoroptik
TWI479669B (zh) * 2009-04-01 2015-04-01 Ind Tech Res Inst 太陽模組高透光與光捕捉封裝結構
US10434756B2 (en) * 2009-07-23 2019-10-08 Francois Rummens Photovoltaic modules with polypropylene based backsheet
US20120204566A1 (en) 2009-10-26 2012-08-16 Hartzell Andrew K Fresnel lens
WO2011112842A1 (en) * 2010-03-11 2011-09-15 Greenvolts, Inc. Optics within a concentrated photovoltaic receiver containing a cpv cell
CN102096125A (zh) 2011-01-13 2011-06-15 北京工业大学 一种聚光菲涅尔透镜的制造方法及装置
PE20140597A1 (es) * 2011-01-28 2014-06-02 Evonik Roehm Gmbh Nuevos dispositivos de concentracion solar
CN202159153U (zh) 2011-06-24 2012-03-07 佘晓峰 高光效的聚光太阳能菲涅尔透镜
CN202275168U (zh) 2011-09-09 2012-06-13 厦门欧替埃电子工业有限公司 聚光太阳能用线型菲涅尔透镜结构

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158349A (ja) * 1996-11-28 1998-06-16 Dainippon Printing Co Ltd 光学シート用電離放射線硬化型樹脂組成物、光学シート及びその製造方法
JP2000233945A (ja) * 1999-02-15 2000-08-29 Olympus Optical Co Ltd 複合型光学部品
JP2006091847A (ja) * 2004-08-23 2006-04-06 Sumitomo Chemical Co Ltd レンズ基材用アクリルフィルム並びにこれを用いてなるレンズフィルム及びレンズシート
JP2006332535A (ja) * 2005-05-30 2006-12-07 Sharp Corp 集光型太陽電池モジュール
JP2006343435A (ja) 2005-06-07 2006-12-21 Sharp Corp 集光レンズ、集光レンズ構造体、集光型太陽光発電装置、および集光レンズ構造体の製造方法
WO2009125722A1 (ja) * 2008-04-08 2009-10-15 シャープ株式会社 集光用光学部材および集光型太陽光発電モジュール
WO2010055798A1 (ja) 2008-11-11 2010-05-20 株式会社クラレ 熱可塑性重合体組成物およびそれからなるシート状成形体
JP2010224377A (ja) * 2009-03-25 2010-10-07 Sumitomo Chemical Co Ltd 複合偏光板及び液晶表示装置
JP2010248339A (ja) * 2009-04-14 2010-11-04 Jsr Corp 樹脂組成物およびその成形体
WO2010137695A1 (ja) * 2009-05-29 2010-12-02 株式会社クラレ 太陽光集光用フレネルレンズシートおよびその設計方法
WO2011021694A1 (ja) * 2009-08-20 2011-02-24 旭硝子株式会社 フレネルレンズ構造体、集光装置、カバーガラス付き太陽電池用フレネルレンズ、および、カバーガラス付き太陽電池用フレネルレンズの製造方法
JP2011056701A (ja) * 2009-09-08 2011-03-24 Mitsubishi Plastics Inc 太陽電池用シート及び太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2871499A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355155B2 (en) 2014-01-06 2019-07-16 Kuraray Co., Ltd. Method of producing glass base material laminate, method of producing optical element, optical element, and concentrating photovoltaic device
WO2015102093A1 (ja) * 2014-01-06 2015-07-09 株式会社クラレ ガラス基材積層体の製造方法、光学素子の製造方法、光学素子及び集光型太陽光発電装置
WO2015102100A1 (ja) * 2014-01-06 2015-07-09 株式会社クラレ 光学素子、光学素子の製造方法及び集光型太陽光発電装置
JPWO2015102093A1 (ja) * 2014-01-06 2017-03-23 株式会社クラレ ガラス基材積層体の製造方法、光学素子の製造方法、光学素子及び集光型太陽光発電装置
CN104333315A (zh) * 2014-09-03 2015-02-04 四川钟顺太阳能开发有限公司 太阳能组件中菲涅尔透镜与次级光学元件的安装方法
KR20180023216A (ko) * 2016-08-25 2018-03-07 씨이티홀딩스 주식회사 가이드렌즈를 구비하는 태양광발전모듈
US11202805B2 (en) 2016-12-23 2021-12-21 Exopharm Limited Methods and compositions for purification or isolation of microvesicles and exosomes
US11559552B2 (en) 2016-12-23 2023-01-24 Exopharm Limited Methods and compositions for purification or isolation of microvesicles and exosomes
US11666603B2 (en) 2016-12-23 2023-06-06 Exopharm Limited Methods and compositions for purification or isolation of microvesicles and exosomes
JP2018180535A (ja) * 2017-04-14 2018-11-15 キヤノン株式会社 レンズ鏡筒、撮像装置、および、レンズ鏡筒の製造方法
US11320622B2 (en) 2017-04-14 2022-05-03 Canon Kabushiki Kaisha Lens barrel, imaging apparatus, and manufacturing method for lens barrel
JP7175623B2 (ja) 2017-04-14 2022-11-21 キヤノン株式会社 レンズ鏡筒、撮像装置、および、レンズ鏡筒の製造方法
JP2018203911A (ja) * 2017-06-06 2018-12-27 旭化成株式会社 集光型太陽電池レンズ用メタクリル系樹脂組成物
WO2020092876A1 (en) * 2018-11-02 2020-05-07 Arizona Board Of Regents On Behalf Of The University Of Arizona Systems for radiative power concentration

Also Published As

Publication number Publication date
EP2871499A1 (en) 2015-05-13
EP2871499A4 (en) 2016-03-02
CN104487874A (zh) 2015-04-01
CN104487874B (zh) 2016-08-24
KR101750726B1 (ko) 2017-06-27
TW201409087A (zh) 2014-03-01
KR20150034759A (ko) 2015-04-03
JPWO2014010571A1 (ja) 2016-06-23
MX2015000260A (es) 2015-11-16
EP2871499B1 (en) 2019-09-04
AU2013287727A1 (en) 2015-02-19
US9553227B2 (en) 2017-01-24
JP6414745B2 (ja) 2018-10-31
MX345871B (es) 2017-02-21
US20150179856A1 (en) 2015-06-25
AU2013287727B2 (en) 2016-10-20
TWI621881B (zh) 2018-04-21

Similar Documents

Publication Publication Date Title
JP6414745B2 (ja) 光学素子及び集光型太陽光発電装置
TWI461477B (zh) 太陽能電池模組
JP6376565B2 (ja) ガラス基材積層体の製造方法、光学素子の製造方法、光学素子及び集光型太陽光発電装置
KR20140011317A (ko) 중합체 재료로 제조된 특수 프레넬 렌즈를 기재로 하는 태양광 발전용 긴 수명 광학 집광기
JP2007253463A (ja) 太陽電池モジュール用表面保護シート
US20190081195A1 (en) Laminate Solar Concentrator
TW201219421A (en) Production of solar cell modules
WO2015102100A1 (ja) 光学素子、光学素子の製造方法及び集光型太陽光発電装置
CN204441300U (zh) 一种透明太阳电池背膜及其组件
US8969716B2 (en) Photovoltaic device and method for producing a concentrator lens system
JP2018057160A (ja) ガラス基材積層体の製造方法、光学素子の製造方法、光学素子及び集光型太陽光発電装置
JP5151379B2 (ja) 太陽電池モジュール用光学フィルム及び太陽電池モジュール
KR101172194B1 (ko) 태양전지 모듈 보호 필름 및 이를 포함하는 태양전지 모듈
EP4007873B1 (en) Safety lens
JP2011151391A (ja) 太陽電池モジュール
JP2011135017A (ja) 太陽電池モジュール用(メタ)アクリル系樹脂シートおよび太陽電池モジュール
US8358476B2 (en) Condensing lens for high concentration photovoltaic module and manufacturing method thereof
TW201031704A (en) Production of solar-cell modules
TW200941744A (en) Solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524807

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14413617

Country of ref document: US

Ref document number: MX/A/2015/000260

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013816373

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157002990

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013287727

Country of ref document: AU

Date of ref document: 20130709

Kind code of ref document: A